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Abstract 24 

Inter-subject modeling of cognitive processes has been a challenging task due to large individual 25 

variability in brain structure and function. Graph neural networks (GNNs) provide a potential way to 26 

project subject-specific neural responses onto a common representational space by effectively 27 

combining local and distributed brain activity through connectome-based constraints. Here we provide 28 

in-depth interpretations of biologically-constrained GNNs (BGNNs) that reach state-of-the-art 29 

performance in several decoding tasks and reveal inter-subject aligned neural representations 30 

underpinning cognitive processes. Specifically, the model not only segregates brain responses at 31 

different stages of cognitive tasks, e.g. motor preparation and motor execution, but also uncovers 32 

functional gradients in neural representations, e.g. a gradual progression of visual working memory 33 

(VWM) from sensory processing to cognitive control and towards behavioral abstraction. Moreover, 34 

the multilevel representations of VWM exhibit better inter-subject alignment in brain responses, higher 35 

decoding of cognitive states, and strong phenotypic and genetic correlations with individual behavioral 36 

performance. Our work demonstrates that biologically constrained deep-learning models have the 37 

potential towards both cognitive and biological fidelity in cognitive modeling, and open new avenues 38 

to interpretable functional gradients of brain cognition in a wide range of cognitive neuroscience 39 

questions. 40 

 41 

Keywords: fMRI, cognitive processes, human connectome, graph neural network, representational 42 

hierarchy, working memory 43 

 44 

Highlights: 45 

⚫ BGNN improves inter-subject alignment in task-evoked responses and promotes brain decoding  46 

⚫ BGNN captures functional gradients of brain cognition, transforming from sensory processing to 47 

cognition to representational abstraction. 48 

⚫ BGNNs with diffusion or functional connectome constraints better predict human behaviors 49 

compared to other graph architectures 50 
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 51 

 52 

Graphic Abstract | Multilevel representational learning of cognitive processes using BGNN  53 
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Introduction 54 

Understanding the neural substrates of human cognition is a main goal of neuroscience research. 55 

Modern imaging techniques, such as functional magnetic resonance imaging (fMRI), provide an 56 

opportunity to map cognitive function in-vivo. However, due to large inter-subject variability in brain 57 

anatomy and function, as well as in behaviors (Llera et al., 2019), modeling shared information in take-58 

evoked neural dynamics across individuals remains challenging. To address this issue, an emerging 59 

topic of hyperalignment or functional alignment has been proposed, which aims to project subject-60 

specific neural responses into a common representational space (Bazeille et al., 2021; Guntupalli et al., 61 

2016; Haxby et al., 2020) using either linear transformations of neural activity (Bazeille et al., 2021; 62 

Guntupalli et al., 2016; Haxby et al., 2011) or connectivity profiles (Guntupalli et al., 2018; Levakov et 63 

al., 2021; Wang et al., 2015). Few attempts have been reported to combine both aspects of neural activity 64 

and connectivity information. As a generalization of convolutions onto high-dimensional or non-65 

Euclidean data, graph neural networks (GNNs) provide a potential solution to integrate local and 66 

distributed brain activity through connectome-based constraints, paying the way towards the precision 67 

functional mapping of individual brains. 68 

The majority of functional mapping approaches relied on brain activity from a local area by associating 69 

cognitive functions with different patterns of brain activation. This set of techniques have gained many 70 

successes when tackling unimodal cognitive functions, including visual features (Haxby et al., 2014, 71 

2011; Huth et al., 2012; Naselaris et al., 2015; Nishimoto et al., 2011; Stansbury et al., 2013), auditory 72 

(Kell et al., 2018; Norman-Haignere et al., 2015) and linguistic information (Mitchell et al., 2008; 73 

Nishida and Nishimoto, 2018). Accumulated evidence strongly suggests that brain cognition requires 74 

functional integration of neural activity at multiple scales, ranging from cortical neurons to brain areas 75 

towards large-scale brain networks (Christophel et al., 2017; Pulvermüller et al., 2021). One typical 76 

example is the visual working memory task (VWM), which involves largely distributed brain networks 77 

and multilevel interactions among memory, attention and other sensory processes (Brincat et al., 2018; 78 

Christophel et al., 2017; Eriksson et al., 2015; Tang et al., 2019). For instance, the visual cortex encodes 79 

low-level sensory features, e.g., orientation (Harrison and Tong, 2009), motion (Riggall and Postle, 80 
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2012) and patterns of the visual stimuli (Christophel et al., 2012), while the prefrontal and parietal 81 

cortex maintenance the abstract representations over a delayed interval in the memory system 82 

(Christophel et al., 2012; Oh et al., 2019; Sligte et al., 2013). Studies have uncovered a gradual 83 

progression of WM from the low-level sensory processing in sensory cortices to behaviorally relevant 84 

abstract representations in prefrontal regions by using recordings of neural activity in primates (Brincat 85 

et al., 2018; D’Esposito and Postle, 2015). Accurately mapping such multilevel integrative processes of 86 

WM in the human brain is still challenging, mainly due to the high computational complexity of the 87 

full-brain models in conventional neuroimaging analysis (Haxby et al., 2014; Huth et al., 2012; Nakai 88 

and Nishimoto, 2020; Nishimoto et al., 2011) and poor inter-subject alignment of brain responses in 89 

large-scale neuroimaging data (Haxby et al., 2020; Poldrack et al., 2009).  90 

Recently, GNNs have reached state-of-the-art performance in several brain decoding benchmarks (Hou 91 

et al., 2020; Li et al., 2021; Lin et al., 2021; Zhang et al., 2021; Zhang and Bellec, 2020), including our 92 

previous work on Human Connectome Project (HCP) tasks (Zhang et al., 2022, 2021). Our findings 93 

have demonstrated a remarkable boost in inter-subject decoding by using GNNs, as well as their ability 94 

to capture state-specific brain signatures in the spatiotemporal neural dynamics. However, the 95 

interpretability of GNNs and other deep learning models is a big challenge for cognitive modeling 96 

(Kriegeskorte and Douglas, 2018; Thomas et al., 2021). Specifically, it is still unknown why GNNs 97 

outperform the conventional univariate (Huth et al., 2012; Naselaris et al., 2015; Nishimoto et al., 2011) 98 

and multivariate analysis (Haxby, 2012; Haxby et al., 2014) in these tasks. We hypothesized that GNNs 99 

efficiently combine local and distributed brain activity through biologically constrained mechanisms 100 

(Pulvermüller et al., 2021), e.g. leveraging the inductive bias of empirical brain connectomes (Zhang et 101 

al., 2022). To test this hypothesis, we interpreted the latent space of GNN decoding models using 102 

modern feature/layer visualization techniques (Nguyen et al., 2019; Shi et al., 2020) as well as the well-103 

established representational similarity analysis (Groen et al., 2018; Kornblith et al., 2019; Xu and 104 

Vaziri-Pashkam, 2021). The latent representations of GNN models were then mapped onto the human 105 

brain in a hierarchical manner and their biological basis were specifically investigated in terms of the 106 

correspondence with conventional univariate activation maps and the association with human behaviors 107 

and genetics.  108 
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In the current study, we propose a biologically-constrained spatiotemporal GNN architecture to encode 109 

the distributed, integrative processes of cognitive tasks and to decode task-related brain dynamics at 110 

fine timescales. We evaluate the model on the HCP task-fMRI database consisting of 1200 healthy 111 

subjects (Van Essen et al., 2013) and investigate the reliability and interpretability of the latent 112 

representations on a variety of cognitive tasks, including motor and perception as well as high-order 113 

cognitive functions. Taking Motor and WM tasks as examples, we systematically investigate the 114 

interpretability of the connectome-constrained GNNs, including 1) multilevel representational learning 115 

of cognitive processes, transforming from low-level sensory processing to high-level behaviorally 116 

relevant abstract representations following the cortical hierarchy; 2) spatiotemporal decomposition of 117 

cognitive tasks into multiple temporal stages and activating different brain systems; 3) inter-subject 118 

alignment of task-related neural responses and their associations with cognitive behaviors and genetic 119 

variances; 4) salient state-specific neuroimaging features and their inter-trial/subject stability. The 120 

present study provides a novel perspective of interpreting GNN models for large-scale cognitive 121 

decoding and highlights three core components for cognitive modeling, i.e. brain connectome, 122 

functional integration and representational hierarchy, which might be the keys towards brain-inspired 123 

artificial intelligence of human cognition.   124 
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Results 125 

Summary of the main results 126 

Our BGNN encoding-decoding model of cognitive functions (as shown in Fig. 1) learns multilevel 127 

latent representations transforming from sensory processing to representational abstraction (encoding 128 

phase) and predicts cognitive states using embedded representations at fine timescales (decoding phase). 129 

First, the embedding model (Fig. 1a) projects the high-dimensional task-evoked whole-brain activity 130 

into a dynamic brain graph and learns embedded representations through multi-layer graph neural 131 

networks. Second, the encoding model (Fig. 1b) reveals a representational hierarchy underpinning 132 

cognitive processes, e.g. a functional gradient in neural representations of visual working memory 133 

(VWM) from low-level motor/sensory inputs to high-level abstract representations. At the low-level 134 

representations, the model uncovers spatiotemporal decompositions of task-related brain responses, i.e. 135 

decomposing cognitive processes into multiple temporal stages (e.g. motor execution and motor 136 

preparation for Motor tasks) and capturing different patterns of spatial activation maps at each stage 137 

(e.g. prefrontal regions for motor preparation and sensorimotor cortices for motor execution). At the 138 

high-level representations, the model learns behaviorally relevant abstract representations of cognitive 139 

functions that further associate with participants’ in-scanner task performance (e.g. correct responses 140 

and response time of WM tasks) and improve the inter-subject alignment of brain responses. Using the 141 

high-level representations, the decoding model (Fig. 1c) achieves state-of-art decoding performance on 142 

a variety of cognitive functions at multiple timescales (Table 2 and Fig.6-S2), for instance, on unimodal 143 

cognitive functions like Language (F1-score = 98.36%, 2 conditions, story vs math) and Motor tasks 144 

(98.01%, 5 conditions, left/right hand, left/right foot and tongue), as well as high-order cognitive 145 

processes including Working-Memory tasks (94.14%, classifying 8 conditions, combination of the 146 

category recognition task and N-Back memory task). We will explain these key findings in more detail 147 

in the following sections. 148 
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 149 

Fig.1 | Encoding-decoding model of human cognitive functions using graph embeddings. The 150 

model consists of three stages, i.e. graph embedding, encoding and decoding.  The embedding phase (a) 151 

maps task-related fMRI responses onto a dynamic brain graph. The encoding phase (b) captures 152 

hierarchical representations of cognitive functions using connectome-constrained BGNN, representing 153 

a gradual progression from motor/sensory inputs (i.e. motor/visual/auditory) to behaviorally relevant 154 

abstract representations. The decoding phase (c) infers cognitive states from encoded high-level BGNN 155 

representations with fine temporal resolution and fine cognitive granularity.  156 
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Sensory-cognition-behavior representational hierarchy of WM tasks 157 

The encoding model captures a representational hierarchy of task-related brain responses along BGNN 158 

layers. Specifically, in early BGNN layers, the model learns low-level representations of brain 159 

responses underpinning motor/visual/auditory processing, i.e. decomposing brain activity into multiple 160 

temporal stages and the corresponding spatial maps of brain activations (Fig. 4 and Fig. 4-S1). In deep 161 

layers, the model learns high-level abstract representations of cognitive processes that are strongly 162 

associated with participants’ behavioral performance (Fig. 5 and Fig.5-S1). To verify this, we evaluated 163 

the representational similarity of the BGNN model using centered kernel alignment (CKA) with a linear 164 

kernel (Kornblith et al., 2019), with 0 < CKA < 1, and revealed a hierarchical organization of the 165 

embedded representations for each cognitive domain using Ward linkage. 166 

A three-level representational hierarchy was revealed for WM tasks (as shown in Fig.2a), including 167 

low-level features (gcn1 to gcn2), hidden representations (gcn3 to gcn4), and high-level representations 168 

(gcn5 to gcn6). Among which, early BGNN layers extracted sensory processing information in the 169 

ventral visual stream, middle BGNN layers retrieved cognitive control signals in the frontoparietal 170 

regions, and the last BGNN layer (gcn6) captured behaviorally relevant representations in the prefrontal 171 

cortex and salience network (Fig. 2d). These BGNN representations demonstrated weak associations 172 

between different representational levels (CKA=0.94 and 0.76 for within- and between-level similarity), 173 

with a stepwise progression from sensory processing to cognitive control and towards behavioral 174 

abstraction (CKA=0.54, 0.83, 0.92 for low, middle, high-level features as compared to gcn6). Moreover, 175 

the high-level BGNN representations demonstrated a strong category-specific effect by learning similar 176 

features for the same task but showing distinct features between tasks (Fig.2b and c). This category-177 

specific effect was gradually enhanced along the representational hierarchy (Fig. 5-S2a) and all BGNN 178 

representations demonstrated higher contrasts of 2back vs 0back tasks (2bk-0bk) compared to the GLM-179 

derived contrast maps (Fig. 2-S1b and Fig. 5-S2b). The representational hierarchy of WM tasks 180 

resembled the previously reported progression of activity flow in WM tasks, i.e. information 181 

transformation from sensory inputs to behaviorally relevant representations along the cortical hierarchy, 182 

as revealed by neural recordings in macaques (Brincat et al., 2018).  183 
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Our results also revealed a 3-fold separation of neural basis underlying the information processing of 184 

WM tasks (Fig. 2d). First, the separation of sensory processing, e.g. recognition of face vs place images 185 

(face-place), was reliably captured in the ventral stream, e.g. fusiform face area (FFA) and 186 

parahippocampal place area (PPA), in Module1 (Fig. 2d), consistent with the well-known segregation 187 

of the neural substrates for encoding faces and places respectively (Golarai et al., 2007). Second, the 188 

2bk-0bk separation was weakly detected in Module1 but demonstrated a strong separation effect in 189 

Module2, especially in the frontoparietal regions including frontal eye fields (FEF), middle frontal gyrus 190 

(MFG), intraparietal sulcus (IPS) and inferior parietal lobule (IPL). These detected regions coincided 191 

with the current view of prefrontal top-down control over sensory processing in N-back tasks 192 

(Christophel et al., 2017; D’Esposito and Postle, 2015; Nee and D’Esposito, 2018). Third, the memory-193 

vs-content disassociation was additionally captured in Module3, suggesting a content-specific memory 194 

mechanism. Specifically, Module3 revealed distinct neural mechanisms underlying the contrast of 2bk-195 

0bk on familiar faces vs places aside from the common frontoparietal basis of 2bk-0bk separation. The 196 

2bk-0bk contrast on face images relied more on top-down modulation from prefrontal cortex and 197 

salience network including the dorsolateral prefrontal cortex (dlPFC), anterior insula (aIns) and anterior 198 

cingulate cortex (ACC). By contrast, the 2bk-0bk contrast on place images relied more on bottom-up 199 

sensory inputs in the lateral occipito-temporal cortex, including PPA, V4 and TE1.  200 

Our findings of the memory-vs-content dissociation in both BGNN representations and neural 201 

substrates of WM tasks support the theory of a task-dependent prefrontal-vs-sensory contribution in 202 

cognitive tasks such that the sensory perception relies on sensory cortices while representational 203 

abstraction relies on prefrontal regions (Christophel et al., 2017; Nee and D’Esposito, 2018). 204 

Coincidingly, participants’ in-scanner behavioral performance also confirmed the divergent 205 

mechanisms for remembering faces and places in WM tasks and exhibited a preferential effect towards 206 

the recognition of faces. As shown in Fig.2e, participants better remembered familiar faces than places, 207 

by achieving higher accuracies and faster responses on both 0bk (T=7.76, p=1.84e-14 for Acc, T=-2.38, 208 

p=0.017 for RT) and 2bk tasks (T=12.22, p=2.86e-32 for Acc, T=-9.90, p=3.68e-22 for RT), and 209 

showing smaller decays in behavioral performance due to the increase of cognitive demands (i.e. 2bk-210 

0bk, T=3.21, p=0.0013 for Acc, T=-5.97, p=3.16e-9 for RT). Our findings coincided with the literature 211 
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on a privileged WM state for faces with an improved accuracy and response time in both newborns and 212 

adults (Farroni et al., 2005; Lin et al., 2019; Sato and Yoshikawa, 2013). Together, both neural activity 213 

and behavioral data supported the 3-level representational hierarchy of WM tasks and suggested a 214 

differential representational state for faces compared to non-faces.  215 

Moreover, in order to validate the biological basis of such representational hierarchy and the memory-216 

vs-content disassociation of WM tasks, we mapped the embedded BGNN representations onto 217 

independent atlases of laminar differentiation (Mesulam, 1998) and cytoarchitectural class. We found 218 

that 2bk tasks relied on the association cortices while the 0bk tasks relied on the primary and secondary 219 

sensory cortices (Fig.2f). By contrast, we observed divergent neural substrates underlying the 2bk-0bk 220 

contrasts, i.e. heteromodal association areas for faces and unimodal sensory areas for places (Fig.2f). 221 

Functional gradient of Motor tasks: from motor execution to motor planning 222 

We uncovered a two-level representational hierarchy of Motor tasks (as shown in Fig.3), including the 223 

low-level sensory processing (gcn1 to gcn2) and high-level abstract representations (gcn3 to gcn6). 224 

Among which, we detected weak associations between two representational levels (CKA=0.58 for 225 

gcn1-gcn2 as compared to gcn6), along with highly redundant features in the hidden representations 226 

(CKA=0.92 for gcn3-gcn5 as compared to gcn6). The low-level sensory processing decomposed task-227 

evoked brain activity in both spatial and temporal domains, as revealed by the feature visualization of 228 

spatiotemporal graph filters in the 1st BGNN layer, showing biologically relevant activation patterns in 229 

the sensorimotor and prefrontal cortices (Fig.3c). The high-level abstract representations captured the 230 

intention of movements and demonstrated an evident task-specific effect that showing similar features 231 

for the same type of body movements, including left and right body parts, and distinct features among 232 

different body movements (Fig.3b). The follow-up representational similarity analysis exhibited much 233 

higher contrasts of different body movements as compared to the classical GLM analysis (Fig.2-S1a).  234 

The representational hierarchy of Motor tasks identified two phases of motor processes, i.e. motor 235 

planning and motor execution, and uncovered a functional gradient in the neural representations of 236 

Motor tasks following the cortical hierarchy (Fig.3d). Specifically, the execution phase of body 237 

movements was detected in Module1 by revealing well-established activation patterns in the 238 
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sensorimotor cortex. The planning phase of movements was captured in Module2 by involving the 239 

prefrontal and parietal regions during all Motor tasks, including medial prefrontal cortex (mPFC), 240 

inferior frontal gyrus (IFG), FEF and IPL. Our findings uncovered the spatiotemporal dynamics 241 

underlying motor processes and revealed distinct neural substrates for the stages of motor tasks, i.e. 242 

motor execution and motor planning. Our results indicated a potential role of frontoparietal regions in 243 

the planning of goal-directed actions. Similar two-stage functional segregation of motor processes has 244 

been reported in humans (Ariani et al., 2022; Gallivan et al., 2011), monkeys (Messinger et al., 2021) 245 

and rodents (Eriksson et al., 2021). 246 

 247 
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Fig.2 | BGNN revealed a representational hierarchy of VWM tasks transforming from sensory 248 

processing in visual areas to behavioral abstraction in prefrontal cortices. a), We found a three-249 

level representational hierarchy of WM tasks by using centered kernel alignment (CKA) to evaluate the 250 

similarity of BGNN representations and performing hierarchical clustering on the similarity matrix. b), 251 

Representations of WM tasks in the last BGNN layer (gcn6, part of Module3) exhibited a strong task-252 

specific effect of t-SNE projections, with distinct clusters for each task condition and small overlaps 253 

between tasks. c), The representational similarity, evaluated by Pearson correlation coefficients, 254 

demonstrated highly discriminative BGNN representations between 2back and 0back tasks as well as 255 

among tasks using different visual stimuli, e.g. faces vs places. d), Multilevel representational learning 256 

of WM tasks. Module1 (in the red block) detected neural representations of visual processing, e.g. the 257 

recognition of face and place images in the ventral stream. Module2 (in the green block) detected neural 258 

representations of memory load, e.g. the contrast of 2bk vs 0bk tasks in the frontoparietal regions. 259 

Module3 (in the orange block) revealed divergent brain mechanisms for the 2bk-0bk contrasts on 260 

familiar faces and places, indicating a differential representational state for recognizing familiar faces. 261 

e), A privileged WM state for familiar faces in human behavioral data. Participants remembered better 262 

(i.e. higher accuracy and faster responses) on familiar faces than places for both 0back (0bk) and 2back 263 

tasks (2bk), and showing smaller decays due to the memory load (2bk-0bk). *** indicates p-value<0.001, 264 

** indicates p-value<0.01, * indicates p-value<0.05. f), Spatial associations between BGNN abstract 265 

representations and levels of laminar differentiation (left) and cytoarchitectural taxonomy (right). dlPFC: 266 

dorsolateral prefrontal cortex; dmPFC: dorsal medial prefrontal cortex; MFG: middle frontal gyrus; IFJ: 267 

inferior frontal junction; aIns: anterior insula; dACC: dorsal anterior cingulate cortex; pre-SMA: pre-268 

supplementary motor area; FEF: frontal eye fields; IPS: intraparietal sulcus; IPL: inferior parietal lobule; 269 

FFA: fusiform face area; PPA: parahippocampal place area; V4t: V4 transition zone; TE1: visual 270 

processing area of the inferior temporal cortex.  271 
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 272 

Fig.3 | Hierarchical organization of BGNN representations for the MOTOR tasks. a), We found a 273 

two-level representational hierarchy of Motor tasks by using CKA to evaluate the similarity of BGNN 274 

representations and performing hierarchical clustering on the similarity matrix. b), Representations of 275 

Motor tasks in the last BGNN layer (gcn6, part of Module2) exhibited a strong task-specific effect in t-276 

SNE projections. The representational similarity, evaluated by Pearson correlation coefficients, 277 

demonstrated highly discriminative BGNN representations among different movement types (foot vs 278 

hand vs tongue) as well as between left and right body parts. c), Spatiotemporal decomposition of the 279 

Motor process. The single-volume prediction (1st panel, 2nd row in c) indicated two peaks in the temporal 280 

curve of decoding accuracy, corresponding to two different stages of Motor tasks, i.e. motor execution 281 

(in red) and motor preparation (in violet). BGNN uncovered different shapes of temporal kernels and 282 

distinct patterns of spatial activations for the two stages, e.g. the sensorimotor cortex for motor 283 

execution, prefrontal and parietal regions for motor preparation. d), Multilevel representational learning 284 

of Motor tasks. Module1(in green) revealed brain activations in the motor and somatosensory cortices 285 

for the execution of movements. Module2 (in orange) detected brain activations in the prefrontal and 286 

parietal regions, which may correspond to the intention and planning of movements. MFG: middle 287 

frontal gyrus; IFG: inferior frontal gyrus; FEF: frontal eye fields; IPL: inferior parietal lobe; dmPFC: 288 

dorsal medial prefrontal cortex; vmPFC: ventral medial prefrontal cortex; STS: superior temporal sulcus; 289 

TP: temporal pole. 290 
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Spatiotemporal decomposition of brain responses in early BGNN layers 291 

The encoding model learns rich representations of brain responses underlying cognitive processes, as 292 

revealed by the feature visualization of spatiotemporal graph filters in the 1st BGNN layer, to 293 

decompose the entire process into multiple temporal stages and extract the corresponding maps of brain 294 

activation at each stage. For instance, in the Motor tasks, the model captured a series of activation maps 295 

corresponding to different stages of motor processes (Fig.3c), e.g. the prefrontal and parietal regions 296 

were involved at the preparation stage, i.e. neural activity immediately after the presentation of the cue 297 

images, while the sensorimotor cortex was activated during motor execution. Besides, the model learned 298 

a variety of temporal convolutional kernels, corresponding to the diverse shapes of hemodynamic 299 

responses (HRF, as shown in Fig.4). For instance, the model learned redundant convolutional kernels 300 

for the execution stage of body movements (Fig.4b and d), accounting for the variability of HRF among 301 

trials and subjects (Aguirre et al., 1998; Neumann et al., 2003). In addition, some instantaneous 302 

subprocess of cognitive functions was also captured, e.g., the visual cortex was involved for recognizing 303 

the cue images shown in the middle of a Motor task block (Fig.4e). This spatiotemporal decomposition 304 

of motor processes coincided with previous studies that clustered brain responses into different stages 305 

and networks in a sequential motor task (Orban et al., 2015). Using the same procedure, we observed a 306 

rich set of spatiotemporal representations underlying the Language tasks as well, corresponding to 307 

different stages of semantic and arithmetic processes (Fig.4-S1), for instance, the involvement of visual 308 

cortex during the cue phase, the engagement of prefrontal and temporal regions at the stage of language 309 

comprehension, the activation of sensorimotor cortex at the stage of button pressing. When the time 310 

window of an entire Language trial was analyzed, corresponding to the continuous stimuli of auditory 311 

processing in the fMRI paradigm, the extracted spatial maps coincided with the activation maps derived 312 

from classical GLM analysis (Fig.4-S1b). We did not observe such temporal decomposition for the 313 

cognitive process of WM tasks, mainly due to the lack of a clear delayed period in the N-back fMRI 314 

paradigm which makes it hard to distinguish the maintenance and retrieval periods in a single WM trial 315 

(Pinal et al., 2014). Together, the encoded low-level sensory representations uncover a sequential 316 

gradient in the spatiotemporal organization of cognitive processes, not only to distinguish patterns of 317 
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brain activation in the spatial domain but also to decompose temporal dynamics of cognitive processes 318 

into multiple stages. 319 

 320 
Fig.4 | Spatiotemporal decomposition of low-level BGNN representations for Motor tasks. BGNN 321 

uncovered a multi-stage spatiotemporal organization of cognitive processes, including diverse 322 

hemodynamic responses in the temporal domain and distinct patterns of activation maps in the spatial 323 

domain. a), Task paradigm of Motor trials and the corresponding activation maps detected by the 324 

classical GLM analysis. Each task block of a movement type (hand, foot or tongue) is preceded by a 3s 325 

cue and lasts for 12s. b-e), BGNN captured a variety of temporal convolutional kernels (1st column) 326 

corresponding to task-evoked responses at different stages of cognitive processes, for instance, the 327 

motor preparation (c) and motor execution (b and d), as well as processing visual cues in the middle of 328 

a task block (e). At each stage, the corresponding “activation maps” (2nd to 4th column) demonstrated 329 

distinct neural basis among task conditions, e.g. foot (2nd column), hand (3rd column), and tongue (4th 330 

column). Our results indicated a functional gradient in the spatiotemporal organization of Motor tasks, 331 

e.g., the sensorimotor cortex for the stage of motor execution; prefrontal regions and default mode 332 
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network (DMN) for the stage of motor preparation; the visual cortex for processing visual cues. FEF: 333 

frontal eye fields; IPL: inferior parietal lobe; dmPFC: dorsal medial prefrontal cortex; vmPFC: ventral 334 

medial prefrontal cortex; SMA: supplementary motor area; STS: superior temporal sulcus. 335 

Encoding behaviorally relevant abstract representations in deep BGNN layers  336 

Improved inter-subject functional alignment of task-related brain responses 337 

The BGNN model projects task-evoked brain responses onto a common representational space by using 338 

a graph embedding approach constrained by human connectome priors, and consequently improves the 339 

inter-subject alignment of neural responses underlying cognitive functions. Studies have shown that the 340 

inter-subject variability in brain structure and function may be a major obstacle towards a unified 341 

encoding model of cognitive processes (Bazeille et al., 2021; Haxby et al., 2020). To tackle this problem, 342 

BGNN took into account the individual variability of task-related neural dynamics at multiple scales. 343 

First, the inter-trial and inter-subject variability of HRF was embedded in early BGNN layers by 344 

learning a variety of graph convolutional kernels in the temporal domain, accounting for different stages 345 

of cognitive processes and variable shapes of HRF (Fig.4 and Fig.4-S1). Second, the inter-subject 346 

variability in cognitive behaviors was encoded in deep BGNN layers by mapping subject-specific 347 

patterns of neural activity in task-related brain regions and networks (Fig. 6) and extracting behaviorally 348 

relevant abstract representations through connectome-constrained graph convolutions (Fig. 5). As a 349 

result, BGNN representations highly improved the functional alignment of cognitive tasks, i.e. 350 

strengthening the main effect of task conditions in neural representations while reducing between-351 

subject variability, as compared to other commonly used neural representations, including raw fMRI 352 

data and GLM contrast maps. For instance, the representational similarity analysis demonstrated higher 353 

contrasts of different task conditions in BGNN representations than the conventional GLM contrast 354 

maps (Fig. 2-S1). An alternative dimensional reduction approach using t-SNE (Maaten and Hinton, 355 

2008) also exhibited a stronger task-segregation effect in BGNN representations, i.e. grouping brain 356 

responses into clusters of task conditions, than raw fMRI data and GLM contrast maps (Fig.5-S3).  357 

Moreover, BGNN representations achieved higher decoding accuracies of cognitive tasks as compared 358 

to other neural representations, including raw fMRI data, task-related functional connectivity (Cai et al., 359 
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2014; Jiang et al., 2020) and GLM contrast maps (Fig.5b), regardless of choices for the linear and 360 

nonlinear classifier or its parameters. Interestingly, using human connectome priors derived from either 361 

functional or diffusion MRI (Fig. 5a), the BGNN model learned similar middle-to-high-level abstract 362 

representations of cognitive processes. Similar decoding performance was achieved by using either 363 

connectome prior, both of which outperformed the randomly connected graph (Fig.5b). 364 

Individual variation in BGNN representations associates with participants’ behavioral performance   365 

Although mapping neural responses into a common representational space, BGNN representations still 366 

preserved the individual variability in cognitive processes by relating task-related neural representations 367 

of individual brains to participants’ in-scanner behavioral performance. Studies have shown that the 368 

task-specific effect or modularity of individual fMRI data was significantly associated with participants’ 369 

task performance in behaviors (Saggar et al., 2018). Here, by constructing the individual state-transition 370 

graph using BGNN representations rather than using raw fMRI data, we found much stronger 371 

associations between task-related neural representations and cognitive behaviors on a large healthy 372 

population (Fig.5c and d). Specifically, the segregation of memory load (2bk-0bk) was highly associated 373 

with individual behaviors in scanner (as shown in Fig.5-S1), including positive correlations with the 374 

average accuracy (Acc) on all WM tasks (𝑟 =0.5031 𝑝 =6.56e-70), on 0back tasks (𝑟 =0.4450, 375 

𝑝 =2.33e-53) and on 2back tasks (𝑟 =0.3966, 𝑝 =9.67e-42), as well as negative correlations with the 376 

median reaction time (RT) on all WM tasks (𝑟 =-0.2684, 𝑝 =3.62e-19), on 0back tasks (𝑟 =-0.3686, 377 

𝑝 =8,87e-36) and on 2back tasks (𝑟 =-0.1114, 𝑝 =0.0001). Similar brain-behavioral associations were 378 

achieved by embedding BGNN representations using functional or diffusion connectome priors (Fig.5c 379 

and d). This analysis was done by using all subjects from the HCP S1200 database (𝑁 =1074 of all 380 

subjects with available behavioral and imaging data for WM tasks). These significant correlations were 381 

sustained after controlling for the effect of confounds including age, gender, handedness and head 382 

motion (𝑟 =0.4659, 𝑝 =5.74e-59 for Acc; 𝑟 =-0.2552, 𝑝 =2.0e-16 for RT).  383 

Moreover, both the task-segregation effect of BGNN representations and their brain-behavioral 384 

associations were gradually strengthened as going deeper along the representational hierarchy of WM 385 

tasks (Fig.5-S2). Besides, the task-segregation effect of BGNN representations was significantly 386 
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heritable in HCP twin populations (h2=0.3597, see Table S3 for all heritability estimates) and shared 387 

genetic influences with behavioral scores (ρ𝑔 =0.80 and -0.39 respectively for Acc and RT, see Table1 388 

for phenotypic and genetic correlations between BGNN representations and behavioral performance). 389 

 390 

Fig.5 | Interpretable representations of connectome-constrained BGNN improved the decoding of 391 

cognitive functions and the associations with human behaviors. a), Similar high-level BGNN 392 

representations were captured by using empirical connectome priors derived from either resting-state 393 

functional connectivity (functional graph) or diffusion tractography (diffusion graph). b), BGNN 394 

representations improved the decoding of WM tasks. Compared to the conventional GLM-derived 395 

contrast maps and raw fMRI data, BGNN representations showed much higher decoding accuracies 396 

regardless of the chosen classifiers, e.g. the linear classifiers like support vector machine classification 397 

(SVC) with different hyperparameters or deep learning models such as BGNN (followed by a two-layer 398 

feedforward network). Connectome-based BGNN representations (using functional or diffusion graphs) 399 

showed similar decoding performance and both outperformed the randomly connected graph. c) and d), 400 
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Connectome-based BGNN representations were strongly associated with participants’ in-scanner task 401 

performance, much better than the raw fMRI data (blue lines). Similar levels of behavioral associations 402 

for BGNN representations using functional (red lines) or diffusion connectome priors (orange lines). 403 

Reliable and biological meaningful salient features of BGNN 404 

To understand the biological basis of BGNN, we conducted the saliency map analysis which 405 

demonstrated distinctive neural basis among cognitive tasks and captured robust representations across 406 

individual trials and subjects. The stability of saliency maps was evaluated by using repeated-measure 407 

ANOVA among 24 HCP subjects, controlling for the random effect of subjects and experimental trials. 408 

Only the salient brain regions that having high saliency values (>0.2) and showing a significant effect 409 

of task (𝑝<0.001) were reported in the following analysis. Taking the Motor and WM tasks as examples, 410 

we detected highly consistent salient features across different trials and subjects (as shown in Fig.6). 411 

For the Motor tasks, we detected salient task-specific features in the sensorimotor cortex, e.g. area 5m 412 

(region label=36 in the Glasser’s atlas) selectively activated during foot movements, area 2 selectively 413 

activated during hand movements, area 6v selectively activated during tongue movements. Besides, we 414 

observed hemispheric symmetric patterns for the movements of left and right body parts (Fig.6c). For 415 

Working-Memory tasks, which involves both sensory perception and memory load, the decoding model 416 

learned salient features related to both aspects, i.e. distinction between 0back vs 2back tasks and the 417 

recognition of face vs place images (Fig.2d). Specifically, ParaHippocampal Area 1 (PHA1) and V4 418 

Transitional Area (V4t) were selectively involved for the recognition of place images (repeated measure 419 

ANOVA, F-score=70.96 and 163.34, p-value=1.74e-8 and 6.21e-12 respectively for PHA1 and V4t), 420 

while Fusiform Face Complex (FFC) and Lateral Occipital Area 1 (LO1) were selectively engaged for 421 

the recognition of faces (F-score=57.75 and 91.47, p-value=1.02e-7 and 1.75e-9 respectively for FFC 422 

and LO1). On other hand, for both place and face images, Ventral Visual Complex (VVC) was more 423 

involved in 0back tasks than 2back tasks (F-score=39.86, p-value=2.0e-6) while Area 37 was selectively 424 

engaged in the 2back tasks (F-score=102.56, p-value=6.01e-10) when fixing the category of visual 425 

stimuli. Our results revealed that reliable representations were captured during cognitive decoding, 426 
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which are not only biologically meaningful, e.g., engaging task-related brain regions, and more 427 

importantly show reliable and task-selective responses to cognitive tasks.  428 

 429 

Fig. 6 | Salient BGNN features for the Motor and Working-memory tasks and their reliability. 430 

Only salient brain regions (saliency values>0.2, the full range of saliency is (0,1)) with a significant 431 

‘task condition’ effect (p<0.001) was shown in a) and b) with the color scheme indicating different 432 

region id in Glasser’s atlas. We observed task-specific salient brain regions for Motor tasks (c), showing 433 

selective responses to the movement of foot (area 5m), hand (area 2) and tongue (area 6v), in solid lines 434 

for the movement of left side and in dashed lines for the right side. Symmetrical patterns of brain 435 

responses were detected in the salient regions in the both left (1st row) and right hemisphere (2nd row). 436 

We detected three sets of salient brain regions for WM tasks (d), showing selective responses to the 437 

image category, e.g. place (1st column, in orange) and face images (2nd column, in blue), or to memory 438 

load, e.g. 0back (solid lines) and 2back tasks (3rd column, dashed lines).  Error bars in the plots indicated 439 

the standard deviation of brain responses across repeated task trials within each subject. 440 

  441 
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Table 1 | Shared genetic influences in BGNN representations and behavioral scores for WM tasks.  442 

BGNN representations of WM tasks as well as the in-scanner behavioral performance were significantly 443 

heritable in HCP twin populations, after controlling for confounding effects of age, gender, handedness 444 

and head motion (as shown in Table S3).  In order to quantify the shared genetic variance in brain-445 

behavioral associations, we conducted bivariate genetic analyses between BGNN representations and 446 

behavioral performance, including the average accuracy (Acc) and reaction time (RT). Both genetic and 447 

phenotypic correlations reached a high-level of significance (FDR corrected). ***: 𝑝 <0.001; **: 448 

𝑝 <0.01; *: p<0.05; .: p<0.1. 449 

 450 

 Phenotypic correlation 

(𝝆𝒑) 

Genetic correlation 

 (𝝆𝒈) 

WM_Task_Acc 0.4659 *** 0.7992 *** 

WM_Task_2bk_Acc 0.3716 *** 0.7731 *** 

WM_Task_0bk_Acc 0.4189 *** 0.8650 *** 

WM_Task_RT -0.2552 *** -0.3895 ** 

WM_Task_2bk_RT -0.1173 *** -0.2455 .  

WM_Task_0bk_RT -0.3408 *** -0.4967 ** 

  451 
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Table 2 | Decoding high-order cognitive tasks at different timescales. We trained a series of single-452 

domain decoders by using fMRI responses of each cognitive domain exclusively. Three circumstances 453 

in cognitive decoding were considered by using different lengths of time windows, including single-454 

volume prediction (i.e. using TR=0.72s fMRI signals), using 10s fMRI signals (approximately the 455 

shortest duration among all task trials), as well as single-trial prediction. Note that, considering the delay 456 

effect of hemodynamic responses, in the single-volume prediction experiments, we only used fMRI 457 

volumes at least 6s after the task onset for model training and evaluation. In the single-trial prediction 458 

experiments, we used variable lengths of time windows in the decoding model, according to the 459 

maximum duration of a single task trial, for instance 12s for MOTOR tasks and 25s for WM tasks. Our 460 

results showed that longer time windows resulted in higher decoding accuracy, with the largest 461 

improvement found in the classification of WM tasks, i.e. F1-score increased from 0.76 to 0.94, 462 

followed by relational processing tasks, i.e. F1-score increasing from 0.79 to 0.90.  463 

 464 

Task 

Domains 

#Subj #Samples 

(number 

of single 

trials) 

#Cond Task 

dura. of 

a single 

trial (s) 

Decoding accuracy (F1-score) 

Single-

volume 

prediction 

10s fMRI 

signals 

Single-trial 

prediction 

Working 

Memory 

1085 17,360 8 25 0.7646 0.8552 0.9414 

Relational 

Processing 

1043 12,516 2 16 0.7995 0.8550 0.9059 

Social 

Cognition 

1051 10,510 2 23 0.9186 0.9481 0.9644 

Language 1051 16,816 2 12 0.9625 0.9825 0.9836 

Emotion 1047 12,564 2 18 0.9760 0.9943 0.9944 

Motor 1083 21,660 5 12 0.9267 0.9734 0.9801 

  465 
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Discussion 466 

In the present study, we proposed biologically-constrained graph neural networks (BGNNs) to model 467 

task-evoked brain dynamics by combining local and distributed brain activity through connectome-468 

based constraints. By restricting the activity flow of cognitive tasks through anatomical or functional 469 

connections, BGNN revealed multilevel and multi-stage representations underpinning cognitive 470 

processes. At the low-level representation, BGNN uncovered a spatiotemporal decomposition of 471 

cognitive processes into multiple temporal stages and different patterns of spatial activation maps at 472 

each stage (e.g. motor execution and motor preparation for Motor tasks). At the high-level 473 

representation, BGNN learned inheritable and interpretable abstract representations of cognitive 474 

processes that improved inter-subject alignment in brain responses, enhanced cognitive decoding with 475 

high accuracy and fine timescales, and showed strong phenotypic and genetic correlations with 476 

individual behaviors (e.g. correct responses and response time of WM tasks). Moreover, the model 477 

uncovered a functional gradient in neural representations of WM, with a stepwise progression from 478 

sensory processing to cognitive control and towards behavioral abstraction, and revealed distinct neural 479 

substrates for the short-term memory of faces vs places, suggesting a privileged WM state of 480 

remembering faces. Together, these results demonstrate that, far from a black box, BGNNs lead to 481 

interpretable cognitive models and representational learning of human brain functions. 482 

 483 

Our results revealed an important role of functional integration in cognitive processes, not only affecting 484 

the decoding of cognitive states but also changing the organizational principles of encoded brain 485 

representations. For segregated brain function like the motor processes, the modeling of within-network 486 

integration (K=1) is sufficient to achieve the optimal decoding performance and reveals a stable two-487 

level hierarchy in neural representations (Fig. 6-S1c), namely the involvement of the sensorimotor 488 

cortex for motor execution and prefrontal regions for motor planning (Fig.3). The multilevel 489 

representations of Motor tasks coincided with previous findings showing a clear gradient of neural 490 

responses from preparation to execution in a sequential motor task (Orban et al., 2015) and prefrontal 491 

responses being predictive to body movements before execution (Ryun et al., 2014). For high-order 492 
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cognition such as visual WM tasks, on the other hand, the modeling of between-network communication 493 

and functional integration (K>1) is critical to encode the multiscale, hierarchical representations of 494 

cognitive processes, namely image recognition, memory maintenance and representational abstraction 495 

(Fig.2). The three-level representations of WM were encoded in the responses of different sets of brain 496 

regions, consisting of the ventral visual stream, frontoparietal network regions, prefrontal and salience 497 

network regions, respectively (Fig.2c), following the cortical hierarchy transforming from sensory areas 498 

to the prefrontal cortex (Brincat et al., 2018). This finding of multilevel representations of WM tasks 499 

coincided with the literature on the gradual progression from low-level motor/sensory inputs to high-500 

level abstract representations of WM along the posterior-to-frontal gradient (Christophel et al., 2017; 501 

Oh et al., 2019), indicating an important role of prefrontal cortex in the process of transforming sensory 502 

perception into behaviorally relevant representations (Brincat et al., 2018; Nee and D’Esposito, 2018; 503 

Oh et al., 2019). 504 

The high-level abstract representations of WM tasks, captured by BGNNs with either anatomical or 505 

functional connectome priors, showed strong phenotypic and genetic correlations with individual 506 

behaviors, including both correct responses and reaction time of 0back and 2back WM tasks (Fig.5-S1). 507 

Interestingly, theses brain-behavior associations were gradually enhanced along representational 508 

hierarchy (Fig.5-S2), outperforming the predictive models of individual behaviors using either raw 509 

brain responses (Fig.5-S1) or resting-state functional connectivity (Yamashita et al., 2018). Our results 510 

suggest reliable behavioral abstraction and interpretable representational learning of WM by using 511 

connectome-constrained BGNN models.  512 

Divergent brain mechanisms of the short-term memory were revealed for different types of visual 513 

stimuli, e.g., remembering faces vs places. Specifically, the retrieval of faces relies more on the 514 

heteromodal regions in the frontal and parietal cortices, while recognizing places mainly engages the 515 

unimodal regions in the ventral visual stream (Fig.2c). Consistently, participants also performed 516 

differently in behaviors among the two types of recognition tasks, i.e.  showing higher accuracy and 517 

faster responses for the retrieval of faces than places (Fig.2d and Table S2). Our findings coincided 518 

with the theory of a privileged WM state of faces that showed improved accuracy and response time 519 

compared to non-faces (Brady et al., 2019; Lin et al., 2019). These findings suggest a differential 520 
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cognitive state and distinct neural representations for the short-term memory of faces, possibly through 521 

the top-down modulation from prefrontal and parietal regions.  522 

The present study focused on the interpretability and robustness of the GNN models, one of the main 523 

challenges for deep learning applications in neuroscience research (Thomas et al., 2021). In particular, 524 

we showed that connectome-constrained BGNNs extract biologically meaningful and task-specific 525 

salient features from brain responses (Figs. 6 and 7) and capture behaviorally relevant representations 526 

of cognitive functions showing strong phenotypic and genetic correlations with individual behavioral 527 

performance (Fig.5 and Table 1). Firstly, the saliency map analysis confirmed the involvement of well-528 

known task-related brain regions (Fig.6-S2), for instance, salient features in the sensorimotor cortex for 529 

motor execution (Penfield and Boldrey, 1937), the perisylvian language areas for language 530 

comprehension (Friederici, 2011) and the ventral visual stream for image recognition (Golarai et al., 531 

2007). Most of these regions have been used as priors in previous MVPA studies, for instance, decoding 532 

faces vs objects by using brain activity in the ventral stream (Haxby et al., 2011). More importantly, the 533 

saliency map detected a broad set of brain areas that contribute to different temporal stages of cognitive 534 

processes (Fig.4 and Fig.4-S1). The temporal dynamics of cognitive processes but has been mostly 535 

ignored in previous fMRI studies, by either using meta-analytic approaches (Bartley et al., 2018; Rubin 536 

et al., 2017), or GLM-derived activation maps (Poldrack et al., 2009; Varoquaux et al., 2018). The 537 

recent work of Loula and colleagues (Loula et al., 2018) demonstrated the feasibility of decoding visual 538 

stimuli with short inter-stimuli intervals in fMRI acquisitions. A study from our group (Orban et al., 539 

2015) revealed a gradient of task-evoked activations in a sequential motor task by decomposing brain 540 

responses into multiple stages of the motor process. In the current study, we observed a similar 541 

functional gradient in cognitive processes through a series of spatiotemporal decompositions of task-542 

evoked brain responses, for instance, at the preparation and execution stage of a motor task (Figs. 3 and 543 

4), and at the stages of cue, auditory processing and button pressing of a language task (Fig.4-S1). 544 

Specifically, the engagement of the sensorimotor cortex at the execution stage and the involvement of 545 

prefrontal regions at the preparation stage of Motor tasks has been reliably detected in our model (Fig. 546 

4). The feasibility of such predictive model of movements using prefrontal signals before the execution 547 

stage has been demonstrated in previous studies, for instance, in both fMRI acquisitions in healthy 548 
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participants (Orban et al., 2015) and electrocorticography (ECoG) recordings in epilepsy patients (Ryun 549 

et al., 2014). Our results suggest that brain regions showing high predictive power to cognitive functions 550 

and behaviors at the individual level may not follow the canonical HRF and thus may not be detected 551 

by conventional univariate analyses. Our study provides a better understanding of the neural dynamics 552 

underpinning cognitive processes and opens new opportunities to discover new brain mechanisms of 553 

cognitive functions in both spatial and temporal domains. 554 

Conclusion 555 

In summary, we provide in-depth interpretations of connectome-constrained GNN decoding models 556 

and reveal the multilevel and multi-stage representations underpinning cognitive processes. At the low-557 

level representation, BGNN uncovered a series of spatiotemporal decompositions of cognitive 558 

processes, including multiple processing stages in the temporal domain and different patterns of 559 

activation maps in the spatial domain. At the high-level representation, BGNN captured behaviorally 560 

relevant representations of cognitive functions that strongly associated with human behaviors at the 561 

individual level and were inheritable in a twin design. In particular, our findings uncovered a functional 562 

gradient in the neural representations of cognitive tasks, for instance, from motor planning to execution 563 

for Motor tasks, and a stepwise progression of WM from sensory processing to cognitive control and 564 

towards behavioral abstraction. The present work suggests the feasibility of an interpretable cognitive 565 

model by leveraging the inductive bias of human connectome priors in GNN models. With the in-depth 566 

interpretations and multilevel representations, the proposed framework may be applicable in many 567 

subfields of cognitive neuroscience, ranging from cognitive modeling to brain stimulation or even 568 

neuromodulation. 569 

  570 
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Materials and Methods 571 

fMRI Datasets and Preprocessing 572 

We used the block-design task-fMRI dataset from the Human Connectome Project S1200 release 573 

(https://db.humanconnectome.org/data/projects/HCP_1200). The minimal preprocessed fMRI data in 574 

CIFTI formats were selected. The preprocessing pipelines includes two steps (Glasser et al., 2013): 1) 575 

fMRIVolume pipeline generates “minimally preprocessed” 4D time-series (i.e. “.nii.gz” file) that 576 

includes gradient unwarping, motion correction, fieldmap-based EPI distortion correction, brain-577 

boundary-based registration of EPI to structural T1-weighted scan, non-linear (FNIRT) registration into 578 

MNI152 space, and grand-mean intensity normalization. 2) fMRISurface pipeline projects fMRI data 579 

from the cortical gray matter ribbon onto the individual brain surface and then onto template surface 580 

meshes (i.e. “dtseries.nii” file), followed by surface-based smoothing using a geodesic Gaussian 581 

algorithm. Further details on fMRI data acquisition, task design and preprocessing can be found in 582 

(Barch et al., 2013; Glasser et al., 2013). The task fMRI database includes six cognitive domains, which 583 

are emotion, language, motor, relational, social, and working memory. In total, there are 21 different 584 

experimental conditions. The detailed description of the task paradigms as well as the selected cognitive 585 

domains can be found in (Barch et al., 2013; Zhang et al., 2021)  586 

During Motor tasks, participants are presented with visual cues that ask them to either tap their fingers, 587 

or squeeze toes, or move the tongue. Each block of a movement type (hand, foot or tongue) is preceded 588 

by a 3s cue and lasts for 12s. In each of the two runs, there are 13 blocks in total, including 2 blocks of 589 

tongue movements, 4 of hand movements and 4 of foot movements, as well as 3 additional fixation 590 

blocks (15s) in the middle of each run.  591 

The working-memory (WM) tasks involve two-levels of cognitive functions, with a combination of the 592 

category recognition task and N-Back memory task. Specifically, participants are presented with 593 

pictures of places, tools, faces and body parts. These 4 different stimulus types are presented in separate 594 

blocks, with half of the blocks using a 2back working memory task (recognizing the same image after 595 

two image presentations) and the other half using a 0back working memory task (recognizing a single 596 
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image presented at the beginning of a block). Each of the two runs contains 8 task blocks and 4 fixation 597 

blocks (15s). Each task block consists of a 2.5s cue indicating the task type, followed by 10 task trials 598 

(2.5s each). For each task trial, the stimulus is presented for 2 seconds, followed by a 500 ms inter-task 599 

interval (ITI) when participants need to respond as target or not.  600 

The language task consists of two conditions, i.e. story or mathematics, with variable duration of 601 

auditory stimuli. In the story trials, participants are instructed to passively listen to brief auditory stories 602 

(5-9 sentences) adapted from Aesop’s fables, followed by a two-alternative-choice question and 603 

response on the topic of the story. In the mathematical trials, participants are presented with a series of 604 

arithmetic operations, e.g. addition and subtraction, followed by a two-alternative-choice question and 605 

response about the result of the operations. Overall, the mathematical trials last around 12-15 seconds 606 

while the story trials lasts 25-30 seconds. In order to match the length of the two conditions, the 607 

mathematical trials are presented in pairs in the middle of the task, along with one additional trial at the 608 

end of the task.  609 

Connectome-constrained graph convolution on brain activity 610 

A brain graph provides a network representation of the human brain by associating nodes with brain 611 

regions and defining edges via anatomical or functional connections (Bullmore and Sporns, 2009). We 612 

recently found that convolutional operations on the brain graph can be used to decode brain states 613 

among a large number of cognitive tasks (Zhang et al., 2021). Here, we proposed a more generalized 614 

form of graph convolution by using high-order Chebyshev polynomials and explored how different 615 

scales of functional integration affects the encoding and decoding of cognitive functions.  616 

Step 1: Construction of brain graph 617 

The decoding pipeline started with a weighted graph 𝒢 = (𝒱, ℰ, 𝒲), where 𝒱  is a parcellation of 618 

cerebral cortex into 𝑁 regions, ℰ is a set of connections between each pair of brain regions, with its 619 

weights defined as 𝒲 = (w𝑖𝑗)𝑖=1..𝑁,𝑗=1..𝑁 Many alternative approaches can be used to build such brain 620 

graph 𝒢, for instance using different brain parcellation schemes and constructing various types of brain 621 

connectomes (for a review, see (Bullmore and Sporns, 2009)). Here, we used Glasser’s multi-modal 622 
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parcellation, consisting of 360 areas in the cerebral cortex, bounded by sharp changes in cortical 623 

architecture, function, connectivity, and topography (Glasser et al., 2016). The edges between each pair 624 

of nodes were estimated by calculating the group averaged resting-state functional connectivity (RSFC) 625 

based on minimal preprocessed resting-state fMRI data from 𝑁 = 1080 HCP subjects (Glasser et al., 626 

2013). Additional preprocessing steps were applied before the calculation of RSFC, including 627 

regressing out the signals from white matter and csf, and bandpass temporal filtering on frequencies 628 

between 0.01 to 0.1 HZ. Functional connectivity was calculated on individual brains using Pearson 629 

correlation and then normalized using Fisher z-transform before averaging among the entire group of 630 

subjects. The resulting functional graph characterizes the intrinsic functional organization of the human 631 

brain among HCP populations. An alternative graph was constructed from the whole-cortex 632 

probabilistic diffusion tractography based on HCP diffusion-weighted MRI data, with the edges 633 

indicating the average proportion of fiber tracts (streamlines) between the seed and target parcels (Rosen 634 

and Halgren, 2021). After that, a k-nearest-neighbor (k-NN) graph was built from both graphs by only 635 

connecting each node to its 8 neighbors with the highest connectivity strength. 636 

Step 2: Mapping of task-evoked brain activity onto the graph 637 

After the construction of the brain graph (i.e. defining brain parcels and edges), for each functional run 638 

and each subject, the preprocessed task-fMRI data was then mapped onto the set of brain parcels, 639 

resulting in a 2-dimensional time-series matrix. This time-series matrix was first split into multiple 640 

blocks of cognitive tasks according to fMRI paradigms and then cut into sets of time-series of the chosen 641 

window size (e.g. 10 second). Shorter time windows were discarded in the process. The remaining time-642 

series were treated as independent data samples during model training. As a result, we generated a large 643 

number of fMRI time-series matrices from all cognitive domains, i.e. a short time-series with duration 644 

of 𝑇 for each of 𝑁brain parcels 𝑥 ∈ ℝ𝑁×𝑇. The entire dataset consists of over 1000 subjects for each 645 

cognitive domain (see Table S1 for detailed information), in total of 14,895 functional runs across the 646 

six cognitive domains, and 138,662 data samples of fMRI signals 𝑥 ∈ ℝ𝑁×𝑇 when using a 10s time 647 

window (i.e. 15 functional volumes at TR=0.72s).  648 
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Step 3: Spatiotemporal graph convolutions using BGNN 649 

Graph convolution relies on the graph Laplacian, which is a smooth operator characterizing the 650 

magnitude of signal changes between adjacent nodes. The normalized graph Laplacian is defined as: 651 

𝐿 = 𝐼 − 𝐷−1 2⁄ 𝑊𝐷−1 2⁄                                           (Eq. 1) 652 

where 𝐷 is a diagonal matrix of node degrees, 𝐼 is the identity matrix, and 𝑊 is the weight matrix. The 653 

eigendecomposition of Lapalcian matrix is defined as 𝐿 = U∆U𝑇, where U = (𝑢0, 𝑢1, ⋯ 𝑢𝑁−1) is the 654 

matrix of Laplacian eigenvectors and is also called graph Fourier modes, and ∆= diag(𝜆0, 𝜆1, ⋯ 𝜆𝑁−1) 655 

is a diagonal matrix of the corresponding eigenvalues, specifying the frequency of the graph modes. In 656 

other words, the eigenvalues quantify the smoothness of signal changes on the graph, while the 657 

eigenvectors indicate the patterns of signal distribution on the graph.  658 

For a signal 𝑥 defined on graph, i.e. assigning a feature vector to each brain region, the convolution 659 

between the graph signal 𝑥 ∈ ℝ𝑁×𝑇 and a graph filter 𝑔𝜃 ∈ ℝ𝑁×𝑇 based on graph 𝒢, is defined as their 660 

element-wise Hadamard product in the spectral domain, i.e.: 661 

𝑥 ∗𝒢 𝑔𝜃 = 𝑈(𝑈𝑇𝑔𝜃)⨀(𝑈𝑇𝑥) = 𝑈𝐺𝜃𝑈𝑇𝑥        (Eq. 2) 662 

where 𝐺𝜃 = 𝑑𝑖𝑎𝑔(𝑈𝑇𝑔𝜃)  and 𝜃 indicate a parametric model for graph convolution 𝑔𝜃 , U =663 

(𝑢0, 𝑢1, ⋯ 𝑢𝑁−1) is the matrix of Laplacian eigenvectors and 𝑈𝑇𝑥 is projecting the graph signal onto 664 

the full spectrum of graph modes. To avoid calculating the spectral decomposition of the graph 665 

Laplacian, ChebNet convolution (Defferrard et al., 2016) uses a truncated expansion of the Chebychev 666 

polynomials, which are defined recursively by:  667 

T𝑘(𝑥) = 2𝑥T𝑘−1(𝑥) − T𝑘−2(𝑥),       T0(𝑥) = 1, T1(𝑥) = 𝑥                     (Eq. 3) 668 

Consequently, the ChebNet graph convolution is defined as:  669 

𝑥 ∗𝒢 𝑔𝜃 = ∑ 𝜃𝑘T𝑘(𝐿̃)𝑥𝐾
𝑘=0                 (Eq. 4) 670 

where 𝐿̌ = 2𝐿 𝜆𝑚𝑎𝑥 − 𝐼⁄  is a normalized version of graph Laplacian with 𝜆𝑚𝑎𝑥  being the largest 671 

eigenvalue, 𝜃𝑘 is the model parameter to be learned at each order of the Chebychev polynomials. It has 672 

been proved that the ChebNet graph convolution was naturally 𝐾-localized in space by taking up to 𝐾th 673 

order Chebychev polynomials (Defferrard et al., 2016), which means that each ChebNet convolutional 674 

layer integrates the context of brain activity within a 𝐾-step neighborhood.  675 
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Step 4: The encoding-decoding model of brain responses 676 

We proposed an encoding-decoding model based on ChebNet graph convolutions (Fig.1), consisting of 677 

6 graph convolutional layers (6 BGNN layers) with 32 graph filters at each layer, followed by a flatten 678 

layer and 2 fully connected layers (256, 64 units). The encoding model takes in a short series of fMRI 679 

volumes as input, propagates brain activity within (K=1) and between (K>1) brain networks, and learns 680 

various shapes of temporal convolution kernels (T time points) as well as a rich set of spatial “brain 681 

activation” maps (N brain regions). The decoding model takes in the learned representations from the 682 

encoding model and predicts cognitive states via a 2-layer multilayer perceptron (MLP). The entire 683 

dataset was split into training (60%), validation (20%), test (20%) sets using a subject-specific split 684 

scheme, i.e. all fMRI data from the same subject being assigned to only one of the three sets. 685 

Approximately, the training set includes fMRI data from 700 unique subjects (depending on data 686 

availability for different cognitive tasks ranging from 1043 to 1085 subjects, see Table S1), with 176 687 

subjects for validation set and 219 subjects for test set. The encoding-decoding model was jointly 688 

trained to predict the cognitive state from a short time window, e.g. 10s fMRI time-series. We used 689 

Adam as the optimizer with the initial learning rate as 0.0001 on all cognitive domains and saved the 690 

best model after 100 training epochs. Additional l2 regularization of 0.0005 on weights and a dropout 691 

rate of 0.5 was used to control model overfitting and the noise effect of fMRI signals. The 692 

implementation of the ChebNet graph convolution was based on PyTorch 1.1.0, and has been made 693 

publicly available in the repository: https://github.com/zhangyu2ustc/gcn_tutorial_test.git . 694 

Effects of K-order in ChebNet graph convolution 695 

As stated in equation (4), the graph convolution can be rewritten as follows at different K-orders: 696 

𝑥 ∗𝒢 g𝜃 = {

𝜃0𝑥  

𝜃0𝑥 + 𝜃1𝐿̃𝑥

𝜃0𝑥 + 𝜃1𝐿̃𝑥 + 𝜃2𝐿̃2𝑥

𝐾 = 0 
𝐾 = 1
𝐾 = 2

                                       (Eq. 5) 697 

where 𝐿̃ is a normalized version of graph Laplacian and {𝜃𝑘}𝑘=1,2,..𝐾 are model parameters to be trained. 698 

Specifically, K=0 indicates a global scaling factor on the input signal  by treating each node 699 

independently, similar to the classical univariate analysis for brain activation detection; K=1 indicates 700 
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information integration between the direct neighbors and the current node on the graph (i.e. integrating 701 

signals within the same network); K=2 indicates functional integration within a two-step neighborhood 702 

on the graph (i.e. integrating information from local area, within network and between networks). Thus, 703 

the choice of K-order controls the scale of the information integration on the graph. We explored 704 

different choices of K-order in ChebNet spanning over the list of [0,1,2,5,10] and found a significant 705 

boost in both brain decoding and representational learning by using high-order graph convolutions. 706 

Similarity analysis of layer representations in BGNN 707 

The BGNN model maps the spatiotemporal dynamics of fMRI brain activity onto a new representational 708 

space in the spectral domain. Different representations are learned at each BGNN layer by integrating 709 

activity flow within (K = 1) and between networks (K > 1). We analyzed the similarity of layer 710 

representations in BGNN by using centered kernel alignment (CKA) with a linear kernel. CKA was 711 

originally proposed to compare high-dimensional layer representations of deep neural networks, not 712 

only in the same network trained from different initializations, but also across different models 713 

(Kornblith et al., 2019). Here, we used CKA to evaluate the hierarchical organization of BGNN 714 

representations for both Motor and WM tasks. First, we extracted the learned representations from each 715 

layer using samples from the test set and reshaped the representations (𝑠𝑎𝑚𝑝𝑙𝑒𝑠 × 𝑏𝑟𝑎𝑖𝑛 𝑟𝑒𝑔𝑖𝑜𝑛𝑠 ×716 

𝑡𝑖𝑚𝑒 𝑝𝑜𝑖𝑛𝑡𝑠) into a 2D matrix X ∈ ℝ𝑠𝑎𝑚𝑝𝑙𝑒𝑠×𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠. Then, the linear CKA of two representation 717 

matrices X and Y, either from different layers or different models, was defined as: 718 

  CKA(X, Y) =
‖𝑌𝑇𝑋‖

𝐹

2

‖𝑋𝑇𝑋‖
𝐹

‖𝑌𝑇𝑌‖
𝐹

                                                (Eq. 5) 719 

where ‖𝐶‖𝐹 = √∑ 𝑐𝑖𝑗
2

𝑖,𝑗  indicates the Frobenius norm of the cross-correlation matrix C. The CKA 720 

value was within the range [0,1], with its highest value at 1 (the same layer representation) and lowest 721 

at 0 (totally different layer representations). Next, a between-layer CKA matrix was calculated for each 722 

BGNN model and the hierarchical organization was revealed by using ward linkage.  723 
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Projections of layer representations using t-SNE 724 

For visualization purposes, we projected the high-dimensional layer representations (360*32 in our case) 725 

to a 2D space by using t-SNE (Maaten and Hinton, 2008). Based on the t-SNE projections, we calculated 726 

the modularity score among different task conditions as a measure of task segregation, representing the 727 

cost of brain state transition between tasks. It has been shown that the modularity score on the individual 728 

state-transition graph constructed from task-fMRI data was significantly associated with participants’ 729 

in-scanner task performance (Saggar et al., 2018). Here, we estimated the modularity score for both 730 

fMRI signals and layer representations of BGNN. Specifically, fMRI signals and layer representations 731 

were first mapped onto a 2D space by using t-SNE. Then, a k-NN graph (k=5) was constructed based 732 

on the coordinates of t-SNE projections by connecting each data sample with its five nearest neighbors 733 

in the 2D space. After that, the modularity score (Q) was calculated based on the partition of 734 

communities using task conditions (e.g. 0bk vs 2bk in WM tasks), with a high separation value 735 

indicating more edges (or similar representations) within the same task than expected by chance 736 

(Newman, 2006). 737 

   Q =
1

4𝑚
∑ ∑ (𝐴𝑖𝑗 −

𝑘𝑖𝑘𝑗

2𝑚
)𝛿(𝑡𝑖, 𝑡𝑗)𝑡𝑖,𝑗                                            (Eq. 6) 738 

where 𝑘𝑖  is the node degree of the kNN graph, m =
1

2
∑ 𝑘𝑖𝑖  is the total number of edges, 𝐴𝑖𝑗  is the 739 

adjacent matrix, indicating whether node 𝑖 and node 𝑗 are connected in the kNN graph, and 𝛿(𝑐𝑖, 𝑐𝑗) 740 

indicates whether the two nodes belong to the same task. The task segregation index (Q) was within the 741 

range [-0.5,1], with the value close to 1 indicating a strong community structure in the BGNN 742 

representations of different task conditions. The task segregation was then correlated with participants’ 743 

in-scanner task performance, including averaged correct responses and reaction time during WM tasks.  744 

Saliency map analysis of the trained model 745 

The saliency map analysis aims to locate which part of the brain contributes to the differentiation of 746 

cognitive tasks. We used a gradient approach named GuidedBackprop (Springenberg et al., 2014) to 747 

generate the saliency maps for each cognitive domain. Specifically, for the graph signal  of layer  748 

and its gradient , the overwritten gradient  can be calculated as follows: 749 
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        (Eq. 5) 750 

In order to generate the saliency map, we started from the output layer of a pre-trained model and used 751 

the above chain rule to propagate the gradients at each layer until reaching the input layer. This guided-752 

backpropagation approach provides a high-resolution saliency for each data sample of fMRI signals 753 

𝑥 ∈ ℝ𝑁×𝑇. Then, a heatmap was calculated based on the saliency by taking the variance across all time 754 

steps for each parcel and normalizing it to the range [0,1], with its highest value at 1 (a dominant effect 755 

for task prediction) and lowest at 0 (no contribution to task prediction). 756 

Heritability analysis of brain representations  757 

For the heritability estimates of brain responses of WM tasks, we used the Sequential Oligogenic 758 

Linkage Analysis Routines (SOLAR) Eclipse software package (http://www.nitrc.org/projects/se_linux759 

). SOLAR relies on the maximum variance decomposition of the covariance matrix Ω for a pedigree: 760 

Ω = 2Φσ𝑔
2 + 𝐼𝜎𝑒

2                                                                    (Eq. 7) 761 

where σ𝑔
2  is the genetic variance due to the additive genetic factors, Φ is the kinship matrix representing 762 

the pairwise kinship coefficients among all individuals, 𝜎𝑒
2is the variance due to individual-specific 763 

environmental effects and measurement error, and 𝐼 is an identity matrix. Narrow sense heritability is 764 

defined as the fraction of phenotypic variance σ𝑝
2  attributable to additive genetic factors: ℎ2 =  σ𝑔

2 σ𝑝
2⁄ . 765 

The significance of the heritability estimate is tested by comparing it to the model in which σ𝑔
2   is 766 

constrained to zero. The heritability estimate was applied on 1074 subjects from HCP S1200 release 767 

with available behavioral and imaging data for WM tasks, which consist of 448 unique families, 768 

including 151 monozygotic-twin pairs, 92 dizygotic-twin pairs and 537 non-twin siblings. Prior to the 769 

heritability estimation, all phenotypes (brain and behavioral phenotypes) were adjusted for covariates 770 

including age, gender, handedness and head motion. 771 

We further performed the bivariate genetic analyses to quantify the shared genetic variance and 772 

phenotypic correlation between brain responses and behavioral measures:  773 

𝜌𝑝 = √ℎ𝑎
2√ℎ𝑏

2 ∙ 𝜌𝑔 + √1 − ℎ𝑎
2√1 − ℎ𝑏

2 ∙ 𝜌𝑒                                  (Eq. 8) 774 
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where 𝜌𝑔  is the proportion of variability due to shared genetic effects and 𝜌𝑒  is that due to the 775 

environment, while ℎ𝑎
2  and ℎ𝑏

2  correspond to the narrow sense heritability for phenotypes 𝑎 776 

(representation of brain response) and 𝑏 (behavioral scores).  777 
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Data and materials availability 799 

We used publicly available dataset from the Human Connectome Project S1200 release, downloaded 800 

from https://db.humanconnectome.org/data/projects/HCP_1200. In total, fMRI data from 1095 unique 801 

subjects under six different task domains and resting-state were used in this study. The minimal 802 

preprocessed fMRI data of the CIFTI format were used, which maps individual fMRI time-series onto 803 

the standard surface template with 32k vertices per hemisphere. Our decoding pipeline, as well as the 804 

interpretations of BGNN models, were made publicly available in the following repository: 805 

https://github.com/zhangyu2ustc/gcn_tutorial_test.git   806 
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