
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

High-Performance Filters for GPUs
Anonymous Author(s)

Abstract
High performance data analytics problems often use filters to
approximately store or count a set of items while trading off
accuracy for space-efficiency. Filters can also address the lim-
ited memory on accelerators, such as GPUs. However, there
is a lack of high-performance and feature-rich GPU filters as
most advancements in filter research has focused on CPUs.
In this paper, we explore the design space of filters with a

goal to developmassively parallel, high performance, and fea-
ture rich filters for GPUs. We evaluate various filter designs
in terms of performance, usability, and supported features
and identify two filter designs that offer the right trade off in
terms of performance, features, and usability.
We present two new GPU-based filters, the TCF and GQF,

that can be employed in various high performance data an-
alytics applications. The TCF is a set membership filter and
supports faster inserts and queries, whereas the GQF sup-
ports counting which comes at an additional performance
cost. Both GQF and TCF provide point and bulk insertion
API and are designed to exploit the massive parallelism in the
GPUwithout sacrificing usability and necessary features. The
TCF and GQF are up to 4.4× and 1.4× faster than the previous
GPUfilters in our benchmarks and at the same time overcome
the fundamental constraints in performance and usability in
current GPU filters.

1 Introduction
Filters, such as Bloom [8], quotient [4, 6, 20, 21, 39, 44, 46] and
cuckoo filters [10, 22], maintain an approximate representa-
tion of a set or a multiset1. The approximate representation
saves space by allowing queries to occasionally return a false-
positive. For a given false-positive rate 𝜀: a membership query
to a filter for set 𝑆 returns present for any 𝑥 ∈𝑆 , and returns
1Counting filters maintain count estimates of items in a multiset. A counting
filter may have an error rate 𝛿 . Queries return true counts with probability
at least 1−𝛿 . Whenever a query returns an incorrect count, it must always
be greater than the true count. Counting filters offer no guarantee on the
overestimate unlike count sketches. We refer the readers to Goswami et
al’s [27] paper for a detailed comparison.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

absent with probability at least 1−𝜀 for any 𝑥 ∉𝑆 . A filter for
a set of size 𝑛 uses space that depends on 𝜀 and 𝑛 but is much
smaller than explicitly storing all items of 𝑆 .
As scientific and commercial data sets explode in volume

and data rates, some of the high performance data analyt-
ics pipelines take advantage of the massive parallelism and
advanced computing architecture of the GPUs. GPUs have
proven to be effective accelerators for machine learning and
simulation problems [1, 41], database engines [11, 12, 34, 50,
55, 56], and large-scale genomics pipelines [7, 26, 28, 31, 54].

In this paper, we consider the use of GPUs in filtering, one
of the key operations in many data processing and analytics
pipelines. GPUs offer both an opportunity for performance
improvement and a challenge for data analytics due to the
limited GPUmemory that is available.

Given the popularity and wide-scale impact of filters there
have been many papers in the last decade that advance the
theory and practice of filters [2, 4, 6, 9, 10, 13, 18–23, 29, 35,
39, 44, 46, 51, 53]. Most of these papers have focused on im-
proving the state of the art in terms of space usage and perfor-
mance. A few papers have also explored adding new features
in the filter such as deletion, associating small values with
hashes, and counting, which are critical for many applica-
tions [4, 6, 22, 44, 46].
However, there is very little work on building fast, space-

efficient, and feature-rich filters for the GPU. Costa et al. [18]
and Iacob et al. [29] showed how to build and query Bloom fil-
ters on the GPU. Geil et al. [25] first showed how to build and
query a quotient filter on the GPU using the bulk build API.
These filter implementations do not offer choices in terms
of space usage and false-positive rate trade-off, offer sub-
optimal performance, and do not have adequate APIs to be
integrated in many data analytics applications. Furthermore,
these implementations do not support critical features such
as deletion, counting, or associating values with the items,
which are required by modern-day applications. Due to the
lack of available options modern GPU-accelerated applica-
tions oftenwork around the limitations of filterswhich in turn
results in sub-optimal use of resources and further hinders
their scalability to larger datasets.
For example, MetaHipMer [26, 28] is an extreme-scale de

novometagenome assembler that leverages GPUs to speed up
raw data processing and is designed to scale out to thousands
of nodes to handle terabyte scale data. MetaHipMer requires
a filter that can map fingerprints to small values to weed out
singletons during raw data processing and use the output in
later stages of the pipeline. It cannot use Bloom filters since
Bloom filters do not support associating small values with
the items. Similar to the Bloom filter, Geil et al.’s [25] quotient

1

https://doi.org/10.1145/nnnnnnn.nnnnnnn

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

Conference’17, July 2017, Washington, DC, USA Anon.

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220

filter (SQF) cannot associate values. In addition, the SQF can
only scale up to a few million items and does not offer the
right trade off in terms of space usage and false-positive rate.
Similarly, many database engines [32, 33, 55] that leverage
GPUs to speed upmerge and join operations cannot use exist-
ing filters as they do not support counting and enumeration
of items which are required for those operations.
Designing filters for GPUs comes with a host of unique

challenges. The architecture of GPUs, originally designed to
accelerate rendering operations, providesmassive parallelism
at the expense of limited memory, simpler instructions, and
synchronization tools. The differences in the architecture be-
tweenCPUsandGPUscausefiltersdesigned forCPUs tooften
have sub-optimal performance when ported to GPUs. Thread
contention and thrashing are often issues for GPU data struc-
tures, even those with large sizes. In addition, the grouping of
threads into warps is another constraint on the design, with
grouped access patterns providing massive speed boosts over
naive implementations. The random access pattern of many
existing filters amplifies this problem as threads in a warp are
likely to diverge while accessingmemory locations randomly
throughout the filter.

Our contribution. In this paper, we explore the design space
of filters and identify the filters that can exploit the massive
parallelism on the GPU without introducing fundamental
feature limitations and giving up performance and usability.
We identify two filters that offer the appropriate trade-offs in
terms of the performance and necessary features. We further
develop and evaluate the two newGPUfilters, the two-choice
filter (TCF) and the GPU-based counting quotient filter (GQF).
The TCF does not support counting which enables faster in-
serts and queries, whereas the GQF supports counting at an
additional performance cost. Both thefilters support deletions
and associating small values with fingerprints.

TheTCF is designed to organize fingerprints in blocks sized
tofit inside aGPUcache line. It uses cooperative groups to per-
form insert, query, anddelete operations inside these blocks to
achievemassive parallelismwithout any contention. The TCF
further uses power-of-two-choice hashing [3] to minimize
the load imbalance across fixed-size blocks and achieve a high
load factor. The TCF strips out the ability to count in favor of
faster inserts and query operations. The TCF offers both con-
current inserts and queries and bulk insertion API. The TCF
can represent a set of items approximately and supports dele-
tions, enumeration, and associating small values with items.

The GQF is a GPU-optimized implementation of the count-
ing quotient filter [43]. The GQF is designed to overcome
the fundamental limitations of the earlier implementation of
the quotient filter [25] on the GPU, such as only supporting
a fixed false-positive rate and scaling only to a few million
items. TheGQFoffers all the features thatmodern data analyt-
ics applications demand, e.g., better space-accuracy trade-off,

counting, deletions, associating values with items, and re-
sizability. In addition, it offers both concurrent inserts and
queries and a bulk insert API, unlike the earlier GPU-based
filter implementations.
In the GQF, we exploit the high cache locality of quotient

filters to design a novel coordinated lock-free implementation
for batch insertions. The lock-free implementation partitions
the filter into exclusive-access even-odd regions and assigns
threads inside a warp to fixed memory regions to achieve low
thread divergence and avoid thrashing. We believe that our
even-odd scheme for bulk insertions can also be applied to
other linear-probing-based hash tables to accelerate inser-
tions.
Our results.The TCF andGQF offer far better (up to three or-
ders of magnitude in some cases) performance and use less or
similar space than other filters on the GPU offering a smaller
set of features.
1. The point TCF is up to 4.45× faster for inserts and queries

than all filter that support deletions.
2. TheGQF is up to 1.93× and 2.4× faster than theGPU-based

Bloom filter for inserts and queries respectively.
3. The Bulk TCF achieves an insertion throughput of 3.4 Bil-

lion items per second on NVIDIA A100 GPUs.
4. The bulk TCF achieves an insertion throughput of 70% of

the Blocked Bloom filter with half the false positive rate.
5. The TCF is over an order of magnitude faster than all other

filters for deletions.
6. The GQF supports high throughput counting (800+ Mil-

lion/sec) on both simulated and real-world datasets.

2 A Brief History of Filters
In this paper, we consider dynamic filters as they have wide-
spread applications in data analytics. Dynamic filters approxi-
mately represent a set of items that does not need to be known
before the construction.Dynamicfilters have seenmuchmore
advancement in the last few decades as applications often do
not know the set of items in advance. Examples of dynamic
filters are Bloom filters [8], quotient filters [4, 20, 21, 39, 45],
and cuckoo filters [10, 22].
Bloom filters consume log(𝑒)𝑛log(1/𝜀) space, which is

roughly log(𝑒) ≈ 1.44 times more than the lower bound of
𝑛log(1/𝜀)+Ω(𝑛) bits [14]. In contrast, for a set 𝑆 taken from
a universe𝑈 , where |𝑈 |=𝑢, an error-free dictionary requires
Ω(log

(
𝑢
𝑛

)
) ≈Ω(𝑛log𝑢) bits. Bloom filters also incur log(1/𝜀)

cache-linemisses on inserts and positive queries, giving them
poor insertion and query performance.
Blocked Bloom filters [52] overcome the poor cache

locality of Bloom filters by constructing a series of smaller
Bloom filters each of which is small enough to fit inside a
small number of cache lines. The first hash function is used
to select a block and rest of the hash functions are used to
set/test bits inside the block. However, the cache efficiency
comes at the cost of higher false-positive rate. Blocked Bloom

2

221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275

High-Performance Filters for GPUs Conference’17, July 2017, Washington, DC, USA

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330

filters have theoretically and empirically higher (up to 5×)
false positive rates compared to Bloom filters. See Table 2 for
the empirical calculations of FP rate.
Quotient filters [4, 6, 16, 20, 40, 44, 46] represent a set

approximately by compactly storing small fingerprints of the
items in the set via Robin Hood hashing [15]. The quotient
filter uses 1.053(2.125+ log21/𝜀) bits per element, which is
less than the Bloom filter whenever 𝜀 ≤ 1/64, which is the
case in almost all applications. It supports insertion, dele-
tion, lookups, resizing, and merging. The counting quotient
filter (CQF) [44], improves upon the performance of the quo-
tient filter and adds variable-sized counters to count items
using asymptotically optimal space, even in large and skewed
datasets. In the counting quotient filter, we can also associate
small values with items either by re-purposing the variable-
sized counters [42] to store values or by explicitly storing
small values with the remainders in the table [48].
Cuckoo filters [10, 22] also store small fingerprints com-

pactly in a table. However, unlike the quotient filter that uses
RobinHood hashing, the cuckoo filter uses cuckoo hashing to
resolve collisions among fingerprints. Cuckoo hashing uses
kicking (or cuckooing) to find an empty slot for the new item
when all the slots in a bucket are occupied. This results in a
cascading sequenceof kicks until thefilter converges on anew
stable state. Inserts become slower as the structure becomes
full, and in fact insertsmay fail if the number of kicks during a
single insert exceeds a specified threshold (500 in the author’s
reference implementation).

Two-Choice filters [46] organize fingerprints compactly
in blocks similar to the cuckoo filter. However, unlike the
cuckoo filter, there is no kicking. The blocks in the two-choice
filter are larger in size (≈ log𝑛, where𝑛 is the number of items
which is usually the size of the cache line on most machines)
than the cuckoo filter and power-of-two-choice hashing is
used to reduce the variance across the blocks and achieve a
high load factor. During insertions if both blocks correspond-
ing to a fingerprint are full then the data structure is declared
full. The power-of-two-choice hashing enables the filter to
probe exactly two cache lines during inserts and queries and
write to a single cache line during inserts. Given the larger
block sizes the vector quotient filter [46] uses quotienting
(similar to the quotient filter) to organize fingerprints inside
blocks. It divides the fingerprints into a quotient and remain-
der part and only stores the remainder in the slot given by
the quotient. It uses two additional metadata bit to resolve
collisions among quotients.

3 Designing a GPU filter
Here we discuss the design principles needed to build a fast
and space efficient filter on the GPU and use them to analyze
various filter designs.

3.1 GPU design principles
There are four major design principles to consider when im-
plementing data structures on GPUs:
1. Low thread divergence: threads inside a warp should

execute the same instruction. This enables writing simple
kernels that can exploit massive parallelism in the GPU.

2. Highmemory coherence: threads inside a warp should
access the same memory from a local region. Random
memory accesses are expensive and cause threads to stall.

3. High degree of parallelism: a high number of threads
saturate memory bandwidth and hide memory latency.

4. Atomicoperations:atomicoperationshelpefficient thread
scheduling inside a warp. Non-atomic writes and data
movements cause slow downs and require locking large
memory regions. Locking results in high overheads and
affects the overall throughput.

3.2 Analysis of filter designs
We now look at the dynamic filters discussed in Section 2 and
evaluate them based on the GPU design principles. Our goal
is to identify the filters that offer necessary features such as
deletions, counting, and value associations and at the same
time satisfy most of the design principles.
Bloom filters are easy to implement on the GPU as they

only require test and set operations. These operations can
be implemented using atomic operations and achieve low
thread divergence. However, each operation results in multi-
ple cachemisses and thereforeBloomfilters have lowmemory
coherence. They also have sub-optimal space usage. More-
over, Bloom filters do not support deletions, counting2, and
associating small values with items that many data analytics
applications require.

Blocked Bloomfilters on the other hand are better suited to
GPUs. Each operation requires probing inside a single block.
They achieve low thread divergence, highmemory coherence,
a high degree of parallelism, and atomic operations. Thus
blockedBloomfilters can satisfy all theGPUdesign principles.
However, blocked Bloomfilters have a high false-positive rate
compared to Bloom filters and also do not support necessary
features like deletions and counting.
Operations in the quotient filter have high cache locality

whichmakes it an appropriate choice to achieve highmemory
coherence. However, insert operations in the quotient filter
requires shifting fingerprints which makes it harder to use
atomic operations and also results in high thread divergence.
However, the quotient filter can support all the necessary
features like deletions, counting, and associating small values
with items which makes the quotient filter a highly usable
data structure that multiple applications can benefit from.

2The counting Bloom filter [23], a variant of the Bloom filter, supports
counting but it comes at a high space-overhead which makes it highly
inefficient in practice.

3

331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385

Conference’17, July 2017, Washington, DC, USA Anon.

386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440

It is quite challenging to achieve high speed operations
whilemaintaining all of the features in aGPU implementation
of the quotient filter. Geil et al [25] implemented a preliminary
version of the GPU quotient filter. However, that implementa-
tionwas adapted fromBender et al.’s quotient filter [4], which
did not have all the features, like counting and value associ-
ation, and also had higher space overhead. Furthermore, Geil
et al’s GPU-based quotient filter has implementation-specific
limitations (e.g., it supports a fixed false-positive rate and can
only be sized to store less than 226 items) that makes it more
difficult to use in applications.
The cuckoo filter stores fingerprints in fixed size blocks.

This design is amenable to high memory coherence and low
thread divergence. Atomic operations can also be used to
read andwrite fingerprints. However, the cascading sequence
of reads and writes to randommemory locations makes the
cuckoo filter hard to implement efficiently on the GPU. In
particular, at high load factors when the number of kicked
items becomes high, each insertion will result in very low
memory coherence. Moreover, each kicking operation results
in multiple cache-line writes. This makes it challenging to
achieve high speed operations in a GPU cuckoo filter. More-
over, cuckoo filters do not support counting and associating
small values with items that many data analytics applications
require.

The two-choicefilter has the advantages of the cuckoofilter
design. It has fixed size blocks. Each operation requires prob-
ing into exactly two blocks, and inserts and deletes only write
into a single block. This results in low thread divergence, high
memory coherence, and a high degree of parallelism. How-
ever, due to large block sizes a more sophisticated structure
is required to maintain fingerprints inside each block. There-
fore, it is not straightforward to use atomic operations to read
or write fingerprints inside blocks. It is a challenging task
to implement a two choice filter on the GPU using atomic
operations to achieve high throughput.

3.3 Most efficient GPU filter designs
We now identify the filters that offer necessary features and
can achieve high speed operations on the GPU. First, we pick
the two-choice filter (TCF). The TCF achieves three out of
four design principles. It achieves low thread divergence, high
memory coherence, andhigh degree of parallelism. It also sup-
ports deletions unlike the Bloom filter variants. We redesign
the TCF to use atomic operations and cooperative groups to
exploit massive GPU parallelism. Second, we pick the count-
ing quotient filter (CQF). The CQF offers all the necessary
features that modern applications demand. In particular, it
supports counting and value associations which are critical
features for many applications. However, it is hard to achieve
low thread divergence and high parallelism in the CQF.We
will redesign the CQF to use a coordinated lock-free approach
and achieve massive parallelism and scalability.

4 TCF Implementation
In this section, we give the implementation details of the two
choice filter (TCF) on the GPU.We first explain the version
that supports concurrent inserts and queries via the use of
atomics. We then explain the bulk lock-free version that uti-
lizes sorting to precondition items for faster operations.
In the TCF, we organize the table into blocks. Each block

can store𝐵 𝑓 -bit fingerprints. The blocks are sized to fit inside
a GPU cache line. The TCF uses the power-of-two-choice
(POTC) hashing scheme to perform operations. In a POTC
scheme, every item is assigned two blocks via a pair of unique
hashes. For inserts, the fill of each block is queried, and the
item is inserted into the less full block. Queries return true if
the queried item is found in either block. The POTC hashing
helps to reduce the load variance across blocks, reducing the
size of the largest block to𝑂 (loglog𝑛), where𝑛 is the number
of items, as shown by Azar et al. [3].
Inserts and queries inside a block are performed using co-

operative groups. A group cooperatively loads the block into
shared memory before striding over the block to check for
empty slots or the presence of an item.Once an empty slot has
been found, the cooperativegroupballots for a leaderwhowill
attempt an atomicCAS operation to write the item to global
memory. On success, the cooperative group returns, while
on failure the group will look for a new empty slot within the
block and re-ballot to determine the new leader.

4.1 TCF design optimization
There are three factors that dominate the TCF performance:
size of the blocks, the bits per item, and size of the cooperative
groups.

The size of the blocks determines the number of cache line
access during operations. Therefore, we enforce that the size
of a block ≤ 128 bytes (a cache line on GPU) which limits the
number of accesses to two for the majority of operations.

The false-positive rate for theTCF is givenby 2𝐵
2𝑓 , where𝐵 is

the size of the blocks and 𝑓 is fingerprint size. A larger finger-
print size decreases the false-positive rate but increases the
space. The minimum size for an atomicCAS transaction is 2
bytes.With keys set to theminimumCAS size and a block size
of 16, the error rate is .04%. However, most practical applica-
tions require the error rate to be around 0.1%. To achieve that
error rate, we can either increase the block size or decrease
the fingerprint size. Increasing the block size has a negative
effect on performance as each thread needs to look at more
data. Storing 12-bit fingerprints brings down the space usage
but 50% of inserts now require two atomic operations, and
fingerprints can no longer fully occupy an atomic transaction,
meaning that an atomicCAS could fail due to a change in bits
outside of the slot being operated on.

The size of the cooperative groups is particularly important
to the performance of this filter design, as it provides a trade
off between computational and memory efficiency inside of a

4

441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495

High-Performance Filters for GPUs Conference’17, July 2017, Washington, DC, USA

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550

warp. Increasing the number of cooperative groups in a warp
increases the number of cache lines that can be scheduled for
loading, but decreases the number of workers available per
block. A more detailed analysis of this phenomenon, along
with experimental results of varying the cooperative group
size, are found in Section 6.4.

Backing table. To avoid insertion failures (no empty slot
in both blocks) before reaching a 90% load factor we use a
backing table. We use a small double-hashing backing table
sized to 1/100th of the size of the main table for storing any
items that fail to be inserted. Since << 1% items fail to be
inserted, the extra cost required to insert and query from this
table is negligible, and it has no measured effect on the speed
of inserts or positive queries. However, it does have an effect
on the performance of false-positive queries, as at least one
extra blockwill have to be searched. The TCF can achieve 90%
load factor using the backing table.

Shortcut optimization. As shown in Pandey et al. [47],
in the case where the primary block has a very low fill ratio,
we can safely insert into the primary block without querying
the alternate block. This reduces the number of cache loads
required to insert by one, improving speed. After empirical
testing, we found a 0.75 fill ratio to be the ideal cutoff for this
shortcut optimization, as it provided the best performance
without affecting the variance between blocks.

4.2 Bulk TCF
The bulk version of the TCF utilizes sorting to increase the
efficiency of read/write operations in the GPU. Like reads,
writes on a GPU can be coalesced, with up to 128 bytes of
contiguous memory being written in one operation. The SM
that a warp is staged on has a memory pipeline that is shared
between all threads in a warp and operates on cache blocks of
128 bytes. Any thread can freely read from a cache line that
has been loaded by the SM, and any adjacent writes inside of
a cache line can occur simultaneously.

If the time saved on insertion is less than cost of aggregat-
ing items, we can improve the throughput via an aggregation
phase. Items are sorted and passed to the bulkTCF as a pointer
to a sorted list of items to be inserted into a block. Blocks of the
TCF are loaded into shared memory before items are inserted
and all reads and writes are performed using shared memory
atomics. At the end of the kernel writes occur as coalesced
writes to global. This minimizes the data written to global as
all writes to global occur as cooperative cache-wide coalesced
writes.

Unlike the point TCF, blocks in the bulk version maintain
a sorted list of items inside the block. This allows the blocks
to be queried in logarithmic time via a binary search, or in
linear time for a batch of queries. To efficiently insert while
maintaining a sorted order, each cooperative groupmaintains
three lists during insertion: the list of items currently stored
in the block, the sorted list of items that can be shortcutted

into the block, and the list of items assigned to the block via
POTC hashing. The three lists are merged together using a
parallel zip strategy, and the resulting block is cooperatively
written to global memory.

The bulk filter has an error rate of 0.3% with a block size of
128anda16bits per item.While this is appropriate formost ap-
plications, the bulk implementation requires 33% more space
per item to achieve the same error rate.

5 GQF Implementation
In this section, we give an overview of Pandey et al.’s [43]
counting quotient filter (CQF). We also describe the locking
mechanism in the counting quotient filter for thread-safe op-
eration because it acts as the building block in the GPU-based
quotient filter (GQF). We finally explain howwe design the
counting quotient filter for the GPU.

5.1 CQF overview
The counting quotient filter (CQF) stores an approximation of
amultiset 𝑆 ⊆U by storing a compact, lossless representation
of themultisetℎ(𝑆), whereℎ :U→{0,...,2𝑝−1} is a hash func-
tion thatmaps items fromtheuniverseU to a𝑝-bit fingerprint.
To handle a multiset of up to 𝑛 distinct items while maintain-
ing a false-positive rate of at most 𝜀, the CQF sets 𝑝 = log2 𝑛𝜀
(see the original quotient filter paper for the analysis [4]).

The counting quotient filter dividesℎ(𝑥) into its first𝑞 bits,
quotient ℎ0 (𝑥), and its remaining 𝑟 bits, remainder ℎ1 (𝑥). It
maintains an array𝑄 of 2𝑞 𝑟 -bit slots, each ofwhich can hold a
single remainder.When an element𝑥 is inserted, the counting
quotient filter attempts to store the remainder ℎ1 (𝑥) at index
ℎ0 (𝑥) in𝑄 (which we call 𝑥 ’s canonical slot). If that slot is
already in use, then the counting quotient filter uses uses
Robin hood hashing to find the next available empty slot to
storeℎ1 (𝑥).All the items that share the samecanonical slot are
stored together in a run anda sequenceof runs stored contigu-
ouslywithno empty space is called a cluster . During an insert
operation, the next available empty slot is found at the end of
the cluster. If an item lands at the start of the cluster then all
the items in cluster must be shifted to create an empty space.

5.2 Point insertion API
In the point implementation, each thread acquires exclusive
access to a section of memory for writing. Internal remainder
shifts are processed using a custom memmove function, as
the driver API only provides support formemcpy, which does
not guarantee write safety when the source and destination
regions overlap.
To perform an insert operation, the thread needs to lock

a big enough region so that shifting items will not corrupt
the subsequent region where another thread might be operat-
ing. Therefore, the slots are divided into locking regions that
are big enough to handle the shifting of remainders during
insertions without causing an overflow to the next locking

5

551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605

Conference’17, July 2017, Washington, DC, USA Anon.

606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660

region. Given that the filter is only filled to 95% load factor,
we can safely say with that the maximum cluster size will be
less than 8192 slots [43]. In order to guarantee that each insert
has at least this many slots to work with, we divide the filter
into sections of 8192 slots. An insert thread grabs two locks
corresponding to the canonical slot of the item and the lock
immediately after it. Locking two consecutive regions in the
counting quotient filter ensures thatmemory corruption bugs
are avoided, even if we overflow into the next region during
an insert operation. The insert thread holds these locks until
all changes are flushed to memory.

The length of the longest cluster is bounded by𝑂 (ln2𝑞
𝛼−ln𝛼−1)

withhighprobability [5, 44],where𝑞 is thenumberofquotient
bits, 2𝑞 is the number slots in the QF, and 𝛼 is the load factor.
For example, if 𝑞 = 40 (i.e., 240 slots) and 𝛼 = 3/4, the largest
cluster in the filter has 736 slots. On average, clusters are𝑂 (1)
in size. The theorem gives a high-confidence estimation of
the size of the largest cluster when the QF is almost full.

The smallest possible lock implemented in CUDA uses one
bit withAtomicOr andAtomicAnd intrinsics to set and release
the locks. However, this implementation has poor perfor-
mance in CUDA due to the memory contention issues when
using atomics in global memory. To perform an operation,
atomics require exclusive access to a cache line’s worth of
memory, e.g., 128 bytes on the Tesla V100s. With one bit per
lock, there would be 1024 locks in a cache line, each with
dozens or even hundreds of simultaneous locking attempts
in the worst case. This would lead to heavy thread contention
among threads acquiring locks and cause the vast majority of
threads to thrash. To ameliorate this, we used cache-aligned
locks, as the number of locks relative to the total size of the
data structure is small enough that they only contribute a
small percentage to the overall space usage.
The GQF implementation that uses locking has the high

overhead of acquiring and releasing locks to perform oper-
ations. Furthermore, each thread locks two locking regions
(a locking region comprises 8192 slots) and that creates con-
tention among threads that are trying to operate in the same
region. However, the locking implementation is necessary to
support the point insertion and query API in the GQF.

5.3 Bulk insertion API
In the bulk API, we group items that hash to the same region
and a single thread is assigned to each region for inserting
all the grouped items. This guarantees that threads will have
exclusive access to regions. However, there can still be mem-
ory corruption if two threads are simultaneously performing
insertion in consecutive regions and there is an overflow from
one region to the other during the insertion. To avoid the
memory corruption, the threads would still need to acquire
locks on two consecutive region.
To avoid the overhead of locking, we perform the insert

operation in two phases. In the first phase, items belonging to

even regions are inserted, with each thread assigned a specific
region. Since there are no threads operating in the odd re-
gions we can safely perform insertions without any memory
corruption issues. In the second phase, the items belonging
to the odd regions are inserted.

This "Even-odd region" insert scheme maximizes the num-
ber of inserts that can safely occur simultaneously. Although
it only allows insertion into half of the regions during a given
phase, for large filter sizes the number of regions far exceeds
the number of threads, allowing for full saturation of the GPU.
Each region is sized to 8192 slots and phased insertion guar-
antees that threads are ≈16K slots apart and will always find
empty slots before overflowing into the next region.

Our implementation of this insert scheme uses temporary
buffers to hold items corresponding to each region. To effi-
ciently distribute items into regionswe use atomic operations
to set the buffer sizes and assign each item an index in the
buffer. In practice, we do not allocate temporary buffers. In-
stead, we use pointers into the input array tomark the bound-
aries for the buffers. This savesmemory and the time required
to allocate memory at run time.

Sortinghashes tominimizeshifting. Internally, theGQF
stores items akin to a linear hash table, with the remainders
in a run or cluster in sorted order. New items inserted into a
run must therefore shift any remainders greater than them
in order to maintain the sorted structure. These shifts are
the dominating factor in time spent in insertion. However, as
these shifts only occur when the new remainder is smaller
than remainders in the run, we could avoid these memory
shifts by inserting remainders (or hashes) in a sorted order.
If the entire dataset were sorted before insertion, no shifts
would be required, as each new item inserted would be the
largest item and could therefore safely occupy the next empty
slot. A variant of this holds true when the input dataset is
batched: while it is impossible to avoid shifting items already
in memory, sorting the input batch removes any extraneous
memory shifts of items in the current batch.

Our implementationuses theThrust library [38] toperform
an in-place sort on the input data. After sorting, the starts of
buffers are set using successor searchwhich finds the index of
the smallest item greater than or equal to the minimum hash
of the current buffer. This eliminates the need to use atomics
to set the buffers which in turn saves time during multiple
phases of insertion.

5.4 Optimization for skewed distributions
Datasetswith skeweddistributions (where counts of the items
are derived from a power-law or a Zipfian distribution [17])
cause high contention among threads in the point insert API
and load imbalance in the bulk insert API. This results in
much slower insertion throughput and limited scaling with
increasing filter sizes.

6

661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715

High-Performance Filters for GPUs Conference’17, July 2017, Washington, DC, USA

716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770

The datasets with skewed distribution contain a lot of re-
peated items. During insertions, multiple threads try to insert
copies of the same item in thedataset creatinghigh contention
on the locks and load imbalance in a fewmemory regions.

For the bulk insert API, we take the map-reduce approach
to avoid thehigh contention in theGQF.Wefirst sort the batch
of input items and then perform a reduction to compress the
duplicate items into ⟨item,count⟩ pairs. This reduction allows
us to perform a single insertion with the aggregate count for
every item in the batch instead of multiple insertions corre-
sponding to each instanceof repeated item.This amortizes the
cost of acquiring locks and performing insertions. It further
enables us to reduce the load imbalance across regions in the
bulk insert API resulting in high insertion throughput. In our
implementation, mapping and reduction are handled by the
Thrust library [38].

6 Evaluation
In this section, we evaluate the performance of various GPU
filter implementations. We include our implementations of
the two-choice filter (TCF) and GPU-based counting quotient
filter (GQF). We compare our filter implementations against
Geil et al.’s [25] standard quotient filter (SQF) and rank-select
quotient filter (RSQF). The SQF is a GPU implementation
of the quotient filter and supports insertions, queries, and
deletions. The RSQF does not supports deletions. Both SQF
and RSQF do not support counting. We configure the SQF
and RSQF to achieve the best performance based on author’s
recommendations.
As a baseline for the performance of a filter that does not

deletions, we also include the Bloom filter (BF) and blocked
Bloom filter (BBF) in our evaluation. The BF and BBF are not
directly comparable to other filters used in the evaluation as
they do not support similar features. The BBF is taken from
Junger et al. [30] and is configured according to the author’s
recommendation to achieve best performance. Wemodified
a C++ BF implementation [49] to a 1-bit encoded GPU imple-
mentation using CUDA atomic bitwise operations.
We evaluate each filter on two fundamental operations:

insertions and lookups. Lookups are evaluated both for items
that are present and for items that are not present in the filter.
Our evaluation of filters is split on the status of the filter as
either bulk or point API. Point filters have device-side APIs
and can be called to insert or query a single itemwhile bulk
filters must be called from a host function. The TCF and GQF
support both bulk and point APIs. We compare our bulk im-
plementation of the TCF and GQF with the SQF and RSQF as
they both are designed for bulk API. We compare our point
implementations of the TCF and GQFwith the Bloom filter
and blocked Bloom filter. Both the Bloom and blocked Bloom
implementations only support point API.

Please refer to Table 1 for a complete list of API supported
by various filters. Only the GQF and TCF support both bulk

Filter Insert Query Delete Count

Point Bulk Point Bulk Point Bulk Point Bulk
GQF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TCF ✓ ✓ ✓ ✓ ✓ ✓
BF ✓ ✓ ✓ ✓
SQF ✓ ✓ ✓
RSQF ✓ ✓

Table 1. API supported by various filters. The GQF is the
only filter that supports a range of operations. RSQF can
support deletes but it is not implemented by the authors.

and point modes for insert, query, delete, and count opera-
tions. We compare the GQF and TCF against other filters for
insert and query operations, only against the SQF for delete
operations. The GQF is compared against no other filter for
counting as no other filter supports counting.
Microbenchmarks setup. Our evaluation setup includes
all the micro benchmarks employed by filter data structure
papers [4, 6, 10, 21, 22, 24, 25, 44, 46] in the past.

Wemeasure performance on raw inserts and lookups as fol-
lows. We generate 64-bit input items from the hashed output
of a cuRand XORWOWgenerator. Items are inserted into an
empty filter until it reaches its maximum recommended load
factor (e.g., 90%). The workload is divided into slices, each
of which is 5% of the load factor. These slices are generated
on-the-fly to maximize the memory available for the filters.
For successful lookups, we query items that are already in-
serted. For random lookups, we generate a different set of
64-bit hashes than the set used for insertion. This is done
by using the hashed outputs of an XORWOWgenerator set
with a different seed. We report aggregate throughput of the
operations to insert a set of items.

One challenge that we face in designing our experiments is
that the filters do not all support the same false-positive rate.
For example, theGQF supports 8, 16, 32, and 64 bit remainders
in order to keep the slots in the table machine-word aligned.
This helps simplify the GPU implementation by avoiding
memory conflicts whenmultiple threads aremodifying differ-
ent slots. However, SQF and RSQF filters only support remain-
der sizes of 5 and 13 as they pack the 3 metadata bits along
with the remainder in 8 and 16 bit machine words. They fur-
ther require the sum of the quotient and remainder bits to be
less then 32. Therefore, they can only support up to 226 items
with 5-bit remainders and 218 items with 13-bit remainders.

We pick a target false-positive rate of .1% and configure
each filter to get as close to this false positive rate as possible.
We use 8-bit remainders in the GQF.We use 7 hashes and 10.1
bits per item in the Bloom and blocked Bloom filter. We use
5-bit remainders for the SQF and RSQF and although this
results in almost an order-of-magnitude higher false-positive
rates, it supports the largest number of items (226) for these
implementations. The smallest TCF word alignment under
this error rate is 16 bits, so we report the results from this

7

771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

Conference’17, July 2017, Washington, DC, USA Anon.

826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

TCF GQF SQF RSQF

22 24 26 28 30
0

1

2

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Bulk Inserts.

22 24 26 28 30
0

1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Bulk Positive Queries.

22 24 26 28 30
0

2

4

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(c) Cori Bulk RandomQueries.

22 24 26 28 30
0
1

2

3

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Bulk Inserts.

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Bulk Positive Queries.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Bulk RandomQueries.

Figure 1. Bulk Aggregate comparison between filter types with 1 batch.

TCF GQF Bloom Blocked Bloom

22 24 26 28 30
0

2

4

6

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Cori Point Inserts.

22 24 26 28 30
0
2
4
6
8

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Cori Point Positive Queries.

22 24 26 28 30
0
2
4
6
8
10

Filter Size
Th

ro
ug

hp
ut

(B
/s
)

(c) Cori Point RandomQueries.

22 24 26 28 30
0

5

10

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(d) Perlmutter Point Inserts.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(e) Perlmutter Point Positive Queries.

22 24 26 28 30
0
5
10
15
20

Filter Size

Th
ro
ug

hp
ut

(B
/s
)

(f) Perlmutter Point RandomQueries.

Figure 2.Aggregate comparison between point filter types. Filter operations occurred in batches of 5% of the dataset size.

variation of the filter. Table 2 shows the empirical space us-
age, false-positive rate, and bits-per-item (BPI) of different
filters in these experiments. Wemeasure the space-usage and
false-positive rates empirically.
We evaluate the performance of these filters in the GPU

memory and hence we size the filters in our experiments so
that they can always reside in the GPUmemory.

Counting benchmark setup. The counting benchmarks
include three datasets with different count distributions. The
uniform-randomdatasetcontains itemsdrawnfromauniform-
random distribution with almost no duplicates. The uniform-
random count dataset contains items where the counts of

items are drawn fromauniform-randomdistributionbetween
1 and 100. The zipfian count dataset contains items where
the counts of items are drawn from a Zipfian distribution
(the coefficient is 1.5 and items are chosen from a universe of
the same size as the dataset). All the items in the dataset are
inserted in one big batch in the GQF.

We also include a real-world genomic dataset for the count-
ing benchmark. We took a raw sequencing file,M. balbisiana,
from the Squeakr [45] benchmark dataset and extracted 𝑘-
mers for counting. Squeakr [45] is a 𝑘-mer counter which is
built using the CQF. With the GQF, we can also port Squeakr
to GPUs and accelerate the 𝑘-mer counting process.

8

881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935

High-Performance Filters for GPUs Conference’17, July 2017, Washington, DC, USA

936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990

8-8 12-8 12-12 12-16 12-32 16-16 16-32

20 21 22 23 24 25
0

0.5

1

Cooperative Group Size

Th
ro
ug

hp
ut

(B
/s
)

(a) Inserts.

20 21 22 23 24 25
0

2

4

Cooperative Group Size

Th
ro
ug

hp
ut

(B
/s
)

(b) Positive queries.

20 21 22 23 24 25
0

1

2

3

Cooperative Group Size

Th
ro
ug

hp
ut

(B
/s
)

(c) RandomQueries.
Figure 3. Comparison between cooperative group sizes. All tests were run on filters sized to 228. The left number in a label
is fingerprint size and the right is the block size.

Machine specification.Our microbenchmarks and count-
ing benchmarkswere run onCori’s [36] and Perlmutter’s [37]
GPU nodes. Cori nodes consists of NVIDIA Tesla V100 with
5120@1445MHzmicroprocessors, 16GB4096-bitHBM2mem-
ory, and an active thread limit of 82,000 simultaneous threads.
Perlmutter nodes consists of NVIDIA A100 Tensor Core GPU
with 6912@1410MHz 40 GB 5120-bit HBM2memory and an
active thread limit of 110,000 threads.

6.1 Point API Performance
TheTCFhas the highest insert and query performance among
the filters that support insertion, queries, and deletions. It
requires atmost two cache line probes and onewrite for inser-
tions and queries which is much smaller than all other filters.

The overhead of the backing table is negligible as less than
0.07% of items go in the backing table. However, for negative
queries (i.e., the items not present in the filter), the backing
table adds to the worst-case performance: the query must
check at least one bucket in the backing table, and can probe
up to 20 buckets in the worst case. In practice, the average
performance of insert and query operations is much better
due to the shortcut optimization mentioned in Section 4.

TheTCFhas a higher (≈2×) false-positive rate compared to
theGQF andBF in this evaluation.However, the TCF supports
multiple configurations to offer a multiple trade offs in terms
of the space usage and false-positive rate. We have evaluated
the performance of various TCF configurations in Section 6.4.

TheGQFperformance is slower compared to theTCFdue to
the overhead of locking to perform point insertions. The lock-
ing implementation requires us tomaintain separate locks for
each chunk in the GQF and this causes lock thrashing. Based
on the positive query performance, the GQF can reach a slot
for insertion faster than the BF can operate on all 7 bits, as
each bit requires a different cache load in the BF.However, the
cost of locking is so prohibitive on GPUs that the BF is faster
for insertions as all operations occur without thrashing.

6.2 Bloom and Blocked Bloom Filter
The BBF is the faster of the two filters. It requires a single
cache line operation and used atomicOR which faster than
atomicCAS required by other filters. However, the BBF has

GQF-Bulk SQF TCF

22 24 26 28 30

1

10

100

1,000

Filter Size

Th
ro
ug

hp
ut

(M
/s
)

Figure 4.Deletion performance of GQF bulk, SQF, and TCQF
on Cori GPU nodes. The x-axis shows log𝑛, where 𝑛 is the
number of slots in the filter. SQF only support up to 226 slots.

≈5.5× higher false positive rate when compared to a Bloom
filter with the same bits per item.
The Bloom filter has relatively low throughput on inserts

and random queries, as it needs to check multiple random
slots within the filter, each of which requires a different cache
line load. The BF shows relatively high throughput for ran-
dom lookups, as it has a high probability of finding a zero and
terminating the search early.
The Bloom and blocked Bloom filters have outlier perfor-

mance at 222 for Cori and 224 for Perlmutter. This is due to
these filters being small enough to fit within the L2 cache,
allowing for faster memory operations and saturating all the
GPU threads efficiently.

6.3 Bulk API performance
The bulk TCF is the fastest filter for inserts, with a maximum
throughput of over 3.4 Billion per second on Perlmutter. How-
ever, as this filter relies on binary search to find items within
a bucket, it has lower throughput on queries, topping out at
≈2 Billion per second for both positive and random queries.
The bulk SQF has the next highest insert throughput, though
the sorted bulk lookup strategy used in the SQF has lower
throughput than the other filters.
The throughput of the bulk GQF is based on the size of

the filter, so we see an increase in performance as the filter
grows, stopping at 228 when the parallelism in the GPU is
saturated. The queries of the bulk GQF scale directly with the

9

991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045

Conference’17, July 2017, Washington, DC, USA Anon.

1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

GQF BF SQF RSQF Bulk TCQF TCQF Blocked Bloom

FP BPI FP BPI FP BPI FP BPI FP BPI FP BPI FP BPI
0.19% 10.68 0.15% 10.10 1.17% 9.7 1.55% 7.87 0.36% 16 .024% 16 .71% 9.73

Table 2. False-positive rate (FP) and bits per item (BPI) of
various filters for experiments in Figure 1 and Figure 2.

number of items, so the positive and random queries show
high performance even on small filter sizes.

TheRSQFhasveryhighthroughputonboth typesofqueries.
The performance drops as the filter grows to 226, due to the
filter exceeding the 8 MB size of the V100 L2 cache. The fil-
ter has very poor performance on inserts, topping out at 8
Million per second, roughly three orders of magnitude lower
than the other filters. As the RSQF and GQF have very similar
internals, there is no reason the inserts of the filter could not
be accelerated. However, an optimized function for inserts is
the provided by the authors.

For inserts, all of the bulk filters show increasing through-
put as the size of the problem is increased. The insert schemes
used in these filters map CUDA threads or warps to sections
of memory. This results in far less active threads than the
point filters, which map warps to individual items and can
quickly reach saturation.

6.4 TCF variations
Figure 3 shows the performance effects of modulating the
cooperative group size for a variety of TCF filter variations.
These results show that there is an optimal cooperative group
sizing for each filter variation. For the majority of the config-
urations, this size is 4. These optimal sizes are an effect of the
trade off between compute and memory latency due to how
warps, and by extension cooperative groups, are scheduled
on streaming multiprocessor.

Shrinking the cooperative groups increases the saturation
of the memory pipeline while lowering the amount of com-
pute availableper cooperativegroup. Increasing the sizeof the
cooperative group gives less divergence and better compute
throughput at the expense of less memory operations being
scheduled. When memory and compute are balanced, the
filter can entirely overlap computation and communication,
leading to the most efficient performance. For most designs,
this optimal point occurs at a cooperative group of size 4,
though some of the larger bucket designs also performwell
at 8 due to the extra work to traverse a bucket.
The 8 and 16 bit versions of the filter have the fastest per-

formance, as inserts and queries can be performed in one
transaction. As 50% of operations require two memory trans-
actions, the 12 bit filters are slower than their counterparts.

6.5 Deletion performance
Figure 4 shows the performance for deletions for filters that
support the operation. The TCF is an order of magnitude
faster for deletes than the GQF, as the filter deletes items by
replacing themwith a dedicated tombstone key. This means
that deletions can be done with one atomicCAS operation.

Size UR UR count Zipfian count Zipfian Count (MR) 𝑘-mer count
22 25.318 30.763 3.676 34.888 23.625
24 101.804 110.833 4.777 169.637 90.722
26 321.150 350.824 4.995 508.156 296.130
28 566.038 798.353 4.520 806.766 507.373

Table 3. Aggregate insertion throughput of GQF (Million
operations/sec) for inserting (counting) items from datasets
with three different distributions. Uniform-random (UR)
datasets, Uniform-random (UR) count, Zipfian count (MR):
count of items are drawn from a Zipfian distribution using
the Map-reduce implementation from section 5.4.

The GQF is up to two orders of magnitude faster for deletion
than the SQF. This is due to the even-odd phased approach
that minimizes the amount of left shifting that is required
during a delete operation. Left shifting is further reduced due
the sorting of items before the operation and deleting larger
items first. Overall deletes are slower compared to the inserts
in the GQF as deletes are more compute intensive.

6.6 Counting performance in the GQF
Table 3 shows the aggregate insertion throughput for insert-
ing (counting) items from datasets with three different dis-
tributions. Counting items from a Zipfian distribution using
themap-reduce strategy explained in Section 5.4 achieves the
highest throughput.

Whencounting items,especiallywhenthecountsaresmaller
than the maximum value in a GQF slot (which is 256 for a
8-bit slot), the insertions mostly involve incrementing the
count of an existing item, which can be done fairly efficiently
without the need to shift remainders. However, when the
distribution is skewed, as in the case of a Zipfian distribution,
many threads contend to insert the same item, causing long
stalls which reduce throughput. This shows that the GQF is
an efficient counting filter for datasets with small counts.

For the𝑘-mer counting dataset, the GQF supports through-
put of more than 500M 𝑘-mers per second which is orders of
magnitude faster than the throughput of Squeakr [45], a CPU
𝑘-mer counter built using the CQF. With the GQF, we can
easily port Squeakr to GPUs and accelerate 𝑘-mer counting.

6.7 Discussion
Formostdataanalytics applications, theTCF is thechoice for a
GPUfilter. It offers the right trade off between space efficiency
and false positive rate, maintains high throughput for all op-
erations, scales to larger datasets, and can be configured for a
wide range of filtering use cases. For applications that require
no associativity and are not bound by space usage or false
positive rate, the blocked Bloom filter (BBF) is a good choice.
The rich features of the GQF are critical to many analytics
applications like MetaHipMer, database merges, etc. How-
ever, this comes at an additional performance cost. The GQF
is often the only available filter option for many applications
that need GPUs to accelerate complex data processing.

10

1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155

High-Performance Filters for GPUs Conference’17, July 2017, Washington, DC, USA

1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210

References
[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Cor-

rado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp,
G. Irving,M. Isard,Y. Jia,R. Jozefowicz,L.Kaiser,M.Kudlur, J. Levenberg,
D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Va-
sudevan, F. Viégas, O. Vinyals, P. Warden, M.Wattenberg, M.Wicke,
Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from tensorflow.org.

[2] P.S.Almeida,C.Baquero,N.Preguiça, andD.Hutchison. ScalableBloom
filters. Journal of Information Processing Letters, 101(6):255–261, 2007.

[3] Y. Azar, A. Z. Broder, A. R. Karlin, and E. Upfal. Balanced allocations
(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM
Symposium on Theory of Computing, STOC ’94, page 593–602, New
York, NY, USA, 1994. Association for Computing Machinery.

[4] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kaner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t
thrash: How to cache your hash on flash. Proceedings of the VLDB
Endowment, 5(11), 2012.

[5] M. A. Bender, M. Farach-Colton, R. Johnson, R. Kraner, B. C. Kuszmaul,
D. Medjedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t
thrash: how to cache your hash on flash. Proceedings of the VLDB
Endowment, 5(11):1627–1637, 2012.

[6] M. A. Bender, M. Farach-Colton, R. Johnson, B. C. Kuszmaul, D. Med-
jedovic, P. Montes, P. Shetty, R. P. Spillane, and E. Zadok. Don’t thrash:
How to cache your hash on flash. In Proc. 3rd USENIX Workshop on
Hot Topics in Storage (HotStorage), June 2011.

[7] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoefler,
and E. Solomonik. Communication-efficient jaccard similarity for
high-performance distributed genome comparisons. In 2020 IEEE
International Parallel and Distributed Processing Symposium (IPDPS),
pages 1122–1132. IEEE, 2020.

[8] B. H. Bloom. Space/time trade-offs in hash coding with allowable
errors. Communications of the ACM, 13(7):422–426, 1970.

[9] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese.
An improved construction for counting Bloom filters. In European
Symposium on Algorithms (ESA), pages 684–695. Springer, 2006.

[10] A. D. Breslow and N. S. Jayasena. Morton filters: faster, space-efficient
cuckoo filters via biasing, compression, and decoupled logical sparsity.
Proceedings of the VLDB Endowment, 11(9):1041–1055, 2018.

[11] S. Breß, M. Heimel, N. Siegmund, L. Bellatreche, and G. Saake.
Gpu-accelerated database systems: Survey and open challenges. In
Transactions on Large-Scale Data-and Knowledge-Centered Systems XV,
pages 1–35. Springer, 2014.

[12] S. Breß and G. Saake. Why it is time for a hype: A hybrid query
processing engine for efficient gpu coprocessing in dbms. Proceedings
of the VLDB Endowment, 6(12):1398–1403, 2013.

[13] M. Canim, G. A. Mihaila, B. Bhattacharjee, C. A. Lang, and K. A.
Ross. Buffered Bloom filters on solid state storage. In Proceedings
of the International Workshop on Accelerating Analytics and Data
Management Systems Using Modern Processor and Storage Architectures
(ADMS), pages 1–8, 2010.

[14] L. Carter, R. Floyd, J. Gill, G. Markowsky, andM.Wegman. Exact and
approximate membership testers. In Proceedings of the tenth annual
ACM symposium on Theory of computing, pages 59–65, 1978.

[15] P. Celis, P.-A. Larson, and J. I. Munro. Robin hood hashing. In 26th
Annual Symposium on Foundations of Computer Science (FOCS), pages
281–288, 1985.

[16] J. G. Cleary. Compact hash tables using bidirectional linear probing.
IEEE T. Comput., 33(9):828–834, 1984.

[17] B. Corominas-Murtra and R. V. Solé . Universality of zipf’s law.
Physical Review E, 82(1), jul 2010.

[18] L. B. Costa, S. Al-Kiswany, and M. Ripeanu. Gpu support for batch
oriented workloads. In 2009 IEEE 28th International Performance

Computing and Communications Conference, pages 231–238. IEEE, 2009.
[19] B. Debnath, S. Sengupta, J. Li, D. J. Lilja, and D. H. Du. BloomFlash:

Bloom filter on flash-based storage. In Proceedings of the 31st
International Conference on Distributed Computing Systems (ICDCS),
pages 635–644, 2011.

[20] P. C. Dillinger and P. P. Manolios. Fast, all-purpose state storage. In
Proceedings of the 16th International SPINWorkshop on Model Checking
Software, pages 12–31, Berlin, Heidelberg, 2009. Springer-Verlag.

[21] G. Einziger andR. Friedman. Countingwith tinytable: Every bit counts!
In Proceedings of the 17th International Conference on Distributed
Computing and Networking, ICDCN ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[22] B. Fan, D. G. Andersen,M. Kaminsky, andM. D.Mitzenmacher. Cuckoo
filter: Practically better than Bloom. In Proceedings of the 10th ACM
International on Conference on Emerging Networking Experiments and
Technologies, pages 75–88, 2014.

[23] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: A scalable
wide-area web cache sharing protocol. IEEE/ACM Transactions on
Networking (TON), 8(3):281–293, 2000.

[24] A. Geil. Quotient filters: Approximatemembership queries on the GPU.
http://on-demand.gputechconf.com/gtc/2016/presentation/s6464-
afton-geil-quoetient-filters.pdf, 2016.

[25] A. Geil, M. Farach-Colton, and J. D. Owens. Quotient filters: Approx-
imate membership queries on the gpu. In 2018 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 451–462.
IEEE, 2018.

[26] E. Georganas, R. Egan, S. Hofmeyr, E. Goltsman, B. Arndt, A. Tritt,
A. Buluç, L. Oliker, and K. Yelick. Extreme scale de novo metagenome
assembly. In SC18: International Conference for High Performance Com-
puting, Networking, Storage and Analysis, pages 122–134. IEEE, 2018.

[27] M. Goswami, D. Medjedovic, E. Mekic, and P. Pandey. Buffered
count-min sketch on ssd: Theory and experiments. arXiv preprint
arXiv:1804.10673, 2018.

[28] S. Hofmeyr, R. Egan, E. Georganas, A. C. Copeland, R. Riley, A. Clum,
E. Eloe-Fadrosh, S. Roux, E. Goltsman, A. Buluç, et al. Terabase-scale
metagenome coassembly with metahipmer. Scientific reports,
10(1):1–11, 2020.

[29] A. Iacob, L. Itu, L. Sasu, F. Moldoveanu, and C. Suciu. Gpu accelerated
information retrieval using bloom filters. In 2015 19th International
Conference on System Theory, Control and Computing (ICSTCC), pages
872–876. IEEE, 2015.

[30] D. Jünger, R. Kobus, A. Müller, C. Hundt, K. Xu, W. Liu, and B. Schmidt.
Warpcore: A library for fast hash tables on gpus. In 27th IEEE Interna-
tional Conference on High Performance Computing, Data, and Analytics,
HiPC 2020, Pune, India, December 16-19, 2020, pages 11–20. IEEE, 2020.

[31] R. Kobus, A. Müller, D. Jünger, C. Hundt, and B. Schmidt. Metacache-
gpu: ultra-fast metagenomic classification. In 50th International
Conference on Parallel Processing, pages 1–11, 2021.

[32] Y. Kozawa, T. Amagasa, and H. Kitagawa. Gpu acceleration of
probabilistic frequent itemset mining from uncertain databases. In
Proceedings of the 21st ACM international conference on Information
and knowledge management, pages 892–901, 2012.

[33] J. Krueger, M. Grund, I. Jaeckel, A. Zeier, and H. Plattner. Applicability
of gpu computing for efficient merge in in-memory databases. In
ADMS@ VLDB, pages 19–26, 2011.

[34] J. Li, H.-W. Tseng, C. Lin, Y. Papakonstantinou, and S. Swanson.
Hippogriffdb: Balancing i/o and gpu bandwidth in big data analytics.
Proceedings of the VLDB Endowment, 9(14):1647–1658, 2016.

[35] G. Lu, B. Debnath, and D. H. Du. A forest-structured Bloom filter with
flash memory. In Proceedings of the 27th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1–6, 2011.

[36] NERSC. Cori. https://docs-dev.nersc.gov/cgpu/.
[37] NERSC. Perlmutter. https://www.nersc.gov/systems/perlmutter/.
[38] NVIDIA. Thrust. https://docs.nvidia.com/cuda/thrust/index.html.

11

http://on-demand.gputechconf.com/gtc/2016/presentation/s6464-afton-geil-quoetient-filters.pdf
http://on-demand.gputechconf.com/gtc/2016/presentation/s6464-afton-geil-quoetient-filters.pdf
https://docs-dev.nersc.gov/cgpu/
https://www.nersc.gov/systems/perlmutter/
https://docs.nvidia.com/cuda/thrust/index.html

1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265

Conference’17, July 2017, Washington, DC, USA Anon.

1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320

[39] A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloom filter replacement.
In Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms, pages 823–829. Society for Industrial and Applied
Mathematics, 2005.

[40] A. Pagh, R. Pagh, and S. S. Rao. An optimal Bloomfilter replacement. In
Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 823–829, 2005.

[41] Z. Pan, F. Zhang, H. Li, C. Zhang, X. Du, and D. Deng. G-slide: A
gpu-based sub-linear deep learning engine via lsh sparsification. IEEE
Transactions on Parallel and Distributed Systems, PP:1–1, 12 2021.

[42] P. Pandey, F. Almodaresi, M. A. Bender, M. Ferdman, R. Johnson, and
R. Patro. Mantis: A fast, small, and exact large-scale sequence-search
index. Cell systems, 7(2):201–207, 2018.

[43] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. deBGR: an efficient
and near-exact representation of the weighted de Bruijn graph.
Bioinformatics, 33(14):i133–i141, 2017.

[44] P. Pandey, M. A. Bender, R. Johnson, and R. Patro. A general-purpose
counting filter: Making every bit count. In Proceedings of the 2017 ACM
International Conference on Management of Data, pages 775–787, 2017.

[45] P. Pandey,M. A. Bender, R. Johnson, and R. Patro. Squeakr: an exact and
approximate k-mer counting system. Bioinformatics, 34(4):568–575,
2017.

[46] P. Pandey, A. Conway, J. Durie, M. A. Bender, M. Farach-Colton,
and R. Johnson. Vector quotient filters: Overcoming the time/space
trade-off in filter design. In Proceedings of the 2021 International
Conference on Management of Data, pages 1386–1399, 2021.

[47] P. Pandey, A. Conway, J. Durie, M. A. Bender, M. Farach-Colton,
and R. Johnson. Vector quotient filters: Overcoming the time/space
trade-off in filter design. In Proceedings of the 2021 International
Conference on Management of Data, SIGMOD ’21, page 1386–1399,
New York, NY, USA, 2021. Association for Computing Machinery.

[48] P. Pandey, S. Singh,M.A. Bender, J.W. Berry,M. Farach-Colton, R. John-
son, T. M. Kroeger, and C. A. Phillips. Timely reporting of heavy hitters
using external memory. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data, pages 1431–1446, 2020.

[49] A. Partow. Bloom filter library. http://www.partow.net/programming/
bloomfilter/index.html, 2021. [Online; accessed 19-July-2021].

[50] R. A. Patta, A. R. Kurup, and S. M. Walunj. Enhancing speed of sql
database operations using gpu. In 2015 International Conference on
Pervasive Computing (ICPC), pages 1–4. IEEE, 2015.

[51] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and space-efficient
bloom filters. In International Workshop on Experimental and Efficient
Algorithms, pages 108–121, 2007.

[52] F. Putze, P. Sanders, and J. Singler. Cache-, hash-and space-efficient
bloom filters. In Experimental Algorithms, pages 108–121. Springer,
2007.

[53] Y. Qiao, T. Li, and S. Chen. Fast Bloom filters and their generaliza-
tion. IEEE Transactions on Parallel and Distributed Systems (TPDS),
25(1):93–103, 2014.

[54] E. A. Sitaridi and K. A. Ross. Gpu-accelerated string matching for
database applications. The VLDB Journal, 25(5):719–740, 2016.

[55] P. T. Strohm, S. Wittmer, A. Haberstroh, and T. Lauer. Gpu-accelerated
quantification filters for analytical queries in multidimensional
databases. In New Trends in Database and Information Systems II, pages
229–242. Springer, 2015.

[56] K. Wang, K. Zhang, Y. Yuan, S. Ma, R. Lee, X. Ding, and X. Zhang.
Concurrent analytical query processing with gpus. Proceedings of the
VLDB Endowment, 7(11):1011–1022, 2014.

12

http://www.partow.net/programming/bloomfilter/index.html
http://www.partow.net/programming/bloomfilter/index.html

	Abstract
	1 Introduction
	2 A Brief History of Filters
	3 Designing a GPU filter
	3.1 GPU design principles
	3.2 Analysis of filter designs
	3.3 Most efficient GPU filter designs

	4 TCF Implementation
	4.1 TCF design optimization
	4.2 Bulk TCF

	5 GQF Implementation
	5.1 CQF overview
	5.2 Point insertion API
	5.3 Bulk insertion API
	5.4 Optimization for skewed distributions

	6 Evaluation
	6.1 Point API Performance
	6.2 Bloom and Blocked Bloom Filter
	6.3 Bulk API performance
	6.4 TCF variations
	6.5 Deletion performance
	6.6 Counting performance in the GQF
	6.7 Discussion

	References

