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Abstract

Early computational approaches for sound source localization, originating in robotics,

were modeled after animal perception and utilized audiovisual synchrony and spatial

information inferred from multichannel audio. More recent deep learning-based

methods focus on learning semantic audiovisual representations in a self-supervised

manner and using them for localizing sounding objects. A majority of these approaches

by design exclude information that comes from the temporal context that a video

provides. While that is not a hurdle for widely used benchmark datasets because of the

bias towards having large single objects in the middle of the image, the methods fall

short on more challenging scenarios like urban traffic videos. This thesis aims to

explore methods to introduce temporal context into the state-of-the-art methods for

sound source localization in urban scenes. Optical flow is used as a means to encode

motion information. An analysis of the strengths and weaknesses of our methods helps

us better understand the problem of visual sound source localization and sheds new light

on the characteristics of our dataset.

Keywords: visual sound source localization; urbansas; self-supervised learning; optical

flow



Chapter 1

Introduction

Vision and audition are complementary sources of information, and effective integration

of these senses offers undeniable survival advantages to an organism; the ability to

localize sounds and connect them to visual objects enables a rich understanding of a

dynamic environment. Sound source localization independent of visual inputs has been

widely studied in robotics, generally using an array of microphones and classical signal

processing techniques to estimate the location of a sound source [1, 2], somewhat

mimicking animal perception. There has been a recent surge of interest in the problem

following the release of datasets [3] and challenges [4] for sound event localization and

detection (SELD). However, there is a continued and exclusive reliance on audio to

localize and classify sound events which comes with certain limitations. Reverberation,

low spatial resolution, interference, polyphony, and non-stationarity of sound sources

have been shown to be severely detrimental to the performance of SELD systems [5].

Incorporating vision as a complementary modality offers a way to abate some of these

limitations. Integrating audio and visual inputs allows, at least in principle, to attribute

sounds to objects in a scene. It also opens up the possibility to leverage the rich body of

work in computer vision to aid localization. Early attempts at modeling audio-visual

perception exploited the synchrony between audio and visual events e.g. lip movements

aligned to speech with probabilistic models like mutual information [6, 7], and

canonical correlation analysis [8]. Following recent advances in deep learning,

especially in computer vision, the field has pivoted to deep-neural-network-based

methods which will be elaborated upon in the following sections.

A notable difference between the two approaches is the shift from using the temporal

correlation between audio and video to the semantic similarity between them as the

1
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primary source of information for localization. This has happened to the extent that

most state-of-the-art methods completely disregard the temporal context available in

videos [9-14]. These methods have focused on learning semantic auditory and visual

representations in a self-supervised manner that enables sound source localization via

the similarity between audio-visual embeddings. In layman’s terms, if the audio

contains the sound of a piano, the localization model would look for regions in the

image that look like a piano and will attribute the sound to that region. In most cases,

there is no explicit classification of sounds and images into discrete classes like a piano

or a car. The audio and visual embeddings are optimized in a way that pushes similar

classes close together while driving dissimilar ones farther apart in the representation

space and the distance between the audio and visual embeddings in this space is used to

measure the correspondence between them. This approach has been effective for the

widely used benchmark datasets [9-14], however recent work by Ho-Hsiang, et al. has

raised questions about the generalizability of these methods beyond these datasets [15].

They also point out the biases in these benchmarks and demonstrate that the methods

developed on these datasets fail to generalize to urban scene understanding.

Automatic urban scene understanding is a growing area of research, with many potential

applications in the industry, academia, and the public sector. The applications include

assistive devices for the hearing-impaired, traffic monitoring, and autonomous driving.

In addition to the practical applications, urban scenes provide a challenging scenario for

visual sound source localization where state-of-the-art methods prove to be inadequate

[15]. This motivates further research into the limitations of state-of-the-art methods as

well as the datasets used for their development and that is what we set out to do in this

thesis. The focus of this thesis is visual sound source localization in urban scenes and

the main contribution is the incorporation of temporal information into sound source

localization algorithms for urban scene understanding.

In this work, we develop and evaluate our methods on the Urban-Sound-and-Sight

(Urbansas) dataset [16]. We use RC-Grad [15], which is the current state-of-the-art

model for visual SSL for Urbansas, as our baseline. We propose the use of optical flow

as a means to incorporate temporal information and we explore hard-coded as well as

learning-based algorithms to combine it with RC-Grad. First, we use optical flow as a
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heuristic to filter stationary objects from the predictions of RC-Grad and observe a

significant improvement in localization performance, especially towards curbing false

positives. We also analyze failure cases of the approach to get further insight into the

robustness of optical flow and the factors that affect optical flow estimation. Further we

add optical flow as a feature into the neural network in two ways - we add optical flow

as an additional channel into the vision encoder, and train a separate optical flow

encoder within the RC-Grad framework. A subsequent exploration of the strengths and

weaknesses of our methods helps us better understand the limitations of the dataset and

evaluation metrics we used and opens up lines of further inquiry.

The remaining chapters of this thesis are organized as follows. Chapter 2 starts with a

general overview of self-supervised representation learning and then presents a review

of the state-of-the-art in visual sound source localization. In Chapter 3, we justify the

use of optical flow as a way to represent motion information in the context of urbansas

and outline the methodology we propose to incorporate it into visual sound source

localization algorithms. We present our results in Chapter 4 and we conclude with a

discussion on the merits and limitations of our methods along with proposals for future

work in Chapter 5.



Chapter 2

State of the Art

2.1. Representation learning

In the decade since Alexnet [17], the first of the innumerably many tours de force of

deep learning, the field has burgeoned at an unprecedented rate. Deep learning systems

have rivaled, and in some cases even surpassed, human-level performance in computer

vision [17], audition [18], natural language processing[19], sensory prediction[20],

game playing [21], and reasoning [22]. In a review published while deep learning was

still in its infancy, Yoshua Bengio argues that the performance of machine learning

methods relies heavily on the choice of data representation [23], and the unreasonable

effectiveness of deep learning [24] comes from the ability to learn task-relevant

representations from the data. While Bengio’s review gives a rigorous and

comprehensive account of the importance of representations, a much more accessible

explanation for why representations are crucial for the success of an algorithm comes

from David Marr [25]

..if one chooses the Arabic numeral representation, it is easy to discover

whether a number is a power of 10 but difficult to discover whether it is

a power of 2. If one chooses the binary representation, the situation is

reversed. Thus, there is a trade-off; any particular representation makes

certain information explicit at the expense of information that is pushed

to the background and may be quite hard to discover. This issue is

important because how information is represented can greatly affect how

easy it is to do different things with it

In modern-day deep learning, the choice of data representation isn’t as straightforward

as Marr’s example because neural networks learn to represent the data conditioned on

high-level objectives obviating any fine-grained control over the representations. The

design task has shifted from hand-crafting features to designing architectures and

4
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training objectives that impose task-appropriate inductive biases. For instance,

translating an image by a few pixels, which causes little to no change in the relevant

constructs to be interpreted from the image, corresponds to a huge change in the pixel

space. Therefore, an invariance to geometric transformations is a very useful inductive

bias, and architectural choices like convolutional layers early in the network allow for

the convenient imposition of such biases. The training objective is another crucial

ingredient in the recipe as neural networks are infamous for learning only what they are

incentivized to learn to the point of exploiting artifacts in the dataset and taking

shortcuts to achieve the objectives [26]. There are inherent biases associated with

particular objectives. For instance, minimizing cross entropy, a common objective for

supervised classification problems, encourages the network to stop learning once simple

predictors have been found [26]. Hence, the architecture and the training objective act

as control knobs that allow us to coerce the representations in a direction that

disentangles and makes explicit all the task-relevant information from the data.

2.2 Self-supervised learning

While most of the success of deep learning has been predicated on using neural

networks as function approximators trained on expertly curated inputs and outputs i.e.

supervised learning, the approach has some major limitations; manual annotation of

data is time-consuming, expensive, prone to human biases, and subject to diminishing

returns due to roughly logarithmic increases in performance upon the addition of data

[27]. In recent years, self-supervised learning has emerged as a way to alleviate said

limitations. Self-supervision eliminates the need for manual data annotation by

generating labels algorithmically from the data itself, often leveraging the underlying

structure in the data. Self-supervision refers to learning tasks that ask a model to predict

one part of the input data—or a label programmatically derivable thereof—given

another part of the input [28]. For instance, in natural language processing, parts of

sentences are hidden and a model is tasked with predicting the hidden words with the

rest of the sentence as the input. Similarly, predicting hidden patches in images has been

used as a pretext task in computer vision.
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While self-supervised learning doesn’t require manual data annotation, a supervisory

signal is still necessary. Pretext tasks are used as a way to generate the supervisory

signal from the data. There are four main classes of pretext tasks - masked prediction,

transformation prediction, instance discrimination, and clustering. In masked prediction,

parts of the input are hidden or masked, and the training objective is to predict the

masked input using the rest. This is the main workhorse of natural language processing

being used exclusively or in part by most state-of-the-art methods [29-31]. And while it

has shown some promise in computer vision as well [32], the continuous and

high-dimensional state space of visual inputs, as opposed to a discrete and well-defined

vocabulary in a language, poses a significant challenge. Transformation prediction has

been proposed as a task in computer vision where given an image and a transformed

version of it, the model is tasked with predicting what transformation has been applied

and to what extent. For instance, given an image and a rotated version of it, the model

would have to predict the angle of rotation [33].

The instance discrimination-based methods treat each instance in the dataset as its own

class, and the training task is to discriminate between the instances. While attempts have

been made to use the naive approach of treating this as a multiclass classification

problem [34], a bulk of the success has come from using contrastive learning. In

contrastive learning, the training task is to predict whether a pair of inputs belong to the

same class instead of predicting the class itself. This makes it a binary classification

problem making it much more tractable. The pair of inputs could be the original and

augmented versions of an image, an image, and audio from the same video, an image,

and a caption used alongside on a social media website, etc. In order to solve this

problem, the representations of corresponding inputs have to be the same or be as close

as possible. Optimizing for this objective leads to similar inputs being pushed close in

the embedding space while non-similar inputs are driven further apart. It should be

noted that the notion of similarity here is defined by the pretext task and the choice of

data augmentations. Clustering-based methods are much more robust to the choice of

augmentations and focus on dividing the training data into a number of groups with

high-intragroup and low-intergroup similarity.
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2.3 Sound source localization algorithms

This section compares state-of-the-art algorithms for visual sound source localization

based on their training objective, localization method, architecture, and the utilization of

temporal information.

2.3.1 Audiovisual correspondence

The natural correspondence between audio and images in videos has been leveraged as

a supervision signal for self-supervised learning. Arandjelovic et.al. [9] introduced the

audiovisual correspondence (AVC) task as a method for training audio-visual

representations. It is framed as a binary classification task with the objective of

predicting if an image-audio pair corresponds i.e. they both come from the same video.

Separate vision and audio encoders are trained to solve the AVC task and the authors

demonstrate competitive performance of their learned embeddings on a variety of audio

and vision tasks (Fig.1 a). In a subsequent publication [10], the authors expand on the

AVC task tailoring it for cross-modal retrieval (Fig.1. b), and in the process, making it

effective for sound source localization as well. To retrieve audio that corresponds to a

query video or vice versa, the audio and visual embeddings are made to have the same

dimensions allowing the use of common distance metrics. The correspondence

prediction is then made based on the Euclidean distance between the two embeddings

essentially forcing positive pairs to be closer and the negative pairs farther apart which

bears resemblance to contrastive learning. For localizing sound sources (Fig.1. c), the

distance between audio and image embeddings is not calculated globally but is done in

patches with cosine similarity instead of euclidean distance as the distance metric. The

question in cross-modal retrieval is whether any region in the image highly corresponds

to the audio. In sound source localization, however, the problem is reframed to also find

out which regions correspond to the audio. The correspondence, in this case, is

measured using the cosine distance, which is essentially calculating the correlation

between the audio and the local patch-wise visual embeddings. This is based on the

assumption that if the embeddings are properly trained, the regions of the image

containing the sound source will be correlated with the audio. The correlation between
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the audio and video of a car, for instance, will have high values for regions containing

cars and much lower values for the regions in the background.

Figure 1. L3-Net [9] and the modifications made to adapt it for cross-modal retrieval and sound

source localization [10]

Senocak et.al. [11] also use audio-visual correspondence with contrastive learning to

train audio and vision embeddings. The approach is very similar to [10] but their

primary objective is localizing sound sources instead of cross-modal retrieval. They use

AVC in conjunction with a supervised loss that comes from labeled localization data

making their method semi-supervised. Takashi et.al. [12] also employ AVC and

contrastive learning as the training objective but they decompose the problem of

localizing sound sources into two steps; first, they generate candidates for potential

sound sources using the image only and then use the audio to filter the generated

candidates. The candidate generation is done by using the activations of a VGG network

pre-trained on ImageNet. The pre-trained embeddings impose an object-ness prior of

sorts since ImageNet is an object-centric dataset and it is reasonable to assume that

regions of images containing objects will have higher activations in embeddings trained
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on ImageNet. The filtering is based on the similarity between audio and vision

embeddings much like the other aforementioned methods. They also try to decouple the

contribution from the two modalities - audio and vision - and find out that in many

cases, especially with single large objects in the image, sound source localization shows

very little improvement upon the inclusion of audio; hence the title of the paper “Do we

need sound for sound source localization?”. This reflects not on the problem of sound

source localization in general but on the dataset used in the study. If a large proportion

of the data contains single objects, then just identifying the object suffices to localize

the sounding object despite the lack of explicit sound source localization in any real

sense. This serves as a bit of a cautionary tale on how not acknowledging the biases in

your data can engender inferences that don’t generalize beyond the confines of the

dataset.

Chen et.al. [13] propose an enhancement over the framework of using AVC with

contrastive learning where they automatically mine for hard-negative examples for

training. They divide the image into three regions - foreground i.e. the object that is

making the sound, the background, and a small region of uncertainty between them. The

foreground coupled with the audio from the same video is considered the positive pair

and the background region with the audio from the same video is considered the

hard-negative pair. However, as their method is self-supervised, they don’t have these

regions annotated, to begin with. In the absence of ground truth annotations, the model

predicts masks by thresholding the cosine similarity between the audio and vision

embeddings, and the mask is then used to generate the positive and negative examples

for jointly training the audio and vision encoders. The training is done in a standard

contrastive learning fashion - the embeddings for the positive pairs are pushed closer

together while the ones for negative pairs are driven farther apart.

While [13] inherits the idea of positive and negative pairs for contrastive learning from

its predecessors, albeit proposing a significant extension, Song et.al. [35] do away with

negatives altogether and use a Siamese framework [36] to train audio-visual

embeddings for sound source localization. They calculate an audio-visual embedding

(fav) for an audio-image pair by fusing the audio and visual features. They use the

patch-wise cosine similarity to fuse the audio and visual features. fav is obtained by
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calculating a weighted average over all patches of the visual features using the

similarity map as the weights. The similarity map hence acts as an attention mechanism

to weigh the original visual features. The training is done in a typical Siamese fashion

where the distance between the fav for an image and an augmented version of it with the

same audio is minimized. Additionally, they propose a predictive coding module, which

is implemented using a recurrent neural network, to align the audio and vision

embeddings by predicting one using the other.

Building on the idea of inferring objects from images as a precursor step to sound

source localization as in [12], Mo et.al. [14] propose biasing the localization towards

objects present in the image by introducing an object encoding. They use the activations

of a resnet-18 network pretrained on Imagenet[37] as the object encoding with the

assumption that pretraining on an object-centric dataset would result in high activation

in regions of the image containing objects. An intermediate localization map is obtained

by calculating the region-wise cosine similarity between the audio and image

embeddings as in [13]. The final localization map is a linear combination of the object

encoding and the cosine similarity map biasing the localization towards objects.

Another novelty of this method is the training objective; it uses AVC with

multiple-instance contrastive learning where the audio embeddings have to be similar to

at least one region in the image. In contrast to [13] where the loss function is calculated

using the average similarity over a region, [14] uses the maximum of similarity values

across the image. The authors compare the performance to the best performing methods

[10, 13] on VGG-SS and Flickr-Soundnet and demonstrate that their method

significantly outperforms the competition making it the current state-of-the-art.

2.3.2. Beyond audiovisual correspondence

While the correspondence between audio and images has proven to be very effective for

learning representations, it is by no means the only possible source of supervision.

Classification has been used as a supervision signal in conjunction with AVC by Qian

et.al. [38] to perform sound source localization for the case of multiple sources. They

separate a complex audio-visual scene into several simple scenes with multi-class

classification and then use class activation mapping (CAM) to disentangle the different

sound sources and predict localization maps for each. Senocak et.al. [39] eliminate AVC
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altogether and perform sound source localization using only classification. They

propose a network with separate audio and vision encoders followed by 3 classification

heads - audio, visual, and audiovisual. The audiovisual features are obtained by simply

concatenating audio and visual features and the training minimizes the cumulative

classification loss across all modalities. Following the training, sound localization is

performed using the cosine similarity between the audio and visual features. One key

difference between [39] and the other methods discussed so far is the inclusion of

temporal information from the video achieved by using 3D convolutions in the early

layers of the vision encoder resulting in spatio-temporal visual embeddings.

The temporal context is more explicitly utilized by incorporating it in the training

objective by extending AVC to audiovisual synchrony [40, 41]. Korbar et.al. [40] show

that the synchrony between audio and images in videos can be used to train

representations. They define the task under a contrastive learning framework where

positive examples are synchronized audio-video pairs whereas N-shifted versions, i.e.

audio-video pairs where either has been shifted by a small time duration, are considered

negative examples. This is a stricter condition than AVC and the model is forced to

learn the temporal correlation between audio and video in addition to the semantic

information. Afouras et.al. [41] use this task for sound source localization where they

transform videos into a set of discrete audio-visual objects. They also use 3D

convolutions in the vision encoder to imbue the visual embeddings with temporal

information. To that end, they also aggregate cosine similarity-based attention over time

using optical flow followed by peak finding and non-max suppression (NMS) to extract

trajectories for each audiovisual object. They demonstrate competitive performance on

sound source localization with multiple sources i.e. speaker detection and tracking in a

talking heads scenario with multiple speakers. This is a significant enhancement over

AVC-based methods as it wouldn’t be possible to distinguish between speakers just by

using similarity between semantic audio and vision embeddings as the metric for

localization.

Another class of models that are quite distinct from the ones discussed so far use a

teacher-student architecture where knowledge from vision or other modalities (teachers)

is distilled into an audio network (student) [42-44]. There are several key differences;
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the localization is performed using only the audio, the audio used is stereo or

multi-channel whereas all the aforementioned methods work with mono audio, and

there is knowledge distillation into the audio network from other modalities. Chuang

et.al [42] use a pretrained YOLOv2 object detection model as the teacher network and

distill its knowledge into an audio network that takes stereo audio as input and regresses

bounding boxes for the sound source as an output. After training, the model is able to

detect moving vehicles using only the audio. However, it is not clear how the model

gets any information about the vertical coordinates of the vehicles from stereo audio and

it is possible that it is overfitting with biased priors on the average size and vertical

position of vehicles in the dataset. Valverde et.al. [43] also perform vehicle detection

using teacher networks trained on vision, depth, and thermal data and distilling them

into an audio network that takes 8-channel audio as input. Zürn et.al. [44] choose

moving vehicles as their objects of interest as well but they train an audio-visual teacher

using AVC and contrastive learning and subsequently distill it into an audio-only

network. They perform experiments with multichannel audio with 2, 4, and 6 channels

and notice very small differences in performance upon increasing the number of audio

channels with no clear trend as to how changing the number of channels affects

localization.

2.3.3 Limitations

The state-of-the-art methods and the datasets used to develop them have the following

limitations. Most methods do not use any temporal context and the audio-visual

embeddings are purely semantic. Moreover, as shown in [15], patch-wise cosine

similarity as a localization method results in large and diffused sound source

estimations. Such localization works well for commonly used benchmark datasets

because of the prevalent bias of having single large objects in the middle of the image.

However, this method falls short for urban scenes where it is common to have many

sound sources spread across the image. This thesis attempts to address these limitations

by introducing motion information into the state-of-the-art localization method

proposed in [15] that does away with cosine similarity and uses explainability

techniques for localizing sounding objects.
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Chapter 3

Methodology

3.1. Urbansas dataset

Urban Sound & Sight [16] (Urbansas) is an audio-visual dataset developed for studying

the detection and localization of sounding vehicles in the wild. The dataset consists of

labeled and unlabeled videos of urban traffic with stereo audio. The videos are sourced

from two publicly available datasets - TAU Urban Audio-Visual Scenes 2021

Development dataset [45] and the Montevideo Audio-Visual Dataset (MAVD) [46].

TAU is a general-purpose audio-visual dataset and only the subset containing traffic

videos has been included in Urbansas. MAVD is an audio-visual traffic dataset

annotated with vehicle sounds and is intended for sound event detection. The two

sources add up to a total of 15 hours of video out of which 3 hours have been manually

annotated, with both audio and video annotations, for sound event detection and source

localization.

3.2. Evaluation metrics

The evaluation of visual sound source localization methods is done using some variant

of the Jaccard index i.e. intersection over union (IoU). IoU has been adapted from

computer vision where it is the de facto metric to evaluate object detection,

segmentation, and tracking models [47]. Given a ground truth (A) and a prediction (B),

IoU is defined as follows.

13
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Fig 2. IoU is defined as the area of intersection over the area of union between the ground truth

and the prediction made by a model

IoU has certain desirable properties like invariance to scale, computational efficiency,

and adaptability to arbitrarily shaped annotations and predictions; however, it comes

with its own set of limitations. One major drawback of IoU is that once there is no

overlap between the ground truth and the prediction, it cannot distinguish between

different predictions. While fig 3.b is clearly a much worse prediction than fig.3.c, the

IoU for both cases is 0. Moreover, if IoU is only used only as an evaluation metric and

not as a loss for training, there can be a disassociation between training and evaluation

objectives. For instance, if a model is trained to predict precise segmentation maps

while it is evaluated by calculating IoU with bounding boxes, there will be a significant

deflation in performance and the metric would become subject to irrelevant features of

the data like the orientation of objects.

Fig 3. Examples of IoU demonstrating that it can not distinguish between predictions that have
no overlap with the ground truth
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3.3. Baselines

3.3.1 Vision-only baseline

We have implemented a vision-only baseline using a pre-trained YOLOR object

detection model [48]. The yolor_p6 model weights provided in the official repository1

were used for inference, and the results were filtered to four vehicle classes - car,

motorcycle, bus, and truck. Further motion-based filtering was applied where motion is

used as a heuristic for sound with the assumption that moving objects are also sounding

objects. For each pair of consecutive frames (f and f +1), if a bounding box in f has an

IoU greater than 0.95 with one in f+1, both the bounding boxes are discarded. This

ensures that stationary objects are filtered out in the final predictions. The remaining

predictions are evaluated against the ground-truth labels in urbansas. This method is

supposed to only serve as a baseline since audio information is not considered in

localizing sounding objects. It serves to demonstrate the correspondence, or a lack

thereof, between moving and sounding objects.

3.3.2 RC-Grad

RC-Grad [15], the current state of the art on visual sound source localization for

Urbansas, has been used as an audio-visual baseline. We have replicated the results of

[15] using the pretrained models provided by the authors in the official repository2. As

is standard in the literature, the model uses separate audio and vision encoders

optimized with audio-visual correspondence as the training objective. RC-Grad uses

resnet-18 as the audio as well as the vision encoder. The vision encoder is pretrained on

Imagenet while the audio encoder is randomly initialized. The model is then trained

with a contrastive loss on VGG-Sound [49].

Grad-CAM [50] has been used as the method for localization. Grad-CAM is an

explainability technique that uses the gradients of a target concept (say ‘dog’ in a

classification network) flowing into the final convolutional layer to produce a

localization map highlighting the important regions in the image for predicting the

concept. For sound source localization, instead of backpropagating the classification

2 RC-Grad [15] - https://github.com/rrrajjjj/rethinking-visual-sound-localization
1 YOLOR [48] - https://github.com/WongKinYiu/yolor

https://github.com/WongKinYiu/yolor
https://github.com/rrrajjjj/rethinking-visual-sound-localization
https://github.com/WongKinYiu/yolor
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output, the audio embedding itself is back-propagated through the vision encoder. For

evaluation, 1 second of audio and the image for the frame corresponding to the middle

of the audio segment is used as input to the model.

3.4. Incorporating temporal context

3.4.1 Optical flow

Optical flow is the pattern of the apparent motion of objects in a visual scene caused by

the motion of an object or camera or both [51]. The origins of the idea can be traced

back to animal psychophysics [52] which inspired the mathematical formalism in

Horn’s seminal paper [53] and his subsequent book Robot Vision [54]. In computer

vision, optical flow is a vector field that, given two consecutive frames of a video, tells

how much each pixel has moved and in what direction (Fig 4). In the 4 decades since

[53] a plethora of methods, both traditional [53-58] and data-driven [59-62], have been

proposed to estimate optical flow. Most traditional methods exploit assumptions like the

constancy of intensity of each pixel, homogeneous illumination, similar flow values for

neighboring pixels, etc. The more modern data-driven approaches are based on neural

networks and learn to estimate optical flow with large amounts of ground-truth training

data.

Fig 4. Optical flow encodes the movement of pixels across images

In this work, the OpenCV implementation of the Gunnar Farneback algorithm [58] is

used to estimate dense optical flow. Videos are sampled at 8 frames per second and are
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converted to grayscale before calculating the optical flow. The flow vectors are then

converted from cartesian to polar coordinates and only the magnitude is used in

subsequent analysis. Out of the 3 available frame-rates in the dataset, 8 fps was selected

based on empirical evaluation on a group of videos; an example can be seen in Fig. 5.

At 2 frames per second, there is a significant change between the subsequent frames and

optical flow operates on the assumption of small changes between images. It can be

seen that the flow estimation is smeared out and does not have an adequate spatial

resolution in terms of localizing the moving vehicle. At 24 frames per second, the

change between the two frames is so small that the optical flow values of the vehicle are

comparable to the background and hence it is not very helpful in gleaning the motion of

interest from the video. 8 frames per second works well at precisely locating the vehicle

while also ensuring that the flow values for the vehicle are significantly higher than that

of the background making it the most suitable sampling rate for this dataset.

Fig 5. Optical flow calculated on a video at different frame rates. a)  2 fps   b)  8 fps   c)  24 fps
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3.4.2 Justifying the use of optical flow

Optical flow has been applications in a wide range of computer vision tasks; it has been

used, either as a primary feature or in conjunction with other visual features, in visual

surveillance [63], object segmentation and tracking [64], action recognition [65, 66],

pose estimation image superresolution [67], and deepfake detection [68]. It has also

been used for sound source localization in [41] where image-wise localization maps are

aggregated over time using optical flow to get coherent object trajectories. The

overarching rationale behind the above-mentioned methods is that information about the

motion of objects is crucial to visual perception and can be leveraged to great effect.

This is especially true if moving objects are of interest. The authors of [69] go as far as

using only3 optical flow as a feature for camouflaged object detection and achieving

state-of-the-art performance despite not utilizing the rich RGB images as inputs which

is conventional in the deep-learning era.

In the context of Urbansas, where the goal is to localize the sounding objects in a video,

motion is a very potent indicator of sound. In the urban traffic setting, the sounding

object is in most cases also a moving object. Moreover, looking at single images devoid

of motion information, it can often be impossible to detect the sounding objects. For

instance, parked cars are indistinguishable from moving cars given just an image. In

Fig.6, it can be seen that RC-Grad mistakes the large parked car as the primary sound

source. However, simply thresholding the optical flow generates a prediction that is

very close to the ground truth.

3 They also use the difference between the frames after correcting for camera movements to recover sharp
object boundaries. The use of “only” is supposed to imply the authors discarding the original RGB images
as inputs to their deep neural networks where end-to-end learning has become the norm.
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While Fig.6 clearly demonstrates an example where optical flow helps overcome a big

limitation of state-of-the-art sound source localization models, inferences made on

cherry-picked examples have to be taken with a grain of salt. Generalisability cannot be

assumed given the heterogeneity and complexity of the dataset. Therefore, to

complement the above justification for using optical flow, a statistical comparison

between optical flow and ground truth annotations has been done. Fig 7. a shows the

distribution of ground truth annotations i.e. bounding boxes and Fig 7. b shows the

aggregate of optical flow both calculated over the entire dataset divided by cities. An

aggregate over the entire dataset has also been reported.



20

It can be seen that the distribution of optical flow very closely resembles that of the

bounding boxes corresponding to sounding objects. While this doesn’t directly imply

the coincidence of moving and sounding objects, the almost identical spatial

distributions suggest a meaningful relationship between the two. The noticeable

differences in Stockholm and Montevideo however need to be explained. In the case of

Montevideo, most videos have large trees occluding the view of the street and the

movement of leaves, which happen to be closer to the camera than the vehicles, is

significant enough to be picked up by optical flow (Fig 8. a). The disparity in the case of

Stockholm can be attributed, at least in part, to a non-stationary camera (Fig 8. b). One

of the assumptions in using optical flow to detect moving objects is that the camera is

stationary so that only moving objects in the scene contribute to the optical flow. When

there is global movement due to a shaky camera, all points in the image have high

values of optical flow. Also, the optical flow for objects in the vicinity of the camera is

much higher than it is for objects that are far away due to the parallax effect. Moreover,

there is a higher number of pedestrians in the videos from Stockholm. Since the

movement of pedestrians is also picked up by optical flow but they are not labeled as

sounding objects in the dataset, they also contribute to the disparity between moving

and sounding objects.



21

Despite the aforementioned caveats, the clip-level example from Fig.6 along with the

more statistical dataset-level comparison between moving and sounding objects justifies

the use of optical flow as a useful feature for visual sound source localization at least

under the confines of Urbansas.

3.4.3 Optical Flow as a heuristic

One significant limitation of RC-Grad, and most other state-of-the-art methods, is

parked vehicles that don’t make any sound. Since the representations are purely

semantic and there is no temporal context, the model cannot distinguish between

stationary and moving vehicles. As a result, parked vehicles often end up having high

activations as false positives diminishing the performance (Fig.9). Optical Flow, on the

other hand, only has motion information. Anything that moves, be it vehicles, people,

tree leaves, etc., have high values of activation. Hence, optical flow and RC-Grad have

complementary strengths that can be leveraged by taking an intersection of objects that

have high activations for both (Fig.9). Here, that has been implemented by a simple

element-wise multiplication of the RC-Grad predictions for an image with the optical

flow between the image and the next frame of the video. This suppresses objects that

are either not moving or not vehicles leaving us with moving vehicles which is very

much in the spirit of the vision baseline but has the added audio component.

3.4.4 Optical flow as an image channel

As effective as heuristics can prove to be, they are often rigid, brittle, and prone to a

lack of generalizability. In an attempt to move away from the naive use of optical flow

as a filter and towards using it to imbue the representations with temporality, we include
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it as an image channel. Here, the model can, at least in principle, take the motion

information into account while making predictions instead of motion being used as a

filter post-hoc. The relationship between motion and sounds can hence be learned.

RC-Grad has been extended to take in 4 channels (RGB and optical flow) as the input to

the image encoder (Fig.10.a). The model is initialized with the pre-trained version of

RC-Grad. The weights of the optical flow channel have been initialized by averaging

the weights of the RGB channels. The model is then trained on the unlabeled portion of

Urbansas. The model is trained similarly to [15] where a video frame with its

corresponding optical flow as an additional channel and a 5-second audio clip around

the video frame has been used as inputs. The optical flow is calculated using the

OpenCV implementation of the Gunnar Farneback algorithm.

3.4.5 Optical flow encoder

Optical flow and RGB images are distinct data modalities and in the above-mentioned

method, the 4 channels of the image are pooled in very early layers of the network. This

may result in shallow integration of motion information. Moreover, since the model was

initialized with weights pretrained on audio and images, simply discarding the

additional optical flow channel provides a trivial solution to quickly minimize the loss

which, while making the experiment redundant, is a very real possibility. As a method

to overcome said issues, a separate flow encoder with the same Resnet-18 architecture

as the image and the audio encoders has been added to RC-Grad. The weights are

initialized as the average of RGB channels of the vision encoder. The training loss has

been modified to be the sum of all pairwise losses (audio-image, image-flow, and

audio-flow). The localization is then done by backpropagating the audio embeddings

through the image as well as the flow encoder to generate two localization maps. These

maps are then multiplied element-wise to give the final localization map.
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Chapter 4

Results

The vision baseline significantly outperforms RC-Grad (Table.1) which can be

attributed to several factors. The object detection model has been trained to predict

precise bounding boxes around objects on the MS-COCO dataset [70], which is a

large-scale dataset with just under a million annotated objects, nearly 10% of which

correspond to vehicles. Further, stationary vehicles are eliminated with the

motion-based filtering helping overcome a major limitation of RC-Grad. Moreover,

there is a congruence between the predictions of the vision baseline and the ground truth

annotations i.e. both are binary bounding boxes. RC-Grad predicts localization maps

that have a continuous range of values where the higher the values, the more the region

corresponds to the sound source. These maps are thresholded to generate arbitrarily

shaped binary masks that are then compared against the ground truth annotations for

evaluation. This mismatch most likely deflates the evaluation metric resulting in overall

lower performance for RC-Grad.

Table 1. Performance on Urbansas

Model IoU AUC

Vision-only Baseline 0.32 0.21

RCGrad 0.16 0.13

Optical Flow only 0.33 0.23

RCGrad * Flow 0.50 0.30

RCGrad w/extended vision encoder 0.26 0.18

RCGrad w/Flow Encoder 0.37 0.23

24
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4.1. Optical Flow as a heuristic

Optical flow significantly improves performance over vanilla RC-Grad. As can be seen

in Fig.11, it helps overcome a major limitation of RC-grad and other state-of-the-art

methods - parked vehicles. In all three cases in Fig.11, the predictions of RC-Grad

center on parked cars. These vehicles are not generating any sounds and hence are false

positives. However, since they are stationary, they are not picked up by optical flow, and

by multiplying the predictions with optical flow, these vehicles are filtered out.

To get a more well-rounded picture of the performance, the distribution of image-wise

IoU values has been plotted for RC-Grad, optical flow, and the product of both across

different lighting conditions and data sources (Fig.14). It can be observed that

multiplying the predictions of RC-grad with optical flow shows improvement over both

across all conditions as the distribution shifts towards the positive end. Fig.13 shows

how multiplying the two improves or degrades performance at the level of individual

images. In the left figure, it can be seen that most points lie above the x=y line, which

means that there is an improvement in most cases. In the right figure, there is a similar

trend, however not as pronounced, indicating that RC-Grad contributes positively to

optical flow.

However, there are points below the line as well (Fig.13) suggesting that optical flow is

not a silver bullet and has its drawbacks. There are cases where multiplying the

predictions with optical flow degrades performance. In Fig.12 a), the vehicle stops at a

signal while keeping the engine on and hence is generating sound. But since it is

stationary, it is filtered out resulting in a false negative. In Fig.12 b) and c), RC-Grad is

able to localize the sound source precisely. Optical flow however does not perform well

in these cases due to a shaky camera and when paired with the RC-Grad predictions,

degrades the overall prediction quality.
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The possible degradation of performance upon the introduction of optical flow

motivates an analysis of factors that may affect optical flow estimation. The following

factors have been considered -

1. Lighting - Lighting conditions may affect the performance of not only optical

flow but also RC-Grad. The effects of lighting have been assessed using the

day-night annotations in Urbansas (Fig.14 a).

2. Non-stationary camera - An unstable camera breaks an underlying assumption

that things that move generate sound. If there is global movement, all regions in

an image have high values of optical flow and the quality of flow estimation for

moving vehicles is also compromised. There is no straightforward way to break

down the performance of the models subject to camera stability since such

annotations are not available. However, an unstable camera has been observed

exclusively in the subset of Urbansas that comes from TAU. Hence, the data

source has been used as a proxy for assessing the impacts of a shaky camera

(Fig.14 b).

3. Speed - The strong effects of the frame rate of a video on optical flow

estimation (Fig.5) suggest that the rate of relative displacement of objects

between frames influences optical flow. The speed of objects has been measured
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by calculating the distance moved by the center of the bounding box between

consecutive frames per unit time and has been reported in pixels per second.

Poor lighting conditions have detrimental effects on the performance of optical flow as

can be seen in Fig.14.a. There is a noticeable shift towards 0 in the distribution of IoU

values for videos taken at night for both the models that rely on optical flow. RC-Grad

on the other hand performs marginally better at night.

The data source, which is serving as a proxy for camera stability, also impacts

performance. As we move from MAVD to TAU, the performance of optical flow suffers

a significant drop (Fig.14.b center). The IoU values are concentrated around 0 for TAU

but much more evenly distributed for MAVD. Also, Fig.13 shows that most cases where

multiplying RC-Grad predictions with optical flow makes them worse, i.e. points that

lie below the x=y line, come from the TAU dataset. Manual inspection of these videos
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shows a non-stationary camera in most cases. Out of the 15 such videos, only one shows

a drop in performance due to the vehicle stopping at a signal.

The speed of the bounding boxes only minimally affects performance in the

intermediate range (Fig.15). The IoU drops to 0 for very low speeds as is expected since

stationary objects do not contribute to optical flow but looking at the distribution of the

speeds reveals that most sounding vehicles are in the intermediate range with a strong

bias towards the lower end.

4.2. Learning with optical low

Optical flow has been incorporated into the model in two ways - as an image channel

and with a separate optical flow encoder. While both methods substantially outperform

vanilla RC-Grad (Table.1) at an aggregate level, visualizing the predictions on selected

test cases shows the results to be more of a mixed bag. Fig.16.a shows a marked

improvement over RC-Grad as both the models learn to ignore the stationary car and

infer the moving vehicle to be the sound source.
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However, the model with optical flow as a channel inherits not only the strengths but

also the weaknesses of optical flow. Fig.16.b and c have vehicles parked at a signal. The

model predicts a diffused mask missing all the vehicles suggesting that predictions

primarily rely on optical flow and the model goes awry in the absence of strong optical

flow. Fig.16.d has a parked car on the left and a moving one on the right with the parked

car being a false positive. The false positive is to a somewhat lesser extent for the model

with optical flow as an image channel where the parked car has a marginally lower

activation while the moving car has a more precise mask around it. The over-reliance of

this method on optical flow can be tackled by training the model on more data where

optical flow is not indicative of the sounding object or is completely absent. Videos with

many pedestrians, cars parked at signals, or without any vehicles at all would be some

scenarios with which to supplement the training data.

RC-Grad with a flow encoder performs much better than the rest in cases where clear

optical flow information is available. It is able to eliminate the parked vehicle in

Fig.16.d that shows up as a false positive in the other methods. The localization maps

are also less diffused and this stringency is likely to contribute to the increased IoU

numbers due to a decrease in the overall area of union. By the same token, the size of

the predicted masks may also, at least in part, explain why this method doesn’t perform

as well as the naive use of optical flow as a heuristic. Optical flow generates very

precise masks around objects minimizing the area of union and hence increasing the

IoU while this method still produces diffused localization maps.

All the methods struggle in cases where optical flow is not reliable (Fig.16.b and c)..

This motivates further investigation into better and more robust ways of estimating

optical flow since the quality of optical flow is crucial to the performance of these

methods.
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Chapter 5

Discussion

This thesis tackles the problem of visual sound source localization in an urban setting

with the main objective being the addition of temporal context to state-of-the-art

methods. Urban traffic provides a more challenging scenario for localizing sounding

objects than the commonly used benchmarks where there is a pervasive bias towards

having large objects in the middle of the image [15]. The challenge is further amplified

by the prevalence of multiple potential sound sources where it is not possible to infer

which ones are active based on a single image. For instance, a moving car can not be

distinguished from parked ones given a single frame motivating the use of context clues

present in videos. Early studies in localizing sounding objects in videos relied primarily

on the temporal correlations between video and audio [6] but recent works seem to

completely disregard this source of information [10-14]. This is by design as addressed

by the authors of Objects that Sound [10] where they suggest that models with access to

temporal information can cheat by exploiting low-level information like motion. The

goal of these methods is to learn semantic audio-visual representations and a model with

access to temporal information has less incentive to do so.

The commonly used datasets have a large number of diverse classes and the models

trained on these datasets essentially learn to predict whether a sound and an image, or a

region therein, belong to the same class. Urban traffic data, however, is peculiar in two

key ways - it has a very small number of unique classes but often many instances of

each class in a single image. In such a case, semantic similarity devoid of temporal

context does not get us very far. As mentioned earlier, parked vehicles pose a major

limitation to this approach. However, the motion of objects between consecutive frames

proves to be a strong indicator of sounding objects as we have demonstrated in our

vision-only baseline. We have used optical flow to incorporate motion information into

state-of-the-art sound source localization models and observed significant improvement

in performance on Urbansas.

32
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Optical flow is a remarkably effective feature for sound source localization within the

context of Urbansas to an extent that simply thresholding optical flow to localize

sounding objects outperforms the baselines (Table.1). In this work, we have explored

three ways of using optical flow in conjunction with RC-Grad which is the

state-of-the-art sound source localization model for Urbansas. The simplest method of

multiplying the predictions of RC-Grad with optical flow and using the result as the

localization map performs better than the more sophisticated approaches where optical

flow is used as a feature and the relationship between motion and sound is learned.

Moreover, this method allows convenient decoupling of the contributions of optical

flow and RC-Grad enabling an analysis that reveals the strengths and limitations of

optical flow based approaches for Urbansas.

In most cases, optical flow improves the localization of sound sources (Fig.13) by

filtering out stationary vehicles and constraining the boundaries of the localization map

to the moving object (Fig.11). However, there are limitations that persist across all the

methods that will be discussed in the following section and avenues for future work will

be suggested to overcome said limitations. It should be noted as an important caveat that

in this study we only make inferences about the effectiveness of a method under the

constraints of a specific dataset and we make no claims about the generalizability of

said methods for the problem of visual sound source localization in general.

5.1 Limitations

5.1.1 Assumptions

The use of optical flow as a feature for localizing sound sources in videos is predicated

on the following two assumptions -

1. Sounding objects are always moving objects

2. Optical flow faithfully represents the motion of objects of interest

The above two statements represent the ideal case and we must add further

qualifications to adapt them to a real-world scenario. The first assumption can not be
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true at all times, especially if we move outside of an urban traffic environment. A guitar

amplifier on a stage for instance will not have any appreciable optical flow despite

being a predominant sound source. Motion is not an unerring predictor of sound.

However, we have observed that within Urbansas, sounding objects are very often

moving objects. This is supported by our results (Table.1) where simply thresholding

optical flow to localize sounding objects shows competitive performance. To restate the

second assumption, we assume that optical flow perfectly captures all motion of interest

i.e. all moving vehicles generate a strong optical flow signal. It is also to say that objects

that are not of interest do not contribute significantly to optical flow. There is also an

implicit assumption here that there is no global motion i.e. the camera is stationary and

stable. When any of these assumptions are violated, the performance of our methods is

severely impaired leading to the limitations discussed hereafter.

5.1.2. Limitations of the method

Vehicles parked at signals with their engines on violate the first assumption and, as

demonstrated in Fig.12.a., are a limitation of the method. Using short-term optical flow

completely filters out such vehicles. Trees, pedestrians, and other moving objects are

also exceptions to the assumption. Moving tree leaves can often have high optical flow

as can be seen in Fig.8.a., but they have no contribution to the sounds whatsoever.

However, using optical flow along with RC-Grad is a simple fix to that issue as the

predictions of RC-Grad generally have very low activations for trees.

5.1.2. Limitations of the dataset

The case with pedestrians is not as straightforward as it is for trees. They have

characteristic sounds associated with them that are clearly audible, especially if they are

close to the microphone. The models we use for sound source localization are

class-agnostic and are trained in a self-supervised manner without any class labels. So

RC-Grad learns to localize pedestrians as sound sources as we have observed in some

cases (Fig.17). Pedestrians also have high optical flow and hence cannot be filtered out

by either method or a combination thereof. Since pedestrians are not labeled in the

dataset, they are evaluated as a false positive of the method. However, this is a

limitation of the dataset rather than that of the method. The models are class-agnostic by
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design i.e. they learn to localize sounds irrespective of the class of objects generating

that sound. Attributing corresponding sounds to pedestrians is an expected outcome and

it only becomes erroneous due to the way the dataset is annotated.

The performance of optical flow is also seriously hindered by an unstable camera

(Fig.8.b). A large proportion of videos from the TAU subset of the dataset are taken

with a non-stationary camera which makes up the majority of the failure cases of the

proposed methods (Fig.12.b and c, Fig.13). This is again not necessarily a limitation of

the method but rather a characteristic of the dataset that revealed itself while analyzing

the shortcomings of the method.

The pedestrian case suggests that there is a dissonance between the training and

evaluation objectives. The models are trained via contrastive learning to push the

representations of sounds and images from the same class close together while driving

the same for dissimilar classes farther apart. This is not done for vehicles in particular

but for all objects that may appear in the dataset. However, only vehicles are annotated

in the dataset, and evaluating against these annotations results in any other sound

source, e.g. pedestrians, being a false positive. Also, the models are penalized for these

false positives as the metric used to evaluate the localization (IoU) has the area of the

union of the prediction and the ground truth in the denominator, and false positives only

inflate the denominator resulting in a worse perceived performance of the model.
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5.2 Future Work

In this section, potential lines of further research to overcome the limitations addressed

in the previous section have been proposed.

5.2.1 Longer-term temporal context

Stationary vehicles with their engines running are a failure case of the proposed method.

This is primarily due to the very short term temporal context, 0.125 seconds in our case,

that optical flow between consecutive frames provides. Considering that vehicles do not

stay stationary for very long periods of time, extending the temporal window to say 5

seconds can give the model the information needed for attributing sounds to vehicles

that are temporarily stationary. We consider the following two promising avenues for

extending the temporal window.

One simple way is to aggregate optical flow across an expanded window i.e. to

calculate optical flow for all pairs of consecutive frames in a window of 5 seconds

around the image and use this stack of optical flow as a feature. Similar aggregated flow

representations have been used for action recognition [65]. A simpler aggregation

strategy is to average optical flow across the time window instead of stacking as done in

[41] for estimating object trajectories in the context of sound source localization. A

more end-to-end approach would be to ditch optical flow altogether and use a series of

frames from the video as an input to the vision encoder making the visual embedding

spatio-temporal as done in [39].

5.2.2 Alternate ways of estimating optical flow

We have seen that our results are very sensitive to the quality of optical flow estimation

and that optical flow estimation using the Gunnar Farneback algorithm is sensitive to

factors like lighting and camera instability. Recent work using deep neural networks for

optical flow estimation could be leveraged for improving the quality of optical flow and

subsequently the performance of our models. RAFT [62] is the state of the art in optical

flow estimation and has been recently added to the pretrained models in PyTorch.

Testing the performance of RAFT and other optical flow estimation techniques on

Urbansas could yield a performance boost and add robustness to our method.
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5.2.3 Evaluating on other datasets

One major limitation of the state-of-the-art methods that we have pointed out is the lack

of generalizability to urban scenes due to possible overfitting4 to common benchmarks.

It is only fair to subject our proposed methods to the same scrutiny and evaluate how

well they fare in comparison to other methods. We have mentioned that one of our

assumptions that sounding objects are also moving objects does not necessarily hold

outside of urban scenes. Evaluating on more diverse datasets will help us better

understand the strengths and weaknesses of our method and the problem of visual sound

source localization in general.

5.2.4 Generating bounding boxes as model predictions

Our models predict arbitrarily shaped masks as localization maps while the ground truth

is annotated with bounding boxes. This incongruence is very likely to contribute to a

deflation of our results. The arbitrary shapes could be processed to generate bounding

boxes through image processing techniques. Also, using our audiovisual embeddings, a

supervised model can be trained to predict bounding boxes instead of arbitrary

segmentation masks.

4 The term has been used loosely to suggest that these methods have certain inductive biases that are only
applicable to the datasets used to develop them.
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