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Abstract: Brake forces and maximum static road friction coefficients for each wheel of the vehicle 

are essential information for vehicle safety systems including adaptive cruise control, electronic sta-

bility control (ESC), and collision avoidance system, etc. Many studies have been performed to es-

timate brake force and road friction using well-known model-based approaches, but none have un-

ambiguously guaranteed an accurate performance in all ranges of driving conditions and road ones. 

In addition, the investigation of the integrated estimation approach of road friction and brake force 

including mass estimation has not been clearly addressed so far. Therefore, in this study, a novel 

integrated estimation strategy based on a data-driven technique and artificial neural network 

(ANN) classifier along with a compact mass identification has been proposed to acquire the accurate 

road friction and brake force of individual wheel. Specifically, it includes an instant mass estimation 

by monitoring static suspension deflections, an artificial neural network (ANN) classifier for road 

friction coefficient based on the average data set from available standard sensors, and a brake force 

estimation using the data-driven technique. The performance of the proposed technique is validated 

by a co-simulation environment between Carsim and MATLAB/Simulink. It is found that the inte-

grated estimation strategy guaranteed an accurate estimation of brake forces and road friction for a 

wide range of variations of road frictions, vehicle velocities, and masses. This work will be a valua-

ble asset for those who wish to develop an integrated estimation system for such crucial parameters 

of the vehicle system. 

Keywords: vehicle dynamics; estimation; brake force; road friction coefficient; vehicle mass  

estimation; integrated estimation system; artificial neural network (ANN) classifier; data-driven 

technique 

 

1. Introduction 

Active safety and intelligent control technologies in vehicles have been widely de-

veloped and applied, and most active safety systems will often benefit from a reliable and 

robust estimation of brake force. The brake force information is essential for a better track-

ing precision of potential trajectories, resulting in better vehicle control management. 

However, it is usually difficult to install sensors at contact points of the tires to collect the 

information directly due to the limited physical accessibility. Accordingly, it is more ad-

vantageous and beneficial for practical applications if we can develop methods to indi-

rectly estimate or observe brake force based on the pre-existing sensor information. 

In line with this sense, previous studies of indirect tire force estimation are actively 

conducted and can be classified into two major approaches. As the first stream, the tire 

model-based methods used analytical models such as Burckhardt static tire/road friction 
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model [1], Dugoff’s model [2], and the most widely used, Pacejka model, also called 

“Magic formula” [3]. However, as all other static models, these models contain parameters 

that need to be estimated and disadvantages related to the inability to describe low slip 

effects. Meanwhile, as the second one, the sensor-based methods utilized EKF (Extended 

Kalman filtering) as a complex non-linear estimation technique to derive the tire force in 

[4]. Ref. [5] applied an EKBF (extended Kalman-Bucy filtering) and Bayesian hypothesis 

selection to estimate tire forces of vehicles on asphalt surfaces. An adaptive observer was 

constructed by combining a vehicle model and a tire force model by [6]. These approaches 

show accuracy and good robustness properties. Nonetheless, Refs. [4–6] generate inaccu-

rate estimation results in some extreme road conditions and require a high computational 

complexity. Therefore, they are practically limited and often denied to be mounted in the 

commercial ECU (electronic control unit). 

Fundamentally, according to Equation (1), to achieve a better result of tire force 𝐹𝐵 

during brake, we should identify the precise static maximum road friction coefficient 

𝜇𝑚𝑎𝑥 and vertical tire forces 𝐹𝑧. 

𝐹𝐵 = 𝜇𝑚𝑎𝑥𝐹𝑧  (1) 

Consequently, many various studies of tire-road friction modeling and estimation 

have been investigated. Holzmann [7] proposed a new predictive methodology for the 

estimation of µ by using a camera and a microphone. Sato [8] and Yamada [9] measured 

the wetness of the road by detecting reflected light using optical sensors. The disad-

vantages of these vision-based methods depend on the intensity and direction of light. 

Many commercial vehicles use a thermometer to warn drivers of icy roads. These cause-

based methods detect the factors that change road friction. However, this method cannot 

reflect the vehicle driving conditions, such as variations in tire pressure, wear, or wheel 

dynamics. Moreover, the longitudinal dynamic based approaches are in general adopted 

for friction estimation. Many studies proposed friction coefficient identification strategies 

based on the concept “slip-slope” [10–13]. In all the approaches discussed above, the re-

search results only focused on the estimation of the average tire-road friction coefficient 

for the entire vehicle. 

On the other hand, the second element for brake force calculation is the vertical force 

at each tire as seen in Equation (1). These forces are determined by vehicle mass. Vahidi 

et al. [14,15] proposed an RLS (recursive least-square) mass and road grade estimation 

strategy that utilizes multiple forgetting factors to reflect a constant mass and time-vary-

ing road grade. RLS was also used in [16] and Ref. [17] combined with EKF to simultane-

ously estimate the electric bus mass and road grade. Meanwhile, Ref. [18] proposed a for-

mulation to calculate the vehicle’s mass essentially based on the knowledge of the vehi-

cle’s velocity and the engine torque, and Ref. [19] utilized engine torque local convex min-

imum characteristic to estimate the vehicle mass. The major problem in using these ap-

proaches is based on the fact that the vehicle is required to be driven to obtain the proper 

persistent excitation and it usually takes a considerable time to estimate the real mass 

value. Beatriz et al. [20] used information from suspension deflection sensors and a dual 

Kalman filter to estimate vehicle mass under static and dynamic conditions. Nowadays, 

vehicles equipped with active suspension incorporate these kinds of sensors. Suspension 

deflection can be directly measured through a potentiometer or an LVDT (linear variable 

differential transformer) ) which are both relatively economical and practical to be used. 

Taking into consideration all of the previous ideas and the fact that the studies of 

integrated brake force estimation system collaborated with road friction and vehicle mass 

estimators has not been sufficiently conducted, this paper proposes a novel longitudinal 

brake force estimation strategy for the individual wheel. Four major contributions clearly 

distinguish our endeavor from other studies: 

Unlike [14–19], based on [20] but in a simpler way, the vehicle mass is instantly esti-

mated by monitoring the static suspension deflections before the vehicle is driven by a 

driver or at a low speed of less than 10 km/h. 
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Road friction identification uses an artificial neural network and average data set 

from currently available standard sensors. Therefore, compared to the model-based and 

slip-slop approaches [7–13], the accuracy of estimation can be fortified because ANN di-

rectly learns the road condition from the actual data. Using the average data for ANN is 

also a distinguishable idea to obtain smooth estimation outcomes. In addition, due to the 

off-line training of ANN, the proposed classifier is computationally light thus it is possibly 

applicable to ECU for the actual road test and is engaged for individual wheel thus the 

identification of road conditions for each wheel is doable. 

A combination of estimated mass, estimated road friction, and data-driven techniques is 

utilized to identify brake forces. The important aspect of this proposed brake force estimation 

structure relies on the estimation of the tire forces acting on each tire, without any reference to 

mathematical tire models [1–3]. Hence, compared to [4–6], it can be processed at a low com-

putation cost, and a fast response, which makes the proposed method usable in middle-class 

cars with low-resolution sensors and low-performance microcontrollers. 

This work provides us with another possible solution for the integrated estimation 

approach of road friction and brake force including mass estimation. As mentioned ear-

lier, it is true that studies on such integrated estimation systems are insufficient. 

Finally, the performance of the entire proposed estimation strategy is verified through 

several co-simulations between MATLAB/Simulink and a high-fidelity vehicle model from 

CarSim [21] according to different scenarios of velocities, road frictions, and masses. 

The rest of this paper is organized as follows: Section 2 presents the problem formu-

lation. Section 3 introduces longitudinal slip ratio and vertical load of each tire used in 

this paper. The main works, mass estimation, road friction estimation, and individual 

brake force estimation, are proposed in Sections 4–6, respectively. Details about the inte-

grated estimation system are shown in Section 7. Simulation results are presented in Sec-

tion 8, and Section 9 concludes this paper. 

2. Problem Formulation 

The overall integrated approach used in this paper for individual wheel brake force 

estimation consists of the following three steps: 

(i) Vehicle mass estimation. 

(ii) Road friction identification of each wheel (front-left (FL), front-right (FR), rear-

left (RL), and rear-right (RR)) using an artificial neural network (ANN) classifier. 

(iii) Individual wheel brake force estimation via a data-driven approach collaborated 

with estimated mass and road condition. 

For a clear understanding of the proposed integrated system, the structure of the en-

tire estimation system is described in Figure 1. 

In the first step, the vehicle mass is estimated based on suspension deflections under 

the particular condition of vehicle velocity. A set of measurements for vehicle status is 

processed and then fed to a trained neural network for road friction estimation in the sec-

ond step. Finally, the estimated values are taken as the known parameters in the third step 

to estimate the brake forces. 

As the proposed estimator relies on longitudinal dynamics, similar to other model-based 

methods, the following pre-conditions for the activation of estimation are established: 

(i) The estimation is activated when the brake is applied. 

(ii) The steering wheel angle does not exceed 20 degrees. 

(iii) The acceleration, yaw rate, longitudinal velocity, wheel speed, steering angle, 

brake pedal, and suspension deflection are assumed to be available during the estimation 

period. 

When any of the above conditions are not satisfied, the estimation becomes inactive 

until all conditions are met again. 
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Figure 1. Entire structure of the proposed estimation systems. 

3. Longitudinal Slip Ratio and Vertical Load of Each Wheel 

Figure 2 presents the schematic diagram of the three-degrees-of-freedom (3-DoF) ve-

hicle model used to compute the longitudinal slip ratio and vertical load of each wheel on 

the ground. The notation “CG” is the center of gravity (COG) of the whole vehicle. The 

value hc is the height of COG relative to the ground and the distances from the vehicle’s 

COG to the front and rear axles are lf and lr, respectively. The parameters tf and tr indicate 

the widths of front and rear track. The heading angle of the front tires are generated by 

the front steering wheel angle, δ. The side slip angle at the vehicle’s COG is β described as 

the angle between the velocity vector Vc and the longitudinal velocity of the vehicle Vx. 

Moreover,   is the yaw rate of the vehicle. The lateral velocity of the vehicle is Vy. Fur-

thermore, Fx,i, and Fy,i represent the longitudinal and lateral forces acting on each tire, 

where sub-notations i indicate the front-left (FL), the front-right (FR), the rear-left (RL), 

and the rear-right (RR) tires of the vehicle. In addition, Fz,i are the vertical forces of tires. 

 

Figure 2. Schematic of 3-DOF vehicle model. (a) Vehicle planar model and (b) vehicle load transfer 

model. 

Based on the difference between the actual longitudinal velocity at the wheel axle 

𝑉𝑤𝑥.𝑖  and the equivalent rotational velocity 𝑟𝑒𝑓𝑓𝜔𝑖 of the tire, the longitudinal slip ratios 

can be defined as: 

CarSim/Vehicle

-Spring deflections
-Velocity

Mass estimation Road friction estimation

-Wheels speed
-Velocity
-Steering angle
-Brake signal

Trained ANN

Data Averaging

 𝑉 𝑥    𝑖  𝑉 

𝜇 
-Acceleration
-Velocity
-Yaw rate
-Steering angle
-Brake signal
-Wheel speed

Brake force estimation

-Slip ratio
-Vertical forces

Reference curve

Brake force

𝐹 𝑥.   𝐹 𝑥.   𝐹 𝑥.   𝐹 𝑥.  
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 𝑖 =
𝑟𝑒𝑓𝑓𝜔𝑖 − 𝑉𝑤𝑥.𝑖

max⁡(𝑟𝑒𝑓𝑓𝜔𝑖  𝑉𝑤𝑥.𝑖)
⁡𝑖 = 𝐹𝐿 𝐹𝑅 𝑅𝐿 𝑅𝑅 (2) 

where 𝜔𝑖 is the rotational speed of each wheel and 𝑟𝑒𝑓𝑓  is the effective radius of the tire. 

Based on the vehicle’s longitudinal (Vx), lateral velocity (Vy), and yaw rate (𝜓̇), the 

longitudinal velocity of each wheel 𝑉𝑤𝑥.𝑖 in (2) can be obtained [22]: 

𝑉𝑤𝑥.𝐹𝐿 = (𝑉𝑥 −
𝜓⁡̇ 𝑡𝑓

2
) cos(δ) + (𝑉𝑥 + 𝜓⁡̇ 𝑙𝑓) sin(δ) (3) 

𝑉𝑤𝑥.𝐹𝑅 = (𝑉𝑥 +
𝜓⁡̇ 𝑡𝑓

2
) cos(δ) + (𝑉𝑥 + 𝜓⁡̇ 𝑙𝑓) sin(δ) (4) 

𝑉𝑤𝑥.𝑅𝐿 = (𝑉𝑥 −
𝜓⁡̇ 𝑡𝑟
2

) (5) 

𝑉𝑤𝑥.𝑅𝑅 = (𝑉𝑥 +
𝜓⁡̇ 𝑡𝑟
2

) (6) 

Considering the longitudinal and lateral acceleration of the vehicle, 
xa  and ya , the 

vertical load of each wheel Fz,i can be calculated as follows: 

𝐹𝑧.𝐹𝐿 =   [𝑔
𝑙𝑟
2𝑙

− 𝑎𝑥

ℎ𝑐

2𝑙
− 𝑎𝑦

ℎ𝑐𝑙𝑟
𝑡𝑟𝑙

] (7) 

𝐹𝑧.𝐹𝑅 =   [𝑔
𝑙𝑟
2𝑙

− 𝑎𝑥

ℎ𝑐

2𝑙
+ 𝑎𝑦

ℎ𝑐𝑙𝑟
𝑡𝑟𝑙

] (8) 

𝐹𝑧.𝑅𝐿 =   [𝑔
𝑙𝑓

2𝑙
+ 𝑎𝑥

ℎ𝑐

2𝑙
− 𝑎𝑦

ℎ𝑐𝑙𝑓

𝑡𝑓𝑙
] (9) 

𝐹𝑧.𝑅𝑅 =   [𝑔
𝑙𝑓

2𝑙
+ 𝑎𝑥

ℎ𝑐

2𝑙
+ 𝑎𝑦

ℎ𝑐𝑙𝑓

𝑡𝑓𝑙
] (10) 

where,    is the total vehicle mass and g is the gravity acceleration constant. Moreover, 

𝑙 = 𝑙𝑓 + 𝑙𝑟  is the wheelbase. All calculations presented here will be used for road friction 

and brake force estimations. 

4. Vehicle Mass Estimation 

The vehicle mass is one of the critical parameters for obtaining accurate vertical tire 

forces and road friction condition. Although many studies of mass estimation are carried 

out based on model-based approaches along with adaptive filters [14–19], they owned the 

limitation that the vehicle is required to be driven to obtain the proper persistent excitation 

and it requires a considerable estimation time. Therefore, this paper utilizes another 

method to estimate the vehicle mass based on the static load distribution by monitoring 

the static suspension deflections of all wheels [23] for quicker and more accurate results. 

Suspension deflection is assumed to be directly measured through a potentiometer or an 

LVDT (linear variable differential transformer) which are both economical and practical 

to be used. The advantage of this method is that it can be performed when the vehicle is 

stopped or is subject to a low speed thus it does not need to wait until the vehicle is subject 

to proper acceleration including persistent excitation. Moreover, the loading and unload-

ing onto a vehicle are conducted when the vehicle is stopped. According to the loading 

condition, the suspension deflection is also changed. This variation can provide us with 

the increase or decrease of mass over the entire loading and unloading process. 

The total mass of the vehicle is the sum of sprung mass ms and un-sprung mass mu. 

The un-sprung mass is seldom adjusted during vehicle operations. Hence, mu is consid-

ered as a known constant in (11) 
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   =  𝑠 +  𝑢  (11) 

The variation in vehicle mass means the change of sprung mass due to the loading 

and unloading of either items or passengers (or both). Nevertheless, the sprung mass of 

the empty vehicle ms0 is given by the manufacturer. Thus, 

 𝑠 =  𝑠 + Δ 𝑠 (12) 

In order to acquire the sprung mass variation, a quarter-car model in Figure 3 pro-

vides, 

 

Figure 3. Spring forces acted on the wheel and quarter-car model. 

Δ 𝑠 = Δ 𝑠.𝐹𝐿 + Δ 𝑠.𝐹𝑅 + Δ 𝑠.𝑅𝐿 + Δ 𝑠.𝑅𝑅 (13) 

The suspension springs are varied by the corresponding sprung mass on each side. 

Given a conventional suspension without level regulation, and assuming that it is operat-

ing within its linear range, an individual variation sprung mass, Δ 𝑠.𝑖, is defined, 

Δ 𝑠.𝑖 =
𝐹𝑠𝑧.𝑖

𝑔
=

𝑘𝑠𝑖⁡Δ𝑠𝑖𝑒𝑖 ⁡

𝑔
⁡𝑓𝑜𝑟⁡𝑖 = 𝐹𝐿 𝐹𝑅 𝑅𝐿 𝑅𝑅 (14) 

Here, Δ𝑠𝑖 ⁡is the spring deflection variation from the initial deflection of the empty 

vehicle, ki is the spring stiffness of the suspension, and ei is the coefficient of spring force 

projection to the vertical axis. 

Since this approach is valid in “stop” or “low speed” conditions with a less lateral 

motion of the vehicle, we set that the mass estimation is triggered at the conditions Vx ≤ 

10 km/h and 𝑆𝑊𝐴 ≤ 20𝑜. The pseudo-code for the mass estimation is shown in the Algo-

rithm 1. 

Algorithm 1 Mass Estimation 

Input 𝑠𝑖  𝑠  𝑉𝑥   𝑢  𝑠  𝑘𝑖  𝑔 𝑒𝑖  

Output    .𝑘 

1: If 𝑉𝑥 < 10km/h and 𝑆𝑊𝐴 ≤ 20𝑜 %SWA: Steering_Wheel_Angle 

2:       𝑖 = 𝑘𝑖𝑒𝑖(𝑠𝑖 − 𝑠 )/𝑔 

3:         = sum( 𝑖) +  𝑢 +  𝑠  

4:         .𝑘 = 𝛼⁡   .𝑘−1 + (1 − 𝛼)    % Low-pass filter to obtain the smooth value 

5:         .𝑘−1 =    .𝑘 

6: End 

  

FszFR

FszFL

FszRR

FszRL

tf

lf

lr

hc

tr ksi csi

Δms.i
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5. Road Friction Estimation 

As commonly known, it is not easy to obtain an accurate estimation of road friction 

for the various driving and road conditions based on the model-based approach inher-

ently possessing the accumulated errors between the dynamic models. Thus, such model-

based methods often lead to unexpected wrong consequences. Meanwhile, artificial neu-

ral networks have been increasingly applied to many engineering problems as they are 

able of capturing the complicated relations between inputs and outputs with a high ap-

proximation capacity. Therefore, in this study, we are willing to identify this complicated 

nonlinear relationship between the initial velocity at braking, average vehicle decelera-

tion, estimated mass, average wheel slip ratio, and road friction using the ANN approach 

rather than the model-based approaches. The design of the proposed methodology is di-

vided into two distinctive phases. In the first phase, data obtained from a set of sensors 

during brake are pre-processed before using as input data. In the second phase, an ANN 

model shown in Figure 4 is designed and includes the input layer (four nodes), three hid-

den layers (containing respectively twenty-five nodes, twenty-five nodes, and five nodes), 

as well as the output layer (one node). Moreover, each wheel is equipped with its own 

trained ANN classifier thus we can identify the individual frictions between road and 

wheels (i.e., FL, FR, RL, and RR) during the period of a brake. 

 

Figure 4. Proposed ANN structure (four inputs, three hidden layers, and one output). 

5.1. Pre-Processing of Input Data 

To achieve the proposed estimation strategy, the input vector of ANN is specifically 

chosen and described by x= [𝑉 ⁡ 𝑉 𝑥 ⁡  𝑖 ⁡⁡   ]
𝑻 ∈ ℜ4×1, which are, V0 is the initial velocity at 

the braking moment,  𝑉 𝑥 ⁡is the average velocity derivative (deceleration) of vehicle,   𝑖 

(for i = FL, FR, RL, RR) is the average slip ratio of each wheel, and ⁡    is the estimated 

mass. These average values,  𝑉 𝑥 ⁡and   𝑖, are calculated every twenty intervals. In other 

words, the average data are obtained every 0.02 s if the sampling time of the time-domain 

simulation process is set by 0.001 s. These “twenty” intervals are selected from the try-

and-error method to achieve the best and reasonably quick estimation performance for 

other associated control systems. 

The average velocity derivative  𝑉 𝑥, one of the input data, is computed by, 

 𝑉 𝑥 = {

1

𝑁
∑ (𝑉𝑥.𝑡 − 𝑉𝑥.𝑡−1)/⁡∆𝑡 1⁡km/h < 𝑉𝑥 < 0.97⁡𝑉 

𝑁
𝑡=1

 𝑉 𝑥 ⁡ 𝑉𝑥 < 1⁡km/h⁡
  (15) 

where N = 20 intervals and V0 is the vehicle velocity at the moment of braking. In addi-

tion,⁡∆𝑡 indicates the sampling time. 

Input layer

xdV

0V

x

1st hidden layer

1

2

3

1

2

24

25

Bias 1
b1

W1

2nd hidden layer

1

2

24

25

Output layer

1

Bias 3
b3

1

5

Bias 4
b4

Bias 2
b2

ˆ
vm 4

3rd hidden layer

W2

W3 W4

  𝑖

𝜇 𝑖
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The average slip ratio of each wheel   𝑖 (for i = FL, FR, RL, RR) are also calculated by, 

  𝑖 = {
1

𝑁
∑ ( 𝑖𝑡

−  𝑖𝑡−1
) 1⁡km/h < 𝑉𝑥 < 0.97⁡𝑉 

𝑁
𝑡=1

  𝑖⁡ 𝑉𝑥 < 1⁡km/h⁡
  (16) 

Again, it should be remarked that the average values, (15) and (16), are updated every 

twenty intervals, which implies that the road friction coefficient is updated every twenty 

intervals over the entire process. 

5.2. Structure of ANN Classifier and Weight Tuning Algorithm 

The total signals in the forward pass can be calculated as the following equations 

𝐚1 = 𝑓1(𝐖𝟏𝐱 + 𝐛𝟏) ∈ ℜ𝑛×1 (17) 

𝐚2 = 𝑓2(𝐖𝟐𝐚1 + 𝐛𝟐) ∈ ℜ𝑛×1 (18) 

𝐚3 = 𝑓3(𝐖𝟑𝐚2 + 𝐛𝟑) ∈ ℜ𝑚×1 (19) 

μ̂ = 𝑓4(𝐖𝟒𝐚𝟑 + b4) ∈ ℜ (20) 

where x∈ ℜ4×1 is the input of the proposed ANN classifier. In addition, W1∈ ℜ𝑛×4, W2∈

ℜ𝑛×𝑛, W3∈ ℜ𝑚×𝑛, and W4∈ ℜ1×𝑚 (n = 25, m = 5) are the weight matrixes (or vectors) of the 

first hidden layer, the second hidden layer, the third hidden layer, and the output layer, 

respectively. b1∈ ℜ𝑛×1, b2∈ ℜ𝑛×1, b3∈ ℜ𝑚×1, b4∈ ℜ are the bias vectors of the three hidden 

layers and the output layer. The activation function of the first hidden layer is the tanh 

function, and the sigmoid function is chosen as the activation function of the other layers 

and are given by, 

𝑓1(∗) =
2

(1 + exp⁡(−2 ∗))
− 1 (21) 

𝑓𝑖(∗) =
1

(1 + exp⁡(− ∗))
⁡for⁡𝑖 = 2 3 4 (22) 

where * indicates the input of the above functions. This proposed ANN employs a back-

propagation algorithm [24] as the learning rule of a multi-layer neural network to find the 

optimal weights that can achieve the best mapping between inputs and output. Each 

weight and bias in (17) through (20) are updated in each iteration (specified as step k) 

based on the following rules, 

𝐖𝒊|𝒌+𝟏 = 𝐖𝒊|𝒌 − 𝜂𝑊 (
𝜕𝐽

𝜕𝐖𝒊|𝒌

) ⁡for⁡𝑖 = 1 2 3 4 (23) 

𝐛𝒊|𝒌+𝟏 = 𝐛𝒊|𝒌 − 𝜂𝑏 (
𝜕𝐽

𝜕𝐛𝒊|𝒌

) ⁡for⁡𝑖 = 1 2 3 4 (24) 

where, 𝜂𝑊 𝜂𝑏 are the learning rates of weights and biases. The cross-entropy function is 

much more sensitive to the error [25]. Due to this reason, the learning rules derived from 

the cross-entropy function are generally known to yield better performance. The loss func-

tion 𝐽 used here is defined as, 

𝐽 = ∑ [−e𝑠 ln(e𝑠) − (1 − e𝑠) ln(1 − e𝑠)]
𝑀
𝑠=1   (25) 

where M is the total number of training data and the error, es = μ 
s
− μ, between the out-

puts of ANN and true references. The specific updated laws are given in the Appendix A. 

In addition, it should be noted that the training process will be conducted in the LAB 

environment (off-line procedure) and the best-fitted weights of ANN between input and 

output data will be transferred to the estimation algorithm for a validation process (fur-

thermore to the controller (ECU) for the actual test). The flow diagram for the training and 

validation phases are briefly described in Figure 5. 
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Figure 5. Training and validation phases. 

The pseudo-codes of both data-processing and best-fitted ANN classifier in road fric-

tion estimation are shown in the Algorithm 2 and applied to the individual wheel. 

Algorithm 2 Road Friction Estimation for Each Wheel 

# Data averaging process 

Input 𝜔𝑖  𝑟𝑒𝑓𝑓  𝑉𝑥 𝑏𝑟𝑎𝑘𝑒 𝑆𝑊𝐴 ∆𝑡 %brake: Brake_Status/ SWA: Steering_Wheel_Angle 

Output out𝑉𝑜 out_  𝑥 out_ 𝑉
 
𝑥 

Initialization:  flag = 0 𝑉𝑜 = 0   𝑖 = 0  𝑉 𝑥 = 0 out𝑉0 = 0 out𝑑𝑉𝑥 = 0 ⁡⁡ 

out_  𝑥𝑖 = 0 count = 0 pre_𝑉𝑥 = ⁡0 𝑠𝑢 _ 𝑉 = 0 sum_ 𝑖 = 0 
1: If 𝑏𝑟𝑎𝑘𝑒 > 0⁡&⁡flag = 0⁡&⁡𝑆𝑊𝐴 ≤ 20𝑜  %Condition to obtain 𝑉  at braking moment 

2:      𝑉 = 𝑉𝑥 

3:      flag = 1   

4: End 

5: If 𝑏𝑟𝑎𝑘𝑒 > 0 &⁡flag = 1⁡&⁡𝑆𝑊𝐴 ≤ 20𝑜 %Estimation Condition 

6:      If 𝑉𝑥 < 0.97𝑉  

7:            count = count + 1 

8:             𝑉 = (𝑉𝑥 − pre_𝑉𝑥)/∆𝑡 

9:            sum_ 𝑉 = sum_ 𝑉 +  𝑉 

10:           𝑉 𝑥 = sum_ 𝑉/count %Average Deceleration 

11:           𝑖 = (𝑟𝑒𝑓𝑓𝜔𝑖 − 𝑉𝑥)/max(𝑟𝑒𝑓𝑓𝜔𝑖 𝑉𝑥) 

12:          sum_ 𝑖 = sum_ 𝑖 +  𝑖  

13:            𝑖 = sum_ 𝑖/count %Average slip ratio 

14:                  If count = 20 & 𝑉𝑥 > 5⁡km/h %Reset Estimation Condition for next interval 

15:                       out_ 𝑖 =   𝑖 

16:                       out_d𝑉 𝑥 =  𝑉 𝑥 

17:                       out_𝑉 = 𝑉  

18:                       flag = 0 

19:                       count = 0 

20:                       sum_ 𝑖 = 0 

21:                       sum_ 𝑉 = 0 

22:                  End 

23:      End 

24: End 

25: pre_𝑉𝑥 = 𝑉𝑥 %Replace the previous Vx with the current one 

# ANN classifier for individual wheel 

Input out_𝑉𝑜 out_ 𝑉 𝑥 out_  𝑖      𝑊1𝑖 𝑊2𝑖  𝑊3𝑖 𝑊4𝑖  𝑏1𝑖 𝑏2𝑖  𝑏3𝑖 ⁡ 𝑏4𝑖 ⁡ 

Output 𝜇 𝑖 

1:⁡Data_in𝑖 =⁡⁡ [out_𝑉𝑜/80; ⁡⁡out_ 𝑉 𝑥/10; ⁡⁡out_  𝑖;⁡⁡   /4000] %Normalized 

2:  If out_ 𝑉 𝑥 ⁡≠ ⁡⁡0 

3:  a1 = 𝑓1(W1𝑖Data_in𝑖 + b1𝑖) 

4:  a2 = 𝑓2(W2𝑖a1 + b2𝑖) 

5:  a3 = 𝑓3(W3𝑖a2 + b3𝑖) 

6:  𝜇 𝑖 = 𝑓4(W4𝑖a3 + b4𝑖) 

7: Else 

8: 𝜇 𝑖 = 0 

9: End 
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6. Individual Brake Force Estimation 

In [1–6], it was pointed out that the brake force estimation has been performed by 

either sensor-based or model-based approaches. Unlike previous studies, we proposed 

the brake force estimation approach using a data-driven technique and CarSim tabular 

data combined with the estimated mass and estimated road friction to derive the individ-

ual brake force at each wheel. Thus, it is anticipated that the proposed method would be 

more cost-effective, accurate, and computationally efficient in practical application. In or-

der to predict the rolling resistance, the shear forces and moments, and other related char-

acteristics of the tire model, CarSim has built several nonlinear tables of the forces and 

moments [26], which are obtained by either measured in a laboratory or on-road tester as 

functions of vertical load, longitudinal slip, lateral slip, inclination angle, and tire/road 

friction. Figure 6 presents a 3D map that is constituted by reference curves representing 

the relationship between longitudinal forces and longitudinal slip ratios for nominal ver-

tical load Fz0 with μ0 = 1. 

 

Figure 6. Three-dimensional map of longitudinal force corresponding to vertical force and slip ratio. 

Furthermore, the tire behavior on different surfaces is obtained by a method so-called 

similarity in [27]. It predicts the change in limit shear force while maintaining the linear 

behavior for small amounts of change of slip ratio. 

Thus, based on [27], the following equation for predicting the longitudinal force of 

each tire can be followed by, 

𝐹𝑥.𝑖 =
𝜇

𝜇 

𝐹𝑋 (𝐹𝑧.𝑖 ⁡ 
𝜇

𝜇 

 𝑖 ⁡) ⁡𝑓𝑜𝑟⁡𝑖 = 𝐹𝐿 𝐹𝑅 𝑅𝐿 𝑅𝑅 (26) 

where 𝜇 is the current road friction coefficient. 

FX0 in (26) is extracted from the 3D map using linear interpolation and extrapolation 

techniques which indicates such a model function that represents the known data points, 

between or beyond the data range. 

The procedure of the linear interpolation and extrapolation of FX0 is as follows. Con-

sidering Figure 7, the estimated FX0 is calculated by 



Appl. Sci. 2022, 12, 9727 11 of 23 
 

 

Figure 7. Reference curves of tire force in longitudinal direction. 

𝐹𝑋 = (1 − 𝑎)𝐹𝑋 2 + 𝑎𝐹𝑋 1 (27) 

Here, FX02 and x are the longitudinal force and slip ratio of the reference curve 

measured at Fz02 = 4780.74 N. FX01 and x are the longitudinal force and slip ratio of the 

reference curve measured at Fz01 = 3187.16 N. The parameter a is a constant for the inter-

polation, which has a relation with the vertical force and slip ratio as (28). 

𝐹𝑧 = (1 − 𝑎)𝐹𝑧 2 + 𝑎𝐹𝑧 1 (28) 

If 0 < a < 1, the procedure is interpolation. If a < 0 or a > 1, the procedure is extrapolation. 

The pseudo-code for brake force estimation is shown in the Algorithm 3. 

Algorithm 3 Brake Force Estimation 

Input 𝜔𝑖  𝑟𝑒𝑓𝑓  𝑉𝑤𝑥.𝑖 𝜇  𝑎𝑥  𝑎𝑦  𝜇 𝑖     𝑡𝑓  𝑡𝑟  𝑙𝑓  𝑙𝑟  𝑔 ℎ  

Output 𝐹 𝑥.   𝐹 𝑥.   𝐹 𝑥.   𝐹 𝑥.   

1:    𝑥𝑖 = (𝑟𝑒𝑓𝑓𝜔𝑖 − 𝑉𝑤𝑥.𝑖)/max(𝑟𝑒𝑓𝑓𝜔𝑖  𝑉𝑤𝑥.𝑖) 

2:   𝐹𝑧.𝐹𝐿 =   [𝑔
𝑙𝑟

2𝑙
− 𝑎𝑥

ℎ𝑐

2𝑙
− 𝑎𝑦

ℎ𝑐𝑙𝑟

𝑡𝑟𝑙
] 

3:   𝐹𝑧.𝐹𝑅 =   [𝑔
𝑙𝑟

2𝑙
− 𝑎𝑥

ℎ𝑐

2𝑙
+ 𝑎𝑦

ℎ𝑐𝑙𝑟

𝑡𝑟𝑙
] 

4:   𝐹𝑧.𝑅𝐿 =   [𝑔
𝑙𝑓

2𝑙
+ 𝑎𝑥

ℎ𝑐

2𝑙
− 𝑎𝑦

ℎ𝑐𝑙𝑓

𝑡𝑓𝑙
] 

5:   𝐹𝑧.𝑅𝑅 =   [𝑔
𝑙𝑓

2𝑙
+ 𝑎𝑥

ℎ𝑐

2𝑙
+ 𝑎𝑦

ℎ𝑐𝑙𝑓

𝑡𝑓𝑙
] 

6:   𝑝𝑖 = ⁡abs( 𝑥𝑖 ∗ 𝜇 /𝜇 𝑖) 

7:   𝑝𝑖(𝑝𝑖 > 1.02) = 1.02 %Set the upper limit of value 

8:   𝑝𝑖(𝑝𝑖 < 0) = 0 %Set the lower limit of value 

9:  For i=1:1:4  % i=1 (FL)/ i=2 (FR)/ i=3 (RL)/ i=4 (RR), 

10:𝐹 𝑥𝑖 = −𝜇 𝑖/𝜇 ∗ (interp2(𝐹𝑥  𝐹𝑧     𝐹𝑧𝑖  𝑝𝑖  ′linear′))  

% The above 𝐹𝑥  𝐹𝑧 ⁡and⁡   are reference values of 3D mapped longitudinal forces for 

the vertical force and slip ratio in Figure 6  

11: End 
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7. Integrated Estimation System 

When vehicle velocity is less than 10 km/h, the mass estimation is enabled to obtain 

and update the total vehicle mass. This mass value will be maintained at the specific value 

before the suspension of estimation if the estimation condition is not satisfied. The esti-

mated total mass is used to calculate the individual vertical forces of tires via (7) through 

(10) for the brake force estimation. During vehicle operation, if the brake is applied and 

the steering wheel angle is smaller than 20 degs., the rest of the integrated estimation (road 

friction and brake force estimations) will be activated. Based on (15) and (16), the averaged 

input data of the trained ANN classifier are calculated by vehicle velocity and wheel speed. 

Then, based on the averaged data, the estimated road friction is produced by the ANN classi-

fier. Finally, with the current estimates of road frictions on each wheel and estimated mass, 

the individual brake forces are identified by (26) together with (27) and (28). 

8. Simulation Study 

8.1. The Data Preparation and Training Phase 

Here, we presented the training data set for the ANN classifier, which is coming from 

a co-simulation between CarSim and Simulink. A sedan C-class with four-wheel drive, 

specified in Table 1, is selected from CarSim. The data obtained from the co-simulations 

are the vehicle velocity, acceleration, wheel speed, brake control signal, and steering an-

gle. Using an Algorithm 2 based on (15) and (16), the data shown in Figure 8 have been 

generated. The vehicle model with different masses of 1642 kg (Group1), 1842 kg 

(Group2), and 2042 kg (Group3) runs at three random target speeds, 25 km/h, 79 km/h, 

and 107 km/h and then the brake is applied until the vehicle is completely stopped. Each 

brake cycle is performed at different road friction ranging from 0.1~1. Hence, the training 

data set is constructed from ninety simulations. The label data (true references) for ANN 

training is presented in Figure 9. The ANN training strategy follows the diagram de-

scribed in Figure 10 thus the training will be continued until the acceptable error between 

true references and estimates (outputs of trained ANN) is achieved. The ANN classifica-

tion performance of each wheel is shown in Figure 11, where comparison results indicate 

well trained ANN for a wide range of data. 

Table 1. Simulation vehicle configuration. 

Vehicle Model Specification 

Type C-class 

Brake  ABS at 4 wheels 

Powertrain 150 kW, 6 speeds 

Tires 215/55 R17 

Suspension Independent 

Total mass of the empty vehicle 1642 kg  
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Figure 8. Input training data set (a) Normalized initial velocity at the braking (𝑉0), (b) normalized 

average deceleration ( 𝑉𝑎 𝑒𝑟 ), (c) average front-left wheel slip ratio (FL), (d) average front-right 

wheel slip ratio (FR), (e) average rear-left wheel slip ratio (RL), (f) average rear-right wheel slip ratio 

(RR), and (g) normalized vehicle mass. 
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Figure 9. True references for training data (road friction coefficients). (a) Front left wheel (FL), (b) 

front right wheel (FR), (c) rear left wheel (RL), and (d) rear right wheel (RR). 

 

Figure 10. ANN training diagram. 
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Figure 11. Comparison between true references and trained outputs. (a) Front left wheel, (FL) (b) 

front right wheel (FR), (c) rear left wheel (RL), and (d) rear right wheel (RR). 

8.2. The Validation Phase 

Figure 12 explores the effectiveness of the proposed mass estimation approach as 

described in Algorithm 1. In Figure 12, the performance of the system has been verified 

by three different masses mv = 1780 kg, mv = 1980 kg, and mv = 2180 kg. Again, it should be 

noted that the estimation is disabled when the longitudinal velocity becomes greater than 

10 km/h (i.e., Vx > 10 km/h). In addition, as shown in Figure 12b,e,h, the suspension springs 

are varied by the corresponding sprung mass when the vehicle is accelerated from 0 ve-

locity. The estimated mass quickly converges to the true value almost less than 0.3 s, as 

shown in Figure 12c,f,i. 
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Figure 12. Mass estimation results. (a) Longitudinal velocity (1780 kg), (b) suspension deflections 

(1780 kg), (c) mass estimation (1780 kg), (d) longitudinal velocity (1980 kg), (e) suspension deflec-

tions (1980 kg), (f) mass estimation (1980 kg), (g) longitudinal velocity (2180 kg), (h) suspension 

deflections (2180 kg), and (i) mass estimation (2180 kg). 

Here, we discussed the performance of the trained ANN classifier presented in Al-

gorithm 2 and the incorporation of brake force estimation described in Algorithm 3. First, 

based on the scenario shown in Figure 13a, the loaded vehicle with mass mv = 1800 kg has 

been accelerated to 100 km/h and then was braked (Pm > 0) at 10 secs until the vehicle 

completely stops. After the first stop, a second acceleration was initiated and proceeded 

to reach 60 km/h, and then a brake (Pm > 0) was again applied at 27 s. As shown in Figure 

13b, the road frictions are assumed to be randomly changed during each brake. 

Figure 13b indicates that the vehicle experiences four-times abrupt changes in friction 

level during the first brake and twice at the second brake. It can be seen that the estimated 

friction excellently tracks the abrupt changes of the true friction. Although there are small 

errors at 15 s, the overall results are acceptable. 

Moreover, the brake forces estimated by the proposed method accurately track their 

true values as seen in Figure 13c–f. The most challenging change was the one occurred at 

10 s, where the car takes a longer time to reach the trigger value (Vx = 0.97V0) due to the 

low road friction (µ = 0.1). Therefore, the convergence to the reference brake forces exhibits 

a small delay right after the first brake. Moreover, the friction estimation mainly affects 

the accuracy of the estimated brake force since estimation results are varied by the accu-

racy of road friction. From Figure 13d, we can see that the estimation error of the front-

right wheel at 14 s is larger than others because the front-right friction (𝜇 𝐹𝑅) is underesti-

mated (see Figure 13b). 
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Figure 13. Estimation results of road friction coefficients and brake forces with mv = 1800 kg. (a) 

Vehicle speed and brake scenarios, (b) estimates of road friction coefficients, (c) brake force of FL 

wheel, (d) brake force of FR wheel, (e) brake force of RL wheel, and (f) brake force of RR wheel. 

The second test has been obtained from the same setup but with a different vehicle 

mass mv = 2100 kg and other road friction patterns during two brake cycles. Again, the 

results shown in Figure 14b indicate that the individually estimated road friction adapts 

the actual value quickly and accurately. Figure 14c–f describes the estimation of the lon-

gitudinal braking forces. Nevertheless, there are momentarily differences between the 

true values and estimates when the friction level is abruptly changed. The main source of 

these discrepancies is the delay of averaging data process. The values of averaged slip 

ratio   𝑖 and averaged deceleration  𝑉 𝑥  do not update to new values until satisfying count 

= 20 (see Algorithm 2). This can be observed clearly at the 12 s of the first brake. 

Table 2 shows the correlation between actual brake force and the estimated one based 

on the following performance index, the correlation coefficient, 

𝐶 =
n(∑𝑥𝑦)−(∑𝑥)(∑𝑦)

√[n(∑𝑥2)−(∑𝑥)2][n(∑𝑦2)−(∑𝑦)2]
  (29) 

where n is the sample size, x is the true value from CarSim of the concerned wheel, and y 

is the estimated value of the concerned wheel. According to the correlation coefficient in 

Table 2, the braking force coincides with the actual one by more than 87%, at least. 
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Figure 14. Estimation results of road friction coefficients and brake forces with mv = 2100 kg. (a) 

Vehicle speed and brake scenarios, (b) estimates of road friction coefficients, (c) brake force of FL 

wheel, (d) brake force of FR wheel, (e) brake force of RL wheel, and (f) brake force of RR wheel. 

Table 2. Correlation coefficient for data comparison of brake forces for Figures 13 and 14. 

 Front Axle Rear Axle 

First brake 

(Figure 13) 

Left: 92.93% match Left: 90.08% match 

Right: 93.5% match Right: 92.02% match 

Second brake 

(Figure 14) 

Left: 89.85% match Left: 87.95% match 

Right: 88.60% match Right: 87.09% match 
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friction for each wheel has been made. Moreover, the estimates of the corresponding four 

brake forces are well synchronous with the true values as seen in Figures 15d,f,h,j and 

16d,f,h,j. Table 3 lists the correlation coefficient between true brake force and the estimated 

one showing the matching rate is at least more than 90%. 
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Figure 15. Estimation results of road friction coefficients and brake forces for split-friction road. (a) 

Longitudinal vehicle speed, (b) split-friction road condition (𝜇 = 0.7 for left and 𝜇 = 0.5 for right), 

(c) friction estimation of FL wheel, (d) brake force of FL wheel, (e) friction estimation of FR wheel, 

(f) brake force of FR wheel, (g) friction estimation of RL wheel, (h) brake force of RL wheel, (i) fric-

tion estimation of RR wheel, and (j) brake force of RR wheel. 
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Figure 16. Estimation results of road friction coefficients and brake forces for split-friction road. (a) 

Longitudinal vehicle speed, (b) split-friction road condition (𝜇 = 0.3 for left and 𝜇 = 0.5 for right), 

(c) friction estimation of FL wheel, (d) brake force of FL wheel, (e) friction estimation of FR wheel, 

(f) brake force of FR wheel, (g) friction estimation of RL wheel, (h) brake force of RL wheel, (i) fric-

tion estimation of RR wheel, and (j) brake force of RR wheel. 

Table 3. Correlation coefficient for data comparison of brake forces for Figures 15 and 16. 

 Front Axle Rear Axle 

First brake 

(Figure 15) 

Left: 93.03% match Left: 93.08% match 

Right: 96.21% match Right: 92.12% match 

Second brake 

(Figure 16) 

Left: 90.85% match Left: 91.05% match 

Right: 93.60% match Right: 95.09% match 
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It is obvious from Figure 13 through Figure 16 that the proposed estimation ap-

proaches provide us with a fast and robust estimation of the brake force on either friction-

transition road surface (Figures 13 and 14) or split-friction road surface (Figures 15 and 

16) during the brake period. 

The overall results exhibit reasonable and acceptable performance in various driving 

and road conditions, based only on the basic sensors already installed in vehicle stability 

control systems. 

9. Conclusions 

This paper presents a novel longitudinal brake force estimation strategy for individ-

ual wheels using an artificial neural network classifier and data-driven technique to-

gether. 

(i) The vehicle mass was instantly estimated by monitoring the static suspension de-

flections. 

(ii) Road friction identification used an artificial neural network and average data set 

from currently available standard sensors. 

(iii) A combination of estimated mass, estimated road friction, and data-driven tech-

nique was utilized to estimate brake forces. 

The proposed approach was verified through several co-simulation between CarSim 

and Matlab/Simulink with different velocities, road friction, and masses. In several brak-

ing cycles, the estimation performance of the brake force was satisfactory, the minimum 

correlation coefficient was 87% match between the estimated force and its actual value. It 

can be concluded that the proposed method can guarantee robustness for a wide range of 

road friction (including abrupt changes in road conditions) and mass variation. 

The important aspect of this proposed brake force estimation structure relies on the 

estimation of the tire forces acting on each tire, without reference to any specific tire 

model. Hence, it can be processed at a low computation cost, a fast response. This work 

enables us to apply the proposed method in middle-class cars, for which low-resolution 

sensors and low-performance microcontrollers are used. Future studies will verify the 

proposed strategy by conducting actual vehicle tests. 
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