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Abstract: Smart Grids (SGs) are governed by advanced computing, control technologies, and net-
working infrastructure. However, compromised cybersecurity of the smart grid not only affects the
security of existing energy systems but also directly impacts national security. The increasing number
of cyberattacks against the smart grid urgently necessitates more robust security protection technolo-
gies to maintain the security of the grid system and its operations. The purpose of this review paper
is to provide a thorough understanding of the incumbent cyberattacks’ influence on the entire smart
grid ecosystem. In this paper, we review the various threats in the smart grid, which have two core
domains: the intrinsic vulnerability of the system and the external cyberattacks. Similarly, we analyze
the vulnerabilities of all components of the smart grid (hardware, software, and data communication),
data management, services and applications, running environment, and evolving and complex smart
grids. A structured smart grid architecture and global smart grid cyberattacks with their impact from
2010 to July 2022 are presented. Then, we investigated the the thematic taxonomy of cyberattacks on
smart grids to highlight the attack strategies, consequences, and related studies analyzed. In addition,
potential cybersecurity solutions to smart grids are explained in the context of the implementation of
blockchain and Artificial Intelligence (AI) techniques. Finally, technical future directions based on the
analysis are provided against cyberattacks on SGs.

Keywords: smart grids; cybersecurity; vulnerabilities; cyberattacks; blockchain; artificial intelligence

1. Introduction

Smart grid technology has been introduced to enhance the existing electricity systems
with modernization. There are various energy management and operations techniques in-
duced in smart grid technologies in order to obtain their peak benefits. These management
and operations techniques include the deployment of smart meters and applications at
consumers’ premises, whereas smart inverters, a production-grade meter, generators to
produce renewable energy, and various energy-efficient resources are installed at the grid
center. According to [1], the market size for global substation automation was predicted to
be USD 39.9 billion in 2021. If it expands at the same pace, the estimated size will rise to
USD 54.2 billion by the end of 2026. This growth contributes to various prominent factors,
including development projects related to power grid technologies, since the electricity is
produced from renewable resources ultimately contributes to cheap costs for renewable
energy generators. In order to meet the growing electricity demands, new green energy
sources such as hydropower, geothermal heat, wind, solar radiation, fuel cell, bioenergy,
ocean energy, and nuclear fission are attached to existing electricity distribution struc-
tures [2]. Although renewable energy is embedded in nature, it is still impacted by various
conditions including humidity, wind speed and direction, ambient temperature, and geo-
graphical area. For example, solar energy is affected by cloud cover, ambient temperature,
and irradiance. Similarly, hydropower generation is affected by climate change, i.e., change
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in rainfall pattern, flooding, intense rain, air temperature, and others [3]. In the context of
smart grids, the major components are presented in Figure 1.

Figure 1. Characteristics of smart grid.

The overall communication network of the smart grid connects with three major
components, i.e., grid, service provider, and customers. Moreover, the communication
among those components governs based on different channels and protocols. Large-
scaled energy generation, energy distribution, and energy transmission take place at
the grid domain level. Similarly, the emergence of new energy sources, smart meters,
sensors, and control devices in the smart grid enable advantages in the latest ecosystem.
Advanced Metering Infrastructure (AMI) is a combined network that connects consumer
premises and the communication network simultaneously. Smart meters are used to
propagate usage history, outages, and consumed amounts to the cloud providers. The
communication technologies that are used to communicate with the consumer domain
are categorized into two types: wireless and wired. In terms of wired communication,
this includes the Power Line Communication (PLC), fiber optical and ethernet, whereas
wireless communication consists of cellular, WiMAX, Zigbee, Z-wave, satellite, and free
space optical [4]. Additionally, the smart grid comprises various components; for example,
for transmission purposes, it relies on energy management systems (EMS), and distributing
the power is dependent on distribution management systems (DMS). Furthermore, the
whole transmission network is examined and controlled through supervisory control and
data acquisition (SCADA) system. The smart grid technologies provide various benefits
over the traditional grids which includes the categories of management, control, and
operation. These and many more benefits make the smart grid a more attractive choice in
comparison with traditional grid systems as presented in Figure 2.

Although smart grids enable the efficient distribution of consumer consumption
metrics as compared to traditional power systems, they are however prone to security
attacks at various tiers [5]. Indeed, technological advancements have impacted positively on
the power industry, however these advancements have also opened pathways for attackers
to exploit vulnerabilities and introduced additional threats in crucial situations such as
natural disasters, terrorism, and theft. Cyberattacks on smart grid security include the
breaching of sensitive customer data by adversaries, malware propagation, malfunctions
in cyber systems, and vulnerabilities in distributed control devices [6]. Furthermore,
compromising communication equipment, injecting false information, eavesdropping,
attacks on SCADA, modifications and many other attacks affect the cyber security of the
smart grid. In order to mitigate and address these cyber-spaced malicious efforts, the US
National Institute of Standards and Technology (NIST) proposed a framework by following
the guidelines for smart grid cybersecurity issued by executive order 1363. This guideline
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is specifically built to develop different pathways to minimize cyber-attacks to the critical
infrastructure of smart grids [7].

Figure 2. Characteristics of smart grid.

Vulnerabilities disturb the smart grids comprises of (SCADA), Phasor Measurement
Unit (PMU), and Remote terminal units (RTU), etc. Any disruptions in electricity produc-
tion jeopardized the smart grid reliability and have far-reaching socio-economic conse-
quences. Furthermore, because valuable data are exchanged between smart grid systems,
burglary or variation of these data may infringe consumer privacy. The major vulnera-
bilities of smart grids particularly include the lack of a firewall, misconfiguration, lack of
security audits, insufficient security measures, and improper authentication, which leads
to the entire smart grid system failure. Because of these flaws, the smart grid became a
predominant target for attackers, attracting the attention of government, manufacturers,
and academic institutions [8–10]. Cyberattacks are launched successfully when existing
smart grid system have vulnerabilities, including a lack of updated security patches for
software, keylogging, tampering, command injection, path traversal, and many others.
Cyber security techniques are required in order to mitigate security risks and minimize
cyber threats for smart grid systems. Thus, critical investigation for potential cybersecurity
risks with their targets to smart grid security are required.

1.1. Overview of Smart Grid Infrastructure

A smart grid is an intelligent transformation of the traditional physical grid. Relying
on advanced sensing, communication, and decision-making technology to achieve safe,
efficient, and environmentally friendly transmission and power demand is the goal of the
smart grid. Although the smart grid has entered the commercial stage, different countries,
organizations, and institutions have given inconsistent explanations for the connotation of
this term.

• SmartGrid.gov: like the Internet, the Smart Grid will consist of controls, computers,
automation, and new technologies and equipment working together, but in this case,
these technologies will work with the electrical grid to respond digitally to our quickly
changing electric demand [11].

• National Institute of Standards and Technology (U.S. Department of Commerce): The
smart grid is a planned nationwide network that uses information technology to
deliver electricity efficiently, reliably, and securely. It has been called ‘’electricity with a
brain”, “the energy internet”, and “the electronet”. A more comprehensive definition
we use at NIST is a modernized grid that enables bidirectional flows of energy and
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uses two-way communication and control capabilities that will lead to an array of new
functionalities and applications [12].

• Grid 2030: Grid 2030 is a fully automated power delivery network that monitors
and controls every customer and node, ensuring a two-way flow of electricity and
information between the power plant and the appliance, and all points in between.
Its distributed intelligence, coupled with broadband communications and automated
control systems, enables real-time market transactions and seamless interfaces among
people, buildings, industrial plants, generation facilities, and the electric network [13].

• The Office of Electricity: An automated, widely distributed energy delivery network,
the Smart Grid will be characterized by a two-way flow of electricity and information
and be capable of monitoring everything from power plants to customer preferences
to individual appliances. It incorporates into the grid the benefits of distributed
computing and communications to deliver real-time information and enable the near-
instantaneous balance of supply and demand at the device level [14].

Although these explanations are different, it is found that the smart grid usually con-
tains three components, namely hardware, software, and interaction-based flow. As shown
in Table 1, the hardware includes substations, transformers, meters, etc., in the traditional
power grid, as well as sensors, automatic controllers, etc., for intelligent interaction, which
are physical components in the smart grid. The software is used in the power grid hardware
to realize the functions of intelligent dispatching, intelligent defense, intelligent energy
storage, and so on. Networked software also plays an important role in the construction of
the smart grid to realize timely and effective interaction to provide better service. Their
application makes the grid no longer a closed system, but a combination of factors to
achieve smarter generation, transmission, and use of electricity. Interaction-based flows
mainly include electrical energy, data generated by hardware and software, and various
networks for data exchange. According to the purpose of flow, they can be divided into
power flow, data flow, control flow, information flow, etc. They can flow between various
components of the power supply system, providing more intelligent and refined services
between the power supply department and users than the traditional power grid.

Table 1. Main hardware used to build smart grids.

Power
Application Stage Related Hardware

Production

Traditional: generators, utility boilers, gas turbines, steam turbines, water
turbines, etc.
Intelligent: remote control module, cloud service control module, unit
adjustment module, field equipment management module, etc.

Transmission

Traditional: boosters, substations, grids, high voltage switches, voltage
transformers, arresters, etc.
Intelligent: status monitoring device of substation equipment, airborne
inspection components, etc.

Distribution

Traditional: distribution transformers, incoming cabinets, metering
cabinets, outgoing cabinets, isolation cabinets, etc.
Intelligent: temperature and humidity sensor, current detector, leakage
detector, etc.

Consumption
Traditional: mechanical meters, induction meters, electronic meters, etc.
Intelligent: remote control module, microprocessor, operation panel, A/D
converter, etc.

• Internet Technology (IT) and Operational Technology (OT): IT provides conditions
for the two-way interaction and sharing of information flow in the smart grid. Due
to the openness of the protocol, the information collected from different components
of the power grid can be circulated conveniently. The advanced technologies such as
wireless communication, satellite communication, and laser communication provide
diverse and accurate information acquisition and transmission services for the smart



Energies 2022, 15, 6799 5 of 37

grid.To realize the high integration of the industrialization process and information
construction, the smart grid needs the help of OT. OT and IT are two different concepts,
and this difference is reflected in the operation, technology, and management of the
system [15]. The core idea of OT is to effectively transform the long-term accumulated
manual experience into an applicable knowledge system for computers and other
equipment, and build the automatic operation and management process of the power
grid [16].

• Supervisory Control and Data Acquisition (SCADA): SCADA is widely used in the
power system to realize the monitoring and control of field equipment [17]. In this
system, the remote terminal unit (RTU) and feeder terminal unit (FTU) provide strong
support for data acquisition, control, regulation, feedback, alarm, and other operations.
With the continuous development of the computer industry, SCADA began to combine
new technologies such as expert systems, artificial intelligence, deep learning, and
knowledge inference to improve the linkage ability of all parts of the power grid [18].
However, the growth of remote accessibility between systems has compromised the
security of SCADA [19].

• Cyber-Physical Systems (CPS): Realizing the deep convergence of physical space and
cyberspace is the ultimate goal of CPS. During the construction of the power grid,
physical space contains a variety of infrastructure related to power systems, such as
power generation equipment, substation equipment, transmission equipment, and
electrical equipment. Ning et al. [20] pointed out that arithmetic logic unit (ALU)
with computing function, various devices used for storage, gateways/routes used
for data transmission belongs to things that appear together in cyberspace. They
can transform things in traditional physical space to make them have the ability of
perception, computing, and communication [21].

• Internet of Things (IoT): Using sensor network, radio frequency identification tech-
nology (RFID), intelligent embedding technology, and other means, it is possible to
take the network as the carrier to build a things-centered information interaction
network, that is, IoT. Compared with CPS, IoT aims to realize the ubiquitous connec-
tion between physical space and cyberspace, to realize the intelligent management of
things. Since power generation, transmission, and final power consumption require
the cooperation and linkage of different components in the power grid, the effective
management of each component is an important measure to achieve intelligence. In
the process of construction and the improvement of the smart grid, the data sharing
and management mechanisms of the system also need to solved in terms of perception,
transmission, and application, so that they can be realized by relying on the three
layers including the sensing, network, and application layer architecture of the IoT.

• Fog/edge computing: With the development of micro miniaturization, low power
consumption, intelligence, high integration, and networking of sensors, fog computing
and edge computing have become important technologies that can be applied in the
construction of distributed smart grids [22]. At present, the transformation of the
smart grid is developing towards decentralization and distribution. Compared with
the current highly centralized power system, this scheme has the advantage of, in case
of failure or other accidents, being able to theoretically reduce the scope and scale
of influence.

• Internet of Energy (IoE): The goal of IoE is to transform the electricity-related infras-
tructure of existing energy producers and suppliers, making them digital, automated,
and intelligent. Such transformation is a necessary basis for building a smart grid [23].
The development of IoE relies on IoT, which can help accelerate the transformation of
traditional power grids to smart grids. The purpose of IoE construction is to make en-
ergy production more environmentally friendly [24], energy utilization more efficient,
energy consumption reduced, and energy cost more economical.

No matter what computer technologies are used to build a smart grid, their essence
is a program composed of code. Due to the lack of strict test management and security
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certification, these technologies may have loopholes and backdoors. Once these defects
are exploited by attackers, they will seriously threaten the integrity of smart grid opera-
tion. Malicious attacks on the smart grid may cause power outages, affect users’ normal
production and life, or lead to social unrest and even international disputes. Therefore, it is
very important to predict risks in advance [25], ensure the stability of smart grid operation,
reduce the risk of cyberattacks, and effectively protect data privacy.

1.2. Research Method

In previous years, smart grid research attracted many scholars and the growth of
publications has been exponential, as presented in Figure 3. We searched keywords such as
“smart grid”, “cyber threats”, “cyberattacks”, and “vulnerabilities” with the conjunction
(AND) and disjunction (OR) operators to retrieve the exact studies. Furthermore, we have
included more keywords such as blockchain, Machine Learning (ML), and Deep Learning
(DL) in order to define the potential solutions against smart grid security attacks. Finally,
relevant studies are included from top research databases such as IEEE, SpringerLink,
ACM, ScienceDirect, and MDPI.

Figure 3. Year-wise publications with the search string “smart grid” AND “cyber threats” OR
“cyberattacks” OR “vulnerabilities” on Google Scholar.

1.3. Our Contribution

This paper examined the smart grid threats that covered the two core domains: the
intrinsic vulnerability of the system and the external cyberattacks. Furthermore, it presents
the comprehensive thematic taxonomy of cyberattacks to smart grids with attack strategies
and countermeasures. To detect and prevent cybersecurity attacks on the smart grid, AI-
and blockchain-based techniques are elaborated. Additionally, researchers need a greater
understanding of smart grid security in terms of future directions.

1.4. Organization of Paper

The remainder of this paper is organized as follows. In Section 2 we elaborated the
vulnerabilities of smart grids. Section 3 described the global review of cyberattacks on
smart grids. Section 4 presented the thematic taxonomy of cyberattacks on smart grids. In
Section 5 potential solutions are investigated for cybersecurity in smart grids. Section 6
provides the future research directions. Finally, Section 7 concludes the paper.
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2. Vulnerabilities of Smart Grids

Vulnerability is defined by CVE (Common Vulnerabilities and Exposures) as ‘’a weak-
ness in the computational logic (e.g., code) found in software and hardware components
that, when exploited, results in a negative impact to confidentiality, integrity, OR availabil-
ity. Mitigation of the vulnerabilities in this context typically involves coding changes but
could also include specification changes or even specification deprecations (e.g., removal of
affected protocols or functionality in their entirety)” [12].

Modern smart grids have evolved into a complex technical system that integrates
physical networks, information technology (IT), and operational technology (OT), and in-
teroperates and interacts with many other related critical infrastructures. All vulnerabilities
[26] embedded in the grid system, even those of external systems interconnected with the
grid system, have a direct and indirect impact on the security of the grid. Vulnerability is a
major part of the threats to smart grids, and can potentially lead to various consequences,
such as power outages, power losses, economic damages, etc.

2.1. Vulnerabilities in Physical Components

A smart grid consists of various components, including hardware, software, and
management systems. All of these components harbor some vulnerabilities, such as:

1. Inadequate physical access control systems, e.g., inadequate camera surveillance, and
inadequate surveillance at unmanned sites;

2. Inadequate physical security for DERs at remote locations;
3. Internal redundancy constraints within the substation;
4. Inadequate monitoring of long lines;
5. Obsolete components and long replacement times for damaged equipment;
6. Inadequate filtering of electromagnetic pulses near the smart grid system;
7. Poor physical environment of grid operation.

These potential risks are traditional problems that also originate from natural or
man-made physical damage [27], and there are also many proven means and methods of
protection. However, these physical vulnerabilities have the potential to facilitate a possible
coordinated cyberattack, a combination of local and adversary cyberattacks.

2.2. Vulnerabilities in IT/OT

Information technology (IT) and operational technology (OT) networks have histor-
ically operated independently. Electric utilities have relied on IT to automate business
functions such as daily management, billing, customer service, and accounting, while OT
has focused primarily on managing electric grid operations such as power distribution,
and critical energy infrastructure management. Advances in IT/OT have led to the ability
of connected substations that can work together with little or no human interaction. As
more and more smart devices are integrated into smart grids, it is becoming increasingly
challenging to keep the grid secure. This connectivity between IT and OT is changing
the philosophy and approach to the cybersecurity of smart grids. However, at the same
time all the vulnerabilities that IT/OT possesses become a threat component to the overall
grid system.

1. Vulnerabilities in Hardware and Software
Smart grids consist of a large number of different smart hardware and software,
especially networked devices. Any vulnerability in this hardware and software can
lead to corresponding cyberattacks [28]. These devices include:

• Field devices I/O, such as pump, sensor, fan, valve;
• Control level, such as HMI, RTU;
• Process level, such as HMI, SCADA server;
• Operation workstation, various servers, such as DNS servers, file servers, mail servers;
• Network devices, such as routers, IT&OT DMZ;
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• Enterprise IT, such as ERP, Mail, CRM, security operation center (log Manage-
ment, SIEM, Analytics).

The reported vulnerabilities in National Vulnerability Database (NVD), Vulnerability
Database (VULDB) [29], and CVE Details [30] demonstrate the increasing vulnerabili-
ties in the hardware/software of smart grid and general software [31]. The CVE and
CVSS show the long-term trend of increasing vulnerabilities on smart grid devices
and combined software [30,32]. The vulnerability of these smart grid devices with
intelligent operation and networking capabilities is growing rapidly, not only because
of more vulnerabilities in the new devices but because of evolving smart grid systems,
newer smart grid operating environments, and expanding applications and services.

2. Vulnerabilities in data communications
Various modern communication technologies are used in different areas of the smart
grid, such as IEC 61850, IEC 60870-5-104, DNP3, PRP/HSR, Modbus, Synchrophasor,
DLMS/COSEM, AMI, TASE.2/ICCP, NTP, and also the protocols used in IT parts,
as well as other new communication technologies and protocols. These communi-
cation technologies and protocols themselves contain various traditional and new
vulnerabilities [33]. These vulnerabilities also facilitate various communication and
network-based attacks [26,34].

The communication in the OT part lacks sufficient security design to protect the data
communication within OT components and with the IT components. This is primarily a
weakness of smart grids that is hard to fix in the short term. Replacing technologies and de-
vices and improving OT can take quite a long time. The vulnerability in IT communication
is not new, but it is a channel that connects the external attacker with the internal OT.

2.3. Vulnerabilities in Data Management

Current smart grid data management faces the problem of data aggregation quality,
security, compliance control, common scope, and efficiency of the management mechanism.
A large amount of data is generated and transferred between different entities. Accurate and
consistent incoming data streams such as grid operation, weather forecasts, and business
data allow operators to control and monitor the grid system. Such information is very
important to avoid sudden and unexpected power supply disruptions and to maintain the
quality of grid services and business. In addition, such big data can also be used for grid
operations, alarms, demand forecasts, generation estimates, price adjustments, etc. The
data collected tend to be quite large, as multiple smart grid domains are involved in the
process. There is also a regulatory requirement to provide accurate data as frequently as
possible, which is challenging. However, there are many vulnerabilities in the long chain of
data collection, analysis, processing, maintenance, and security in the cyber environment.
Most smart grids are not prepared to maintain data security and privacy management. The
vulnerability is demonstrated by the inadequate CIA triad (confidentiality, integrity, and
availability) for data and the protection of services [5,8] and the lack of specific protection
technology for smart grid domain data, such as generated data from the field device data,
SCADA, grid operational data, and transaction data, etc.

2.4. Vulnerabilities in Services and Applications

Access to OT data and IT data enables the rapid transformation of physical data into
actionable information that enables advanced asset management platforms, distributed
energy management systems, and distribution grid applications. The applications have
led to some amazing benefits for asset-rich substations. Inter-connectivity leads to faster
data exchange between devices, enabling automation of substation protection and control
systems and providing operational benefits. Smart grids can provide quite a number of
applications and services for electricity trading, electricity services, electricity convergence,
and various customer services. All these digitization-based services rely on grid operation,
grid communication, data collection, and application process analysis.
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Smart grid services and applications include the following areas: (1) AMI-based
applications and services (e.g., demand-side management, home energy management);
(2) distributed generation management (i.e., DER management); (3) advanced distribu-
tion/transmission automation (e.g., substation automation, storage management, advanced
distribution applications, islanding solutions, etc.); (4) client services, and added-value
services built upon them.

There are some inherent vulnerabilities in information technology system applica-
tions, which are greatly expanded in scale on the smart grid and extend to all aspects of
applications and services [35,36], which include:

1. Lack of patching policy and regular updates, e.g., unpatched software and systems;
2. Common mode failures;
3. Improper asset management;
4. Improper maintenance documentation;
5. Use of outdated operating system versions;
6. Inadequate AAA: authentication (to identify), authorization (to grant permission),

and accounting (to log an audit trail);
7. Poor grid isolation from the Internet;
8. Lack of intrusion detection systems for OT;
9. Inadequate malware detection and defense for OT;
10. Unreliable technology provider for those OT devices;
11. Inadequate compatibility with legacy systems and legacy devices.

All these vulnerabilities seriously disrupt the regular functions and services of smart grids.

2.5. Vulnerabilities in Running Environment

The smart grid operating environment includes many levels, from technology to
society, people, ethics, politics, national policy, and the international environment [35,37].
Therefore, the typical vulnerabilities for the grid operating environment include many
non-IT aspects, such as:

1. Staff incompetence, e.g., lack of professional skills, unreliable and dishonest behav-
ior, etc.;

2. Weak controls on legal, social, and ethical aspects;
3. Weak relationships between managers;
4. Inadequately controlled outsourcing;
5. Non-compliance with national and international regulations;
6. Political, war, or regional conflicts;
7. Terrorism;
8. Government corruption;
9. Pandemics.

Most of the above vulnerabilities should be addressed with both technical and non-
technical solutions, such as improving cybersecurity awareness, sufficient professional
training, and continuous monitoring of the entire operating environment of the smart grid.
Since the smart grid is a typical critical infrastructure, the system could be more targeted by
attackers in troubled environments. Therefore, the political and international background
should not be ignored.

2.6. Vulnerabilities in Evolving and Complex Smart Grids

The expanding and evolving smart grids are integrating more and more IEDs (Intelli-
gent Electronic Devices) and components, bridging to different network systems, support-
ing more and more applications and services, and interacting with other critical infrastruc-
tures. This makes smart grids a typical SoS (system of systems). Any vulnerability in any
part of the complex systems puts the smart grid at risk, and the dynamics and complexity
make vulnerability detection and remediation even more challenging [38,39].
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The vulnerability identification, detection, and remediation should be managed sys-
tematically and need to combine with the cyberattack analysis. Most of the cyberattacks
make use of the vulnerabilities in a smart grid system, in particular the vulnerability in
those networked devices and components.

Smart grid security is not just about building networks that are defensible (i.e., can
withstand any threat). A more logical approach is to have an efficient network vulnerability
management, that can adapt quickly to changing conditions while minimizing damage to
smart grids. The main tasks for vulnerability management are as follows:

1. Identify and detect as many and as complete vulnerabilities as possible at all levels of
the system, as any undiscovered vulnerability can lead to potential security risks. The
security of the smart grid is determined by the weakest part, not by the strongest part.

2. Repair or remove system vulnerabilities as soon as possible. Once vulnerabilities exist
and are discovered, hidden threats must be eliminated as quickly as possible. Many
cyberattacks exploit zero-day vulnerabilities.

3. Vulnerability aggregation. The final vulnerability of the system is not simply a collec-
tion of vulnerabilities. It is necessary to clarify the physical, logical, and functional
dependencies between them and figure out their aggregation rules. This enables a
complete understanding of the system vulnerability of smart grids.

4. Automated discovery and analysis of system vulnerabilities are necessary. The smart
grid system contains various vulnerabilities, and it is difficult to find all vulnerabilities
manually with exhaustive methods and analyze them in time. Automated methods
need to be developed to support vulnerability detection, analysis, and management.

5. Vulnerability analysis and attack matching. All cyberattacks exploit one or more
vulnerabilities in a system. A clear map of vulnerabilities and attacks is very helpful
in defending and protecting system security.

6. It is necessary to create a systematic plan with countermeasures to address the vulner-
abilities. A single point of failure or weak point of failure is always a challenge to a
smart grid.

3. Global Review of Cyberattacks to Smart Grids

Due to the high dependence of the smart grid on computer networks and other related
technologies, cyberattacks will interfere with the normal operation of power systems.
In addition, power production, transmission, and application are closely related to the
industry, agriculture, medical treatment, and other aspects. Once the power grid is attacked,
it will cause immeasurable losses to normal production and life. Table 2, summarizes the
serious smart grid attack and destruction events worldwide between 2010 and July 2022
and briefly describes the impact and consequences of the events.

Summarizing the above attacks against smart grids, it is found that the reasons for
these losses mainly include two aspects, namely, the vulnerability of the smart grid and
cyberattacks launched by exploiting vulnerabilities. Unreasonable smart grid structure,
no safety-certified application software, and untimely maintenance of software and hard-
ware may leave potential safety hazards for the normal operation of the smart grid. The
construction, use, and maintenance of these smart grids may also not strictly adhere to the
five aspects of cybersecurity risk management, namely identify, protect, detect, respond,
and recover. Once these vulnerabilities are discovered by attackers and used illegally, the
power system may suffer severe damage. Currently, cyberattacks launched by exploiting
smart grid vulnerabilities mainly use ransomware and malware.

By encrypting sensitive data of the power sector, users, and even partners, the attacker
achieves the purpose of extorting the power company. Except for ransomware developers,
the power sector has almost no ability to decrypt these files. For general computer systems,
ransomware mainly achieves intrusion through vulnerabilities, emails, and unsafe links to
web pages.
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Table 2. Globally serious smart grid attacks and damages.

Time Location Attack
Target(s)

Attack
Method(s) Attack Range Impact and Consequence Reference

2010 Iran
Disrupt the
nuclear
centrifuges

Stuxnet
virus -

Nearly one-fifth of Iran’s nuclear
centrifuges were destroyed. The
worm infected over
200,000 computers and damaged
1000 devices by targeting
industrial control systems.

[40,41]

September
2011

Arizona,
Southern
California

affected nearly
2.7 million
customers

- -

This problem causes huge
variance between the demand and
power supply resulted in a
noticeable frequency drop,
tripping, and blackout.

[42]

December
2014 Korea goal

Malicious
Code
“kimsuky”

Korea Hydro
and Nuclear
Power plant

Sent 5986 phishing emails
containing malicious codes to
3571 employees of the nuclear
plant operator.

[43]

December
2015

Part of Kiev
(the capital of
Ukraine) and
western
Ukraine

Transformer
substations

BlackEnergy
malware 30 seats

About 1.4 million residents had
power outages in their homes,
disrupting phone calls from
power companies that prevented
residents from contracting them
properly.

[44]

January
2016 Israel National power

supply system Malware -

The government had to suspend
the operation of a large number of
computers in Israel’s
power facilities.

[45]

June 2017 Ukraine
Chernobyl
nuclear power
plant

Petya
blackmail
virus

Unknown
Several national power facilities
were infected, resulting in
abnormal operations.

[46,47]

June 2018 France
French
company
Ingerop

Malicious
software

Sensitive data
of Fessenheim
nuclear
power plant

Hackers stole more than 65 GB of
sensitive data. These data
included nuclear power plant
plans and the personal
information of thousands of staff.

[48]

March
2019

United States
(U.S.) U.S. power grid

Denial of
service
(DoS) attack

The Western
U.S.

The accident did not cause power
failure, and the machine failure
time was less than 5 min.

[49]

August
2019

South Africa
(Johan-
nesburg)

City Power
company

Blackmail
software

All databases,
applications,
web apps,
and official
websites of
the company

The attack prevented users from
buying electricity, recharging,
processing invoices, and accessing
the official website of City Power.

[50]

August
2019

Ukraine
(Yuzh-
noukrainsk)

NPP
Intranet
connection
to extranet

All sensitive
data inside
the nuclear
power plant

The accident was classified as
leakage of state secrets. [51]

April 2020 Portugal Energias de
Portugal

Blackmail
software
(Ragnar
Locker)

Confidential
information
within the
company

The attacker claimed to have
acquired 10TB of sensitive data,
including bills, contracts,
transactions, customer, and
partner sensitive contents.

[52,53]

June 2020 Europe Enel Group
Snake
blackmail
software

Internal IT
network

The internal IT network was
temporarily blocked, resulting in a
temporary interruption of
customer service activities.

[54]
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Table 2. Cont.

Time Location Attack
Target(s)

Attack
Way(s) Attack Range Impact and Consequence Reference

June 2020 Brazil
Light S.A
(Power
company)

Sodinokibi
blackmail
software

Confidential
information
within the
company

The attacker extorted USD
14 million in ransom, and
only the attacker’s private
key could decrypt the file.

[52]

September
2020 Palestine

K-Electric
(Power
supplier)

Netwalker
blackmail
software

Unencrypted
files

An unknown amount of
stolen data, power billing,
and online service
interruption.

[55]

February 2021 Texas - - Texas energy
market failures

February’s “Big Freeze”
winter storm vulnerable to
Texas energy market failures.

[56]

April 2022 Ukrainian Energy
company

Industroyer2
malware -

Industroyer2 directly
connects with electrical
utility equipment to send
commands to the substation
devices that regulate the
flow of electricity.

[57]

For the local area network of the electric power department that stores a large amount
of sensitive data, the probability of ransomware intrusion through vulnerabilities is far
greater than that of emails and unsafe links. In addition to demanding a huge ransom from
the power company, ransomware may also cause interruption of normal user services and
even serious consequences of not being able to supply electricity.

As national infrastructures, the power grid has become an important target for network
confrontations between countries and hacker sabotage. Therefore, malware targeting the
smart grid is also constantly evolving. Under the premise of being as concealed as possible,
this malware is dedicated to increasing the intensity and scope of damage to the grid.
Some malware can run in the power grid control system in a hidden way. By interfering
with the power distribution function of the system, it causes uneven power distribution,
wastes power resources, and reduces energy utilization. In addition, malware can cause
the substation to lose the connection with the control center to achieve the purpose of
cutting power transmission, which may cause paralysis of production, transportation, and
medical care. A more serious situation is that if malware invades nuclear power plants and
control key functions such as operating nuclear reactors, there may be casualties and even
social conflicts.

4. Thematic Taxonomy of Cyberattacks to Smart Grid

The exploration of cyberattacks on smart grids has so far predominantly relied on
false data injection attacks (FDIAs), denial of service (DoS) attack, data framing attacks
(DFA), man-in-the-middle (MiTM) attack, load altering attacks (LAAs), false command
injection attack (FCIA), load redistribution attack (LRA), coordinated cyber–physical topol-
ogy (CCPT) attacks, replay attack, etc., as presented in Figure 4. These diverse kinds of
cyberattacks accentuate and exploit different vulnerabilities in power grids with different
attack intents and strategies. Furthermore, deep integration of information systems into
power physical systems leads to severe threats such as malware attacks and so on.
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Figure 4. Thematic taxonomy of cyberattacks to smart grids.

4.1. False Data Injection Attack

False data injection attacks (FDIAs) were first developed in [58], aiming to masterly
interfere with the meter measurements and invisibly influence the result of state estimation
(SE), posing a serious threat to smart grid security. Furthermore, FDIAs are capable of
evading the bad data detection (BDD) mechanism of the smart grid. In the past decade,
FDIAs on smart grid systems received noticeable attention due to their influences. With
the tremendous proliferation of cyber–physical systems, FDIAs are broadly gaining illegal
profit by tampering with data and destroying the stability of electric power grids [59]. The
SCADA system employed the state estimation to measure data and utilized estimated states,
i.e., phase angle and bus voltage for stability analysis of transmission as well load shedding.
Moreover, at the control center, an energy management system (EMS) is implemented to
determine that the smart grid operating normally in terms of results on state estimation.
Ultimately, the correctness of state estimation affects the working and stability of smart
grids. As a result, state estimation is critical to the consistent control and operation of
smart grids.

Nevertheless, state estimation is susceptible to a variety of cyber–physical attacks,
the most challenging of which are false data injection attacks (FDIAs). FDIAs are skilled
in fudging network topology in order to deceive the control center, disrupt the electricity
market to gain revenue, and cause havoc in power grid applications such as the SCADA
system and the phasor measurement unit (PMU). The implications of FDIAs on smart
grids have been studied in a number of publications, including [60–62]. In the work of [60],
authors investigated that FDIAs can successfully launch the branch outage sequence which
disrupts the various branches concurrently and ultimately fallouts in sequential outages.
Similarly, Liu et al. [61], investigated that FDIAs were able to disguise the line outage
through troublesome PMU data-dependent outage detection. Furthermore, Tan et al. [62],
elaborated that FDIAs lead to smart grid frequency expedition, blackouts, and damage the
electric equipment. Consequently, various detection methods are developed against FDIAs
detection such as deep learning, Kullback–Leibler distance, sparse optimization, colored
Gaussian noise, spatio-temporal correlations, Kalman filter, and blockchain are presented
in Table 3.
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Table 3. Methods and countermeasures to defend against FDIA.

Reference Key Method Explanation

[63,64] Deep learning Authors proposed the deep-learning-based locational detection (DLLD) framework to detect
the location of FDIAs in real time. The DLLD framework is combined with regular bad data
detector (BDD) and convolutional neural network (CNN) to eliminate low-quality data and to
record the inconsistency in electricity flow due to FDIAs, respectively. Similarly, a false data
detector (FDD) concatenates with CNN to detect fake information and co-occurrence dependency
of electric flow. From both research and experimental results, this method performs efficiently
under attack conditions.

[65] Kullback–Leibler
distance

A joint transformation scheme is implemented to detect the FDIAs in real time. The presented
method is assembled on the dynamics of measurement variations. Furthermore, Kullback–Leibler
distance is used to determine the variance between probability distributions resulting from
measurement variations. For validation purpose, the method is evaluated by IEEE 14-bus system
under attack and provided great detection probability.

[66] Sparse matrix sep-
aration

In sparse matrix separation, in-depth analysis is performed based on the attack properties to
detect FDIAs, as it can block the transmission lines and infringes financial benefits with stealth.
Through the sparse matrix mechanism, the compromised matrix and normal measurement matrix
are detected and recovered from the corrupted measurement matrix.

[67] Colored Gaussian
noise

With the implementation of colored Gaussian noise, the detection of FDIAs is made possible
and tested on independent component analysis (ICA), which relates to the unobservable FDIAs
scheme. Furthermore, the performance of the attack detector is evaluated on the IEEE 30-bus
power system, benchmarked to traditional Gaussian noise detector.

[68] Spatio-temporal
correlations

A Spatio-temporal detection method is to detect and evaluate the false data injection attacks.
The temporal and spatial correlation are examined through cubature Kalman filter and Gaussian
process regression, respectively. Both are applied to record the dynamic properties of state vector.
After that, deep CNN is trained to investigate the system is under FDIAs or not. Consequently,
performance shows 99.84%-100% accuracy.

[69] Kalman filter With the combination of Kalman filter and recurrent neural network (KFRNN), an effective
scheme is presented to detect FDIAs in smart grid. At the first stage, Kalman filter and RNN are
applied for state prediction to fit linear and nonlinear data features, respectively. The second stage
used the fully connected layer and back propagation (BP) to adaptively concatenate the outcomes
of two base learners. Moreover, dynamic threshold is measured to identify the occurrence of
FDIAs with the fitting Weibull distribution of the sum of square errors (SSEs) within the observed
and the predicted measurements.

[70] Blockchain As information is switched between independent system operation (ISO) and under-operating
agents, an FDIA is generated to check the security level. Attack results in loss of network stability
and economic loss to the operator. For this purpose, a blockchain-based secure architecture
is developed to switch data between ISO and under-operating agents. Finally, the achieved
results prove the effectiveness of blockchain in order to improve the social welfare for power
system users.

4.2. Denial-of-Service Attack

Smart grid cybersecurity conforms to the availability to access power, associated
information, and communication structures. In this context, a cyberattack denial-of-service
(DoS) targets the availability of power and compromises reliable access in a timely manner
to the smart grids [71,72]. It is prevalent because, despite its simplicity, an effective DoS
attack can induce significant disruption. A DoS attack consists of either (1) flooding
to overwhelm the device or channel with data, (2) manipulation of vulnerabilities or
anomalies in protocols and systems or (3) both. Moreover, DoS attacks are generated
through a number of dispersed individuals such as a botnet known as distributed denial-
of-service (DDoS). However, the smart grid definition relates to guaranteeing access to
enough power. Hence, a DoS attack on the smart grid attacks the availability of traditional
use of power, denies control of communication, computing, and information systems,
compromises the data integrity, and includes the denial of power itself. Consequently, any
of these DoS attacks in the Smart Grid domain can result in a trickling blackout, leaving
thousands, if not millions, of consumers without electricity for extended periods of time [73].
DoS attacks disrupt internet traffic and have formally cost billions of dollars around the
world. With the proliferation of networking of smart grid system, DoS attacks cause major
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power breakouts and lead to quite harmful consequences. In smart grids, there is a set of
measurement devices including smart meters, smart appliances, data aggregators, a phasor
measurement unit (PMU), a remote terminal unit (RTU), intelligent electronic devices
(IEDs), programmable logic controllers (PLCs), etc. On these devices, various vulnerabilities
are exposed to attack the DoS as the adoption of internet standard protocols. Furthermore,
security in smart grids is overlaid which leads to numerous flaws in cybersecurity. For
instance, numerous utility companies do not reportedly categorize the PMU networks as
critical cyber assets, which may contribute to a structural and underlying lack of competence
against cyberattacks, particularly DoS variants [74]. Similarly, the impact of a DoS attack can
range from minor to severe, jeopardizing the service’s availability and integrity. Moreover,
this causes power line failures as well as financial loss [75]. Consequently, various detection
methods are developed against DoS attack detection such as the deployment of honeypots,
machine learning, data-driven software-defined networking (SDN) deep learning, and
Blockchain, which are presented in Table 4.

Table 4. Methods and countermeasures to defend against DoS Attacks.

Reference Key Method Explanation

[75] Deployment of
honeypots

Honeypots are specially formulated devices that imitate the intended target of malicious
attacks. The deployment of honeypots is suggested as a part of smart grid systems.
Moreover, honeypots are implemented to detect, deflect, and analyze attacks. As
advanced metering infrastructure (AMI) is an important component of smart grid,
vulnerable to DoS attack. Authors presented the honeypots as decoy system in AMI to
collect the attack details. The interaction between attacker and defender are investigated
with optimum schemes at both sides.

[76] Machine Learning

Machine learning (ML) based models in smart grid are used to detect DoS attacks. ML
algorithms are principally used to identify DoS attacks or abnormal behavior. In first
phase, it collects network data. Secondly, it selects features and employs principal
component analysis (PCA). Finally, an ML algorithm is implemented.

[77] Data-driven

The dynamic states of components subjected to DoS attacks are predicted using a
data-driven scheme based on relationships between the state of the attacked modules and
the rest of the components of a system before the DoS attack. It is possible to determine
the time-series data for PMUs under DoS attack using interrelations among the PMU
time-series, even when the attack size is quite large.

[78] Software defined
Networking (SDN)

A software-defined networking (SDN) approach is implemented with light-weight
entropy-based method to detect low rate and high-rate DDoS attack. Through the
adaptive threshold scheme, the highest detection rate is achieved.

[79] Deep Learning and
Blockchain

In order to achieve consensus in energy network a practical Byzantine fault tolerance
(PBFT) algorithm is employed within blockchain framework. Furthermore, to detect
DDoS TCP (transmission control protocol) and DDoS UDP (user datagram protocol)
attack, a deep learning algorithm recurrent neural network (RNN) is implemented.

[80]
Intrusion Detection
and Prevention System
(IDPS)

IDPS guarantees confidentiality, integrity and availability (CIA). IDS aims to analyze the
security events and identify malicious activities. In smart grids, IDPS can be applied on
entire SG or AMI, SCADA, subsation and synchrophasor.

4.3. Data Framing Attacks

Smart grid security has attracted the attention of the research community towards
data framing attacks (DFA). DFA has an objective to misguide the control center regarding
the origin of a state attack. It was originally presented in the work of [81] as a DC model,
and after that was protracted to the AC model [82]. In comparison with FDIAs, DFA does
not anticipate passing the bad data detection (BDD). The malicious measurements lead to
bad data which are investigated due to minor errors or malicious attacks. Furthermore, the
validation process of topology and meter data is known as BDD. However, it tries to mislead
the bad data identification and removal (BDIR) to separate the benign measurements
from malicious data and keep them in the system which finally creates a perturbation.
Furthermore, BDIR removes the benign data and provides results in inaccurate state
estimation. Hence, the effective detection of data framing attacks is suggestively important
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for smart grid operation and control. In the study of [83], the authors implemented machine
learning (ML) to detect data framing attacks. The detection of DFA is conducted through
the classification method, and classification is performed between secure data and bad data
with the support vector machine (SVM) algorithm. Eventually, results are evaluated on the
118-bus IEEE test system and SVM successfully detects the data framing attack.

4.4. Man-in-the-Middle (MITM) Attack

The man-in-the-middle (MiTM) attack in the smart grid system sniffs or interrupts
the communication between field devices or field devices or the Supervise Control and
Data Acquisition (SCADA) system and controller. Additionally, MiTM attacks are launched
to alter the information swapped at Modbus TCP communication channel. Furthermore,
MiTM attackers can save as well as read the transferred messages [84]. The three main
objectives of the MiTM attacks on smart grids are: (1) interrupt or reserve the measurement;
(2) modify the smart meter data; and (3) alter the network traffic by an attacker [85]. In [86],
the facts show that 95% of HTTPS servers are susceptible to MiTM attack, in which attackers
act as a legitimate source at the destination point and are masked as the source’s genuine
destination. SCADA is the core component of the smart grid network that is used to deal
with numerous infrastructures and plays a crucial role for electricity companies and process
firms consisting of the water, gas, oil, and power sectors, etc. Some researchers [87] launched
an MiTM attack on SCADA communication that utilized the International Electrotechnical
Commission (IEC 60870-5-104) protocol. On the SCADA, a packet assessment technique
is employed for the detection of MiTM attacks, and it relies on the address resolution
protocol (ARP) poisoning approach. Additionally, security vulnerabilities in the remote
terminal unit (RTU) are analyzed by generating the MiTM attack on it. As advanced
metering infrastructure (AMI) in the smart grid automatically records the reading of power
utilization with communication medium, it is also vulnerable to MiTM attack. Besides,
Modbus transmission control protocol/internet protocol (TCP/IP) is broadly used in smart
grid systems [88]. However, attacks on the Modbus TCP/IP exploit the smart grid [89]. In
this context, the authors of [90] analyzed the security extortions of MiTM attack on the AMI
and concentrate on the vulnerabilities in Modbus TCP/IP protocol, which is implemented
through AMI for communication purposes. Consequently, various detection methods are
developed against MiTM attack detection such as machine learning, physical unclonable
functions (PUF) authentication, and intrusion detection system (IDS), which are presented
in Table 5.

Table 5. Methods and countermeasures to defend against MiTM Attack.

Reference Key Method Explanation

[91] Machine
Learning

Extensive research is performed on the detection of MiTM attack in smart grid. Firstly, input
observer is designed for power grid system and database with several normal and malicious
features are generated. Secondly, machine learning technique is implemented on the phasor
measurement unit (PMU) information. ML-based algorithms such as support vector machine
(SVM) and K-nearest neighbor (KNN) are employed to classify normal and attacked classes.
Furthermore, type of attack such as MiTM and DoS attacks are also recognized successfully.

[92] PUF
Authentication

A light-weight physical unclonable functions (PUF) authentication technique is used for the
prevention of MiTM attack in smart grid. The proposed PUF authentication technique is applied on
the smart meter and share the keys of the enrolment phase with each other. Unique keys are shared
as a digital footprint with PUF scheme. Through keys, nodes are able to share information in
encrypted form. Hence, the evaluated results show that the MiTM attack on smart meters is not
possible in PUF authentication.

[93]

Multiple alerts
from intrusion
detection
systems

MiTM attack lead towards the false data injection (FDI), false command injection (FCI) and replay
attacks in smart grid. At earlier stage on DNP3-based MiTM attacks on a SCADA system in smart
grid. Then, at the second stage, the MiTM attack is detected with IDS alarm alerts by considering
the network metrics, including retransmission rate, round trip time (RTT) and processing time. It is
significantly necessary to observe the network metrics to identify the signature of stealthy MiTM
attack. Consequently, the effectiveness of MiTM attack is reduced.
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4.5. Load Altering Attack

Load-altering attacks (LAAs) alter the power usage of targeted loads with the goal
of having line overloading. LAAs have employed two techniques such as direct hacking
of load and indirect load modification through exploitation. For instance, incorrect price
information is broadcasted to the clients in terms of demand-side management methods.
Power loads are required to manage in a cost-efficient way and protect in order to evade
circuit overflow [94]. LAAs are categorized into dynamic load-altering attacks (DLAAs)
and static load-altering attacks (SLAAs). Authors [95] demonstrated the DLAAs, which
have the worst impact in variations of load through directing the attack load in form of
a closed loop. The SLAAs comprise the erstwhile manipulation of the load, whereas in
DLLAs attacker modified the amount of load as goes on to monitor a certain trajectory [96].
In comparison with SLAAs, DLAAs are more severe, the attacker needs to observe the
certain electricity frequency and modify the load in reaction to the instabilities of the
signal. In the market [97], frequency measuring sensor devices are available and can be
deployed at any smart grid system. However, these devices are already in use to measure
the sensitive frequency loads [95,98]. Due to LAAs, unexpected and sudden manipulation
of power grids is increased. Further, this leads to the high operational cost of smart grids
and sometimes causes unsafe frequency trips. The under the frequency load shedding
(UFLS) mechanism in the smart grid is used to cope with large-scale shutdowns. However,
LAAs remain efficient at damaging the power grid system in terms of partition and holding
the load shedding schedule [99]. Accordingly, a few detection methods against LAAs
such as observer-based, adaptive fading Kalman filter (AFKF), and model-free defense
framework are discussed in Table 6.

Table 6. Methods and countermeasures to defend against LAA Attack.

Reference Key Method Explanation

[100] Observer-based
detection

The power system is subjected to attack under the DLAA as two vulnerable loads are proposed to
examine the effectiveness of attacks on the system. After that, a robust observer mode is designed
to detect load frequency with residual signal generation. Consequently, evaluation done through
three generators and six buses of the power system to show the feasibility of detection.

[101]
Adaptive Fading
Kalman Filter
(AFKF)

In order to detect DLAA, a smart grid model is proven, then adaptive fading Kalman filter
(AFKF) is established to predict the state of smart grid. Gaussian noise of the smart grid is
removed through AFKF to achieve accurate state modification curve. Furthermore, Euclidean
distance ratio, which is a detection algorithm, is presented based on the AFKF. Hence, amplifying
the invisible DLAA by Euclidean distance ratio enhances the DLAA detection acuteness,
particularly in terms of weak DLAAs.

[102]
Model-free
defense
framework

A unique defense strategy based on the model-free technique is presented for load frequency
control (LFC) system. The defender has an objective to learn diverse LAAs and achieved learned
evidence for attack attenuation as an active defense (AD). Moreover, a model-free passive defense
(PD) proposed where the defender tolerates a load-altering attack through improving the system
redundancies. As a result, both AD and PD techniques work effectively and are evaluated on
IEEE benchmark systems.

4.6. Malicious Command Injection Attack

In power grids, the phase shifting transformers or phase shifters are utilized to control
the flow of electricity. Phase shifters are implemented to prevent the congestion of electricity
in transmission lines and implement the regulation on the bases of contractual compulsions.
In an automated power grid system phase shift commands are transmitted through SCADA
system. Accordingly, this situation is invisibly susceptible to cyberattacks. Both kinds of
commands are sent from phase shift such as benign and malicious. In case of malicious
commands lead to severe damage, surplus transmission lines, disconnection of power,
and huge financial loss by unsettling the cross-network interchange [103]. Furthermore,
SCADA can initiate malicious commands masked in the legitimate form to launch physical
perturbations [104]. Additionally, [105], another related attack, tap change commands,
has also been investigated in smart grids. The transformer taps are extensively utilized to
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control the bus voltage in a communication network. Such attacks adversely damage the
system operation and strike for fabrications. The adversary can exploit the SCADA system,
modify the measurements, and hide the malicious command injection attack. Furthermore,
malicious transformer taps modify the command injection attack where the transformer
taps are frequently altered through on-load tap changers (OLTC) to meet a set of indicated
voltages. Accordingly, a few detection methods against MCIA, such as the long short-term
memory (LSTM) network-based method and the lightweight index algorithm beat bad data
detection (BBDD) method are discussed in Table 7.

Table 7. Methods and countermeasures to defend against MCI Attack.

Reference Key Method Explanation

[106]
Long Short-Term
Memory (LSTM)
network-based

For the detection of malicious code from smart meters, a long short-term memory (LSTM)
network-based technique is proposed on the side channel of power utilization of CPU or MCU.
The evaluation done on the real-case smart meters and achieved results shows the efficiency with
an accuracy of 92%.

[105] Light-weight
index Algorithm

A light-weight algorithm is proposed that has the capability to detect the occurrence of stealthy
malicious tap modified commands. The algorithm is developed on the intuition bases in which
attacks related to false data and commands only affect the measurement and estimation of
particularly designated variables instead of all of them. The algorithm relies on the branch
current to the voltages of end nodes of the tap modifying transformers.

[103] Beat bad data
detection

A detection algorithm is capable of detecting the existence of anomalous phase shifts in the
response of cyberattacks. The algorithm is established on detection features and particularly
includes the four indices based on branch ratio and injection currents to terminals. Moreover,
reference values are counted at the phase shift selection with the evaluation of discrete indices.

4.7. Load Redistribution Attacks

The authors of [107] introduced the load redistribution (LR) attacks that relate to
the state estimation-false data injection attacks (SE-FDIAs) in which the measurement of
load buses and electricity flows are corrupted, whereas the demand for total power is
not modified. Hence, this influence of the attack is a load redistribution (LR) through the
network. Additionally, LR causes financial loss and other physical damages, i.e., tripping
of lines or direct attacks on lines. For instance, LR can hack the solution of the SCED
(security-constrained economic dispatch) problem in which the operator utilized the finest
dispatched generator and resolve load shedding. Similarly, the two types of LR attacks are:
(1) immediate LR attack, which hacks the SCED problem in order to exploit the operational
cost due to load shedding; and (2) delayed LR attack, which hacks the SCED to implement
the solution in terms of tripping of lines. Accordingly, detection methods against LRA
such as nearest neighbor-based detection scheme, support vector model, and machine
learning-based approach are elaborated in Table 8.

Table 8. Methods and countermeasures to defend against LRA Attack.

Reference Key Method Explanation

[108]
Nearest
neighbor-based
detection scheme

To detect the load redistribution attack, nearest neighbor-based detection method is proposed
and scaled from a small to a large system with promising constant detection performance. A
sensitive analysis as well as broad testing is conducted on the LR attack with unsystematic
anomalies load changes. Furthermore, through the statistical method, the attack is localized,
and the probability of each load under attack is uncovered.

[109,110] Machine learning
Based

Three types of machine learning algorithms such as nearest neighbor, support vector
machines (SVM), and replicator neural networks are employed as anomalies detectors to
detect cyberattacks that malevolently redistribute loads by transforming the measurements.
These anomaly detection algorithms are tested with realistic historic datasets collected from
PJM zonal data mapped [111]. Results presented that among the three, the nearest neighbor
algorithm worked efficiently and reduced the computational cost. Similarly, LR attacks are
detected via multi-output support vector regression (SVR) which worked as a load predictor
and later applied the SVM.
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4.8. Coordinated Cyber Physical Topology Attacks

Coordinated cyber physical topology (CCPT) attacks are more dangerous to smart
grids instead of purely physical or cyber topology attacks. CCPT attacks are categorized
into physical topology and cyber-topology attacks [69]. In a physical topology attack,
the attacker trips the transmission line, whereas in a cyber topology attack, the attacker
misleads the control center, masks the outage signal of tripped line in the cyber layer, and
generates a forged outage signal for another transmission line. Finally, the precise goal
of the coordinated topology attack is to burden the critical line by deceiving the control
center into making the wrong dispatch [112,113]. Furthermore, two types of unobservable
cyberattacks on topology [114] are also investigated such as line-maintaining and line-
removing. In the case of a line-maintaining attack, the adversary can modify measurements
and line status data to make it appear that a line that is not in the system is now shown
as lively at the control center through SCADA information; the reverse is accomplished
by a line-removing attack. The adversary has the ability to modify the topology data or
both state as well as topology data in line-removing and line-maintaining attacks. Another
type of attack [112], state-preserving CCPT attacks, are examined, in which topology data
are altered, whereas the states of the power system remain persistent. However, in [113] a
more comprehensive consequence of CCPT attacks is established, where mutual topology
and states can be altered. Researchers in [115] analyzed the vulnerabilities of the smart
grid system to CCPT attacks. Despite that, future research directions demand defensive
techniques and countermeasures against coordinated topology attacks.

4.9. Replay Attack

A replay attack (RA) is generated via stealing the information on a wireless communi-
cation network and mimicking it as a legitimate sender to deploy the stolen information
to fabricate original information. This type of attack relies on historic data and creates
trouble for the supervisor to notice the attack. Consequently, the attack leads to disturbing
the power flow and time delays diverging frequencies. From an attacker’s point of view,
a replay attack can deliberately jam the system and is fully able to disrupt the diverse
processes [116]. Stuxnet virus is used to launch the replay attack, which accessed the
SCADA system that controls centrifuges. Accordingly, the centrifuge control system was
modified and destroyed approximately 1000 centrifuges [117]. In the literature, a method
for reflecting the replay attacks is proposed by adding some deliberate noise to control
input, but it did not work well [118]. Another study [117] dynamically set the timing of
accumulation of noise to the control input created on game theory. Accordingly, detection
methods against RA such as nearest neighbor-based detection scheme, support vector
model, and machine learning-based approach are elaborated in Table 9.

Table 9. Methods and countermeasures to defend against replay Attack.

Reference Key Method Explanation

[119] Bargaining game

Replay attacks apparently threaten the smart grid system and need to be detected early. A
Kalman filter is utilized to state the fault diagnosis matrix and then noise and control signal
are included to present the properties of replay attack detection. Furthermore, based on the
bargaining game method, noise is added to the control input with the knowledge of control
performance and detection accuracy. At the end, through simulation, the efficiency of the
proposed method is validated.

[120] Support vector
machine (SVM)

A data-driven approach is presented in which learning from classifier a labelled dataset is
used, i.e., power state, to detect replay attack states from useful normal states. The support
vector machine (SVM) is implemented as an ML classifier. To evaluate the effectiveness of the
approach, IEEE bus systems are utilized and high detection accuracy is achieved.
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Table 9. Cont.

Reference Key Method Explanation

[121] Watermarking
Technique

A novel improved watermarking technique is proposed to detect active replay attacks to
smart grids. The suggested scheme makes use of the set-theoretic model predictive control
framework to create a control input that can be securely and steadily connected to the utility
grid for an a priori known number of steps, as and when they are needed. Results indicate
that the watermarking technique efficiently detects the replay attack.

[122]

Proactive Intrusion
Detection and
Mitigation System
(PIDMS)

PIDMS analyzes the both cyber and physical data streams in parallel in order to detect
intrusion and implement the proactive response. Furthermore, PIDMS comprises ML
algorithms and network IDS.

4.10. Malware Attacks

Cyberattacks on smart grid systems comprise malware attacks, including the Trojan
horse malware Blackenergy, Stuxnet, and WannaCry Ransomware. In December 2015, an
electricity outbreak occurred in Ukraine’s Ivano-Frankivsk city, targeting the power grid as
a cyberattack and affecting 80,000 people with a blackout. Consequently, it was found that
this cyberattack was generated by using phishing email and BlackEnergy Trojan horse [123].
It has the ability to delete data, damage hard drives and control the systems. In the work
of [44], authors address that defense against BlackEngery is not fully assured. However,
applying certain precautions can reduce the risk of attack in the future. These precautions
include methods such as following the antimalware, updating the firewall configurations,
and upgrading the security patches as well. Furthermore, the implementation of Sandboxes
can offer protection to test the applications and documents. However, these solutions are
not suitable to apply to larger-scale companies. Similarly, another malware attack known
as Stuxnet [124] exploits the SCADA system. Stuxnet can influence the programmable logic
controllers (PLCs), which enabled it to penetrate inside the control system of an Iranian
power plant. As a result, an upsurge in the rotation speed was caused, and the nuclear fuel
was rapidly disrupted.

4.11. Other Cyberattacks

Other kinds of cyberattacks on smart grid systems include GPS spoofing attacks, zero
dynamics attacks, and time synchronization attacks (TSA). In [125], authors elaborated on
the TSA that disrupts the measurements collected from the grid. Furthermore, it leads to
transmission line fault and voltage instability. Additionally, zero dynamics attacks consider
the internal behavior of the grid system to control it maliciously and provide zero output.
In order to generate a zero dynamics attack, a signal can be injected into the system to
diverge the internal state, which is not noticeable from the mere observation [126]. Another
cyberattack [127,128], a global positioning system (GPS) spoofing attack, in which PMU
receives the GPS signals from diverse resources, is instigated in two ways. The first way is
deceptive jamming, in which the attacker tries to mislead the receiver by transferring a fake
GPS signal similar to the real one. The second way is known as repeater jamming, in which
the attacker spoofs the GPS receivers by depending on the real signals captured frequently.
In the work [128], the authors introduced the capsule neural network (CapsNet) to detect
the GPS spoofing attack. CapsNet utilized the historical measurements from the smart grid
system to train the model. Furthermore, temporal and spatial features are extracted and
effectively separate the malicious and normal data.

5. Potential Solutions for Cybersecurity in Smart Grid

In this section, potential solutions against cyberattacks to smart grids are discussed
comprehensively in terms of blockchain technology and artificial intelligence (AI) tech-
niques including machine learning (ML) and deep learning (DL).
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5.1. Blockchain Based Cybersecurity Techniques in Smart Grid

Blockchain technology has the capability to be applied in smart energy systems to self-
regulate, mitigate cyberattacks, and manage the transactions and contracts. In traditional
power systems, an attack is launched successfully if attackers tamper with the meter record,
replace the data packages, make fraudulent energy trading payments, and hack the control
center. However, blockchain provides solutions against smart grid cyberattacks: in Figure 5,
the integration of blockchain in a smart grid is presented to pay the electricity purchase bill
in a trustworthy and fair manner.

Figure 5. Adoption of blockchain in smart grid for secure energy trading.

In Table 10, a summary of works in the literature that aim to detect attacks based
on blockchain for cybersecurity in smart grids including various features i.e., objective,
type of attack, solution, consensus algorithms, deployment of Smart Contracts (SCs) and
performance evaluation parameters is presented.

Kumari et al. [129], presented the ArMor to detect the malicious activities from
AMI and SM based on the blockchain in smart grids. The integrity issues related to FDI
attack and smart meter failures are successfully detected. In [130], a decentralized system
is presented based on the Ethereum blockchain to mitigate the SPoF issue and DDoS
attack. Authors [79], introduced the blockchain-based method for privacy preservation of
energy exchange in smart grids. The PBFT consensus algorithm is deployed in blockchain
based smart grid system. In [131], a decentralized scheme is presented based on the
Bayesian inference to detect replay attacks and provides the regional data privacy. In [132],
consensus-based method is proposed to increase the protection level of smart grid systems
against cyberattacks.

Similarly, the authors of [133] exploit the blockchain to build trustworthy environment
for smart grid components. The miners verify the transactions through investing their
computational resources. GarliChain [134] is presented to solve the issue of anonymity
and client’s privacy during energy transfer in smart grids with the combination of garlic
routing and blockchain. Furthermore, FeneChian [135], is introduced as blockchain-based
energy trading scheme for better management, transparency, and verifiability in industrial
IoT. All energy transfer transactions are done in an immutable nature with the protection
of the client’s rights. Reijsbergen et al. [136] designed a realistic threat model against a
compromised smart grid to detect FDI attacks and provide an incentive for useful data
upload that otherwise penalized operators if data were found to be malicious or incomplete.
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Table 10. Blockchain based attack detection techniques for cybersecurity in smart grids.

Reference Objective Type of Attack Solution Consensus
Algorithm

Blockchain
Tool

Smart
Contract Tool

Performance
Evaluation

[129]
To propose a data analytics scheme,
to identify malicious behavior in the
SG system.

FDIA and
SM failure

ARIMA and blockchain-based schemes to
classify attacked/non-attacked, and reward to
utility provider to deal with malicious activity.

- Ethereum Remix IDE
Prediction accuracy,
latency, and data
storage cost

[130]

Aim to control the smart meter
attacks, protect them from
unauthorized access and DDoS
attacks.

DDoS
A decentralized architecture based on the
blockchain in a distributed and trustworthy
manner to deal with DDoS attacks.

- Ethereum Truffle
framework

Flexibility, security
and cost
effectiveness

[79]
Aim to detect the network attacks
and fraudulent transactions in
smart grids.

Network
attacks and
fraudulent
transactions

A blockchain-based scheme to achieve privacy
with short signature, hash function for the
exchange of energy between nodes and RNN
for attack detection.

PBFT - -
Accuracy, detection
rate and false
alarm rate

[132]
Developed the blockchain-based
decentralized mechanism
against cyberattacks.

Coordinated
replay attacks

Decentralized mechanism that relies on
Bayesian inference with Ethereum-based
blockchain.

PoA Geth-based Solidity
Computational
performance and
accuracy

[137]

To build the mechanism against
PMU as it is susceptible to
cyber-attacks due to their reliance
on the GPS.

FDIAs
Consensus-based approach to improve the
self-defensive capabilities of smart grids
against cyberattacks.

- - -
Successful attack
capability and
probabilities

[133]

Detect the manipulation of meters’
measurements that causes flawed
decisions to be made in energy
systems

FDIAs Implementation of transparent public
Blockchain-based SG data security - - - Accuracy, RMSE,

MAE, and F1 score

[134] Aim to solve the anonymity and
privacy problem of consumers

SPoF and lack
of trust

Implementation of garlic routing and
consortium blockchain for privacy preservation
during energy transfer in SGs.

PoA - -
Computational cost
and path selection
probability

[138] To detect the identity-based security
loop holes in the smart grid

Data
manipulation
and identity
theft attacks

Blockchain-based identification and
authentication technique to prevent identity
theft and masquerading.

- Hyperledger - Validation of the
node in log(n)

[135]

Mitigate the cheating attack
initiated by energy sellers, i.e., an
energy seller refuses to transfer the
energy to customer who already
paid money.

Malicious
energy
purchasers

Blockchain-based energy trading scheme to
assure the verifiable fairness of energy transfer. PBFT

Ethereum,
Ethereum-
Wallet and
Geth

- Computational cost

[136] Goal to design the secure SGs
against FDI attacks FDI attack

Blockchain based incentive method to reward
operators for uploading authentic data and
penalize if data is missing or malicious.

Round robin Hyperledger
Fabric Go language Anomaly

detection rate
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5.2. Artificial Intelligence Based Cybersecurity Techniques in Smart Grids

The artificial intelligence (AI) techniques in the smart grid for providing security are
becoming more apparent. AI techniques have an ability to improve the reliability and
robustness of smart grid systems. In this section, we presented the deep learning (DL)- and
machine learning (ML)-based cybersecurity technique against smart grids attacks.

5.2.1. Deep Learning Based Cybersecurity Techniques in Smart Grids

Deep learning models comprise complex training tools developed to provide mean-
ingful feature extractions when it is difficult in conventional methods due to the curse of
dimensionality [139]. In context of cybersecurity in SGs, a wide range of deep learning
methods have been implemented. In Figure 6, a general structure of the convolutional
neural network (CNN) is depicted with two convolutional layers, two pooling layers, one
hidden, fully convolution and output layer which is adopted in smart grids. However, in
Table 11, multiple deep learning algorithms such as Recurrent Neural Networks (RNN), Ar-
tificial Neural Network (ANN), Deep Neural Network (DNN), etc., have been implemented
in the literature to detect cyberattacks against smart grids.

Figure 6. General structure of convolutional neural network (CNN) adopted in smart grids.

The authors of [69] presented the Kalman filter and recurrent neural network (KFRNN)-
based technique to detect FDIA. The dynamic threshold is measured to detect the FDI attack.
In [140], a detection technique is presented against FDIA that takes the input and output
signals of a power-to-gas (PtG) and gas-fired generation (GfG) facility scheduler. Further-
more, hybrid neural network is implemented to detect FDIA without labeling the training
data. Similarly, the authors of [141] detected the cyberattacks by implementing the deep
learning techniques and targeted the IEC 61850 communication protocols. Yao et al. [142],
introduced the energy theft detection framework as well as privacy preservation of energy
in smart grid and CNN and Paillier algorithm. In the work of [143], authors presented the
intrusion detection system (IDS) for IEEE 1815.1-based power system. A bidirectional RNN-
based deep learning algorithm is employed to detect anomalies and verify the presented
technique by testing various attacks, i.e., malware attack, FDI, and disabling reassembly
(DR) attacks.

Siniosoglou et al. [144], introduced the IDS named as MENSA (anoMaly dEtection aNd
claSsificAtion) based on the GAN architecture to detect anomalies and classify the Modbus
and Distributed Network Protocol 3 (DNP3) attacks. He et al. [145], proposed the DL-based
neural network model to detect FDI attack in terms of bypass the state estimation and
causes for congestion of transmission lines in SG. In addition, researchers [146] exploited
the ensemble-based DL method to identify the false readings. A couple of DL models
are trained based on the samples derived from sliding window of the readings. Finally,
best model is used in ensemble-based detector to identify the false readings. Moreover,
researchers [147] introduced the DNN-based classification method for energy theft detection
in smart grids. Through Bayesian optimizer, the hyperparameters are optimized, improving
the performance of energy theft detection.
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Table 11. Deep learning based attack detection techniques for cybersecurity in smart grids.

Reference Type of Attack Solution DL Training Models Dataset Generator Implementation Tools Performance Evaluation

[69] FDIA
A two-level learner-based scheme with
Kalman filter and recurrent neural
network (KFRNN) is presented.

RNN IEEE 14 Bus and IEEE
57 Bus Matpower

MRSE, accuracy, F1 score,
detection probability, false
alarm rate

[140] FDIA

A scheme based on the CNN and WT is
proposed to detect attacks on the
information received by the facility
scheduler. Furthermore, hybrid neural
network is presented to detect attacks on
the output control signals.

WT, CNN and ANN IEEE 30-bus MATLAB
Identified as attacked,
identified as normal, and
detection accuracy

[141]
Inject, capture, replay,
modify, drop, and delay
attacks

Proposed and implemented the two-step
deep learning model for
cyberattack detection.

LSTM, RNN
and GRU IEEE 9-bus system Testbed implementation

TPR, FNR, TNR, FPR,
recall, precision, and
F1-score

[142] Energy theft

A combined CNN is used to detect
abnormal behavior of the metering data.
In addition, Paillier algorithm is
deployed to protect the energy privacy.

CNN Energy theft dataset
from SGCC

Python, Numpy, Pandas,
Keras and TensorFlow Accuracy score

[143] Malware, FDI and DR

An intrusion detection system with
bidirectional RNN is presented for an
IEEE 1815.1-based power system
using CPS.

Bi-RNN IEEE 1815.1 TensorFlow -

[144] Anomalies (i.e.,electricity
measurements)

Presented the DL-based MENSA
(anoMaly dEtection aNd claSsificAtion)
for anomalies and cyberattacks.

GAN and DBN Four datasets from the
SPEAR project

Tshark, REST API, MTU,
CICFlowMeter, and
Suricata

Average accuracy, TPR,
FPR and F1 score

[145] FDI attacks
A simplified neural network is presented
to detect FDI attacks targeting
transmission line overflows.

NN IEEE 118-bus system MATPOWER 7.0
Accuracy, DR, precision,
F1 score, FPR, ROC,
and AUC

[146] False readings in AMI
A general ensemble-based DL detector to
enables the system operator to detect
false readings in real time.

FFN, CNN, GRU,
and LSTM Smart Project Dataset

Python3, Numpy, Keras,
Scikit-learn and
Matplotlib

Accuracy, DR, FA, and HD

[147] Electricity theft detection
DNN-based electricity theft detection
method using time-domain features
is presented.

DNN SGCC dataset -
TPR, Precision, F1 score,
MCC, Accuracy and AUC
ROC curve
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5.2.2. Machine Learning-Based Cybersecurity Techniques in Smart Grids

Machine learning (ML)-based techniques are implemented in smart grids for pro-
viding mitigation and detection against cybersecurity attacks. The authors of [148] also
implemented ML techniques to forecast electricity prices; however, we analyzed the ML
techniques that are applied to detect the cyberattacks on smart meters that causes huge
electricity cost. In Figure 7, we present the general framework adopted in smart grid.
ML starts from the pre-processing of the dataset, and then features are extracted through
Principal Component Analysis (PCA), kernel principal component analysis (KPCA), and
Joint Mutual Information Maximization (JMIM) etc. After the extraction and selection of
features, ML algorithms are applied and the model training is started; finally, based on
the trained ML model, the results are achieved. In Table 12, a summary of ML algorithms
applied in smart grids to detect cybersecurity attacks is elucidated.

Figure 7. General Machine learning framework adopted in smart grid.

Ashrafuzzaman et al. [149] presented a machine learning-based technique to detect
FDI attacks on state estimation. The ensemble learning is implemented with supervised and
unsupervised classifiers to minimize the effect of the dimensionality reduction. In the work
of [150], the authors analyzed the difference between physical grid and data manipulation
change. The historical data are analyzed under concept drift with data distribution changes
and computed through PCA. Lastly, K-NN algorithm is applied to show the effectiveness
of presented scheme and achieved the highest accuracy. Furthermore, researchers [151]
proposed the extremely randomized trees (ERT) algorithm with kernel principal component
analysis (KPCA) to detect stealthy cyber-attacks. In the work of [63], authors employed the
SVMLDT to detect the anomalies in smart grid. Moreover, adaptive load rejection scheme
is implemented to mitigate the DoS attacks as well as remedial strategies are adopted
accordingly under-attack situations.

Another anomaly detection and mitigation framework [152] is proposed, considering
multiple data integrity attacks, i.e., pulse,ramp, replay-trip and replay attacks. Conse-
quently, the ML algorithms such as KNN and DT are applied for attack classification and
show accuracy of 96.5%. Similarly, in [153], a cyber–physical anomaly detection system
(CPADS) is introduced in order to detect communication failure and data integrity attacks.
The ML algorithm DT is applied with variational mode decomposition (VMD) to build a
classification model. CPADS are evaluated on standard IEEE 39 bus system and measured
performance. In addition, researchers [154,155] detected the FDI attacks based on the
ensemble and extreme learning machines. In [154], optimized feature sets are extracted
to label the behavior of FDIA and a focal-loss-lightGBM (FLGB) ensemble classifier is
developed to detect FDIA automatically. To improve the performance of extreme learning
machines (ELMs), Gaussian random distribution is deployed to initialize the weights [155].
A hierarchical clustering method is proposed in order to detect the FDI and DoS attacks,
which interrupts the state estimation process. The DT algorithm is implemented to re-
move the threat and Kalman filters are used to provide speedy and accurate process [156].
Likewise, the authors of [157] detected the FDI attacks based on the ML methods such as
visualization, classification, and clustering.
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Table 12. Machine learning based attack detection techniques for cybersecurity in smart grids.

Reference Type of Attack Solution Feature
Selection

ML Training
Models Dataset Generator Implementation

Tools
Performance
Evaluation

[149] FDIA A data-driven ML-based scheme to detect
stealthy FDIA on state estimation. RFC

LR, DT, NB, NN,
SVM, LOF, ISOF
and EE

IEEE 14-bus system MATPOWER

F1-Score, Accuracy,
Precision, Sensitivity,
FPR, Specificity,
ROC AUC

[150] FDIA

Analyze the historical data by concept drift and
focus on the distribution change. The
dimensionality reduction and statistical
hypothesis testing are implemented.

PCA KNN IEEE 14-bus system
MATPOWER,
MATLAB 2017
and Python 3

F-measure and FPR

[151] Stealthy cyber-attack
(SCA)

KPCA technique is applied to transform the
data into a lower-dimensional space. The data
transformed by KPCA become the input for the
ERT to detect SCA attacks.

KPCA ERT IEEE 57 and
118-bus systems Matpower

Accuracy, ROC
curves, and
ROC AUC

[63] DoS A multi-class classification algorithm employed
for anomaly detection in smart grid. - SVM and DT IEEE 39-bus system Testbed-based

implementation -

[152]
Pulse, ramp,
relay-trip, and replay
attack

Anomaly detection (AD) with supervised ML
and model-based mitigation. With physics and
signal entropy-based feature extraction
increased the robustness and detection
accuracy of ML model.

PCA KNN and DT 2-area of 4-machine Testbed-based
implementation Accuracy

[153] FDIA
A CPADS (cyber–physical anomaly detection
system) developed with PMU measurements,
network packet properties and ML algorithms.

Rules-based VMD and DT IEEE 39-bus system Testbed-based
implementation

Accuracy, AR, AP,
and AF

[154] FDIA

A novel FDIA detection model based on
ensemble learning with optimal feature
extraction and a FLGB ensemble classifier
is employed.

JMIM Ensemble classifier

Public Google
power system
cyber-attack
dataset

- Accuracy, FPR, ROC
curve, and AUC

[155] FDIA
A classifier is developed by aggregating a
series of extreme learning machines (ELMs) to
detect anomalies caused by FDIAs.

- GRD, LHS and
ensemble ELM

IEEE 14-bus and
IEEE 57-bus MATLAB R2014a Classification

accuracy
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6. Emerging Technologies and Future Research Directions

From the above discussion in different parts of the papers, smart grids are vulnerable
to cyberattacks. Similarly, some papers have discussed the safety and associated vulnera-
bilities in smart grids. As a result, the security and privacy can be enforced by inducing
wide range of tools and technologies. To improve the security measures of smart grids, it is
recommended to analyze the cyberattacks with their dynamic nature, attack mechanism,
and the key factors of cyberattacks on smart grids. This analysis enforces the discovery of
new types of attacks and vulnerabilities which can ultimately strengthen the smart grids
following a more resilient and robust system. In this section, we will discuss various future
research directions and opportunities to obtain the advanced secure smart grid systems.

• Communication infrastructure in smart grid security: The network and communica-
tion model should be strengthened through advanced security measures which should
be imposed during data collection and interchange phase. Furthermore, the vendors
should follow the standards to make use of distribution devices in the communication
phase to avoid interoperability issues. Consequently, the providers/vendors can build
their protocols as open-source so that other vendors should anticipate in existing code
and follow the same standard while manufacturing their own security tools. Being
open-source, bug fixes and security vulnerability checks can also be easily verified
and corrected as the community is taking part in the development and testing process.
As a result of this collaboration, the security product will support the implementation
of security tools by default in the communication network of the smart grid, which
will ultimately enforce the standard security policies available on all devices that are
participating in the grid communication network.

• High-level security algorithms to detect attacks: For implementing more enhanced
security mechanisms, extra effort is required to target higher-level algorithms or data
structures. As a result, the current state estimator algorithms cannot identify im-
proper/defective data using the existing detection techniques available in the FDIAs,
therefore high-level security data structures and algorithms are needed. For instance,
apart from the existing bad data detection steps, if the SCADA system consists of
other security modules, which are solely used to diagnose the false positive rates with
the help of new regulation, it would better harden the security breaches by the attack-
ers. Consequently, the additional work is required to enrich the impact analysis of
FDIA on the distribution and use side, respectively. Apart from transmission systems,
the distribution end can also be affected by showing false meter readings and fake
topology information. Similarly, the meters installed at user premises that are used
to transmit user consumption measures can also be hacked and manipulated. As a
result, the load management and demand side management security measures should
keenly be focused in the future.

• Federated learning in smart grids: Currently, federated learning (FL) is appealing as a
privacy-preserving paradigm as it trained the AI models in a collaborative manner
by inviting underlying devices. The privacy of each device is protected by localizing
the training of model in comparison with ML where raw data are sent to the main
server [158]. FL applications for the smart grid include electric load forecasting, energy
demand prediction, and data privacy of a large power system. In addition, federated
learning has been successfully implemented in various fields, i.e., health care, smart
cities, transportation, finance, visual object detection, next-word prediction, and so
on. Similarly, in [159] authors applied FL to share the private energy data of users
in smart grid to achieve privacy and efficient communication. However, FL surface
is also facing challenges and is prone to cybersecurity attacks mentioned by various
researchers [160,161]. Before the implementation of FL into smart grid, it is necessary
to consider robust security measures in the future.

• Blockchain technology for securing smart grids: As blockchain technology is still
immature, case-by-case analysis of regulatory frameworks in terms of security is
necessary. The electricity flowing through the wires to the home is similar as it
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passes by a burning coal or a solar array. Therefore, authenticating and tracing the
energy source is a huge challenge. The embedded security features in blockchain
technology can be emerged with the smart grids to enforce efficient and secure power
transmission and management. As blockchain technology implements security using
public/private key encryption methods with key access, everyone who tries to breach
the system would encounter authentication through a secure credentials system in
order to access system’s operational resources over the network. Consequently, the
blockchain technology is an essential approach to make power grid safe if the access
key codes are kept secure and safe. Overall, in order to prevent malicious attacks and
make hacking more difficult for intruders, secure and efficient smart cities must be
used as backbone. Furthermore, blockchain features such as the immutability and
decentralization of data lead to permanent storage; hence, one must be careful when
implementing smart contracts, as any malfunction or misconduct can be observed
within the system [162].

• Big data integration in smart grids: The big data (BD) collected from smart grids is key
information that could be extensively beneficial for different smart grid applications,
such as load profiling and demand response. However, a security vulnerability in
decision-making techniques may cause the unauthorized gain of full access to a cus-
tomer’s data. On the other hand, a secure approach for decision making can provide
enormous satisfaction to all the stakeholders, i.e., utility providers and consumers.
The prospective research in big data is diverse when used in smart grids. Big data
supports various solutions to the directional flow of data/information and analyzing
and processing that information. Similarly, with the big data solutions, demand-side
management has become a crucial activity for managing the stockholders in power
systems. As a result, the learned behaviors of consumer actions and power consump-
tion can enormously help to demand response activities on the customers’ end, which
is also known as consumer behavior predictions.

• Smart grid security with AI and 5G: Major changes have been posted on smart grids
through the latest technologies introduced by AI and 5G. Indeed, 5G and B5G (Be-
yond5G) technology would be a powerful tool to govern high-speed and reliable
communication to perform real-time grid monitoring via Internet of things (IoT).
However, with the advent of this technology, new challenges are ahead [163]. AI and
Machine learning algorithms are promising options to intelligently operate the net-
work with reliability, network efficiency, robustness goals, and can obtain the Quality
of Service (QoS) demands as expected. Enriched historical data are required to train
model in order to ensure the model’s accuracy and mitigate the over/under fitting
issues of AI model in smart grid. Furthermore, it should provide the guarantee of
controlling the decisions of AI models to align with the cybersecurity constraints of
power systems.

• Cyber resilience of smart grid SoS: The entire smart grid network is considered as a
system of systems (SoS) that integrates the legacies, new systems, and produces new
goals beyond the distinct systematic competencies. Any breakdown occurred in the
smart grid subsystem will have an impact on the entire smart grid system of systems.
The implementation of a secure smart grid system of systems is now essential and
a high research priority. To address this challenge, in the future extended Bayesian
model can be developed, and utilize the analysis techniques, i.e., information theory,
to improve the overall smart grid resilience system. Furthermore, the time-dependent
dynamic Bayesian model can be integrated to observe the system performance and
uniformity of the model with the passage of time [164].

7. Conclusions

Cyber threats targeting smart grid security are a critical issue and face several chal-
lenges from a multitude of attacks. In this paper, the smart grid threats covered the two core
domains: the intrinsic vulnerability of the system and the external cyberattacks. Smart grid
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vulnerabilities are elaborated in all aspects, including their components; data management,
services, and applications; running environment; and evolving and complex smart grid vul-
nerabilities. Furthermore, we included a global review of cyberattack incidents witnessed
against smart grids between 2010 and July 2022 with diverse characteristics such as attack
location, range, type of attack, and consequences. The in-depth thematic taxonomy of cyber-
attacks on smart grids is investigated with state-of-the-art approaches presented with their
attack strategy, consequences, and detection methods. Furthermore, potential solutions for
cyberattacks on smart grids are discussed expansively in terms of blockchain technology
and artificial intelligence (AI) techniques. Though the aforementioned solutions effectively
detect cyberattacks over smart grids, however, a couple of challenges—particularly fake
topology information, identification of defective data, security vulnerabilities, integration of
big data, blockchain, and so on—still endure. Therefore, from the perspective of emerging
technologies, future research directions are provided for the robust cybersecurity of smart
grids against erudite cyberattacks, as new attack tactics are endlessly exposed.
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PCA Principal Component Analysis
RNN Recurrent Neural Networks
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
REST Representational State Transfer
ROC Receiver Operator Characteristic
RFC Random forest classifier
RTU Remote Terminal Unit
SGCC State Grid Corporation of China
SPEAR Secure and PrivatE smArt gRid
SCADA Supervisory Control And Data Acquisition
SIEM Security Information and Event Management
SVM Support Vector Machine
TP True Positive
TNR True Negative Rate
TASE.2 Telecontrol Application Service Element 2
VMD Variational Mode Decomposition
VULDB Vulnerability Database
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