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Accurate forecasting of an electric load is vital in the effective management of

a power system, especially in flourishing regions. A new hybrid model called

logarithmic spiral firefly algorithm-support vector regression (LS-FA-SVR) is

proposed to promote the performance of electric load forecasting. The new

hybrid model is acquired by combining the support vector regression, firefly

algorithm, and logarithmic spiral. Half-hourly electric load from five main

regions (NSW, QLD, SA, TAS, and VIC) of Australia are used to train and test

the proposed model. By comparing the model results with observed data on

the basis of the root mean squared error (RMSE), mean absolute error (MAE),

and mean absolute percent error (MAPE), the performance of the proposed

hybrid model is the most outstanding among all the considered benchmark

models. Hence, the results of this study show that the hybrid model LS-FA-SVR

is preferable and can be applied successfully because of its high accuracy.

KEYWORDS

electric load, time series forecasting, firefly algorithm, support vector regression, logarithmic
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1 Introduction

As an integrated system that can optimize the allocation of energy resources according
to the regional energy structure and energy reserves, an integrated energy system has
become an important way to accelerate the global sustainable energy transformation.
Accurate load forecasting not only plays a decisive role in the comprehensive planning,
operation, management and cascade use of energy system but is also a key technology to
promote the development of the energymarket (Wang et al., 2018; Chen andWang, 2021;
Yang et al., 2022c). Hence, technology for the smart and efficient management of grid
uncertainty has attracted research interest. In particular, load forecasting is a core factor of
smart grid applications, such as demand response, as it can accurately predict the demand
flexibility and potential problems in a grid. In addition, load forecasting can contribute
to the efficient integration and wide allocation of distributed energy resources and their
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coordination to accommodate supply and demand
(Kaur et al., 2016). Therefore, the prediction of the short-term
load has become the chief task in power dispatching and power
planning (Wu et al., 2021; Yang et al., 2022d).

However, high accuracy in predicting a short-term load
is difficult to obtain because the electric load time series is
complex and shows vacillating behavior with many variables
considered. In order to deal with this problem, regression
models, stochastic process models, and exponential smoothing
are employed to forecast the electric load in traditional methods
(Zhang et al., 2021, 2022b,a). However, the traditional methods
scarcely acquire the complexity of the system. Hence, artificial
intelligence approaches are extensively used to predict the power
load, such as artificial neural networks, support vector machines,
and nature-inspired meta-heuristic algorithms.

Among all the data mining techniques based on artificial
intelligence, artificial neural networks have become hot
techniques in the research of forecasting electric load.
Yang et al. (2022a) developed a highly accurate short-term
load forecasting method using non-linear auto-regressive
artificial neural networks with exogenous multi-variable input.
Yang et al. (2022b) presented a novel approach for short-
term electrical load forecasting by the radial basis function
neural networks, and the result showed that the application of
neural networks in short-term load forecasting is encouraging.
Wang et al. (2016) proposed an outstanding model based on a
wavelet neural network to address the complex nonlinearities
and uncertainties in forecasting the electric load, and the
accuracy of the proposed model is better than the considered
models. Yang et al. (2021b) proposed a new hybrid model to
forecast electric load series with outliers, which is based on
a robust extreme learning machine and an improved whale
optimization algorithm. An et al. (2013) presented a novel
approach based on a feed-forward neural network to predict the
electricity demandwith high accuracy and demonstrated that the
proposed model improved the forecasting accuracy noticeably.
Yang et al. (2021a) applied the radial basis function neural
network (RBFNN) to generate accurate predictions for nonlinear
time series. In recent years, with the development of the deep
learning theory and hardware equipment, the technology based
on deep learning is widely used in power load forecasting.
Kong et al. (2017) established a forecasting framework based
on LSTM for residential load forecasting. In particular, the
recurrent neural network (RNN) and its variants (long short-
term memory (LSTM) and gated recurrent unit (GRU)) have
been widely used because of their outstanding ability to deal
with time series. Feng developed a two-step short-term load
forecasting (STLF) model which designed a Q-learning-based
dynamic model selection. This model can provide reinforced
deterministic and probabilistic load forecasts (DLFs and PLFs)
(Feng et al., 2019). Afrasiabi et al. (2020) proposed a model
for conditional probability density forecasting of residential

loads based on an end-to-end composite model comprising
convolution neural networks (CNNs) and a gated recurrent unit
(GRU).

Although neural networks and deep learning methods
have been widely used in load forecasting, it should not
be ignored that they usually fall into the local minimum
because of the restriction on generalization ability which barely
makes full use of information from selecting the sample
(Cui et al., 2021). Fortunately, the support vector machine
developed by Vapnik (1999), one of the outstanding data
mining techniques, can overcome this problem and improve
the accuracy of prediction. Because of the excellence of the
characteristics, the support vector machine has become one
of the popular methods in forecasting the short-term electric
load. Stojanović et al. (2013) used least square support vector
regression (LSSVR) based on historical daily load demands
in combination with the calendar and climate features for
forecasting the half-hourly load demand of the next day.
Chen et al. (2017) established a new support vector regression
(SVR) forecasting model with the ambient temperature of
2 hours before the demand response event as input variables, and
the result showed themodel offered a higher degree of prediction
accuracy and stability in short-term load forecasting.

The SVR has been proved to be an excellent model
for load demand forecasting. However, the SVR can be
improved in many aspects actually; the parameters of the
support vector machine play an important role in the accuracy
of prediction and are a core part in improving the SVR
(Kisi et al., 2015; Najafzadeh et al., 2016). Various optimization
algorithms have been used for the selection of these parameters
like the grid search algorithm and gradient descent algorithm
(Kisi et al., 2015). Computational complexity seems to be the
main disadvantage of the grid method, which restricts its
applicability to simple cases. The grid search algorithm is also
prone to local minima.

Among the methods of optimizing parameters by using data
mining technology, a classic way of optimizing parameters of
the SVR is meta-heuristic optimization algorithms. At present,
with the development of optimizers, meta-heuristic optimization
algorithms are increasingly popular in selecting the optimal
parameter value because the algorithms can bypass local optima
and are easy to implement (Mirjalili and Lewis, 2016).

The idea of meta-heuristic algorithms comes from the
behavior of animal or physical phenomena. In addition, the
algorithms can be grouped into threemain categories (Figure 1).
The process of searching for an optimal parameter can be
divided into two phases: exploration and exploitation (Olorunda
and Engelbrecht, 2008). More specifically, the exploration
phase is targeted to investigate the search space globally, and
the exploitation phase is employed to search for the best
results by following the exploration phase. Therefore, meta-
heuristic optimization algorithms are widely utilized to find the
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FIGURE 1
Classification of meta-heuristic algorithms.

parameters of support vector regression for short-term electric
loads. Peng et al. (2016) presented a support vector regression
model hybridizedwith the quantumparticle swarmoptimization
algorithm for electric load forecasting, and the results showed
the proposed model can simultaneously provide forecasting
with good accuracy. Hong (2011) proposed an electric load
forecasting model which combines the support vector regression
model with the chaotic artificial bee colony algorithm to
improve the forecasting performance, and the forecasting
results indicated the hybrid model was a promising alternative
for electric load forecasting. Xiao et al. (2017) employed the
multi-objective flower pollination algorithm to optimize the
parameters of support vector regression for short-term load
forecasting, and the experimental results clearly showed
that both the accuracy and stability of the proposed model
were superior to those of the single models. Yan et al. (2012)
proposed an innovative hybrid model comprising the least
square support vector machine and chaos optimization,
obtaining the optimal parameters for short-term electric
load forecasting. For short-term load forecasting, Zhang and
Guo (2019) proposed a hybrid method-based support vector
regression (SVR) with meteorological factors and electricity
price. This model is optimized by an improved adaptive genetic
algorithm (IAGA), which is an improved method of the GA
(Najafzadeh et al., 2018).

To prevent the optimization algorithm from falling into the
local minimum and make it search parameters over a wide
range to expand detection probability in the early period, the
current study applies an optimization algorithm which is the
firefly algorithm improved by a logarithmic spiral (LS-FA). This
algorithm can increase the search efficiency in the late period.
Hence, it shows good performance to prevent the operation from
falling into local optima and to ensure convergence for searching
the parameters of the SVR.

Considering the advantages of the LS-FA and SVR, we
combined the LS-FA and SVR and then proposed a novel short-
term electric load predictive model for the goal of generating
accurate electric load predictions. In this model, better model

parameters are obtained by the FA improved by a logarithmic
spiral. We intend to apply the proposed approach in this study
to real electric load forecasting tasks to verify the ability of the
proposedmodel.Therefore, the proposed algorithm is compared
to existing approaches which use the SVR improved by FA, LR-
FA (Yang, 2010a), WOA (Mirjalili and Lewis, 2016), and DA
(Mirjalili, 2016) to demonstrate the optimization performance of
the LS-FA. The experimental results prove that the LS-FA-SVR
can achieve better forecasting performance, which demonstrates
that the LS-FA optimization algorithm can optimize better
parameters for the SVR.

The main contributions of this study can be summarized as
follows:

1) From the perspective of parameter optimization, we
introduced the Lévy-flight firefly algorithm (LF-FA) and the
logarithmic spiral firefly algorithm (LS-FA) to enhance the
searching ability of exploring the global space and exploiting
the local space. Specifically, the LS-FA can obtain a great
trade-off between the exploration and exploitation ability of
the FA.

2) Since the LS-FA can improve the poor convergence of the
LF-FA, we combined the introduced LS-FA and SVR into a
novel hybrid model which is denoted as LS-FA-SVR for the
tasks of generating accurate electric load tasks. We applied
the proposed model to five real electric load time series in
Australia, and the experiments proved that the LS-FA can
optimize better parameters for the SVRmodel, and the LS-FA-
SVR can generate more accurate electric load predictions.

This study is organized as follows. In Section 2, the support
vector regression (SVR), firefly algorithm (FA), Lévy-flight firefly
algorithm (LF-FA), logarithmic spiral firefly algorithm (LS-FA),
and the establishment of the new model are detailed; Section 3
introduces the dataset of the experiment, the evaluation criteria
of the model, the results of the proposed model, and the
comparative performance of all the consideredmodels. Section 4
summarizes the proposed model and makes corresponding
conclusions. Moreover, future work is also given in this section.
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2 Methodology formulation

2.1 Support vector regression

Support vector regression (SVR), one of the greatest data
learning tools, is developed by Boser et al. (1992). Compared
with other data mining techniques, SVR obtains minimal upper
bound generalization error by the principle of the statistical
machine learning process and structural risk minimization
(Che et al., 2012). According to the theory proposed by Vapnik,
given a training dataset ν = {(xi,yi)|i = 1,2,…, l;xi ∈ Rn;yi ∈ R};
here, xt is the n dimensional input vector, yt represents the target
value, and l stands for the number of samples in the training
dataset. SVR can be solved by estimating the linear regression
as follows:

Minimize 1
2 ‖w‖

2 +C
l
∑
i=1
(ξi + ξ

∗
i )

Subject to
{{
{{
{

yi − 〈w,ϕ(xi)〉 − b ≤ ε+ ξi
〈w,ϕ(xi)〉 + b− yi ≤ ε+ ξ

∗
i

ξi,ξ∗i ≥ 0, (i = 1,2,…, l) ,

(1)

where ω is the weight vector, b is a scale quantity, C represents
the regularization constant, and ɛ is the insensitive loss function.
Moreover, the slack variables ξi and ξ*i represent the upper and
lower excess deviation, respectively (Figure 2).

Formula 1 can be solved by the Lagrangian multipliers, and
the nonlinear regression can be obtained as follows:

f (x) =
l

∑
i=1
(β∗i − βi) ⋅ k(xi,x) + b, (2)

where βi and β*i are the Lagrangian multipliers.
It must be noticed that k(xi,x) is called the kernel function

which converts a nonlinear problem in input space to a linear
problem in feature space. Moreover, the selection of kernel
functions is discussed in Section 3.4.

2.2 Firefly algorithm

The firefly algorithm is proposed by Yang in 2008, and it is
based on the idealized behavior of the flashing characteristics of
fireflies (Yang, 2010b). For simplicity in describing the FA, the
following three rules are idealized (Yang, 2009):

1) All fireflies are unisex so that one firefly will be attracted to
other fireflies regardless of their sex.

2) Attractiveness is proportional to their brightness, so for any
two flashing fireflies, the less bright one will move toward
the brighter one. The attractiveness is proportional to the
brightness, and they both decrease as their distance increases.
If there is no brighter one than a particular firefly, it will fly
randomly.

3) The brightness of a firefly is affected or determined by the
landscape of the objective function to be optimized.

In general, the brightness can simply be proportional
to the objective function when dealing with the maximum
problem. In contrast, when dealing with the minimum problem,
some techniques are employed to convert the minimum
problem into a maximization problem. Based on what is
mentioned previously, the pseudo-code of the FA is shown in
Figure 3.

In the FA, there are two issues: the variation of light intensity
and the formulation of attractiveness. Generally speaking, the
attractiveness of a firefly is determined by its brightness or light
intensity which is associated with the objective function. The
brightness I of a firefly at location x can be shown as I(x) ∝ f(x).
But the attractiveness β can be seen in the eyes of the beholder
or judged by other fireflies (Kavousi-Fard et al., 2014).Moreover,
the light intensity decreases with the distance from its source, and
light is absorbed in the media. Hence, attractiveness is allowed
to vary with the degree of absorption. Hence, the light intensity
I(r) can be obtained on the inverse square law and absorption as

FIGURE 2
Transformation process illustration of the SVR.
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FIGURE 3
Pseudo-code of the FA.

follows:

I (r) = I0 ⋅ e−γr
2
, (3)

where I0 and γ stand for the original light intensity and
light absorption coefficient, respectively. Here, the definition of
attractiveness β can be expressed by

β (r) = β0 ⋅ e
−γr2 , (4)

where β0 is the attractiveness at r = 0.
Then, the Cartesian distance is employed to calculate the

distance between any two fireflies i and j at xi and xj as follows:

rij = √
d

∑
p=1
(xi,p − xj,p)

2, (5)

where xi,p is the pth component of the spatial coordinate xi of ith
firefly.

Finally, the position of firefly i which is attracted to the
brighter firefly j at t+ 1 time can be expressed by

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi) + α (rand− 0.5) , (6)

where rand is a random number in [0,1], and α is the parameter
in [0,1].

2.3 Lévy-flight firefly algorithm

The Lévy-flight firefly algorithm (LF-FA) is proposed by
Yang (2010a) to enhance the ability of exploring the global space
and exploiting the local space. Specifically, this algorithm can

obtain a great trade-off between the exploration and exploitation
ability of the FA. Hence, the LF-FA is utilized to update the
position next time as follows (Yang and Deb, 2009; Kaveh and
Khayatazad, 2012):

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi) + α ⋅ sign [rand− 0.5] ⊕ Levy, (7)

whereα is the randomization parameter, and⊕ is the dot product.
rand is a random number in [0,1], and sign[rand− 0.5] provides
a random direction while the random step length is drawn from
the Lévy flights. It is required to explain formula 7 combining α
and sign[rand− 0.5] ⊕ Levy which can make a firefly walk more
randomly (Mirjalili et al., 2014). In other words, the LF-FA can
jump out of the local optimum and enhance the global search
capability of the FA.

The LF is one of the random walks, and its steps are decided
by the step length. Furthermore, jumps conforming to the Lévy
distribution can be shown as follows (Walster et al., 1985):

Levy (η)∼μ = t−1−η (0 ≤ η ≤ 2) , (8)

and the Lévy random number is calculated by

Levy (η)∼
ϕ× μ

|υ|1/η
, (9)

where υ and μ conform to the standard normal distributions. ϕ
can be calculated as follows:

ϕ = [
Γ (1+ η) × sin (π× η/2)

Γ ((1+ η)/2) × η× 2(η−1)/2
]
1/η
, (10)

where Γ stands for the standard gamma function and η = 1.5.
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FIGURE 4
Flow of the LS-FA-SVR model for electric load forecasting.

2.4 Logarithmic spiral firefly algorithm

In the section, because of the poor convergence of the
LF-FA, the logarithmic spiral is introduced in this study to
balance the abilities of exploration and exploitation (Mirjalili and
Lewis, 2016). The logarithmic spiral is selected to improve the
performance of the FA. Considering formula 6, we propose a
modified formula as follows:

xi,t+1 = xi,t + β0 ⋅ e
−γr2ij (xj − xi)cos (2πt) + α (rand− 0.5) , (11)

in which t is a random number from-1 to 1.
In Section 3.1, some experiments would be carried out to

assess the performance of the LS-FA by comparing it with some
optimizers based on the FA.

2.5 Hybrid model LS-FA-SVR

In this section, the proposed hybrid model LS-FA-SVR will
be introduced in detail, and the flow of this proposed model is
shown in Figure 4.

1) Input train data set;
2) initialization parameters;
3) initialization population;
4) preliminary calculations;
5) optimization starts;
6) update the position and calculate the fitness;
7) optimization stops;
8) SVR model obtained; and
9) output result of the test dataset.

Above all, the innovative hybrid model LS-FA-SVR can be
obtained.
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3 Empirical study

3.1 Performance of the LS-FA

This section aims to test the performance of the optimization
by the proposed modified algorithm LS-FA through some
classical unimodal benchmark functions. The structure of the
four benchmarks considered in this experiment is as follows
(Mirjalili and Lewis, 2016):

F1 : f1 =
l

∑
i=1

x2i , (12)

F2 : f2 =max{|xi|,1 ≤ i ≤ l} , (13)

F3 : f3 =
l

∑
i=1
|xi| +

l
∏
i=1
|xi|, (14)

F4 : f4 =
l

∑
i=1

i ⋅ x4i + random [0,1) , (15)

where the value of the dimension in this experiment is 20. To
compare the LS-FA with the FA and LF-FA, all the numbers of

fireflies are set at the same value (10), and the values of alpha and
gamma are 0.25 and 1, respectively.

To perform the result of the proposed method LS-FA,
minimum (Min), maximum (Max), and standard deviation
(Std) are selected to measure the errors of the optimizer. After
implementing the FA, LF-FA, and LS-FA using Matlab 2014(b),
every algorithm has been run 30 times to get the average error for
each method. Table 1 shows the results with the optimization.

Multiple studies have shown that the modified algorithm
LS-FA has the best predictive results among the other two
algorithms (FA and LF-FA) by searching the minimum of four
benchmark functions. To be specific, the maximum of the LS-
FA is smaller than that of the FA and LF-FA. The minimum
of the LS-FA is relatively small among all the three methods.
Moreover, the LS-FA has the smallest standard deviation, and it
means the performance has the best stabilization. In addition,
Figure 5 presents the trace of optimization by calculating the
mean of errors for the four benchmark functions. The LS-FA
has outstanding performance for searching the minimum of the

TABLE 1 Performance of FA, LF-FA, and LS-FA.

Criterion F1 F2 F3 F4

FA LF-FA LS-FA FA LF-FA LS-FA FA LF-FA LS-FA FA LF-FA LS-FA

Maxa 5.34 6.65 4.87 1.24 1.26 1.10 8.82 8.52 8.05 59.87 41.35 35.41
Minb 1.50 2.16 1.68 0.80 0.70 0.68 4.58 4.66 3.69 4.73 5.90 3.49
Stdc 1.10 1.17 0.72 0.12 0.16 0.10 1.32 0.99 0.81 13.91 9.75 8.40

aMin is the minimum.
bMax is the maximum.
cStd is the standard deviation.

FIGURE 5
Trace of fitness for FA, LF-FA, and LS-FA.
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four functions. Specifically, the speed of the LS-FA is faster than
that of the FA and LF-FA. Moreover, the average error for all
four models by the LS-FA is significantly smaller than that by
other algorithms. In short, through these studies, it can be proved
that the proposed algorithm LS-FA has a better performance of
optimization. In other words, the logarithmic spiral can improve
the performance of the FA by boosting the ability to balance
exploration and exploitation. Hence, this modified optimizer is
chosen to search for suitable parameters of SVR in the study.

3.2 Data description

To verify the effectiveness of the proposedmodel, the datasets
of electric load from 1 January 2018 to 1 February 2018 in
NSW, QLD, SA, TAS, and VIC are used as the experimental data
(Table 2 andFigure 6).Thedatasets of the electric load (MW) are
retrieved from the website of energy security for all Australians
(http://www.aemo.com.au/). The sample data used in this study
are half-hourly electric load, and the total number of these five
regions is 1,488. In this study, each dataset was divided into
two sets: the training dataset including 960 data points (from
2018/1/1 0:30 to 2018/1/21 0:00) and the remaining as the test
dataset (from 2018/1/21 0:30 to 2018/2/1 0:00).

3.3 Evaluation criteria

Because there is no confirmed universal standard method,
this study adapts multiple error criteria to evaluate the
effectiveness of the proposed hybrid model: the mean absolute
error (MAE), root mean square error (RMSE), and mean
absolute percent error (MAPE). The MAE, RMSE, and
MAPE are applied to quantify the forecast error, and the
performance of the model is reliable when their value is close to
zero.

These three criteria are calculated as follows:

MAE = 1
N

N

∑
i=1
|yi − ŷi|, (16)

RMSE = √ 1
N

N

∑
i=1
(yi − ŷi)

2, (17)

MAPE = 1
N

N

∑
i=1
|
ŷi − yi
yi
| × 100%, (18)

where yi is the observed value, ŷi is the predicted value to yi, and
N is the number of samples.

FIGURE 6
Datasets of all five regions.

TABLE 2 Statistical properties for each dataset.

Region Training set Test set

NSW QLD SA TAS VIC NSW QLD SA TAS VIC

N 960 960 960 960 960 528 528 528 528 528
Mean 8115.3 6720.3 1375.8 1102.9 4987.3 8818.6 6937.8 1503.0 1085.7 5578.9
Std 1350.0 873.1 417.8 70.3 1095.6 1493.2 905.8 357.5 86.3 1156.5
Min 5910.1 5258.4 653.2 950.8 3449.8 6197.6 5359.5 894.2 865.2 3683.1
Max 12230.6 8670.0 2879.9 1263.8 8999.2 12494.6 9020.4 2609.9 1256.5 9085.2
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FIGURE 7
Predictive results of the SVR with different kernel functions.

TABLE 3 Performance of the SVRwith different kernel functions based onMAPE, MAE, and RMSE.

Criterion Linear Polynomial rbf Sigmoid

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

NSW 1.13 99.08 123.22 8.58 786.68 964.58 1.38 122.32 155.59 61.88 5462.42 6533.04
QLD 1.04 73.10 91.57 4.41 312.24 401.27 1.27 88.97 113.14 38.79 2638.53 3916.17
SA 3.38 48.78 59.70 11.00 182.03 256.63 3.75 54.11 64.30 62.73 941.26 1154.82
TAS 1.38 14.85 20.99 5.04 51.30 99.96 1.70 17.78 25.19 24.34 242.74 612.28
VIC 2.07 112.63 137.15 9.28 565.44 763.20 2.28 124.07 151.53 91.87 5327.46 7083.36

3.4 Selection of the kernel function

In this section, the selection of the kernel function in the
SVR for electric load forecasting is discussed, and the data of five
regions in Australia are applied to search for the fittest choice
of the kernel function. First, four main kernel functions are
provided when the model is established by SVR, and they are
shown as follows:

Linear :K(x,xi) = xTxi,
Polynomial :K(x,xi) = (γxTxi + r)

p,
Rbf :K(x,xi) = exp(−γ‖x− xi‖2) ,
Sigmoid :K(x,xi) = tanh(γxTxi + r) .

γ > 0
γ > 0

(19)

Second, in order to find the best kernel function for
forecasting electric load, we selected the last twelve half-
hour load data (xn−12,xn−11,xn−10,…,xn−2,xn−1) as the input
variables of SVR with different kernel functions, and the output
variable is xn. At last, the best kernel function can be selected
from the four kernel functions based on the performance of
prediction. The experiment is performed, and the results of
forecasting electric load based on different kernel functions
are shown in Figure 7. It is obvious that the sigmoid kernel

function has the worst performance, and the accuracy of
the polynomial is just higher than it. In addition, the SVR
based on the rbf kernel function and linear kernel function
has better predictive results since it approaches the original
data.

In order to show the performances clearly, the three criteria
(MAPE, MAE, and RMSE) of errors are calculated, and the
results are shown in Table 3. The MAPE, MAE, and RMSE of
the liner kernel function have the smallest values in all five
regions. It must be noted that the rbf kernel function is just
slightly poorer than the linear one. Moreover, it can be found
that the polynomial and sigmoid functions are not suitable
for electric load forecasting with larger errors. Based on this
research, the linear is chosen as the kernel function of SVR in the
study.

3.5 Process of LS-FA-SVR

In Section 2.5, the hybrid model LS-FA-SVR is established
for short-term load forecasting. Here, the bandwidth of liner
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FIGURE 8
Results of the SVR with different optimizers.

TABLE 5 Performance of the LS-FA-SVR based onMAE, MAPE, and RMSE compared to othermodels.

Region DA-SVR WOA-SVR LS-FA-SVR FA-SVR

MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE

NSW 1.089 95.816 119.326 1.089 95.786 119.294 0.954 91.328 112.111 1.11 96.88 119.92
QLD 0.920 63.994 80.608 0.921 64.020 80.597 0.750 59.759 75.423 0.92 64.15 80.72
SA 3.379 48.791 59.686 3.376 48.763 59.656 2.757 42.708 51.397 3.41 49.12 60.13
TAS 1.376 20.961 14.797 1.376 14.796 20.964 1.095 11.389 10.393 1.38 13.93 14.49
VIC 1.702 116.478 94.186 1.701 94.169 116.498 1.330 89.354 109.622 1.70 94.26 116.60

To verify the proposed model LS-FA-SVR, we conducted a forecasting experiment with the same electric load in NSW, QLD, SA; TAS and VIC. The comparisons of electric load values
forecast using WOA-SVR, DA-SVR; FA-SVR, and the new proposed LS-FA-SVR are shown in Table 5 (Mirjalili and Lewis,2016; Mirjalili, 2016). It is clear that the new model
LS-FA-SVR has the lowest MAE, MAPE, and RMSE, among all four models.

kernel and the regularization parameter of SVR can be optimized
by the LS-FA. In this study, the numbers of fireflies, absorption
coefficient, and iteration of LS-FA are 15, 1, and 20, respectively.
Based on these, the prediction of short-term load in NSW, QLD,
VIC, SA and TAS can be obtained.

3.6 Empirical analysis

To avoid some accidental situations which would cause
unreliable conclusions, we conducted 30 runs for experiments in
five regions, and three error indicators are recorded in Table 4 in
each run.

Comparing the LS-FA-SVR with FA-SVR, the difference
between them is whether the logarithmic spiral has been
improved. It can be found that after introducing the logarithmic
spiral into the model, the MAE, MAPE, and RMSE in five
regions all decrease, which indicates that the LS is necessary

for forecasting the electric load. Moreover, this study compared
LS-FA-SVR with two new optimizers which were developed
in 2016. The two benchmark models are DA-SVR and WOA-
SVR. Through the comparisons, the three error indicators have
decreased significantly. For example, the RMSE of THE LS-
FA-SVR in NSW is 112.111, yet the values of DA-SVR and
WOA-SVR are 119.326 and 119.294, respectively. The smaller
the values of MAE, MAPE, and RMSE, the better the model
will be. According to the aforementioned results, it is clear
that the proposed model LS-FA-SVR outperforms the three
benchmark models for five regions, and they are shown in
Figure 8.

We applied the LS-FA-SVR model to the forecasting
experiments for the five experimental datasets and stated the
results in Table 5. As the last row of this table shows, the
mean values of MAE, MAPE, and RMSE in NSW are 91.328,
0.954, and 112.111, respectively. Meanwhile, the mean values of
MAE, MAPE, and RMSE in QLD are 59.759, 0.750, and 75.423,
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respectively.Moreover, Figure 8 clearly shows that themodel LS-
FA-SVR interprets the curves of the original electric load inNSW,
QLD, SA, SAT, and VIC, which indicates that the new model
gets a satisfactory performance and a high forecasting accuracy.
Comprehensively considering the results of MAE, MAPE, and
RMSE in NSW, QLD, SA, TAS, and VIC, it can be concluded that
the LS-FA-SVRmodel is the best overall, and its prediction is the
best.

4 Conclusion and future work

Accurate forecasting of the electric load can provide valuable
references for economic managers and electric power system
operators. The study proposed a hybrid model LS-FA-SVR for
improving the forecasting accuracy, where the parameters of
SVR are optimally determined by the optimization algorithm
LS-FA. This hybrid approach can search over a wide range to
expand the detection probability in the early period. It can
increase the search efficiency in the late period. Hence, the LS-
FA has a good performance to prevent the operation from falling
into local optima and to ensure the convergence for searching
the parameters of SVR. In addition, the empirical results show
that the MAE, MAPE, and RMSE values of LS-FA-SVR are all
modestly smaller than those of WOA-SVR, DA-SVR, and FA-
SVR. Compared with these other methods, the new method
has a strong ability to find the optimal solution, and the run
time is shorter. In other words, LS-FA-SVR is an attractive and
effective model which combines a novel optimization algorithm
to determine the parameters of SVR. In future work, several
research directions can be tried. More related variables can be
taken into consideration. One possibility is to apply other factors
which may influence electrical demand, such as the population
and GDP, to obtain more comprehensive results (Li et al., 2017).
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