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The last decades have seen video production and consumption rise

significantly: TV/cinematography, social networking, digital marketing, and

video surveillance incrementally and cumulatively turned video content into

the predilection type of data to be exchanged, stored, and processed. Belonging

to video processing realm, video fingerprinting (also referred to as content-

based copy detection or near duplicate detection) regroups research efforts

devoted to identifying duplicated and/or replicated versions of a given video

sequence (query) in a reference video dataset. The present paper reports on a

state-of-the-art study on the past and present of video fingerprinting, while

attempting to identify trends for its development. First, the conceptual basis and

evaluation frameworks are set. This way, the methodological approaches

(situated at the cross-roads of image processing, machine learning, and

neural networks) can be structured and discussed. Finally, fingerprinting is

confronted to the challenges raised by the emerging video applications (e.g.,

unmanned vehicles or fake news) and to the constraints they set in terms of

content traceability and computational complexity. The relationship with other

technologies for content tracking (e.g., DLT - Distributed Ledger Technologies)

are also presented and discussed.
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1 Introduction

Nowadays, TV/cinematography, social networking, digital marketing, and video

surveillance incrementally and cumulatively turned video content into the predilection

type of data to be exchanged, stored, and processed. As an illustration, according to

Statista, 2022, the TV over Internet traffic tripled between 2016 and 2021, reaching a

monthly 42,000 petabytes of data.

Such a tremendous quantity of information, coupled to myriad of domestic/

professional usages should be backboned by strong scientific and methodological

video processing paradigms, and video fingerprinting is one of these. Video
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fingerprinting identifies duplicated, replicated and/or slightly

modified versions of a given video sequence (query) in a

reference video dataset Douze et al., 2008, Lee and Yoo, 2008,

Su et al., 2009, Wary and Neelima, 2019. It is also referred to as

near duplicate detection, or content-based copy detection Law-To

et al., 2007a. The term video hashing1 (or perceptual video

hashing) is also in use for fingerprinting applications applied

to very large video database search Nie et al., 2015, Liu, 2019,

Anuranji and Srimathi, 2020.

Video fingerprint principle can be illustrated in relation to the

human fingerprints Oostveen et al., 2002, Figure 1. The patterns

of dermal ridges on human fingertips are natural identifiers for

humans, as disclosed by Sir Francis Galton in 1893. Although

they are tiny when compared to the entire human body, human

fingerprints can uniquely identify a person regardless of their

physiognomy changes and potential disguises. Analogously,

video fingerprints are meant to be video identifiers that shall

uniquely identify videos even if their contents undergo a

predefined, application dependent set of transformations.

The conceptual premise being generic, the underlying

research studies are very different, from both methodological

and applicative perspectives. The present paper reports on a

state-of-the-art study on the past and present of video

fingerprinting while trying to identify trends for its future

development. It solely considers the video component and

leaves the multimodal approaches (video/audio, video/

annotations, video/depth, etc.) outside its scope.

The paper is structured as follows. First, Section 2 identifies

the fingerprinting scope with respect to two related yet

complementary applicative frameworks, namely video indexing

and video watermarking. The fingerprinting evaluation

framework is set in Section 3. This way, the methodological

approaches (situated at the cross-roads of image processing,

ML—machine learning and NN—neural networks) can be

objectively structured and presented in Section 4. Finally,

fingerprinting is confronted to the challenges raised by

emerging video processing paradigms in Section 5.

Conclusions are drawn in Section 6. A list of acronyms

(unless they are commonly known and/or unambiguous) is

included after References.

2 Applicative scope

The applicative scope of video fingerprint can be identified

through synergies and complementarities with video indexing

Idris and Panchanathan, 1997 and video watermarking Cox et al.,

2007. To this end, this section will incrementally illustrate the

principles of these three paradigms and will identify their

relationship.

Video indexing might be considered as the first framework

for content-based video searching and retrieval Idris and

Panchanathan, 1997, Coudert et al., 1999. Assuming a video

repository, the objective of video indexing is to find all the video

FIGURE 1
Human fingerprinting versus video fingerprinting.

1 This termmay be prone to confusion as robust video hashing generally
denotes a related yet different research field, devoted to forensics
applications Fridrich and Goljan, 2000, Zhao et al., 2013, Ouyang
et al., 2015.
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sequences that are visually related to a query. For instance,

assuming the query is a video showing some Panda bears and

the repository consist of some wild animal sequences, a video

indexing solution searches for all sequences in the repository that

contain Panda bears, as well as images containing the same type

of background, as illustrated in Figure 2. To this end, salient

information (referred to as descriptor) is extracted from the query

and compared to the descriptors of all the sequences in that

repository (that were a priori computed and stored). Such a

comparison implicitly assumes that a similarity measure for the

visual proximity between two video sequences is defined and that

a threshold according to which two descriptors can be matched

is set.

Digital watermarking Cox et al., 2007 deals with the

identification of any modified version of video content,

Figure 3. For instance, assuming again a video sequence

representing some Panda bears is displayed on a screen and

that the screen content is recorded by an external camera, the

FIGURE 2
Video indexing principle: a binary descriptor is extracted from a query video to retrieve any other related visual content in the dataset.

FIGURE 3
Video watermarking principle: a binary watermark is imperceptibly inserted (embedded) in the video sequence; this way, the watermarked
sequence can be subsequently identified even when its content is modified (maliciously or not).
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original content should be identifiable from the camcordered

version. To this end, according to the digital watermarking

framework, extra information (referred to as mark or

watermark) is imperceptibly inserted (or, as a synonym,

embedded) into the video content prior to its release

(distribution, storage, display, . . . ). By detecting the

watermark in a potentially modified version of the

watermarked video content, the original content shall be

unambiguously identified. Of course, the watermark shall not

be recovered from any unmarked content (be it visually related to

the original content or not).

Video fingerprinting also deals with identifying slightly

modified (replicated, or near duplicated) content, yet its

approach is different with respect to both indexing and

watermarking, as illustrated in Figure 4. Coming back to the

previous two examples, video fingerprinting shall also track a

near-duplicated video sequence (e.g., a screen recorded Panda

sequence) back to its original (e.g., the Panda original sequence)

that is stored in a video repository. Yet, unlike indexing, any

other sequence, even visually related to it (e.g., the same Panda

bear at a different time of the day and/or in different postures)

shall not be detected as identical. To this end, some salient

information (referred to as fingerprint or perceptual hash) is

extracted from the query video sequence (note that this

information is not previously inserted in the content, as in

case of watermarking sequences). By comparing (according to

a similarity measure and a preestablished threshold) the query

fingerprint to the reference sequence fingerprints, a decision on

the visual identity between the video sequences shall be made.

Three main properties are generally considered for

fingerprinting.

First, the unicity (or uniqueness) property assumes that

different contents (i.e., content that is neither the query nor

one of its near-duplicated versions) result in different

fingerprints (in the sense of the similarity measure and of its

related threshold).

Secondly, the robustness property relates to the possibility of

identifying as similar sequences that are near-duplicated. The

transformations a video can undergo will be further referred to as

modifications, distortions, or attacks, be them malicious or

mundane. The video that is obtained through transformations,

modifications, distortions, or attacks will be denoted as a copy, a

replica video, a near duplicated video or an attacked video. While

these terms are conceptually similar, fine distinction among them

can be made for some specific applicative fields. For instance, Liu

et al., 2013 mention at least four different definitions related to

near duplicated video content, ranging from “Identical or

approximately identical videos close to the exact duplicate of

each other, but different in file formats, encoding parameters,

photometric variations (color, lighting changes), editing operations

(caption, logo and border insertion), different lengths, and certain

modifications (frames add/remove)” Wu et al., 2007a, Wu et al.,

2007b to “Videos of the same scene (e.g., a person riding a bike)

varying viewpoints, sizes, appearances, bicycle type, and camera

FIGURE 4
Video fingerprinting principle: a binary descriptor extracted from a query video (fingerprint) can unambiguously identify all the near-duplicated
versions of that content.
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motions. The same semantic concept can occur under different

illumination, appearance, and scene settings, just to name a few.”

Basharat et al., 2008. Our study will stay at a generic level and will

use these terms as referred to in the cited studies.

Finally, a fingerprinting method is said to feature dataset

search efficiency if the computation of the fingerprints and the

matching procedure ensure low, application dependent

computation time. The dataset search efficiency is assessed by

the average computation time needed to identify a query in the

context of a considered video fingerprinting use case (that is,

execution time on a given processing environment and on a given

repository).

By comparing among them these three methodological

frameworks, it can be noted that:

• Indexing and fingerprinting share the concept of tracking

content thanks to information directly extracted from

that content (that is, both indexing and fingerprinting

are passive tracking technique); yet, while fingerprinting

tracks the content per se, indexing rather tracks a whole

semantic family related to that content. From the

applicative point of view, indexing and fingerprinting

differ in the unicity property.

• Watermarking and fingerprinting share the possibility of

tracking both an original content and its replicas

modified under a given level of accepted distortion;

yet watermarking requires the insertion of additional

information (that is, watermarking is an active tracking

technique) while fingerprinting solely exploits

information extracted from the very content to be

tracked.

Moreover, note that video fingerprinting is also sometimes

referred to as (perceptual) video hashing Nie et al., 2015, Liu,

2019, Anuranji and Srimathi, 2020. Yet, distinction should be

made with respect to robust video hashing Fridrich and

Goljan, 2000, Zhao et al., 2013, Ouyang et al., 2015 that

belongs to the security and/or forensics applicative areas

and generally refers to applications where distinction

between content preserving and content manipulation

attacks should be made. Robust video hashing is out of the

scope of the present study.

These properties turn fingerprinting in a paradigm with

potential impact in large variety of applicative fields. The

ability to identify and retrieve video even under distortions is

a powerful tool for automatic video filtering and retrieval,

copyright infringement prevention, media content broadcast

monitoring over multi-broadcast channels, contextual

advertising, or business analytics, to mention but a few

Lefebvre et al., 2009, Lu, 2009, Seidel, 2009, Yuan et al., 2016,

Wary and Neelima, 2019, Nie et al., 2021.

The analogy between the human and video fingerprints

brings to light two key aspects. First, from the conceptual

point of view, it implicitly assumes that video fingerprinting

exists, that is, that a reduced set of information extracted from the

video content makes it possible for the content to be tracked. As

this concept cannot be a priori proved, it requires comprehensive

a posteriori validation in a consensual evaluation framework, as

discussed in Section 3. Secondly, from the methodological point

of view, any video fingerprinting processing pipeline is composed

of two main components: the fingerprint extractor (that is, the

method for computing the fingerprint) and the fingerprint

detector (that is, the method for searching similar content

based on that fingerprint). Consequently, the state-of-the-art

studies in Section 4 will be presented according to these two

items.

3 Evaluation framework

In a nutshell, the performances of a video fingerprinting

system can be objectively assessed by evaluating its properties

(uniqueness, robustness, and dataset search efficiency) on a

consensual, statistically relevant dataset, and this section is

structured accordingly. Section 3.1 presents the quantitative

measures that are most often considered in state-of-the-art

studies, alongside with their statistical grounds. Section 3.2

deals with the datasets to be processed in video fingerprinting

experiments and presents the principles for their specification as

well as some key examples that will be further referred to in

Section 4.

3.1 Property evaluation

The evaluation of the uniqueness and the robustness

properties can be achieved by considering fingerprinting as a

statistical binary decision problem. Be there a query sequence

whose identity is looked up in a reference dataset with the help of

a video fingerprinting system.

According to the binary decision principle, when comparing

a query to a given sequence in the dataset, two hypotheses can be

stated:

oH0: the query is a replica of a video sequence identified though

the tested fingerprint.

oH1: the query is not a replica of the video sequence identified

through the tested fingerprint.

The output of the system can be of two types: positive, when

the query is identified as replica of a video sequence and negative

otherwise.

When confronted to the ground truth, the statistical

decisions can be labeled as: true, when the result provided by

the test is correct and as false otherwise.

Consequently, four types of decisions are made:
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oFalse positive (or false alarm, denoted by fp): the system

erroneously accepts the query as a copy of a reference video

sequence.

oFalse negative (or missed detection, denoted by fn): the

system erroneously rejects a query as a copy of a reference

video sequence.

oTrue positive (denoted by tp): the system correctly accepted

a query as a copy of a reference video sequence.

oTrue negative (denoted by tn): the system correctly rejected a

query as a copy of a reference video sequence.

The objective evaluation of a video fingerprinting system is

achieved by deriving performance indicators from the four

measures above.

To evaluate the uniqueness property, two measures are

generally considered: the Pfa (Probability of False Alarm),

and the Prec (Precision) rate, Su et al., 2009, Lee and Yoo, 2008:

Pfa � fp

fp + tn
Prec � tp

tp + fp

Pfa and Prec are also referred to as FPR (False Positive Rate)

and TPR (True Positive Rate), respectively.

To evaluate the robustness property, the Pmd (Probability of

Missed Detection), and the Rec (Recall) rate, are generally

considered:

Pmd � fn

tp + fn
Rec � tp

tp + fn

An efficient fingerprinting method (featuring both unicity

and robustness) should jointly ensure low values for Pfa and

Pmd while having Prec and Rec values close to 1. The actual

thresholds for these entities depend on the specific use case.

Although Prec and Rec are two measures commonly used in

the evaluation of any information retrieval system, they are not

statistical measures as they do not consider the true negative

results. Hence, to comprehensively present the properties of a

system, Pfa and Pmd should also be considered.

In practice, several other derived and/or complementary

performance indicators can be considered, such as the

F1 score, the ROC (Receiver Operating Characteristic), the

AUC (Area Under the Curve), or the mAP (mean Average

Precision).

From a theoretical point of view, the dataset search efficiency

can be expressed by the computational complexity, that expresses

the number of elementary operations required for computing

and matching fingerprints as a function of video sequence

parameters (frame size, frame rate) and repository size. As

such an approach is limitative for NN-based algorithms, the

dataset search efficiency property is commonly assessed by the

average processing time required by the video fingerprinting

system to identify the query within the reference dataset and to

output the result for a query. The average processing time can be

obtained by averaging the processing time required by the system

for the considered collection of queries. Of course, such an

evaluation implicitly assumes that detail description is

available about the computing configuration (CPU, GPU)

performances as well as about the size of the dataset.

3.2 Evaluation dataset

Regardless the evaluated property, the dataset plays a central

role, and its design is expected to observe to three constraints:

statistical relevance, application completeness, and consensual

usage.

The statistical relevance (and implicitly, the reproducibility

of the results) mainly relates to the size of the dataset that should

ensure the statistical error control (e.g., the sizes of Pfa, Pmd, the

related relative errors, . . . ) during the algorithmic evaluation and

comparison. From this point of view, fingerprinting properties

are expected to be reported with statistical precision (e.g.,

confidence limits for the abovementioned entities).

The application completeness mainly relates to the type of

content included in the dataset, that is expected to serve and to

cover the applicative scope of the developed method.

The consensual usage relates to the acceptance of the dataset

by the research community: this item relates to the possibility of

objectively comparing results reported in different studies.

Of course, each dataset and each application evaluated on a

specific dataset reach a different trade-off among these three

desiderata. Table 1 provides a comparative view about some of

the most often considered datasets (see Section 4); some of these

corpora are introduced here-after.

TRECVID (TREC Video Retrieval Evaluation) framework

Trecvid, 2022, Douze et al., 2008 is a key example in this respect,

as it provides consequent benchmarking datasets. Sponsored by

the NIST (National Institute of Standards and Technology) with

additional support from other US governmental agencies,

TRECVID is structured around different “tasks” focused on a

particular aspect of the multimedia retrieval problem, as ad-hoc

video search, instance search, and event detection, to mention

but a few. TRECVID datasets consider video copies that are

generated under video transformations, such as blurring,

cropping, shifting, brightness changing, noise addition,

picture-in-picture, frame removing, or text inserting Wang

et al., 2016, Mansencal et al., 2018.

Related efforts are also carried out under different

frameworks, such as Muscle-VCD (or simply Muscle) Law-To

et al., 2007b or VCDB (Large-Scale Video Copy Detection

Database) Jiang and Wang, 2016. Research institutes active in

the field, like INRIA in France, also created INRIA Copy Days

dataset Jegou et al., 2008. National and/or international research

projects are also prone to generate datasets Open Video, 2022,

Garboan and Mitrea, 2016.
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With the advent of NN approaches, research groups affiliated

to popular multimedia platforms operators organized and made

available large datasets, as presented in the last 5 rows in Table 1.

For instance, YouTube-8M Segments dataset Abu-El-Haija et al.,

2016 includes human-verified labels on about 237K segments

and 1,000 classes, summing-up to more than 6 million video ID

or more than 350,000 h of video. The dataset is organized in

about 3,800 classes with an average of 3 labels per video. Of

course, several other AI datasets coexist. For instance, Zhixiang

et al., 2018 points to three of them: CCV (Columbia Consumer

Video) Jiang et al., 2011, YLI-MED (YLI Multimedia Event

Detection) Bend, 2015, Thomee, 2016, and ActivityNet

Heilbron et al., 2015. Note that unlike the TRECVID datasets,

the datasets mentioned in this paragraph are not specifically

designed for fingerprinting applications but for general video

tracking applications (including indexing): hence, the near

duplicated content is expected to be created by the

experimenter, according to the application requirements and

the principles above.

4 Methodological frameworks

While today any fingerprinting state-of-the-art study cannot

be either exhaustive or detailed, this section rather focusses on

illustrating the main trends than on the impressive variety of

studies. It is structured according to the two main steps in a

generic fingerprinting computing pipeline: fingerprinting

extraction (that is, spatio-temporal salient information

extraction) and fingerprinting matching (that is, comparing

salient information extracted from two different video

sequences). These two basic steps are, in their turn, composed

TABLE 1 Examples of datasets processed for fingerprinting evaluation. The lower part (last 5 rows) corresponds to corpora processed by
fingerprinting method exploiting NN.

Dataset No. of
video clips

Total
duration

Average
clip
duration

Attacks Additional info

Muscle-VCD 2007 101 (15 originals) 80 h (2.5 h
originals)

47 min 30 s change of color/brightness

100,000 additional videos in option (to serve as

background distraction)

blur

recording with an angle

logos/subtitles insertion

vertical shift

flipping

CC_WEB_vVIDEO
2007

13,129
(9,300 originals)

551 h (387.5 h
originals)

2 min 30 s compression

photometric variations

postproduction

content modification (frame
add/remove)

frame rate modification

TRECVID 2011 11,256
(201 originals)

400 h (6.7 h
originals)

2 min camcording

picture in picture

insertions of patterns

compression

change of gamma

decrease in quality

postproduction

VCDB 2014 9,236 (528 originals) 2,030 h (27 h
originals)

73 s insertion of patterns

camcording

scale changes

picture in picture

CCV 2011 9,317 210 h 80 s 20 semantic labels (bird, soccer, baseball, . . . )

UCF101 2012 13,320 27 h 7 s action recognition data set of realistic action
videos

ActivityNet 2015 19,994 849 h 2 min 30 s specialized for human activity understanding

YLI-MED 2015 50,000 625 h 45 s specialized for research in multimedia event
detection

Youtube-8M2018 6,100,000 350,000 h 3 min 30 s
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of several sub-steps Douze et al., 2008, Lee and Yoo, 2008, Su

et al., 2009. On the one hand, the fingerprinting computation

generally includes video pre-processing (e.g., letterboxing

removal, frame resizing, frame dropping and/or key-frame

detection), local feature extraction, global feature extraction,

local/global feature description, temporal information retrieval,

and the means for accelerating the search in the dataset (inversed

file, etc.). On the other hand, the detection procedure generally

includes some time-alignment operations (time origin

synchronization, jitter cancelation, . . . ), followed by

information matching.

Significant differences occur in the ways these steps are

implemented. Hence, this section will be structured into two

categories, further referred to as conventional (Section 4.1) and

NN-based fingerprinting (Section 4.2) methods. The former

category relates to the earliest fingerprinting methods (e.g.,

2009–2019) and stems from image processing and machine

learning, being backboned by information theory concepts.

The latter category is incremental with respect to the former

one, as it (partially) considers concepts and tools belonging to the

NN realm for achieving fingerprint extraction and matching. Of

course, studies combining conventional and NN tools also exist

Nie et al., 2015, Nie X. et al., 2017, Duan et al., 2019, Zhou et al.,

2019 that will be discussed in Section 4.2.

4.1 Conventional methods

4.1.1 Main directions
As a common ground, these methods stem from image

processing, machine learning, and information theory

concepts and leverage the fingerprinting extraction on three

incremental levels Garboan and Mitrea, 2016.

First, in an attempt to get to frame aspect distortion

invariance, the fingerprinting is extracted from derived

representations such as 2D-DWT (2D Discrete Wavelet

Transform) coefficients Garboan and Mitrea, 2016, 3D-DCT

(3D Discrete Cosine Transform) coefficients Coskun et al.,

2006, pixel differences between consecutive frames, temporal

ordinal measure of average intensity blocks in successive frames

Hampapur and Bolle, 2001, visual attention regions Su et al.,

2009, quantized block motion vectors, ordinal ranking of average

gray level of frame blocks, quantized compact Fourier–Mellin

transform coefficients, ordinal histograms of frames Kim and

Vasudev, 2005, Sarkar et al., 2008, color layout descriptor, ...

Secondly, frame content distortion invariance can be

achieved by the complementary between global features

incorporating geometric information (e.g., centroid of gradient

orientations of keyframes Lee and Yoo, 2008 or invariant

moments of frames edge representation) and local features

based on interest points (corner features, Hessian-Affine,

Harris points, SIFT (Scale-Invariant Feature Transform),

SURF (Speeded Up Robust Features)) generally described

under the BoVW (Bag of Visual Words) framework Douze

et al., 2008, Jiang et al., 2011.

Thirdly, video format distortion invariance is generally

handled by using a large variety of additional synchronization

mechanisms, pair designed with the feature selection, from

synchronization block, based on wavelet coefficients to

K-Nearest Neighbors matching Law-To et al., 2007a of

interest points or Viterbi-like algorithms Shikui et al., 2011.

These main directions as well as their mutual combinations

will be considered in the next section as structuring elements.

They will be illustrated by a selection of 15 studies, published

between 2009 and 2019, that will be presented in chronological

order. The functional synergies among and between these studies

are synoptically presented in Figure 5 that is structured in three

layers, shaped as hemicycles:

• the outer blue layer relates to local feature description,

exemplified through MPEG-CDVS (Compact Descriptors

for Visual Search), ORB (Oriented Fast and Rotated

BRIEF), SURF, Transformed domains, SIFT, CS-LBP

(Center-symmetric Local Binary Patterns), and HOG

(Histogram of Oriented Gradient).

• the middle gray layer relates to global features, exemplified

through luminance component, color histograms,

and BoVW.

• the inner blue layer relates to the temporal features,

exemplified through luminance spectrogram, motion

vectors, histogram correlation, optical flow, and TIRI

(Temporal Informative Representative Image).

The order of the classes in each hemicycle is chosen to allow

for a better visual representation of the synergies among them.

The studies represented in gray-shadowed rectangles correspond

to conventional methods while the studies represented in white

rectangles correspond to NN-based method that also include

conventional modules.

4.1.2 Methods overview
The complementarity between visual similarity and temporal

consistency is exploited in Tan et al. (2009) to achieve scalability

during the detection and localization of video content replicas.

The video content synchronization is modeled as a network flow

problem. Specifically, the chronological matching of the frames

between the two video sequences is replaced by the search for a

maximal path that carries the maximum capacity in transmission

network, under constraints of typemust-link and cannot-link. As

the theoretical solution thus obtained can feature a large

complexity, the study also suggests an a posteriori

simplification based 7 heuristic constraints. The study exploits

the idea that the temporal alignment leverages the constraints on

visual feature effectiveness and to prove this, a Hessian-Affine

detector and PCA-SIFT (Principal Component Analysis) feature

are considered in the experiments. On the detection side, key-
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point matching is considered. The experiments are structured at

four levels: partial segments of full-length movies to videos

crawled from YouTube, detection of near-duplicates in a

dataset of more than 500 h, near-duplicate shot detection and

copy detection on TRECVID and Muscle-VCD-2007 datasets,

respectively.

A fingerprinting method that is optimized for searching of

strongly modified sequences in reduced-size video datasets is

presented in Douze et al. (2010). The fingerprints are computed

from a subset of frames, either periodically sampled from the

video sequence or chosen according to a visual content rule (key

frames). The local visual information is extracted through

Hessian-Affine detectors followed by SIFT and CS-LBP

descriptors Heikkila et al., 2009. The descriptors are

subsequently clustered by a bag of words approach combined

to a Hamming Embedding procedure. To improve search

efficiency, an inverted file structure is finally considered. For

the fingerprinting retrieval, a spatio-temporal verification is

performed to reduce the number of potential candidates. The

experiments are carried out on the TRECVID 2008 dataset and

show how the method parameters can be adjusted to reach a

trade-off between accuracy and efficiency.

The study reported in Yang et al. (2012) is based on SURF

points Bay et al., 2008 that are first extracted at the frame level.

After dividing the frame into 16 even square blocks, the number

of SURF points in each quadrant is traversed to build a third-

order Hilbert curve that will pass through each quadrant,

resulting in an adjacent grid that keeps the same

neighborhood as the original image. Finally, the hash bits are

computed as the differences of SURF points. To match two

fingerprints, the CSR (Clip Similarity Rate) or the SSR (Sequence

Similarity Rate) are calculated when the query and the reference

videos have the same length, or different length, respectively. The

former (CSR) relates to the mean of the matching distances

between the 2 hashes while the latter (SSR) represents a weighted

average of matched, mismatched, and re-matched frames in

query video. The experiments select 40 source videos from

TRECVID 2011 framework and 60 of their replicas (logo

insertion, picture in picture, video flipping, Gaussian noise).

Three types of metrics are used to evaluate the method: Prec,

Rec and ROC. For a preestablished Prec value (set at 0.8 in the

experiments), the advanced algorithm has the best Rec value

(0.92) compared to the solutions advanced in Zhao et al. (2008)

(Rec = 0.78) and in Kim and Vasudev (2005) (Rec = 0.57).

Aiming at obtaining fingerprint invariance against rotations,

Jiang et al., 2012 suggests the joint use of HOG and RMI (Relative

Mean Intensity) to express the visual characteristics in the

frames. The fingerprinting matching is based on the Chi-

square statistics. The experimental results are obtained by

processing the Muscle corpus and are expressed in terms of

matching quality, computed as the ratio of correct answers to

total number of queries.

An early work presented in Ngo et al. (2005) considers an

approach to video summarization that models the video as a

temporal graph, by detecting its highlights based on analyzing

motion vectors. That work is the backbone of the fingerprinting

FIGURE 5
Conventional fingerprintingmethod synopsis: the hemicycles (areas) related to the local, global, and temporal features are located at the outer,
middle, and inner parts of the figure, respectively. Inside each hemicycle, examples of state-of-the-art solutions are presented. Conventional
methods are presented in gray-shadowed rectangles while NN-based methods that also include conventional modules are represented in white
rectangles.
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technique presented in Li and Vishal (2013) with a focus on the

compactness of the fingerprint. The key steps of the algorithm are

preprocessing and segment extraction, computing the SGM

(Structural Graphical Model), graph partitioning using the

graph normalized cuts method, fingerprint extraction, and

fingerprint quantization by applying RAQ (Randomized

Adaptive Quantizer). For the fingerprint extraction step, the

authors selected the TIRI method, based on frame averaging

followed by 2-D DCT, Esmaeili et al., 2011. The Hamming

distance is used during the matching stage. To test the

proposed method, 600 different videos were collected from

YouTube, then copy videos were created using 8 different

attacks of three major types: signal processing attacks, frame

geometric attacks, and temporal attacks. The results present

better accuracy particularly with restricted fingerprint length

compared to TIRI Esmaeili et al., 2011, CGO (Centroids of

Gradient Orientations) Lee and Yoo, 2006, and RASH (Radial

hASHing) Roover et al., 2005.

The method presented in Thomas and Sumesh (2015) stands

for a simple yet robust color-based video copy detection

technique. The first step consists of summarizing the video by

extracting the key frames, then generating the TIRI, thus

including temporal information in the fingerprint. The second

step extracts the color correlation group of each pixel of the

TIRIs. The color correlation is clustered into 6 groups, by

comparing the intensity of each component in the RGB color

space (e.g., group 1 corresponds to Rxy ≥Gxy ≥Bxy). Finally, the

histogram of the color correlation values is considered as the

fingerprinting representation of the video. The matching is done

by calculating the normalized distance of the histograms

representing the source and the query video clips. The

experiments are run on a dataset of 22 source videos and of

some of their basic near-duplicated versions (letterboxing,

pillarboxing, rotations, . . . ). Compared to other state-of-the-

art techniques like SIFT or basic color histogram, the advanced

color correlation histogram system shows better performances

(for the considered modifications) but remains sensitive to color

changes (such as grey scale conversion or contrast changes).

A multifeatured video fingerprinting system, designed to

jointly improve the accuracy and the robustness is advanced

in Hou et al. (2015). The fingerprint computation starts by

extracting spatial features from the key frames that have been

preprocessed (size and frame rate uniformization), then

partitioned into Nx × Ny non overlapping blocks. Both

global and local features are extracted as the mix of the color

histogram of all sub images and SURF points, respectively.

Additionally, an optical flow feature is extracted as a temporal

domain feature: it is represented as a two-dimensional vector that

reflects the motion among successive frames. The fingerprinting

detection is based on a multiple feature detection matching

method that combines the local color histogram feature and

the optical flow of SURF points. For the experiments, 30 videos

from TRECVID 2010 dataset are processed. Compared to other

video fingerprinting algorithms based on local descriptor, such as

CGO Hong et al., 2010 and Harris Lee and Yoo, 2008, the video

detection Prec and Rec are slightly improved.

Belonging to the DWT-based fingerprinting family, the study

presented in Nie et al. (2015) also focusses on the fingerprint

dimensionality. The advanced fingerprinting scheme consists of

two types of coefficients, intra-cluster and inter-cluster, thus

preserving both global and local information. After

normalizing the video clips (at 300 × 240 pixels, 500 frames),

the first step is to cluster the frames, according to a graph model

based on the K-means algorithm, whose parameters are

estimated from the relationships among frames. To select the

feature that represents a frame, the fourth order Cumulant of

Luminance Component is computed, thus ensuring invariance to

different types of distortions (Gaussian noise addition, scaling,

lossy compression, and low-pass filtering). The next step reduces

the dimensionality while preserving the local and global

structures thanks to an algorithm referred to as DOP (Double

Optimal Projection): the dimensionality reduction is obtained by

multiplying the cumulant coefficient matrix by a mapping

matrix. The distance vector thus obtained results in two types

of fingerprints: the statistical fingerprint, represented by the

kurtosis coefficient of the distance vector and the geometrical

fingerprint, represented by the binarization of the distance

vector. The matching procedure is performed in two steps:

first, according to the distance between the statistical

fingerprints and then according to the Hamming distance

between the geometric fingerprints (an empiric threshold of

0.18 is considered for the binary decision). The experiments

are performed on a dataset of 300 original video clips and of some

of their replicas (MPEG compression, letterboxing, frame

change, blur, shifting, rotations) and result in both Prec and

Rec larger than 0.95.

The technique presented in Mao et al. (2016) assumes that

the probability that five identical successive scene frames occur in

two different videos is very low. The fingerprint computation

starts by frame resizing (down to 108 × 132) and division (into

9 × 11 sub-regions). For each sub-region, two types of

information are extracted from the luminance component: the

mean value of the sub-region and 4 differential elements of the

sub-region sub-blocks. This process generates 720 elements in

total counting 144 mean values and 576 differential values. The

fingerprint is subsequently quantized and clustered. A matching

technique based on binary search of inverted file is implemented.

A test dataset was created by collecting 510 Hollywood film clips

and 756 of their replicas (re-encoding, logo addition, noise

addition, picture in picture, . . . ). An average detection rate of

0.98 is obtained.

The Shearlet transform is a multi-scale and multi-

dimensional transform that is specifically designed to address

anisotropic and directional information at different scales. This

property can by be exploited in fingerprinting applications, as

demonstrated in Yuan et al. (2016), where a 4-scale Shearlet
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transform with 6 directions is considered. The fingerprinting

definition considers both low and high frequency coefficients and

is defined under the form of the normalized sum of SSCA (sub-

band coefficient amplitudes). Low frequency coefficients are

supposed to feature invariance with respect to common

distortions, hence, to ensure the fingerprinting robustness.

The high frequency coefficients, on their side, are supposed to

keep visual content inner information, hence, to contribute to the

method uniqueness. Such frame-level fingerprint is coupled to a

TIRI of the video. The search efficiency is based on the use of IIF

(Invert Index File) mechanism. The experimental results are

carried out on visual content sampled from TRECVID

2010 and form INRIA Copy Day dataset Jegou et al., 2008.

The replicas are obtained through geometrical distortions

(letterboxing, rotation), luminance distortions, noise addition

(salt and pepper, Gaussian), text insertion, and JPEG

compression. The quantitative results are expressed in terms

of TPR, FPR, and F1 score and consider as ground two state-of-

the-art methods based on the DCT on Ordinal Intensity

Signature (OIS). The method main advantage is given by its

resilience to geometric transformations (gains of about 0.3 in F1

score).

The study Wang et al., 2016 is centered around the usage of

the temporal dimension expressed as the temporal correlation

among successive frames in a video sequence. To this end, the

video sequence is structured into groups of frames centered on

some key frames (that is, the temporal context for a key frame is

computed based on both preceding and succeeding frames). A

fingerprint is subsequently extracted from each group of frames.

From a conceptual standpoint, the fingerprint is based on the

color correlation histogram computed on the frame sequence.

Yet, to enhance the overall method speed, this visual information

is processed through several types of operations. First, the

dimensionality is reduced by projection on a random, bipolar

(+1/−1) matrix. Secondly, a binary code is defined based on a

weighted addition of the color correlation histogram elements.

Finally, the search speed is accelerated by an LSH (Locality

Sensitive Hashing) algorithm Datar et al., 2004. The matching

algorithm is based on LCS (Longest Common Subsequence)

algorithm. The experiments consider 8 transformations

included in the TRECVID 2009 dataset and report results

(expressed in terms of Prec and Rec) that are compared

against a solution relaying on BoVW and SIFT Zhao et al.,

2010: according to the type of attacks, absolute gains between

5 and 14% in Prec and between 6 and 12% in Rec are shown.

Although the method was optimized for reducing the search

time, no experimental result is reported in this respect.

A fingerprinting system based on contourlet HMT (Hidden

Markov Tree) model is designed in Sun et al. (2017). The

contourlet is a multidirectional and multiscale transform that

is expected to handle the directional plane information Do and

Vetterli, 2004 better than the well-known wavelets transform.

HMT generates links between the hidden state of the coefficients

and their respective children. Before the extraction of the

fingerprint, a normalization phase takes place. It unifies the

frame rate, the width, and the height, and converts the frames

to grayscale. Once normalized, each frame is partitioned into

equal blocks, thus preserving the local features. The contourlet

transform is then applied to each block to obtain the contourlet

coefficients which are fed to the HMT model to generate the

standard deviation matrices. Finally, the SVD (Singular Value

Decomposition) is used to reduce the dimension of the resultant

standard deviation matrices. The video fingerprint is created by

concatenating the fingerprints extracted from all the frames. This

study adopts a 2-step matching algorithm. In the first step, the

fingerprint of a random frame is used to compute its distance to

all the fingerprints present in the dataset. The N best matches are

further investigated in the second step where the squared

Euclidean distance between all the frames presenting the

query clip and a referenced clip is calculated. The reference

video with the minimum distance is identified as the matching

result. Compared to the CGO based method Lee and Yoo, 2008,

the Sun et al., 2017method achieves better performances in terms

of the probability of false alarm and the probability of true

detection.

Ouali et al., 2017 extends some basic concepts from audio to

video fingerprinting. To this end, the video sequence is

considered as a sequence of frames that are first resized. The

fingerprint encodes the positions of several salient regions in

some binary images generated from the luminance spectrogram;

in this study, the term salient designates the regions featuring the

highest spectral values. The selection of the salient areas can be

done at the level of the frame or at the level of successive frames.

The former considers a window of spectrogram coefficients

centered on the related median while the latter considers the

regions that have the highest variations compared to the same

regions in the previous frame. The experimental results are

carried out on the TRECVID 2009 and 2010 datasets and

show that the fingerprint extracted on sequences of frames

outperforms the fingerprint extracted at the level of frames.

The study presented in Liu (2019) addresses the issue of

reducing the complexity and the execution time of the fingerprint

matching in large datasets. The method to extract the fingerprint

is referred to as rHash and it is derived from the aHash method

Yang et al., 2006. First, a pre-processing step reduces the frame

rate to 10, uniformizes the resolution to 144x176, and generates

the TIRIs Esmaeili andWard, 2010. Secondly, the rHash involves

4 steps: image resizing, division into blocks, block-wise local

mean computation, and the binarization of each pixel based on

the correspondent block mean value. The rHash outputs a

fingerprint composed of 12 words of 9 bits each. For the

matching process, an algorithm based on a look-up table,

word counting, and ordering operations is advanced. The

TRECVID 2011 and the VCDB Jiang and Wang, 2016

datasets are processed when benchmarking the advanced

method against aHash and DCT-2ac hash Esmaeili et al., 2011
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methods: higher accuracy as well as increased searching speed are

thus brought to light.

As video content is preponderantly recorded, stored, and

transmitted in compressed formats, fingerprints extracted

directly from the compressed stream will beneficially eliminate

the need for decoding operations. While early studies Ngo et al.,

2005, Li and Vishal, 2013 already considered MPEG motion

vectors as a partial information in fingerprinting applications,

Ren et al., 2016 can be considered as an incremental step: the

fingerprinting computation combines information extracted

from the decompressed (pixel) domain to information

extracted at the MPEG-2 stream level. First, from the

decompressed I frames, key frames are selected according to

their visual saliency. To this end, histogram-based contrast is

computed for each I frames alongside with the underlying image

entropy. Then, key frames are selected according to the Person’s

coefficient. For any selected key frame, both global and local

features are extracted as the color histograms and ORB

descriptors, respectively. Finally, motion vectors directly

extracted from the MPEG-2 stream serve local temporal

information: specifically, motion vectors angle histograms are

computed. Hence, the key frame fingerprint is a combination of

the color histograms, ORB descriptors and motion vector

normalized histogram. The video fingerprint is computed as

the set of key frame fingerprints. The matching procedure is

individually performed at the level of the three components (i.e.,

based on their individual appropriate matching criteria) and the

overall decision is achieved through fusing decisions made on

multiple features by a weighted additive voting model. In

experiments, the color histogram, ORB descriptors and

motion vector histograms weights are set to 0.2, 0.4, and 0.4,

respectively. The experimental results are obtained by processing

the TRECVID 2009 dataset and consider one state of the art

measure based on SIFT. The gains of the advanced algorithm

have been evaluated in terms of NDCR (Normalized Detection

Cost Rate), F1 score, and copy detection processing time.

4.1.3 Discussion
The previous section brings to light that the fingerprinting

conventional methods form a fragmented landscape. While the

general methodological framework is unitary (cf. Section 3), each

study ambitions to take a different applicative challenge, from

searching of strongly modified sequences in reduced-size video

datasets to reducing the complexity and the execution time of the

fingerprint matching. The evaluation criteria are different, with a

preponderancy of Prec, Rec and F1 that are generally computed

on datasets sampled from the corpora presented in Table 1; yet,

the criteria of sampling the reference datasets are not always

precised. In this context, no general and/or precise conclusion

about the pros and the cons of the state-of-the-art methods can

be drawn.

However, the value of these research efforts can be

collectively judged by analyzing their steadily evolution, as

illustrated in Figure 6. This figure covers the 2009—2019 time

span and presents, for each analyzed year, the key conceptual

ideas (the dark-blue, left block) as well as the methodological

enablers in fingerprinting extraction (the blue, right-upper block)

and matching (the light-blue, right-lower block)2.

Figure 6 and Section 4.1.2 show that the state-of-the-art is

versatile enough to pragmatically offer solutions to specific

applicative fields, without being able to provide the ultimate

fingerprinting method. As an attempt in reaching such a solution,

NN—based solutions are considered for some or all of the blocks

in the fingerprinting scheme, as explain ion Section 4.2.

4.2 NN-based methods

4.2.1 Main directions
The class of NN-based video fingerprinting methods can be

considered as an additional direction with respect to the

conventional fingerprinting methods presented in Section 4.1.

They inherit its basic conceptual workflow: pre-processing video

sequence, extracting spatial and temporal information,

eventually aggregating them into various derived

representations (be them binary or not), matching.

However, NN-based video fingerprinting methods rely (at

least partially) on various types of NN, from AlexNet Krizhevsky

et al., 2012 and ResNet (Residual neural network) (He et al.,

2016) to CapsNet (Capsule Neural Network) Sabour et al., 2017

and LSTM Hochreiter and Schmidhuber, 1997, sometimes

requiring specifically designed architectures Zhixiang et al.,

2018. Yet, such an approach does not exclude the usage of

partial conventional solutions in conjunction with NN, e.g.,

BoVW can be considered as an aggregation tool of visual

features extracted by CNN (Convolutional Neural Network)

Zhang et al., 2019. Moreover, the matching algorithm

generally comes across with the NN considered in the

extraction phase.

These main directions will be illustrated by a selection of

20 studies, published since 2016, that will be presented in

chronological order. The relationship among and between

them is depicted in Figure 7, that is also structured in three

hemicycles (as Figure 5), yet their meanings are slightly different:

• the outer blue layer corresponds to the spatial features,

exemplified through: CRBM(Conditional Restricted

Boltzmann Machine), ResNet, NIP (Nested Invariance

Pooling), VGGNet, AlexNet, GoogleNet, new structures

designed to the fingerprinting purpose, RetinaNet, and

Tracked HetConv-MK (heterogeneous convolutional

multi-kernel).

2 For a specific year, the information presented in Figure 6 may
correspond to several references.
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FIGURE 6
Incremental evolution of the conventional methods.

FIGURE 7
NN-based fingerprinting method synopsis: the hemicycles (areas) related to the spatial, temporal, and spatial-temporal features are located at
the outer, middle, and inner parts of the figure, respectively. Inside each hemicycle, examples of state-of-the-art solutions are presented.
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• the middle gray layer corresponds to temporal features,

exemplified through: weight correlation, LSTM (Long-

Short Term Memory), SiameseLSTM (Siamese LSTM),

Deep Metric Learning, and BiLSTM (bidirectional LSTM).

• the inner blue layer corresponds to spatial-temporal

features, exemplified through: 3D-ResNet50, and

CapsNets structures.

The order of the classes in each hemicycle is again chosen to

allow for a better visual representation of the synergies

among them.

4.2.2 Methods overview
The work presented in Jiang and Wang (2016) is twofold.

First, the VCDB is organized and presented by a comparison to

other existing datasets (e.g., Muscle-VCD) used to evaluate video

copy detection algorithms. In parallel, a fingerprinting method

referred to as SCNN (Siamese Convolutional Neural Network) is

advanced. SCNN is composed of two identical AlexNet

Krizhevsky et al., 2012 followed by a connection function

layer that computes the Euclidean distance between the two

AlexNet outputs, and finally a contrastive loss layer Hadsell et al.,

2006. The information thus obtained is structured by BoVW. The

experiments focus on the relationship between the dataset and

the efficiency of the system. The rule of thumb that is thus stated

is “the bigger and the more heterogeneous the dataset, the harder

for the systems to accurately detect copy videos”. Specifically, the

SCNN achieves F1 = 0.69 on VCDB.

A two-level fingerprint approach is presented in Nie X. et al.

(2017). First, LRF (Low-level Representation Fingerprint) is

computed as a tensor-based model that fuses different visual

features such as SURF and color histograms. Then, the DRF

(Deep Representation Fingerprint) extracts the deep semantic

features by using a pretrained VGGNet Karen and Andrew, 2014

containing five convolutional layers and 3 fully connected layers.

The DRF takes 224 × 224 RGB images as input and outputs a

4096-dimension vector. The matching solution is also structured

at two levels: the LRF component identifies a candidate set while

the DRF further identifies the source video from the candidate

set. The experiments consider both CC_WEB_VIDEOWu et al.,

2009 and Open Video Open Video, 2022 datasets, thus

processing about 20,000 source clips. The method is

benchmarked against four methods LRTA Li and Vishal,

2012, 3D DCT Baris et al., 2006, CGO Lee and Yoo, 2008,

and CMF Nie et al., 2017b that it outperforms in terms of

ROC curve.

The study in Schuster et al. (2017) discloses a video stream

fingerprinting. The method takes advantage of the loophole in

the MPEG-DASH standard Sodagar, 2011 that induces an

outburst of content dependent packet bursts, despite the

stream encryption. The video is represented as information

bursts that are sent to the end user from the streaming

services. The data traffic features are captured via a script on

the client device or intruding detectors in the network. To this

end, a CNN composed of 3 convolution layers, max pooling, and

2 dense layers is designed. To train the model, an Adam

optimizer Kingma and Jimmy, 2014 was used as well as a

categorical cross-entropy error function. The dataset is

extracted from 100 Netflix titles, 3,558 YouTube videos,

10 Vimeo and 10 Amazon titles. A different model is trained

for each streaming platform. The classifier achieved 92%

accuracy. Inspired by these results, the study in Li (2018)

further investigates the aspects specifically related to network,

by extracting the information from the Wi-Fi traffic, where both

transport and MAC (Media Access Control) layers are encrypted

via TLS (Transport Layer Security), and WPA-2 (Wi-Fi

Protected Access 2), respectively. The Multi-Layer Perceptron

(MLP) model achieves 97% accuracy to identify videos from a

small 10-video dataset.

Instead of using the output of the CNN as visual features, the

study in Kordopatis-Zilos et al. (2017a) advances a method that

extracts the image features starting from the activation values in

the convolutional layers. The extracted information forms a

frame-level histogram. A video-level histogram is then

generated by summing all the frame-level histograms. For fast

video retrieval, TF-IDF weighing is coupled to an inverted file

indexing structure Sivic and Zisserman, 2003. To evaluate the

proposed method, the CC_WEB_VIDEOWu et al., 2009 dataset

is used as well as 3 pre-trained CNNs, namely AlexNet

Krizhevsky et al., 2012, GoogleNet Szegedy, 2015, and

VGGNet Simonyan and Zisserman, 2014. GoogleNet

performed the best (mAP = 0.958), followed by AlexNet

(mAP = 0.951) than VGGNet (mAP = 0.937).

A deep learning architecture with a focus on DML (Deep

Metric Learning) is presented in Kordopatis-Zilos et al. (2017b).

For feature extraction, the video is sampled to 1 frame per second

then fed to a pre-trained CNN model (AlexNet Krizhevsky et al.,

2012 and GoogleNet Szegedy, 2015 are considered). For the DML

architecture, a triplet-based network is proposed where an

anchor, a positive and a negative video are used to optimize

the loss function. The first layer of the DML is composed of

3 parallel Siamese DNN (Deep Neural Network). In their turn,

the Siamese DNN are composed of 3 dense fully connected layers

followed by a normalization layer where the sizes of the layers

and their outputs depend on the input size. The VCDB dataset

Jiang and Wang, 2016 is used to train the DML. To evaluate the

proposed system, the CC_WEB_VIDEO Wu et al., 2009 dataset

is used. The system scoresmAP = 0.969 using the GoogleNet and

mAP = 0.964 when using AlexNet, thus increasing the

performances presented in Kordopatis-Zilos et al. (2017a).

The study presented in Li and Chen (2017) develops a deep

learning model capable of extracting spatio-temporal

correlations among video frames based on a CRBM Taylor

et al., 2007 that can simultaneously model the spatial and

temporal correlations of a video. The spatial correlations are

modeled by the connections between the visible and hidden
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layers at a given moment. The temporal correlations are modeled

by the connections among the layers at different timestamps. The

CRBM is paired with a denoising auto-encoder Vincent et al.,

2010 module that reduces the dimension of the CRBM output by

reducing the redundancies and discovering the invariants to

distortions. This process can be applied recursively. A so-

called post-processing module takes as input 2 video

fingerprints and decides whether they are similar or not. The

TRECVID 2011 dataset is used for benchmarking. The advanced

method reaches F1 = 0.98, thus outperforming four state-of-the-

art techniques: SGM Li and Vishal, 2013 F1 = 0.91), 3D-DCT

Esmaeili et al., 2011 F1 = 0.89, Lee and Yoo, 2008 F1 = 0.78, and

RASH Roover et al., 2005 F1 = 0.79.

The study in Wang et al. (2017) investigates the influence of

the frame sampling that is usually applied at the beginning of

fingerprint extraction and sets its goal on computing a compact

fingerprint without decreasing the frame rate (that is, without

frame dropping). Three main steps are designed: frame feature

extraction, video feature encoding, and video segment matching.

The frame feature extraction is realized by means of a VGGNet-

16 Simonyan and Zisserman, 2014 composed of 13 convolutional

layers, 3 fully connected layers, and 5max-pooling layers inserted

after the convolutional layers. This step follows by PCA

whitening on the CNN output to reduce its dimensionality.

The feature compression and aggregation are realized via the

sparse coding technique and timeline aligning by pooling the

frame features into 1sec. interval (max-pooling is chosen). The

matching features fast retrieval is ensured by using a KD-tree to

store the fingerprints and temporal alignment implemented

according to the temporal network described in Jiang et al.

(2014). To run the tests, the VCDB dataset Jiang and Wang,

2016 is used. The advanced method performs better than two

baseline fingerprinting methods: CNN with AlexNet Jiang and

Wang, 2016, and Fusion with SCNN Jiang and Wang 2016. The

experiments also studied the impact of frame sampling: F1 =

0.7 when processing all the frames and it drops to F1 = 0.66 when

processing 1 frame per second.

The study in Hu and Lu (2018) combines CNN and RNN

(Recursive Neural Network) architectures for video copy

detection purposes. The method is divided into 2 main

steps. First, a CNN architecture extracts content features

from each frame: by a ResNet model He et al., 2016, each

frame is represented by a 2048-component vector. Secondly,

spatio-temporal representations are generated on top of

frame-level vectors. Thus, a Long-Short Term Memory unit

based Siamese Recurrent Neural Networks (SiameseLSTM) is

trained. The training is achieved by selecting clips with the

same length (20 frames) from CC_WEB_VIDEO Wu et al.,

2009. For video searching/matching purposes, the video is cut

into 20 frame clips, before their respective spatial-temporal

representations are generated. To identify the copied

segments a graph based temporal network algorithm is

used Tan et al., 2009. This algorithm is tested using the

VCDB dataset Jiang and Wang, 2016 and yields Prec = 0.9,

Rec = 0.58, and F1 = 0.7233.

Liu, 2018 represents an example of spatial fingerprinting

relying on CNN. The principle is to represent the video sequence

as a collection of conceptual objects (in the computer vision

sense) that are subsequently binarized. To compute the

fingerprint, the video sequence is first space/time down

sampled. For each down sampled frame, visual objects are

computed using the RetinaNet structure Lin et al., 2017. The

binarization of the detected objects is recursively block-wise

achieved: each object is divided into a group of non-

overlapping blocks and each block in several non-overlapping

subblocks. The fingerprinting bits are assigned according to a

thresholding operation: the subblock pixel value average is

compared to the average of all the pixels in the corresponding

block. The matching technique considers an IIF structure and a

weighted Hamming distance. The experimental results concern

the values of Prec, Rec and F1, computed on VCDB dataset and

show that a 10% higher recall rate can be achieved with a decrease

of 1% prediction rate [the comparison is made against an ML

method based on SIFT descriptors as well as against the CNN

method presented in Wang et al. (2017)].

The method presented by Zhixiang et al. (2018) proposes a

nonlinear structural video hashing approach to retrieve videos in

large datasets thanks to binary representations. To this purpose, a

multi-layer neural network is designed to generate a compact

L-bit binary representation for each frame of the video. To

optimize the matching process, a subspace grouping method

is applied to each video, thus decomposing the nonlinear

representation to a set of linear subspaces. To compute the

distance between 2 video clips, the distances between the

underlying subspaces are integrated, where the Hamming

distance is used to compute the distance between a pair of

subspaces. CCV Jiang et al., 2011, YLI-MED Bend, 2015 and

ActivityNet Heilbron et al., 2015 datasets are selected to test the

performance of the algorithm that is benchmarked against

DeepH (Deep Hashing) Liong et al., 2015, SDH (Supervised

Discrete Hashing) Shen et al., 2015, and KSH (Kernel-Based

Supervised Hashing) Liu et al., 2012. The experimental results

show that the advanced method outperforms state-of-the-art

solutions with the increase of code length.

An unsupervised learning video hashing technique is

advanced in Ma et al. (2018). The first step is to extract the

spatial feature of the video frames using AlexNet Krizhevsky

et al., 2012. The output of the CNN is fed to a single-layer LSTM

network. Next, a time series pooling is applied. This step

combines all the frame level features to form a single video

level feature. Finally, an unsupervised hashing network extracts a

compact binary representation of the video. To test its

effectiveness, UCF-101 Soomro et al., 2012 dataset and 100 h

worth of videos are downloaded from YouTube and used as

dataset. Few unsupervised hashing networks were evaluated and

the ITQ-ST (Iterative Quantizing—Spatio-Temporal) and BA-
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ST (Binary Autoencoder—Spatio-Temporal) Carreira-Perpinán

and Raziperchikolaei, 2015 methods worked the best to represent

the videos, resulting into mAP≥ 0.65.
The joint use of CNN (ResNet He et al., 2016) and RNN

(SiameseLSTM) is studied in Yaocong and Xiaobo (2018). The

selected CNN is ResNet50 that takes 224 × 224 RGB frames as

input and outputs a 2048-dimension vector per frame. The RNN

achieves the spatio-temporal fusion and sequence matching. To

further optimize spatio-temporal feature extraction, positive

pairs (similar video content) and negative pairs (dissimilar

video content) are fed to the SiameseLSTM. The resulting

feature vectors are considered as the video fingerprint. For the

matching process, a graph based temporal network Tan et al.,

2009 is used. For training, the CC_WEB_VIDEOWu et al., 2009

dataset is used, and the video clips are normalized to 20 frames.

For evaluation, the VCDB dataset Jiang and Wang, 2016 is used.

The method yields Prec = 90% and Rec = 58%, which is slightly

better than the solution advanced inWang et al. (2017) and Jiang

and Wang (2016).

The challenge of retrieving the top-k video clips from a single

frame is taken in Zhang et al. (2019), where visual features are

extracted by utilizing CNN and BoVW. The first step is to extract

representative frames at fixed-time intervals and to resize them to

256 × 256 pixels. The second step is to feed all those images to a

CNN feature extractor, implemented by the AlexNet architecture

Krizhevsky et al., 2012. For each frame, a 4096-dimension feature

vector is generated. This vector is the input for the BoVW

module which aims to create a visual dictionary for the

reference video dataset via a feature matrix. The extraction of

visual words from visual features is done via the K-means

clustering method. To optimize the retrieval time, frame pre-

clustering is done, also based on K-means. A VWII (Visual Word

Inverted Index) is deployed to improve search efficiency. The

performance of the algorithm is benchmarked against SIFT Zhao

et al., 2010, and BF-PI de Araújo and Girod, 2018 methods, on

two datasets, namely Youtube-8M Abu-El-Haija et al., 2016 and

Sports-1M Karpathy et al., 2014. The experimental results

consider 4 criteria, namely precision evaluation on the size of

dataset, precision evaluation on the number of visual words,

efficiency evaluation (execution time) on the number of k results,

and the efficiency evaluation (execution time) on the size of

dataset.

Duan et al., 2019 presents an overview of the CDVA

(Compact Descriptors for Video Analysis standard) promoted

by ISO/IEC JTC 1 SC 29, a. k.a MPEG. The DVA framework is

specified incrementally with respect to MPEG-CDVS. To extract

video features, the key frames and the inter feature prediction are

determined before being fed to a deep learning model based on

CNN. The proposed CNN model is derived from NIP feature

descriptors which adds robustness to the system. To make the

system light weight and multiplatform, the NN was compressed

by using the Lloyd-Max algorithm. To reduce the time of video

retrieval time, the output of the CNN is binarized via a one-bit

scalar quantizer. A Hamming distance is used for the fingerprint

matching. For testing, a dataset with source and attacked clips is

created gathering 4,693 matching pairs as well as 46,930 non-

matching pairs. By coupling the deep learning extracted features

with the handcrafted features proposed in CDVS, the system

gained further precision.

The study in Zhou et al. (2019) presents a video copy

detection method establishing synergies among CNN and

conventional computer vision tools. The first step consists in

dividing the video into equal-length video sequences, from which

frames are sampled with a fixed period, thus allowing the

computation of the TIRI for each sequence. The second step

consists in extracting the spatial features using a pre-trained

AlexNet Krizhevsky et al., 2012 model, followed by a sum-

pooling layer to reduce the matrix dimension. The model

takes as input the TIRI and outputs a 256-dimension vector.

The third step extracts the temporal features. In this respect, it

starts by feeding all video sequence frames to the AlexNet and

follows by averaging all frame matrices and by computing their

centroids. Two matrices representing the distance in cylindrical

coordinates (distance and angle) between the centroids are

subsequently computed. The fourth step first creates a BoVW

by clustering the extracted spatial features through a K-means

algorithm and then structures the BOVW in an inverted index

file. During the copy detection step, for each query-reference

pair, three individual distances are computed: between spatial

representations, between temporal distance representations and

between temporal angle representations. These three distances

are fused to compute a decision score that is compared to a pre-

defined threshold, thus ascertaining whether the query is a copy

version or not. Evaluated under the TRECVID 2008 framework,

the method achieves mAP = 0.65.

A supervised stacked HetConv-MK Singh et al., 2019 and

BiLSTM hashing model is designed in Anuranji and Srimathi

(2020). The model integrates two main blocks devoted to spatial

and temporal feature extraction, respectively. First, the

convolutional block computes the spatial features via passing

the frames through a stacked convolutional filter and a max-

pooling layer. Secondly, the BiLSTMmodel computes the stream

forward and backward. Finally, a fully connected layer generates

a binary fingerprint that integrates the output of the previous

units. The experimental results are obtained out by processing

3 datasets: CCV Jiang et al., 2011, ActivityNet Heilbron et al.,

2015, and HMDB (HumanMetabolome Database) Kuehne et al.,

2011, with a total of almost 30,000 clips. To determine the

effectiveness of the algorithm, Hamming ranking, and

Hamming lookup are used in conjunction with mAP and

Prec. The advanced method is compared to existing methods

such as SDH (Supervised Discrete Hashing) Shen et al., 2015,

supervised deep learning Liong et al., 2015, Deep Hashing Liong

et al., 2015, and ITQ (Iterative Quantization) Gong et al., 2013.

The results show an improvement in accuracy introduced with

large scale dataset.
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A video hashing framework, referred to as CEDH

(Classification-Enhancement Deep Hashing) is conceived in

Nie et al. (2021). CEDH is a deep learning model that is

composed of 3 main layers. First, a VGGNet-19 Simonyan

and Zisserman, 2014 layer to extract frame-level features.

Then, a LSTM Hochreiter and Schmidhuber, 1997 network is

adopted to capture temporal features. Finally, a classification

module is implemented to enhance the label information. To

train the model, the loss term is matched to the peculiarities of

the layer: triplet loss, classification loss, and code constraint

terms, respectively. To evaluate its performance, 3 video

datasets are processed: the FCVID (Fudan-Columbia VIDeo)

dataset Jiang et al., 2018, HMDB Kuehne et al., 2011, and UCF-

101 Soomro et al., 2012, thus resulting in a total of 7,070 video

clips for training and 3,030 clips for testing. The CEDH is

benchmarked against 8 state-of-the-art solutions, namely:

locality sensitive hashing Datar et al., 2004, PCA hashing

Wang et al., 2010, iterative quantization Gong et al., 2013,

spectral hashing Weiss et al., 2009, density sensitive hashing

Jin et al., 2014, shift-invariant kernel local sensitive hashing

Raginsky and Lazebnik, 2009, self-supervised video hashing

Song et al., 2018, and deep video hashing Liong et al., 2017.

The evaluation criteria are mAP, Prec and Rec.

A hybrid method combining deep learning and hashing

techniques to achieve a video fingerprinting technique is

presented in Xinwei et al. (2021). The method is based on

quadruplet fully connected CNN, centered around 4 3D

ResNet-50 networks that extract spatio-temporal features. The

input is composed of 4 videos: the source clip, a copy of the clip (a

modified version extracted from the original), and 2 clips that are

not related to the original clip. The output consists of 2 elements:

a 2048-dimension vector and a 16 bits binary code. For training

and testing, three public datasets are considered: UCF-101

Soomro et al., 2012, HMDB Kuehne et al., 2011 and FCVID

Jiang et al., 2018. A normalization process of the 4,986 videos

takes place before the training, where each video is downsized to

320×240 and only the first 100 frames of each clip are used to

identify the video. The proposed method is mainly compared to a

similar deep learning method that shares global architectural

similarities called NL_Triplet. The two methods have a similar

performances and behaviors in the various benchmarking setups.

The study in Li et al. (2021) presents a fingerprinting method

that takes advantage of the capabilities of the CapsNet Sabour

et al., 2017 to model the relationships among compressed

features. The architecture of the convolution layers is

composed of two 3D-convolution modules extracting

spatio–temporal features, followed by an average pooling

module along temporal dimension and finally by a 2D-

convolution module. The role of the primary capsule layer is

convolution computation and dimension transformation, while

the advanced capsule is composed of 32 neurons and is

responsible for matrix transformations and dynamic routing

Sabour et al., 2017. The output of this architecture is a 32-

dimension fingerprint. A triplet network is designed for the

matching. During the training, the matching network requires

three inputs: an anchor sample (original video), a positive sample

(a copy/modified of the original video), and a negative sample

(non-related video). The dataset is composed of 4,000 videos

randomly sampled from FCVID Jiang et al., 2018, TRECVID,

and YouTube. The ROC and F1 scores are considered as

evaluation criteria when comparing the advanced method to

DML Kordopatis-Zilos et al., 2017b, CNN + LSTM Yaocong and

Xiaobo, 2018, and TIRI Coskun et al., 2006. The advanced

method achieves a F1 = 0.99 compared to F1 = 0.97 for DML,

F1 = 0.94 for CNN + LSTM and F1 = 0.825 for TIRI.

4.2.3 Discussion
A global retrospective view on the investigated NN-based

methods is presented in Figure 8 that is paired designed with

Figure 6. It originates in 2016 and presents, for each analyzed

year, the key conceptual ideas (the dark-blue, left block) as well as

the methodological enablers in fingerprinting (the blue, right

block). Note that in this case the fingerprint extraction and

matching are merged (as they are tightly coupled).

The previous section brings to light that the NN-based

fingerprinting is still an emerging research field. It inherits its

methodological framework from conventional fingerprinting,

while updating both the fingerprint extraction and matching.

Since 2016, fingerprint extraction gradually shifted from

considering NN solution at an individual level (e.g., spatial or

temporal features) to holistic, 3D Nets able to simultaneously

capture integrated spatio-temporal features. Intermediate

solutions, combining NN and conventional image processing

tools (e.g., SURF, TIRI, or BoVW) are also encountered. The

fingerprinting matching generally comes across with the

fingerprinting extraction.

The experimental testbed principles are also inherited from

the case of conventional methods. Yet, the datasets are different

in their size as well as in the fact that experimenter generally

creates the attacked versions of the video content (cf. The last

5 lines in Table 1). The evaluation criteria generally cover Prec,

Rec, F1 and mAP. This variety in experimental conditions makes

impossible for an objective performance comparison to be stated.

Figure 8 and Section 4.2.2 demonstrate that the exploratory

work of using NN in conjunction to conventional tools can be

considered as successful and that the way towards effective

NN—only solutions is open Li et al., 2021.

However, when comparing current day conventional to

NN—based solutions, the quantitative results seem

unbalanced in favor of conventional methods. Yet, quick

conclusions should be avoided, as the datasets are of

significantly different sizes and the task complexity is

significantly different. The generic evaluation criteria

introduced in Section 3 are seldom jointly evaluated, with

each study focusing on a specific metric and/or a pair of

metrics. Moreover, note that the computational complexity is
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seldom discussed as a true evaluation criterion, thus making a

sharp decision even more complicated.

5 Challenges and perspectives

Fingerprint challenges and trends are structured according to

the constraints set by current day video production and

distribution, and to the new applicative fields in which

fingerprinting can help, as discussed in Sections 5.1 and 5.2,

respectively.

5.1 Stronger constraints on video
fingerprinting properties

Whilst not being either exhaustive or detailed, Section 4 is

meant to bring light on the very complex, fragmented yet well-

structured landscape of the video fingerprinting methods, as

illustrated in Figures 5–8.

Despite clear incremental progress, achieving the ultimate

method for generic video content (TV/movies/social media)

fingerprinting is still an open research topic that will

continuously be faced to new challenges in terms of: 1) video

content size and typology, 2) complexity of near-duplicated

copies, 3) compressed stream extraction, and 4) energy

consumption reduction.

First, the size of video content is expected to continuously

increase. Social media, personalized video content, business

oriented video content (e.g., videoconferencing) are expected

to lead soon to an average of 38 h a week of video consumption

per person in US Delloite, 2022. Such quantity of content is

expected to be processed, stored and retrieve without impairing

the user experience, hence new challenges in reducing the

complexity of fingerprinting matching are expected to be set.

Secondly, the image/video software editing solutions as well

as professional video transmission technologies (such as

broadcasting, encoding, or publishing) will increase the

number, the variety and the complexity of the near-duplicated

copies to be dealt with. As for time being these near-duplicated

copies are rather considered one-by-one and no attempt to

exploit would-be statistical models unitary representing them,

this trend is expected to increase the constraints on

fingerprinting robustness.

Thirdly, although the video content is mainly generated in

compressed format, just few partial results related to

fingerprinting extraction directly from the stream syntax

elements are reported Ngo et al., 2005, Li and Vishal, 2013,

Ren et al., 2016, Schuster et al., 2017. This highly contrast with

related applicative fields, like indexing and watermarking, where

FIGURE 8
Evolution of the NN methods.
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more advanced results are already obtained Manerba et al., 2008;

Benois-Pineau, 2010, Hasnaoui and Mitrea, 2014.

Finally, video fingerprinting is also expected to take the

challenge of reducing the computational complexity, following

a green computing trend in video processing Ejembi and Bhatti,

2015, Fernandes et al., 2015, Katayama et al., 2016. This working

direction is expected to be coupled to the previous one, namely

designing green compressed video fingerprinting solutions.

With respect to the above-mentioned four items, short term

research efforts are expected to address several incremental

aspects, from both methodological and applicative

standpoints. The former encompasses aspects such as the

explicability of the NN-based results, the relationship between

semantics, content, and the human visual system, the

questionable possibility of modeling the modifications induced

in near-duplicated content, . . . The latter is expected to

investigate the very applicative utility of conventional

performance criteria, the computational complexity balancing

among extraction/detection in context of NN-basedmethods and

massive datasets, the possibility of identifying a unique structure

or a set of structures per performance criterion to be

optimized, etc.

As a final remark, note that no convergence towards a

theoretical model able to accommodate the current-day efforts

can be identified and, in this respect, information theory,

statistics and/or signal/image processing are expected to still

be at stake during long-term research efforts. Such a

theoretical model is expected to have different beneficial

effects, from allowing a comparison among existing methods

to be carried out with rigor to identifying the tools for answering

the applicative expectancies and/or the theoretical bounds.

5.2 Emerging applicative domains

Fingerprinting benefits are likely to be become appealing for

several new applicative domains, such as fake news identifying

and tracking, unmanned vehicles video processing, metaverse

content tracking, or medical imaging, to mention but a few. This

extension rises new challenges not only in terms of applicative

integration between fingerprinting and other technologies but

also in terms of content type and composition.

In the sequel, we shall detail the cases of fingerprinting for

visual fake news and for the video captured by unmanned

vehicles.

5.2.1 Visual fake news
While the concept of fake news does not still have a sharp and

consensual definition Katarya and Massoudi, 2020, it can be

considered that, in the video context, it relates to the malicious

creation of a new video content, whose semantic is not genuine

and/or whose interpretation yields to false conclusion. The fake

news creation starts generally from some original video content

that is subsequently edited. Hence, such a problem is multifold

and various types of solutions can be envisaged: detecting

whether a content is modified or not, detecting the original

content that has been manipulated, detecting the last authorized

modification of the original content, etc. Consequently, various

video processing paradigms can contribute (individually and/or

combined) to elucidate some of these aspects, Lago et al., 2018,

Zhou et al., 2020, Agrawal and Sharma, 2021, Devi et al., 2021.

For instance, video forensics are generally considered as a

tool to identify content modification, solely based on the

analyzed content. On its side, watermarking provides effective

solutions for identifying video content modifications and/or the

last authorized user but requires the possibility of modifying the

original content prior to its distribution.

Video fingerprinting affords the detection of the original

content that has been manipulated to create the fake news

content. Figure 9 illustrates the case3 where two video

contents, from two different repositories, are combined to

create a fake content. In this respect, the challenge of

designing fingerprinting methods robust to content cropping

is expected to be taken soon. This example shows that fingerprint

is complementary to forensics. With respect to watermarking,

fingerprinting has as main advantage is passive behavior (it does

not require the original content to be modified).

Moreover, video fingerprinting is still expected to be

complemented with security mechanisms, and blockchain

(also referred to as Distributed Ledger Technologies—DLT)

seems very promising in this respect.

In a nutshell, a blockchain is a distributed information

storage technology, ensuring trust in the tracking and the

authentication of the binary data exchanged in a

decentralized, peer-to-peer network: even the smallest (1 bit)

modification in a message can be identified. As such a bit

sensitivity property is incompatible with the digital document

tracking (where multiple digital representations can be associated

to a same semantic), the blockchain principles should be coupled

to the visual fingerprints that ensure robustness to modifications

Allouche et al., 2021.

From a methodological standpoint, various potential

solutions can be conceived, according to the targeted

applicative trade-off. In this respect, the naïve solution would

be to replace the DLT native hash function (e.g., SHA256) by the

fingerprinting extraction; yet, such a solution is likely to induce

some pitfalls in the system security. Alternatively, the

specification of management layers over existing DLT solution

is also possible: while such an approach would not impact the

DLT security, it is likely to drastically increase the system

complexity (smart contract definition and deployment,

3 This example is not based on any real situation.
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complex operation execution, on-chain/off-chain load

balancing). Intermediate solution can also be thought.

5.2.2 Unmanned vehicles
Drones, robots, and autonomous cars are steadily increasing

their applicative scope, thus rising new challenges in a large variety

of research fields, including video processing. For instance, large

video repositories with data produced by unmanned vehicles are

expected to be organized soon, for serving different applicative

scopes: a posteriori analysis/disambiguation in case accidents

occur, real-time assistance in case of partial failures (on-board

cameras are partially out of order), distributed cloud-to-edge

computing, etc. Figure 10 illustrates the case in which two out

of the three cameras available on a delivery drone are out of order.

As the delivery trajectory can never be 100% reproducible, video

fingerprinting can be an effective tool for searching a near-

duplicated video content in the archive, starting from the

camera video stream still in use.

FIGURE 9
Fake video content can be tracked to its original sources thanks to fingerprinting.

FIGURE 10
Usage of archive video for drone navigation in case of camera failure.
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In this respect, new challenges related to the very video

content type, to its composition as well as to its security

(content integrity) are expected to be taken.

First, the video captured by the unmanned vehicles is no

longer expected to be optimized for the human visual system

peculiarities and should answer a new set of requirements

allowing for a better and safer navigation. In a context in

which the very concept of just noticeable difference should be

extended Jin et al., 2022, new types of local/global features,

matched to the navigation task specificities, are expected to be

designed and evaluated.

Secondly, multiple cameras are generally positioned on an

unmanned vehicle on fixed positions, thus producing a set of

video streams (e.g., 6 to 12 streams according to the type of

vehicle). As these video streams are spatially corelated and

aligned in time, they are expected to permit the development

of new fingerprinting approaches based on global features, rather

than of features extracted at the level of each stream. The main

difficulty related to the fact that the unmanned video streams are

neither independent nor complying with the multi-views

paradigm.

Finally, the content integrity issue can be dealt with by

considering DLT or watermarking solutions.

6 Conclusion

The present paper provides a generic view on video

fingerprinting: conceptual basis, evaluation framework, and

methodological approaches are first studied.

They show that the fingerprint landscape is complex yet well

structured around the main steps in the fingerprinting workflow:

pre-processing of the video sequence, extraction of spatio-

temporal information, aggregation of basic features into

various derived representations, and matching. While this

generic framework is set some 20 years ago, the NN advent

positioned itself as a precious enabler in applicative-oriented

optimizations. Moreover, both conventional and NN solutions

can be integrated into global fingerprinting solutions that are able

today to process datasets larger than 350,000 h of video while

featuring Prec and Rec values larger than 0.9! This opens the door

for effective solutions based on 3D Nets able to simultaneously

capture integrated spatio-temporal features.

Moreover, fingerprinting is still an open to research topic.

From both methodological and applicative standpoints, it is

expected to encompass aspects such as the explicability of the

NN-based results, the relationship between semantics, content,

and the human visual system, or the questionable possibility of

modeling the modifications induced in near-duplicated content.

Extracting the fingerprinting directly from the compressed

stream syntax elements and synergies with green encoding

approaches are also to be dealt with in the near future.

New challenges in terms of applicative integration between

fingerprinting and other technologies as well as in terms of

content type and composition will be raised by emerging

trends in video production and distribution, such as fake news

content tracking, unmanned vehicles video processing, or

metaverse content tracking.
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Glossary

AUC Area under the curve

BoVW Bag of Visual Words

BRIEF Binary Robust Independent Elementary Features

CCV Columbia Consumer Video

CDVA Compact Descriptors for Video Analysis

CDVS Compact Descriptors for Visual Search

CEDH Classification-Enhancement Deep Hashing

CGO Centroids of Gradient Orientations

CNN Convolutional Neural Network

CPU Computing Processing Unit

CRBM Conditional Restricted Boltzmann Machine

CS-LBP Center-symmetric Local Binary Patterns

DCT Discrete Cosine Transform

DeepH Deep Hashing

DML Deep Metric Learning

DOP Double Optimal Projection

DRF Deep Representation Fingerprint

DWT Discrete Wavelet Transform

FAST Features from Accelerated Segment Test

F1 F1 score

FCVID Fudan-Columbia Video Dataset

FPR False Positive Rate

GPU Graphical Processing Unit

HetConv-MK heterogeneous convolutional multi-kernel

HMDB Human Metabolome Database

HOG Histogram of Oriented Gradient

LCS Longest Common Subsequence

LRF Low-level Representation Fingerprint

LSH Locality Sensitive Hashing

LSTM Long Short-Term Memory

mAP mean Average Precision

ML Machine Learning

MLP Multi-Layer Perceptron

NDCR Normalized Detection Cost Rate

NIST National Institute of Standards and Technology

NIP Nested Invariance Pooling

NN Neural Network

ORB descriptor Oriented Fast and Rotated Brief descriptor

Pfa Probability of false alarm

Pmd Probability of missed detection

PCA Principal Component Analysis

Prec Precision

RAQ Randomized Adaptive Quantizer

Rec Recall

RMI Relative Mean Intensity

RNN Recursive Neural Network

ROC Receiver Operating Characteristic

SCNN Siamese Convolutional Neural Network

SDH Supervised Discrete Hashing

SIFT Scale-Invariant Feature Transform

SSCA Sub-Band Coefficient Amplitudes

SURF Speeded Up Robust Features

TF-IDF term frequency–inverse document frequency

TLS Transport Layer Security

TRECVID TREC Video Retrieval Evaluation

VCDB Large-Scale Video Copy Detection Database

VWII Visual Word Inverted Index

WPA-2 Wi-Fi Protected Access 2.
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