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Abstract: The land surface of Malaysia mostly constitutes forest cover. For decades, forest fires have 
been one of the nation’s most concerning environmental issues. With the advent of machine learn-
ing, many studies have been conducted to resolve forest fire issues. However, the findings and re-
sults have been very case-specific. Most experiments have focused on particular regions with inde-
pendent methodology settings, which has hindered the ability of others to reproduce works. An-
other major challenge is lack of benchmark datasets in this domain, which has made benchmark 
comparisons almost impossible to conduct. To our best knowledge, no comprehensive review and 
analysis have been performed to streamline the research direction for forest fires in Malaysia. Hence, 
this paper was aimed to review all works aimed to combat forest fire issues in Malaysia from 1989 
to 2021. With the proliferation of publicly accessible satellite data in recent years, a new direction of 
utilising big data platforms has been postulated. The merit of this approach is that the methodology 
and experiments can be reproduced. Thus, it is strongly believed that the findings and analysis 
shown in this paper will be useful as a baseline to propagate research in this domain. 
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1. Introduction 
Fire is considered an environmental factor in the Mediterranean climate, having 

played an obvious evolutionary role in the structure and function of Mediterranean cli-
mate ecosystems. In the aftermath of wildfires, accelerated erosion occurs [1,2], thus 
threatening the natural regeneration process. Additionally, it is well-acknowledged that 
water erosion, biodiversity, and biotic natural capital affect recovery [3,4]. To that end, 
emergency post-wildfire erosion-mitigation treatments are required to enhance ecosys-
tem sustainability as in highly fire-prone ecosystems featuring losses of biodiversity, eco-
system function, or services following wildfire events occurring with unnaturally high 
frequencies, the magnitude of extent or intensity can result in land degradation or even 
the complete transformation of the ecosystem. In addition to their impacts on the carbon 
cycle, such events, usually called as megafires because of their size, reduce the amount of 
living biomass, affect species composition, affect water and nutrient cycles, increase flood 
risk and soil erosion, and threaten local livelihoods by burning agricultural lands and 
homes. In addition, these fires have devastating impacts on local wildlife, as animals ei-
ther are unable to escape from the fires or become threatened by the loss of their habitat, 
food and shelter. 

Climate change [5] and the wildland–urban interfaces (WUIs) [6] have increased the 
frequency and devastating impacts of wildfires. The effects of global climate change have 
led to a rise in temperature and a fall in precipitation, shaping a prolonged dry and warm 
period that favours the ignition and spread of wildfires [5]. Radeloff et al. [6] stated that 
the upsurge of new housing development in WUI areas, specifically near forest regions, 
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generally increases the likelihood of wildfire occurrence. The combination of the afore-
mentioned conditions converts wildfires into megafires. A megafire is an extraordinary 
fire that devastates a large area. Megafires are notable for their physical characteristics 
including intensity, size, duration, and uncontrollable dimension, as well as their social 
characteristics, including suppression cost, damage, and fatalities [7]. 

Forest fires recur periodically in Malaysia due to many factors, such as human negli-
gence [8,9], topography [10], and meteorology [11]. In the last two years [12–14], haze and 
forest fires caused serious environmental problems in Malaysia and its neighbouring 
countries. Forests play a critical role in sustaining the human environment. Most forest 
fires not only destroy the natural environment and ecological balance but also seriously 
threaten the security of life and property. Thus, the early discovery and forecasting of 
forest fires are both urgent and necessary for forest fire control, and they have become one 
of the nation’s interests. 

Forest fires and the resultant smoke-haze are not relatively new experiences in Ma-
laysia. Despite improved management, wildfires have not been completely eradicated 
and seem to be increasing in intensity and periodically recurring due to many factors, e.g., 
climatic factors, improper peatland management, traditional slash and burn activities, and 
poor water management. In 2019, haze and forest fires caused a serious environmental 
problem for Malaysia and its neighbouring countries, including Indonesia, Singapore and 
Brunei. The forests and peatlands in Pahang caught fire in early February 2019 [15]. In 
August 2019, the forest fires in Riau shrouded the entire Klang valley with dense haze. 
Additionally, some major cities and towns in the state of Sarawak, including Kuching, 
were also affected by the haze resulting from the Kalimantan wildfire. Subsequently, the 
air quality in Kuala Baram and Miri reached hazardous levels that led to Malaysia acti-
vating its National Action Plan for Open Burning and its existing National Haze Action 
Plan on 14 August 2019. Many states were shrouded, including Pahang, Kuala Lumpur, 
Negeri Sembilan, Penang, Putrajaya, Selangor, Sabah and Sarawak, by the haze [16–18]. 
Subsequently, 2.4 hectares (ha) of forest were also burned in Johor in August 2019 [19]. 
Historical data have shown that the incidence of forest fires are more severe in Sabah [20] 
and Sarawak [9] than in Peninsular Malaysia. The worst fire in Sabah happened from 1983 
to 1985 [21] due to the severe drought caused by the El Nino phenomenon [22]. About one 
million ha in mostly over-logged forests disappeared [20]. An uncontrolled forest fire can 
alter forest ecosystems and lead to social, economic, and environmental losses. Moreover, 
pollution from fires leads to respiratory problems in people living hundreds of kilometres 
away. 

From the global perspective, the explosion of machine learning and artificial intelli-
gence had undoubtedly inspired researchers to adopt machine learning and deep learning 
algorithms to combat the issues of forest fires [23,24]. However, most studies have utilised 
independent sets of methodology focussing on particular regions, thus preventing the 
replication of experiments. Since each fire incident may be triggered or promoted by dif-
ferent topologies, climates, weather, forest structures, or landcover conditions [25,26], so-
lutions should be fine-tuned based on the study location to effectively tackle fires. 

To the best of our knowledge, a comprehensive review and analysis has yet to be 
conducted in Malaysia. For this reason, all relevant forest fire efforts from 1989 to 2021 for 
Malaysia are described in Section 2 of this manuscript. The predominant aim of this re-
view is to provide future researchers with a foundation to streamline, progress, and ad-
vance research on forest fires in Malaysia. Subsequently, all data that were exploited by 
the works performed in Malaysia are compiled and reviewed in Section 3. Following the 
rapid increase in the availability of public satellite data motivated by open data policies 
[27], traditional computing platforms may not be able to process and analyse the new-
found petabytes of data. Additionally, the adoption of big data platforms such as Open 
Data Cube [28], Google Earth Engine [29], and Planetary Computer [30] to conduct geo-
spatial analysis also promotes and encourages experimental reproducibility through 
script sharing [27]. Hence, Section 3.1 features a short discussion on the presently available 



Forests 2022, 13, 1405 3 of 38 
 

 

big data platforms. Through the review deliberated in Section 2, we show that no previ-
ously published works exploited the advantage of machine learning for forest fire man-
agement in Malaysia. Consequently, Section 4 presents a discussion of some of the notable 
machine learning and deep learning approaches used to resolve the issue of forest fires 
from a global perspective. Based on all the presented discussions, some challenges, future 
directions, and open research questions are described in Section 5 for future researchers 
that wish to venture into the journey of combating forest fires in Malaysia. A general 
methodology utilising remote sensing data to perform forest fire research is also described 
in Section 6. Additionally, a discussion of the need for a forest fire benchmark dataset and 
general techniques of forest fire detection are elaborated in Sections 7 and 8. Towards the 
end of the manuscript, some commonly employed fire spread models that have yet to be 
adopted in Malaysia are presented in Section 9. Finally, Section 10 provides the conclud-
ing remarks for this entire review. 

2. Related Forest Fire Studies in Malaysia 
Though several reviews have previous been conducted [23,24,31–33], none of them 

were dedicated to forest fires in Malaysia. Hence, a detailed description for each of the 
published works is provided three subsections based on their primary objectives followed 
by an in-depth review of each of the efforts. The first subsection discusses the initial re-
search directions, which is intended to reveal the root causes and impacts of forest fires. 
The main objective of the second subsection is to generate a fire susceptibility map for 
predicting or locating fire incidents by utilising remote sensing information. In the third 
subsection, some of the efforts closely associated with forest fires such as estimating burnt 
areas, assessing the amount of pollutants discharged from forest fires, and analysing the 
relationship between haze events and mortality rate are discussed. To reiterate, the re-
views provided in this section only encompass the efforts that have been performed in 
Malaysia. 

2.1. Root Causes and Impacts of Forest Fire 
The 1983 El Nino Southern Oscillation phenomenon caused a severe drought condi-

tion that ignited horrendous wildfires in the tropical forests of Borneo [22]. Despite the 
dry scenario precipitated by El Nino, Woods [21] mentioned that a large-scale forest fire 
was not triggered when severe droughts were previously encountered. He speculated this 
disastrous fire might have been caused by forest logging, which resulted in the forest be-
coming more fire prone. Approximately one million ha of forest were burnt in Sabah, Ma-
laysia, according to Beaman et al. [20]. The incident sparked interest in researchers and 
communities around the world to measure the severity of the disaster. Additionally, sev-
eral studies have also been conducted to theoretically investigate the root causes of forest 
fires. 

Woods [21] studied the effect and impact of forest fires on primary tropical forests 
and over-logged forests in Sabah. He reported that the tree mortality rate in a logged forest 
is higher than in a primary forest. Regarding the recovery of forest structure, a primary 
forest can recover from fires but a logged forest’s structure recovery greatly depends on 
the secondary tree species grown across the burnt areas. 

Following the devastating forest fire that occurred in 1997 and 1998, the International 
Tropical Timber Organisation Mission visited in September 1998 to review the causes and 
implications of the forest fires in Kalimantan, Indonesia, and Sarawak, Malaysia [9]. They 
reported that primary forests (i.e., undisturbed natural forests) were considerably less 
likely to ignite than logged forests and industrial plantations in the possession and control 
of humans. They reported an estimated 6~7 million ha of land and 800 thousand ha of 
forests were burnt in the incident. A total financial damage of approximate 5~6 billion US 
dollars was assessed. Apart from the economic damage, the health of the communities in 
Malaysia, Indonesia, and neighbouring countries was also severely affected due to the air 
pollution caused by the smoke discharged from the forest fires. Haze events occurred in 
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neighbouring countries during that period, and the atmospheric pollution index was 
higher than 850 for certain locations in Malaysia and Indonesia. It should be noted that an 
air pollutant index value exceeding 300 is considered hazardous to humans based on the 
standard air pollutant index in Malaysia [34]. The importance of utilising remote sensing 
technology to detect and predict forest fire activity was also highlighted and stressed. 

Abdullah et al. [8] investigated plausible factors instigating forest fires that occurred 
from 1991 to 2001 in Peninsular Malaysia. The researchers identified that most of the inci-
dents were caused by human activity such as smoking, hunting, and land preparation by 
farmers involving open burning. Intensified by the elongated draught condition, a fire 
broke out at each of the specified locations. In their study, they discovered there was no 
correlation between natural events and each of the forest fire incidents. The authors also 
emphasised that peat swamp forests were more susceptible to fire due to their unique 
characteristics. One possible reason deduced by them was the formation of thick humus 
layers in the ground that materialised over several years, becoming a potentially suitable 
fire fuel. From 1991 to 2001, the Selangor State of Malaysia was reported have the highest 
frequency of forest fire incidents. 

Musa and Parlan [35] further studied the rationalisation suggested by Abdullah et al. 
[8] regarding the primary factor accountable for forest fires, i.e., human activity. Some of 
the activities mentioned include land operations to prepare for agricultural plantations 
and recreational activities such as hunting, picnicking, and camping. Musa and Parlan 
[35] also considered other natural phenomenon factors such as lightning and combustion. 
Akin to the observation disclosed by Woods [21], Musa and Parlan [35] wrote that primary 
forests were rarely affected by fires and that rates of fire spread were low even when they 
were affected. The authors backed their observations with the following three reasons: (i) 
the lower presence of fuel due to efficient ecological recycling, (ii) the availability of di-
versified plants, and (iii) the higher level of humidity in primary forests. Additionally, 
they also described three categories of fire: underground fires, surface fires and crown 
fires. Of these, underground and surface fires commonly occurred in Malaysian forests. 
They expressed that underground fires usually occur in peat swamp areas and that the 
detection of such fire activity is very challenging since such fires will burn and spread out 
very slowly through the underground. By the time a fire can be observed by a nearby 
community, the fire might have spread across the entire region and require huge resources 
to extinguish. 

Diemont et al. [36] aimed to learn the root causes of forest fires for peat forests (i.e., 
peat swamp areas) in Southeast Asia, and they proposed some solutions to resolve the 
issue. Although their study location was not fixated on Malaysia, it was interesting that 
the authors explored the problem from a different perspective. Undeniably, several of the 
studies mentioned in this subsection showed that most forest fire incidents originate from 
human negligence. Diemont et al. [36] further investigating human activity related to land 
clearing associated with agriculture, and they discovered that most peat fires transpired 
near poor communities in Southeast Asia. Hence, international funding was suggested by 
the authors to replace the income of the communities from peat forests to curb forest fire 
incidents. 

Table 1 summarises the initial related works that primarily focus on examining the 
effect and root causes of forest fires in Malaysia. According to the literature discussed in 
this subsection, it is obvious that human activity is the principal factor leading to forest 
fires. However, it is uncertain whether environmental conditions could advance the like-
lihood of forest fire occurrence in Malaysia. Thus, the next subsection on literature will be 
supplemented with information on related work that utilised remote sensing to under-
stand forest fire incidents in Malaysia. 
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Table 1. Summary of the research efforts into the causes and effects of forest fire. 

Year of Pub-
lication 

References 
Year of 
Studies 

Location Objective 

1989 [21] 1983–1985 Sabah 
Study the tree mortality rate and canopy loss of forest fires in over-
logged forest and primary tropical forests in Sabah. 

1998 [9] 1997–1998 
Sarawak 

Indonesia 

International Tropical Timber Organisation (ITTO) aimed to investi-
gate the effects of forest fires in Indonesia and Sarawak. Human activ-
ity was found to be primary cause. 

2002 [8] 1991–2001 
Peninsular 
Malaysia 

Explore the root causes of forest fire incidents, particularly for peat 
swamps in Malaysia. Human negligence was the predominant factor. 
It was reported that Selangor, Malaysia had the highest number of 
forest fire incidents from 1991 to 2001. 

2002 [35] 1992–1998 
Peninsular 
Malaysia 

Discuss the causes of the forest fires from 1992 to 1998. Human activ-
ity was the biggest element constituting forest fire incidents. It was 
emphasised that peatland fires (underground fires) are difficult to de-
tect. 

2002 [36] - 
Southeast 

Asia 

Show that peatland forest fires are a major issue in Southeast Asia, as 
well as reveal that most of the forest fires were ignited in the vicinity 
of poor communities. Authors recommended international funding as 
a solution to prevent forest fire incidents. 

2.2. Fire Susceptibility Mapping Utilising Remote Sensing 
Remote sensing is defined as the procurement of information about an object without 

requiring any kind of physical contact [37]. In the geoscience domain, it is commonly re-
ferred to as the acquisition of data from satellites (i.e., remote sensing imagery). A Geo-
graphic Information System (GIS) is a software tool that exploits a computer’s capability 
of storing and processing a large amount of data to capture, store, retrieve, analyse, and 
display spatial information [38,39]. Some frequently used GIS software include proprie-
tary Esri Products (e.g., ArcMap, ArcGIS Pro, and ArcView) [40] and the opensource QGIS 
software [41]. 

GIS, in conjunction with remote sensing data and machine modelling, has been com-
monly adopted for the task of forest fire detection [10,38]. Remote sensing imagery (i.e., 
satellite data) provides additional information such as vegetation, land-cover types, to-
pography (e.g., elevation, aspect, and slope), historical hotspot data, and meteorological 
information to cost-effectively analyse forest fire incidents [38]. By utilising GIS technol-
ogy and remote sensing data, a fire susceptibility map can be generated to suggest 
whether a region falls in a highly fire-prone zone or a lowly fire-prone zone. When com-
bined with meteorological information (i.e., weather information), such a model may be 
able to deliver superior forecast accuracy. Early warning prediction modelling allows an 
authority to allocate resources for battling fires depending on the location and severity of 
the forecasted fire incident [11]. In this subsection, all efforts to analyse or detect forest fire 
through fire susceptibility mapping in Malaysia are reviewed. 

Setiawan et al. [10] proposed a spatially weighted fire susceptibility model by com-
bining or aggregating the risk score of several factors affecting forest fires in Pekan, Pa-
hang. They considered the five following elements: land use, distance to road, slope, as-
pect, and elevation. For each of the factors, the authors categorised them into four different 
risk levels, whereby a higher level of risk score indicates a greater risk of fire hazard. For 
instance, the risk score was set to four if the distance from the forest to the road fell be-
tween 0 and 500 m, a risk score justified by the fact that convenient accessibility may in-
dicate a higher rate of human activity. Once the fire risk map was generated, the authors 
validated it according to the hotspot occurrences in 1997 in the study location. Setiawan 
et al. [10] learned that most of the locations that were classified as very high or high-risk 
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regions by the model were also recognised as actual fire hotspots in 1997. Thus, they con-
cluded that the model was able to effectively generate a fire risk map, and they recom-
mended it to be adopted in other areas by considering other factors in the model at the 
same time. 

The first work of Dymond et al. [42] involved mapping and classifying fuel into eight 
types and two soil modifiers for Malaysia and western Indonesia by utilising land-cover 
[43] and tree-cover [44] information. The reclassified eight fuel types were grassland, sea-
sonal agriculture, shrublands, slash from land clearing, slash from agroforestry, second-
ary forest, forest plantation, and primary forest, and the two soil modifiers were mineral 
and peat. 

Following their previous work, Dymond et al. [45] attempted to calibrate the Fine 
Fuel Moisture Code and fire weather index parameters from the Canadian Forest Fire 
Weather Index System (CFFWIS) components in the Canadian Forest Fire Danger Rating 
System (CFFDRS) [46] to generate a fire danger rating system in Malaysia and Western 
Indonesia. Fine-tuning the original index was necessary because most of the fire models 
were developed based on a particular region that is affected by distinct physiographic or 
environmental factors that contribute to the tragedy of forest fires [25]. The study of Dy-
mond et al. [45] was probably the first effort to incorporate meteorological data to generate 
a fire rating system for proactively detecting fires in Malaysia and Indonesia. They vali-
dated their models by verifying the occurrence of hotspots detected from the Along Track 
Scanning Radiometer (ATSR) World Fire Atlas [47] in 2001. It is worth pointing out that 
the index proposed in this work does not consider human activities such as distance from 
road. 

Peng et al. [48] aimed to resolve the issue of the imprecise meteorological data re-
quired to calculate the relative humidity parameters in the fire weather index from the 
CFFDRS [46]. The authors mentioned that if one meteorological station was located more 
than 20 km away from an adjacent station, standard interpolation techniques may be in-
effective for delivering precise meteorological information for the regions between each 
of the stations [49]. To tackle this problem, they proposed the utilisation of remote sensing 
information from MODIS levels 1 and 2 to estimate the relative humidity parameter. Be-
cause they validated the estimated results with relative humidity data obtained from 10 
meteorological stations in Peninsular Malaysia for 30 days in August 2004, with a mean 
absolute error of only 5%, it is safe to assume that the employed technique is suitable for 
performing such estimations. Hence, in the absence of meteorological stations, particu-
larly in remote areas, the proposed method can be used as an alternative to evaluate rela-
tive humidity. 

Patah et al. [11] developed a forest fire risk index model that considered the topo-
graphic danger index, weather danger index, and fuel danger index. The topographic dan-
ger index can be calculated by using the slope, aspect, and elevation parameters, while 
the fuel type risk index was adopted from the Indonesia “Forest Fires Prevention and 
Control Project” [50]. For instance, grassland with scrub was assigned an extreme fire in-
dex, while the natural and manmade forest was assigned a lower fire index. Apart from 
the topographic and fuel index, the authors also accounted for vegetation density to com-
pute the fuel hazard index since a greater density of vegetation implies a larger availabil-
ity of fuel. Due to the absence of complete weather information, the weather danger index 
only considers the temperature and relative humidity. It was calculated by taking the 
mean temperature of the month, dividing it by the relative humidity of the month, and 
multiplying it by 100. The calculated weather danger index was further categorised into 
five groups, in which lower values denote lower risks and higher values indicate higher 
risks of fire occurrence. By adding the value of the fuel hazard index (static elements) and 
the weather danger index (dynamic element), the forest risk index was evaluated and can 
be subsequently used to construct a fire susceptibility map. The model was applied in 
Kuala Selangor, Selangor, for data obtained in June 1999. The authors highlighted the flex-
ibility of the model, in which dynamic information (e.g., weather data) can be accordingly 
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altered to manipulate the model output depending on the supplied meteorological infor-
mation. 

Pradhan et al. [51] built a forest fire risk index model based on a frequency ratio (i.e., 
likelihood ratio) statistical approach in Sungai Karang and Raja Muda Musa Forest Re-
serve in the Selangor State. A higher frequency ratio between the hotspot location and 
each of the forest fire factors implies a larger correlation between the hotspot and each 
factor, while a lower ratio signifies a lower correlation. The risk index was computed by 
accumulating each of the factors’ frequency ratios, whereby a higher risk index denotes 
that a forest is more susceptible to fire incidents. Advanced Very-High Resolution Radi-
ometer (AVHRR) National Oceanic and Atmospheric Administration (NOAA) remote 
sensing images were employed to identify the historical forest fire occurrence in the two-
study locations in Selangor State from 2000 to 2005. The factors scrutinised in the authors’ 
work included (i) land cover (extracted from Landsat-7), (ii) NDVI (processed from Land-
sat-7), (iii) slope (processed from Digital Elevation Map (DEM)), (iv) aspect (processed 
from DEM), and (v) soil map (extracted from agroclimate dataset obtained from 
MACRES). They reported that the model was able to achieve 73.18% accuracy, a preemi-
nent result for fire risk mapping. However, it should be noted that the validation proce-
dure to attain the prediction accuracy was not made available by the authors in the man-
uscript. 

Due to the limitations of the CFFWIS, Peng et al. [52] devised a fire risk index that 
considers forest-cover types by exploiting the concept of pre-ignition heat energy [53] and 
can be calculated using the woody fuel moisture content (FMC) and fuel temperature pa-
rameters. In their work, they measured the ignition probabilities by estimating the amount 
of heat energy essential to flare up a fuel from its current temperature. With the five-ther-
mal spectrum in Advanced Spaceborne Thermal Emission Reflectance Radiometer (AS-
TER), the authors were able to estimate the live land surface temperature (LST) parameter 
needed to compute the FMC. The model was tested over nine days before the fire incidents 
arose with the hotspots detected from ASTER in 2004 and 2005 in Peninsular Malaysia. 
According to the results, the proposed fire risk index significantly increased four days 
before the fire, demonstrating that the model was able to provide an early warning (i.e., 
four days) before the fire broke out. 

De Groot et al. [54] were the first team of researchers to deploy a fully functional fire 
danger rating system (FDRS) in Malaysia and Southeast Asia in 1999, and the system is 
still in operation today; the system can be directly accessed from the Malaysia Meteoro-
logical Department website [55,56]. Akin to the work in Dymond et al. [45], De Groot et 
al. [54] calibrated the CFFWIS specifically for grass and peat fuel types, as both of them 
can be abundantly found across the Southeast Asia region [57]. The modified FDRS pre-
served a similar structure to that of the original CFFWIS. The FDRS fire weather index 
provides a numerical value to assess fire ignition risk, and it can be computed with the 
Initial Spread Index and Buildup Index. The Initial Spread Index takes the Fine Fuel Mois-
ture Code (comprising temperature, relative humidity, wind speed, and rain) as the input 
parameters to anticipate the rate of fire spread, while the Duff Moisture Code and Drought 
Code are provided for the Buildup Index to evaluate the available combustible fuel. Be-
cause the system relies on weather information, present meteorological data will affect the 
generated fire risk maps. Depending on the availability of forecasted weather data, the 
FDRS can be used as a fire forecasting system by employing the forecasted data as the 
input data to the model. The accuracy of this forecasting model to provide an early warn-
ing heavily relies on the reliability of the forecasted weather information. The authors 
pointed out that the FDRS can be adopted as a decision-making tool to assist fire managers 
in planning resources before a fire is instigated. 

Ainuddin and Ampun [58] adopted the Keetch-Byram Drought Index (KDBI) pro-
posed by Keetch and Byram [59] as an alternative index to the CFFWIS. While the CFFWIS 
combines the weather, fuel, and topography to predict the occurrence of forest fires, the 
KDBI measures the soil moisture deficit (i.e., the volume of water required to maximise 
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the soil moisture capacity) to achieve the same goal. A larger KDBI value implies a higher 
deficit of soil moisture, i.e., it denotes that the amount of water present in the soil for 
evaporation or plant transpiration is lesser [60]. On the other hand, a high KDBI value 
implies that the soil is very dry and may increase the probability of wildfires. In this study, 
the authors utilised the daily maximum temperature and total rainfall (i.e., precipitation) 
data obtained from the Malaysia Meteorological Department as the input parameters to 
compute the KDBI value. They employed the model and tested it in four weather stations 
located in different states in Malaysia, namely, (i) Kota Bahru, Kelantan; (ii) Kuching, Sa-
rawak; (iii) Sandakan, Sabah; and (iv) Subang, Selangor. The four regions were selected 
as they represent the distinct climate and weather variations in Malaysia. Furthermore, 
forest fire incidents have also been reported in the vicinities of the selected areas. They 
presented the results of model for five years from 1 January 1990 to 31 December 1995. 
Based on the results, they stated that the highest mean KBDI value was recorded in the 
month of January in Kota Bahru, Kelantan (i.e., the region is more susceptible to forest fire 
in January). The authors highlighted that this was the first work to adopt the KDBI in 
Malaysia for the task of forest fire detection. 

Similar to the work in Peng et al. [52], Pradhan [61] adopted the fire susceptibility 
index based on the concept of pre-ignition heat energy designed by Dasgupta, Qu and 
Hao [53]. In addition to the LST and FMC parameters necessary for computing the original 
index, Pradhan [61] further enhanced the model by incorporating other remote sensing 
data (e.g., fuel maps) and weather information (e.g., temperature and relative humidity) 
to evaluate the risk index. As opposed to the work of Peng et al. [52], Pradhan [61] esti-
mated the LST parameter by utilising MODIS instead of ASTER. Additionally, Pradhan 
[61] also considered live FMC and dry/dead FMC, while Peng et al. [52] only accounted 
for dry woody FMC. Furthermore, an enhanced vegetation index and fuel map extracted 
from MODIS were further integrated to fine-tune the fire risk index to reflect the true 
phenomenon in accordance with the local parameters. Then, the fire susceptibility map 
could finally be generated based on the computed risk index. The author validated the 
fire risk map with the hotspots collected from ASEAN Specialised Meteorological Center 
(ASMC), and they discovered that most of the hotspots were identified in high risk (i.e., a 
risk index of greater than 20) regions of the fire risk map while no/low risk regions were 
recognised as urban areas and dense forests. Pradhan [61] speculated that the model had 
effectively assimilated the multiple parameters, and the model was deemed to have a sig-
nificant spatial sensitivity and accuracy. 

Mahmud et al. [62] used the analytic hierarchy process (AHP) [63] in GIS software to 
weigh and rank the factors influencing forest fires in Pekan, Pahang. The primary goal of 
this study was to generate a simple interface in ArcView software to enable inexperienced 
GIS users to seamlessly use and navigate the tools. Hence, the authors designed an addi-
tional menu bar inclusive of several buttons for the users to straightforwardly add and 
modify the parameters. To apply the AHP, users were required to supply the weight of 
each class/class range in each of the factors (attributes) by using the reclassify geopro-
cessing tools (i.e., the reclassifying factors menu bar added by the authors). Once all of 
them were weighted, the users could use the overlaying geoprocessing tools (i.e., overlay-
ing factors menu bar) that utilise the AHP to produce a fire susceptibility map. It is worth 
pointing out that no validation or testing results were presented by the authors as the 
main intention of the work was to provide a user-friendly interface for users with limited 
knowledge of GIS software to use the tool for producing fire risk maps. 

Razali et al. [64] proposed a fire susceptibility index considering fuel maps, road buff-
ers, and canal buffers for a peat swamp forest in Batu Enam, Pahang. Instead of employing 
the NDVI vegetation index, the authors adopted Tasseled Cap (TC) transformation on a 
Landsat TM image retrieved on 3 April 1999 before performing supervised classification 
to categorise the land cover into nine distinct classes because the authors believed that TC 
was more effective at detecting peat swamp regions. Additionally, Ramsey III et al. [65] 
substantiated that TC was an effective algorithm to detect forest transformation resulting 
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from fires. The authors found that the overall classification accuracy of detecting land 
cover was 94.63%. To incorporate human activity into the proposed index, Razali et al. 
[64] included the road buffer (i.e., distance to road) and canal buffer parameters. They 
subsequently assigned a risk index to each of the class/class ranges for the fuel map, dis-
tance to road, and canal buffers. For instance, a road buffer value between 0 and 50 m was 
assigned a risk index of 5, implying an extreme fire risk. This was reasonable because a 
nearer distance of a road to a forest would denote a higher rate of human activity since 
such forest is more easily accessible. The fire risk index was then calculated by summing 
up the risk of each pixel for all three of the factors. By utilising the index, a fire suscepti-
bility map could then be generated. To validate the effectiveness of the model, the authors 
validated their results with the hotspot datasets retrieved from NOAA AVHRR in 1998, 
and the results suggested that the model was able to accurately detect most of the lower 
risk fire region. It should be noted that an acute degraded peat swamp forest fire was 
sparked in the study location on 12 March 1998. 

Ismail et al. [66] utilised a fire risk index based on the peat depth, stand density, bulk 
density, moisture content, dryness index, water table, and species composition to produce 
a fire map. Northern Selangor, Kuala Langar, and the Southeastern Pahang peatland re-
gion were selected because they are very susceptible to forest fires, with several fire inci-
dents reported in each region. Although it is interesting that the authors considered so 
many factors contributing to forest fires, it should be noted that the process of integrating 
various factors to compute the risk index was not delineated by the authors. 

Hyer et al. [67] analysed the fire distribution patterns obtained from the product of 
Wildfire Automated Biomass Burning (WFABBA) from Multifunction Transport Satellite 
(MTSAT) and the results from MODIS MOD14 in Malaysia and Indonesia by comparing 
34 months of historical data in both satellites from September 2008 to July 2011. They ob-
served broadly similar fire pattern activity across both products. While MTSAT 
WFABBA’s overall detection was lower than that of MODIS MOD14, it was able to pick 
up some of the “missing fire” in Sarawak, Malaysia, that was not recognised in MODIS 
MOD14. As the MTSAT was a geostationary satellite, it can provide near-real-time im-
agery covering Southeast Asia and Australia. Encouraged by their results, the authors 
concluded that the MTSAT WFABBA was a promising product for describing a real-time 
fire activity pattern in Southeast Asia. Hyer et al. [67] highlighted that further enhance-
ments of the MTSAT WFABBA were obstructed by the pre-processed MTSAT data. 

Analogous to the work of Mahmud et al. [62], Suliman et al. [68] also adopted the 
AHP mathematical model to weigh the factors influencing forest fires. While Mahmud et 
al. [62] aimed to build a user-friendly system, Suliman et al. [68] were devoted to 
weighting the potential factors (i.e., criteria) and classes (i.e., sub-criteria) through a ques-
tionnaire survey completed by three domain specialists from the Fire and Rescue Depart-
ment Malaysia. Topography (e.g., slope and aspect), fuel map (e.g., eight land-cover and 
two soil types), and human activity (e.g., distance to road) parameters were the factors 
weighted by the experts. Details of the weighting and ranking can be found in the authors’ 
initial work written in Bahasa Malaysia by Mohd and Mastura [69]. Once the weighting 
was evaluated by the specialist, the authors employed the AHP to produce a fire suscep-
tibility map and subsequently disseminated the map through a WebGIS application. Su-
liman et al. [68] tested the model in Selangor, Malaysia, since a number of forest fire inci-
dents had been identified over the last two decades in the study location. Based on the 
model, a total area of 32.83 km2 in Selangor was recognised as region with an extreme fire 
risk, e.g., Raja Muda Musa Forest Reserve and Kuala Langat Forest Reserve were identi-
fied as potential fire locations. The authors also pointed out most of the high-risk areas 
were in regions with peat soils. 

Ash’aari and Badrunsham [70] employed the ATSR World Atlas Fire data to explore 
the spatial and temporal distribution of fire incidents in Malaysia. Aggregated monthly 
hotspots generated from Algorithm 2 for ATSR World Fire Atlas from 1997 to 2008 were 
collected by the authors. To understand the temporal distribution, the monthly 
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aggregated hotspots (i.e., number of fires) for 12 years were input onto a map of Malaysia. 
According to the results, a total of three minor (June–December, July–November, and Sep-
tember–October), and one major (January–April) El Nino events were observed. The au-
thors also reported the month of April to have the highest number of fires. To realise the 
spatial pattern of fire occurrence in Malaysia, the states were distributed into six groups 
by adopting clustering analysis. Some of the notable clusters included (i) a Sabah cluster 
containing the highest number of fire incidents and (ii) a Selangor cluster with the lowest 
number of fire incidents. The authors justified the vast number of fires in Sabah as being 
due to biomass burning sighted in the vicinity of Indonesia. According to the literature 
described previously in this section, we recognise that a lot of research has exploited Se-
langor State as the study location since many fire incidents have been sparked there in the 
past. Therefore, it is speculated that the cluster analysis performed by Ash’aari and 
Badrunsham [70] might have been impacted by the total area of each state, as Selangor 
was distinguished in the cluster with the lowest number of fire incidents. 

While Ash’aari and Badrunsham [70] devoted themselves to understanding the tem-
poral and spatial distribution of fire incidents in the entirety of Malaysia, Leewe et al. [71] 
employed a similar technique (i.e., frequency analysis) to analyse the temporal and spatial 
trends of fire activity for the state of Sabah from 2006 to 2010. Instead of ASTR, Leewe et 
al. [71] retrieved the MODIS hotspot data from the Fire Information for Resource Man-
agement System [72]. The authors studied the monthly and annual areas of fire distribu-
tion by using the hotspot data. The highest number of hotspots were reported at 1082 in 
2010, 518 in March (five-year average), and 1159 for the interior region (five-year average). 
Leewe et al. [71] stated that the fire distribution differed by year, month and region. By 
understanding the patterns of hotspots, resources can be accordingly allocated by author-
ities to confront fires in advance. 

Jamaruppin et al. [73] utilised the raw data in thermal band 10 from Landsat 8 to 
estimate the temperature (i.e., Celsius) before (28 January), during (1 March), and after (17 
March) the 2014 fire incidence for Pekan, Pahang. The temperature was then categorised 
into five distinct temperature classes depending on the temperature range. For instance, 
a temperature higher than 34 degrees Celsius was assigned as very high risk, while a tem-
perature below 16 degrees Celsius was appointed as very low risk. A fire risk map was 
then produced by utilising the categorised temperature risk. When comparing the fire 
susceptibility map before and during the fire incident, it could be observed that most of 
the very low-risk regions had progressed to an advanced risk, as 0 km2 was reported for 
the very low-risk region during the fire. The authors also evaluated the temperature 
changes between pre-fire and during-fire stages, as well as between during-fire and after-
fire stages. They observed that most of the pixels in the studied region had a significant 
temperature increase during the transition from pre-fire to during-fire stages, while most 
of the pixels recorded a 100% decrease in temperature for the shift from during- to post-
fire stages. 

Miettinen et al. [74] studied the temporal and spatial distribution of peatland fire in 
Malaysia and Indonesia (Sumatra and Borneo Island) by utilising the MODIS hotspot de-
tection count retrieved from the Fire Information for Resource Management System in 
2015. They selected the study locations because a severe fire was ignited there in 2015 [75–
77], and the fire was further aggravated by the drought conditions caused by El Nino. 
Based on the authors’ previous work [78], they discovered that the land cover of the study 
locations was vastly affected by deforestation activities from 1999 to 2015 (i.e., peat swamp 
forests covered up 75% of the peatlands in 1999, while only 29% of peat swamp forests 
covered the study location in 2015). To analyse the relationship of peatland (i.e., peat soil 
type) with the distinct land cover (i.e., managed peatland areas, undeveloped degraded 
peatlands, and degraded peat swamp forest), Miettinen et al. [74] employed a peatland 
land-cover map created before the fire began in 2015 [78] to evaluate the fire severity in 
each peatland land-cover type. Two metrics, (i) the number of hotspots and (ii) fire density 
(i.e., fire counts relative to the area, as measured by the number of hotspots identified per 
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1000 km2), were utilised by the authors to compare the fire counts between peatland and 
mineral soil, as well as to pinpoint the locations with high fire concentration activities. 
They revealed that more of the fires occurred in deforested, undeveloped peatlands (~831 
hotspots per 1000 km2) compared with pristine (i.e., undisturbed) peat swamp forests (30 
hotspots per 1000 km2). Additionally, fire density was reported to be from approximately 
four to ten times higher in peatland areas in contrast to mineral soils for all the studied 
locations. To shrink the risk of forest fire disaster in degraded undeveloped peatland, 
Miettinen, Shi and Liew [74] recommended rewetting and rehabilitation (e.g., canal drain-
age blocking [79]) as the solutions to preserve a consistent water level for maintaining the 
soil moisture. The authors stated that these options were more desired than the solution 
involving the conversion of area to a managed agricultural. It should be noted that the 
authors excluded Singapore and Brunei from their work since both countries were rela-
tively small and rarely confronted by acute fire incidents. 

All the studies in this subsection are summarised and chronologically sorted based 
on the publication year in Table 2. Discussions in this subsection advocate the idea that 
the application of remote sensing to detect forest fire in Malaysia is not new since many 
researchers have attempted to utilise these technologies to provide unique solutions. 
However, the solutions presented in this section can be further enhanced and improved 
by adopting more advanced techniques that will be elaborated on in Section 4. 

Table 2. Summary of the efforts for forest fire susceptibility map generation. 

Year of Pub-
lication 

References Year of Studies Location Objective 

2004 [10] 1997 
Pekan District, Pa-

hang 

Categorise the factors (e.g., land use, slope risk, aspect 
risk, elevation risk, and distance to road) into risk 
scores from 1 to 4. The sum of the risk score for all the 
factors was used to generate the fire susceptibility map. 

2004 [42] 2000 
Malaysia/Western 

Indonesia 
Classify the fuel types and soil types for Malaysia and 
Western Indonesia based on global vegetation data. 

2005 [45] 1995–2001 Malaysia/Indonesia 

Calibrate the parameters of Fine Fuel Moisture Code 
(FFMC) and fire weather index (FWI) of the Canadian 
Forest Fire Weather Index System (CFFWIS) to provide 
early warnings of forest fires. 

2006 [48] 2002–2003 
Peninsular Malaysia 
(10 Meteorological 

Station) 

Utilise MODIS level-1 and level-2 data to estimate the 
relative humidity parameters necessary to calculate the 
fire weather index from the CFFDRS. 

2006 [11] June 1999 Kuala Selangor 
To compute a fire risk index model by considering the 
topography, weather (atmospheric conditions), and 
fuel types as the input for mapping fire risk. 

2007 [51] 2000–2005 

Sungai Karang, Se-
langor/Raja Muda 
Forest Reserve, Se-

langor 

Estimate the probability of forest fires by measuring the 
likelihood ratio (i.e., frequency ratio) between fire 
hotspots and forest fire factors. To compute the forest 
risk index, the summation of each frequency ratio for 
each pixel was calculated. 

2007 [52] 2004–2005 Peninsular Malaysia 

Devise a fire risk index by exploiting the concept of 
pre-ignition heat energy that assesses the ignition prob-
abilities by estimating the amount of heat energy neces-
sary to burn the fuel from its current temperature. 

2007 [54] 
Implemented in 

1999 
Southeast Asia 

(ASEAN) 

The first fire danger rating system (FDRS) was success-
fully implemented to provide forecasts and early warn-
ings for fire occurrences. The FDRS is still in operation 
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to date, and it is publicly accessible from the Malaysia 
Meteorological Department [55] and Indonesia Meteor-
ological Climatological and Geophysical Agency [80]. 

2008 [58] 1990–1995 
Kelantan, Sarawak, 
Sabah, and Selangor 

Predict the probability of fire occurrence by measuring 
soil moisture (i.e., the volume of water) by adopting the 
Keetch–Byram Drought Index (KDBI). 

2009 [61] 1995–1999 Peninsular Malaysia 

Enhance the original pre-ignition heat energy risk in-
dex model by incorporating temperature, relative hu-
midity, vegetation index, and fuel map to generate the 
fire susceptibility map. 

2009 [62] 1995–1999 Pekan, Pahang 

Develop a system (interface) in ArcView to simplify the 
user–system interaction for generating a fire map. The 
authors employed the analytical hierarchy process 
(AHP) tools (i.e., overlaying geoprocessing tools) in GIS 
software. 

2010 [64] 1998 
Batu Enam, Jalan 
Pekan, Kuantan, 

Pahang 

Design a fire hazard rating model integrating nine clas-
ses of fuel type and human activity parameters (e.g., 
distance to road and canal buffers) to classify the region 
into five degrees of fire severity risk. Instead of the 
NDVI, the Tasseled Cap (TC) transformation vegeta-
tion index was used as it was a more effective scheme 
for detecting peat swamps and burnt land. 

2011 [66] - 
Selangor, Kuala 

Langat, and Pahang 

Propose an index that considers multiple factors affect-
ing forest fires in peat swamps (e.g., peat depth, bulk 
density, and moisture content) to generate a fire map. 

2013 [67] 
September 

2008–July 2011 
Malaysia and Indo-

nesia 

Investigate the suitability and reliability of the applica-
tion of the Wildfire Biomass Burning Algorithm 
(WFFABBA) from the Multifunction Transport Satellite 
(MTSAT) by comparing the pattern of fire activity with 
the results from MODIS MOD14 in Malaysia and Indo-
nesia. 

2014 
2013 

[68,69] - Selangor 

Weigh the forest fire factors essential in the analytical 
hierarchy process (AHP) mathematical model by con-
ducting a survey with three domain experts from the 
Fire and Rescue Department Malaysia. The model was 
deployed in WebGIS to generate a fire risk map for Se-
langor, Malaysia. 

2014 [70] 1997–2008 Malaysia 

Utilise the number of fires collected from the ASTR 
World Fire Atlas product for 12 years to understand the 
spatial and temporal pattern of fire activity in the en-
tirety of Malaysia by adopting monthly frequency anal-
ysis and clustering analysis. 

2016 [71] 2006–2010 Sabah 

Perform annual, month, and area frequency analyses 
using five years of fire hotspot data from the Fire Infor-
mation for Resource Management System (i.e., a prod-
uct of MODIS). 

2016 [73] 2014 Pekan, Pahang 

Utilise the thermal band from Landsat 8 to estimate 
and classify the temperature into five distinct severities. 
Analyse the temperature before, during, and after a fire 
incident by using the five categorised temperatures and 
change detection mapping. 
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2017 [74] 2015 
Peninsular Malay-
sia, Sumatra, and 

Borneo 

Investigate the relationship of fire incidents in (i) peat 
soil vs. mineral soil and (ii) peat soil with different land 
covers in Malaysia and Indonesia by using the MODIS 
hotspot counts obtainable from the Fire Information 
and Resource Management System. 

2.3. Other Efforts Associated with Forest Fire 
Though most researchers were motivated to locate or predict fire-prone regions, 

some of the works discussed in this section used a distinct approach to conduct research 
associated with forest fires in Malaysia. 

Mahmud [81] estimated the pollutants discharged from vegetation burning (i.e., ag-
riculture waste burning) by using the emission equation and emission factors devised by 
Joyner [82]. To obtain the necessary input parameters for the formula, the author utilised 
the number of hotspots retrieved from NOAA AVHRR to perform spatial analysis while 
employing the Moran Index, nearest neighbour index, and nearest neighbour hierarchical 
spatial clustering from February 2002 to March 2002 in Peninsular Malaysia. Selangor, 
Perak, and Pahang states were observed to have higher rates of fire activities in contrast 
to other states in the spatial analysis. Based on the information acquired from the analysis, 
Mahmud [81] estimated the air pollutant emissions (e.g., particulates, carbon monoxide, 
non-methane hydrocarbons, nitrogen oxides, sulphur dioxides, and particulate matter) 
and greenhouse gases (e.g., carbon dioxide, methane, nitrous dioxide, and carbon). The 
author discovered that the estimated carbon dioxide emission was much higher than ni-
trous oxides or methane. Additional validation was recommended by the author to cor-
roborate the estimation evaluated in their work. 

To evaluate the area of peat swamp burned in 1998 for Klias Peninsula located in the 
State of Sabah, Phua et al. [83] applied the image differencing technique to Landsat im-
agery before the fire (2 October 1997) and after the fire (7 December 1999) by utilising three 
vegetation indexes, specifically the (i) normalised burn ratio, (ii) normalised difference 
water index, and (iii) normalised difference vegetation index. Among the three indices, 
image differencing in conjunction with a normalised burn ratio enabled the most accurate 
estimation of the burned area. Understanding the changes that happened in the peat 
swamp forests (i.e., reduction in peat swamp forest area) allowed the authors to conclude 
that better approaches can be devised to more effectively confront fires. 

Ainuddin and Goh [84] investigated the impacts of forest fires on the forest structures 
in Raja Musa Forest Reserve, Selangor from September 2001 to June 2002. The study loca-
tion was selected by the authors because it had encountered fires since 1996. They revealed 
that the composition of flora species and forest structure were greatly affected by the for-
est fire incidents. For instance, the tree diameters in the unburnt areas were larger (10.1–
20.0 cm) than the trees from burnt areas (5.1–10.0 cm). On the contrary, a total of 22 plant 
species were found in the unburnt region, while only 10 plant species were identified in 
the burnt region. 

Bin Suliman et al. [85] adopted the random spread model of Serra [86] to understand 
the propagation of forest fires in Selangor State from 2001 to 2004. To formulate the model, 
they utilised fuel and spread rate maps (i.e., Southeast Asia FDRS that built upon the Ini-
tial Spread Index and Buildup Index [54]) as the primary input parameters to the model. 
They tested the model, and it correctly predicted most of the burnt scars in the study lo-
cation. In this model, the authors assumed that there were no human interactions involved 
to put out fires. 

Sahani et al. [87] investigated the relationship between mortality rate and forest fire 
haze events in the Klang Valley region by utilising the daily concentration of particulate 
matter (PM10) and daily mortality rate from 1 January 2000 to 31 December 2007 retrieved 
from the Department of Statistics, Malaysia. A total of 88 days were identified as haze 
days (i.e., PM10 concentration greater than 100 μg/m3) in the seven studied years, and the 
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root cause of 8.56% of natural mortality was recorded to be associated with respiratory 
mortality. They found that there was a significant relationship between haze and respira-
tory mortality, and a higher mortality rate was recorded due to exposure to haze. For in-
stance, respiratory mortality was reported to be increasing for all males, elderly males, 
and adult females. 

Fisal et al. [88] used a social science approach to study the forest fire awareness of the 
community in Klias Forest Reserves, Sabah. They highlighted that the community living 
near the vicinity of the forest were not fully equipped with the essential knowledge to 
prevent fires in the peat swamp forests. Such a lack of awareness may subsequently lead 
to forest fire incidents. However, positive feedback was acquired from the community to 
work together with authorities to prevent and extinguish forest fires. 

Instead of estimating the emission of pollutants by using remote sensing information, 
as conducted by Mahmud [81], Smith et al. [89] performed an on-site study utilising open-
path transform infrared spectroscopy to assess the pollutants discharged by peat swamp 
forest fires in Pekan Pahang in 2005 and North Selangor in 2006. The plumes (i.e., smoke) 
collected from the aforementioned technique were further analysed to measure the emis-
sion factors (i.e., concentration) for 12 gas types: carbon dioxide, carbon monoxide, me-
thane, ammonia, acetic acid, hydrogen cyanide, methanol, ethylene, ethane, formalde-
hyde, formic acid, and acetylene. The authors presented the first study to explain the large 
variability of gases in each of the plumes. They recommended the emission factors dis-
covered from this work to be used for future peat fire emission models as a reliable alter-
native to the results from earlier laboratory studies. 

Musri et al. [90] presented the results of post-fire restoration and rehabilitation 
through a case study in Raja Musa Forest Reserve, Selangor. The studied location had 
been repeatedly affected by fire incidence in the past decades. In the post-fire restoration 
process, the authors found that the Selangor State Forestry Department rewetted the soil 
and raised the water level of the degraded peat swamp forest by installing a check dam, 
canal block, clay dyke, and high-density polyethylene pipe. Subsequently, over 250,000 
saplings of pioneer tree species were planted from 2009 to 2014 in the rehabilitation site 
of Raja Musa Forest Reserve. With the raised in water level and the regeneration of new 
plants, the number of forest fire occurrences has been significantly lowered [90]. The au-
thors also introduced four basic principles to manage peat swamp forests: (i) prevention 
(e.g., awareness campaign), (ii) preparedness (e.g., maintenance and installation of equip-
ment), (iii) response (e.g., immediate action to suppress small fires), and (iv) recovery (e.g., 
restoration and rehabilitation efforts). Furthermore, the national strategies for fire man-
agement and rehabilitation of degraded peat swamps in Malaysia were also discussed by 
Parish, Lew and Mohd Hassan [91]. 

Instead of relying on human observations, Sali et al. [92] adopted an Internet of 
Things (IoT) approach to monitor the condition of the Raja Musa Forest Reserve, Selangor. 
By deploying an IoT monitoring system, real-time data including soil temperature, soil 
humidity, water level, wind speed, rain precipitation, ambient humidity, and ambient 
temperature information could be collected. In their studies, they collected and analysed 
data obtained from 2020 January to March 2020. 

Table 3 summarises the research works associated with forest fires, excluding studies 
related to fire susceptibility mapping. In this subsection, several works that were closely 
associated with forest fire incidents are reviewed. While fire susceptibility mapping is one 
of the predominant research directions, we would like to highlight some of the distinct 
directions such as locating regions burnt by forest fires, analysing the pollutant emissions, 
and post-fire management. 
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Table 3. Summary of the efforts (excluding studies related to fire susceptibility mapping) associ-
ated with forest fires. 

Year of Pub-
lication 

References Year of Studies Location Objective 

2005 [81] 
February to 

March of 2002 
Peninsular 
Malaysia 

Estimate the pollutant emissions from agricultural burning 
by employing emission equations. Utilise remote sensing 
data (i.e., number of hotspots) from NOAA AVHRR to pro-
vide necessary input parameters to the formula. 

2007 [83] 1997 and 1999 
Klias Penin-
sula, Sabah 

Estimate the burned peat swamp region by comparing the 
pre-fire (1997) and post-fire (1999) Landsat satellite imagery 
by employing an image differencing technique utilising 
three vegetation indexes. 

2010 [84] 2001–2002 

Raja Musa 
Forest Re-

serve, Selan-
gor 

Study the impact of forest fire on the composition of species 
and forest structure for the peat swamp forest. 

2010 [85] 2001–2004 Selangor 

Adopt the random spread model of Serra [86] to predict the 
area burned by forest fire by understanding the propagation 
of forest fires by utilising spread rates and fuel maps as the 
input parameters to the model. 

2014 [87] 2000–2007 
Klang,  

Selangor 

Investigate the relationship between mortality rate and haze 
events in Klang Valley by analysing the daily mortality rate 
in conjunction with the daily particulate matter (PM10) con-
centration. 

2017 [88] - 
Klias Forest 

Reserves, Sa-
bah 

Assess the awareness of the neighbourhood around Klias 
Forest Reserves for forest fire prevention. Authors discov-
ered that the community lacks awareness but is willing to 
cooperate to prevent and extinguish forest fires. 

2018 [89] 
August 2015 and 

July 2016 

Pekan, Pa-
hang 

North Selan-
gor 

Measure the emission factors (i.e., the concentration of gase-
ous) from the plumes collected from the peatland fires 
through open-path transform infrared spectroscopy. 

2020 [90] - 

Raja Musa 
Forest Re-

serve, Selan-
gor 

Focus on the discussion of post-fire management through a 
case study in Raja Musa Forest Reserve, Selangor. Describe 
the restoration and rehabilitation process of degraded peat 
swamp forests. 

2021 [92] 
January 2020–

March 2020 

Raja Musa 
Forest Re-

serve, Selan-
gor 

Adopt an IoT approach to collect real-time environmental 
variables for evaluating the condition of the peat forest. 
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2.4. Hotspot Locations in Malaysia Based on Previous Studies 
A summary of the works in Malaysia from 1989 to 2021 categorised by each of the 

states is shown in Table 4. From the table, it can be seen that most of the studies were 
performed in three main states, which were Sabah (5 out of 26), Selangor (12 out of 26) 
and Pahang (6 out of 26). It should be noted that the tabulated information excludes all 
the works that focused on Peninsular Malaysia or the entirety of Malaysia. The hotspot 
locations based on historical fire incidents in Malaysia are described in Figure 1. 

To further substantiate the severity of forest fires in the three states, we also searched 
through the local news reports in Malaysia. According to several reports, several fire in-
cidents had also been recently reported in the selected three locations, i.e., Pekan, Pahang 
[16,93–96]; Selangor [12,13,97,98]; and Klias, Sabah [14,99,100]. Thus, the selected locations 
are postulated to be suitable for conducting experimental studies related to forest fires in 
the future. 

Table 4. Previous studies conducted in Malaysia grouped by state. 

State Specific Location Year of Studies References Total No. of Studies 

Sabah 

- 1983–1985 [21] 

5 
- 1990–1995 [58] 
- 2006–2010 [71] 

Klias Peninsula 1997 and 1999 [83] 
Klias Forest Reserves - [88] 

Sarawak 
- 1997–1998 [9] 

2 
- 1990–1995 [58] 

Pahang 

Pekan 1997 [10] 

6 

Pekan 1995–1999 [62] 
Pekan 1998 [64] 

- - [66] 
Pekan 2014 [73] 
Pekan 2015 August and 2016 July [89] 

Selangor 

Kuala Selangor 1999 [11] 

12 

Sungai Karang and Raja 
Musa Forest Reserve 

2000–2005 [51] 

Raja Musa Forest Reserve 2001–2002 [84] 
Raja Musa Forest Reserve  - [90] 
Raja Musa Forest Reserve 2020  [92] 

Kuala Langat - [66] 
Klang 2000–2007 [87] 

Kuala Langat, North Selangor August 2015 and July 2016 [89] 
- 2001–2004 [85] 

- - 
[68] 
[69] 

- 1990–1995 [58] 
Kelantan - 1990–1995 [58] 1 
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Figure 1. Hotspot locations based on historical fire information from previous studies. 

2.5. Factors Affecting Forest Fire in Malaysia 
Most of the forest fire incidents in Malaysia were speculated to be principally associ-

ated with human factors [9]. However, it was unclear whether the environmental varia-
bles (i.e., land cover, topography, and meteorology) could intensify fire tragedies. A com-
prehensive review of the general factors constituting forest fires was presented in [101]. A 
few of the factors that have been utilised in the past to generate a fire susceptibility model 
in Malaysia are as follows: land cover, meteorological variables (i.e., temperature and hu-
midity), topology variables (i.e., digital elevation model, aspect, and slope), and human 
factors (i.e., distance to road and population). 

Though there are various factors contributing to forest fires in Malaysia, a rigorous 
and thorough analysis has yet to be completed to date in the literature. To broaden the 
understanding of fire incidents, subsequent analyses utilising various sources of data are 
necessary. Hence, all the data that were exploited by the previous studies will be described 
in the next section. By combining or integrating results from the previous studies with 
presently available data and technologies, more works can be anticipated to expand the 
results presented in the current literature. 

3. Type of Data Utilised for Forest Fire Risk Modelling in Malaysia 
In this section, the types of data are categorised into two distinct groups: public data 

(i.e., satellite data) and Malaysia government-centric data. The primary purpose of this 
section is to provide an overview of the data that have been explored in Malaysia. To ease 
future researchers, the accessibility for each of the satellite data and government data are 
also described in Tables 5 and 6. 

All the derived products and the satellite versions employed by the previous studies 
discussed earlier in this manuscript are summarised and tabulated in Table 5. According 
to the table, it is obvious that the derived products from the Landsat, MODIS, and AVHRR 
NOAA satellites have been widely exploited. 

In addition to the satellite data, some of the Malaysian government data including 
topography, meteorological, and population information that have been adopted in the 
past are also shown in Table 6. However, it should be noted that most of the mentioned 
data are not publicly accessible. Users that desire to obtain and use the data may need to 
directly request them from each of the relevant departments, and most of the applications 
will be subject to the approval of the department directors. 

From the presented summaries, it can be seen that only limited satellite data have 
been applied to the task of forest fire detection in Malaysia. Following the work of previ-
ous researchers, future researchers that plan to perform similar studies in Malaysia can 
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consider adopting Sentinel-1 Synthetic Aperture Radar [102] and Sentinel-2 imagery [103] 
to develop advanced fire models. 

Table 5. Summary of remote sensing data utilised by previous studies in Malaysia and their acces-
sibility. 

Derived Product 
Satellite Version/ 

Data Source 
Previous Applica-

tion 
Accessibility 

Land Cover or Fuel Type 
Normalized Burn Ratio (NBR) 

Normalized Difference Water Index (NDWI) 
Normalized Vegetation Index (NDVI) 

Landsat Thematic Mapper 
(TM)—version not men-

tioned 
[10,64,85] 

Public [104]  
(access from USGS 
Earth Explorer) 

Landsat-5 TM [11,83] 
Landsat-7 ETM [51,68,69,83,105] 

Landsat 8 [73] 

Land Cover (classified) for  
Malaysia and Indonesia 

Landsat 7 Enhanced The-
matic Mapper (ETM) and 

Landsat 8 Operational Land 
Imager (OLI) [78,106] 

[67] 

Private  
(The classified land 
cover is not available 
publicly) 

Precipitable Water Vapor for  
Relative Humidity 

MODIS Level-1 (MACRES) [48] Public [107–109] 

Land Surface Temperature 
Surface Air Temperature for Relative Humidity 

Precipitable Water for Relative Humidity 
MODIS Level-2 [61] Public [110,111] 

MODIS MCD14ML Collection 5 Active Fire 
(hotspots) 

NASA’s Fire Information for 
Resource Management Sys-

tem 
[67,71,74] Public [112] 

Land Surface Temperature - [52] Public [113] 
World Fire Atlas (hotspots) - [45,70] Public [114] 

Historical Forest Fire Data (hotspots) 

AVHRR NOAA (not speci-
fied) 

[64,81,85] 
Public [115] 

AVHRR NOAA 12 [51,61,105] 
AVHRR NOAA 16 [51,61,105] 

Application of Wildfire Biomass Burning Algo-
rithm (Hotspots) 

- [67] Public [116] 
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Table 6. Summary of Malaysia government data utilised by previous studies in Malaysia and their 
accessibility. 

Type of Data Derived Product Data Source 
Previous  

Application 
Accessibility 

Topography  

Contour 
Administrative Boundaries 

Water Resources 
Settlement 

Transportation Infrastruc-
ture 

Department of Na-
tional Mapping and 

Survey (JUPEM) 
[51,61,105] 

Private (apply and pay) [117] 
Price List [118] 

Digital Contours 
Digital Elevation Model 

Slope Gradient 
Slope Aspect  

 [11]  

Aspect  
Elevation 

Slope 
Not Mentioned [10] - 

- 

Hotspots Prone Area 
Fire Occurrence Map 

Peat Swamp Map 
Soil Map 

Malaysia Centre of 
Remote Sensing 

(MACRES) 
Known as Malaysia 
Space Agency (since 

2019) 

[51,61,105] 

Private (apply and pay) [119] 
Price list [120] 
Local students/universities may request 
some data for free for research and edu-
cational purposes [119] 
Raw format of the relevant data (MODIS, 
NOAA, LANDSAT TM, and SPOT 1–5) 
can be obtained from Public MYSA ar-
chive data [121] 

Population Data Population Data 
Socio-economic Data 

Department of Statis-
tics Malaysia 

[51,105] 

Public/Available Data [122,123] 
Additional data requests can be sent to 
the Director of the Department of Statis-
tics Malaysia 

Meteorological Data 

Temperature  
Relative Humidity 

Fire Danger Rating System 
(FDRS) 

Malaysian Meteoro-
logical Services De-

partment  
[11,51,54,61,105] 

Only the future 7-day forecasted weather 
data were made available in the official 
portal [124].  
 
Archive data not available; contact Ma-
laysia Meteorological department to re-
quest [125] 

Daily Air Temperature 
Total Daily Rainfall 

Malaysian Meteoro-
logical Services De-

partment 
[58] 

Daily Weather Data 
Temperature  

Relative Humidity 
Wind Speed 

National Climatic 
Data Center 

[45] Public [126] 

- Land-use/cover maps 
Department of For-
estry and Depart-

ment of Agriculture 
[11] Private (apply and pay) [127] 

- 
Record of Past Fire Occur-
rences/Forest Fire Reports 

Forestry Department 
of Peninsular Malay-

sia (JPSM) 
[11,51,61,105] Not Available 

An initiative by Na-
tional Geospatial Cen-

tre Malaysia (G2G) 
[128] 

Malaysia Government 
Unit/Local Public University 

in Malaysia can apply for 
free 

National Geospatial 
Centre Malaysia 

- 
Private (requests can be sent to Malaysia 
Government Body and Malaysia Public 
University only) [128] 

3.1. Discussion on the Application of Data for Forest Fire Detection 
Though some satellite data, such as those of Landsat and Sentinel-2, have been made 

freely available to the public [27], some of them (e.g., Sentinel-2) have yet to be adopted 
for the task of detecting forest fires in Malaysia. With the use of vast computing resources 
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and data, machine learning classification techniques such as logistic regression, decision 
trees, support vector machines, and deep learning can be incorporated to improve the 
performance of forest fire detection in Malaysia [23,24]. 

Big Data Platform for Satellite Data 
Gomes et al. [27] defined big data platforms as “computational solutions that provide 

functionalities for big Earth Observation (EO) data management, storage and access, 
which allow the processing on the server side without having to download big amounts 
of EO data sets”. Motivated by the advancement of technologies and the adoption of open 
data policies supported by government and space agencies, an extensive amount of geo-
spatial data (i.e., Earth observation data) produced from Earth observation satellites have 
been increasingly made freely available to researchers and societies in the past decades. 
For instance, approximately 5 petabytes (~equivalent to 5000 terabytes) of open data were 
generated from Landsat-7, Landsat-8, MODIS, Sentinel-1, Sentinel-2, and Sentinel-3 in 
2019 [129]. The datasets’ tremendous volume makes it challenging to store, distribute, 
process, and analyse them using traditional approaches. Thus, several big data platforms 
for EO data have been developed, e.g., Google Earth Engine [29], Open Data Cube [28], 
JEODPP [129], OpenEO [130], pipsCloud [131], System for Earth Observation Data Access, 
Processing and Analysing for Land Monitoring (SEPAL) [132], and Sentihub Hub [133]. 
A comprehensive review for each of the platforms was performed in [27]. It should be 
noted that most of the acquisition methods performed by the researchers in Section 2 fo-
cused on the individual file of geospatial data distribution through web services and por-
tals (i.e., http or ftp). 

Apart from the mentioned platforms, Microsoft also recently released its variation of 
a big data platform for satellite data called Planetary Computer [30]. It is worth noting 
that at the point of writing this manuscript, Planetary Computer also provides a hub that 
supplies computational resources with several options for the development environment; 
the five distinct options are: (i) Python environment with 4-core CPU and 32 GB of RAM; 
(ii) R environment with 8-core CPU and 64 GB of RAM; (iii) PyTorch environment with 4-
core CPU, 28 GB of RAM and T4 GPU; (iv) TensorFlow environment with 4-core CPU, 28 
GB of RAM, and T4 GPU; and (v) QGIS environment with 4-core CPU and 32 GB of RAM. 
To gain access to the platforms, users are required to fill in the application form provided 
on the Planetary Computer home page. 

Considering that big EO data platforms permit some of the computational processing 
to be performed on the server side, future researchers should consider employing big data 
platforms to alleviate some processing resources from the client side. In addition, the com-
plicated data access procedure described in our previous work [134] can be eased by uti-
lising the big data platforms. This is made possible by the ability of most big data plat-
forms to access publicly available datasets through their data catalogues and APIs. 

4. Global View of Machine Learning and Forest Fire 
From the literature reviewed in Section 2, it can be clearly recognised that the appli-

cation of machine learning has not been extended to the domain of forest fires in Malaysia. 
However, utilising machine learning techniques in aiding forest fire detection, analysis, 
and prediction is not new [23,24,135–138], and these techniques have been successfully 
adopted in many other countries as they have been gaining more attention in recent years. 
Hence, this is probably a potential research direction to be delved into in the near future. 

Although traditional fire detection systems such as the CFFDRS [45], FDRS [54], and 
Slovenia Environment Agency fire detection system [139] have been proven to be very 
feasible for the task of fire detection, it is plausible to improve their detection and predic-
tion abilities by building machine learning models with a fire database containing the his-
torical fire occurrences and all contributing factors of forest fires. 

Bui et al. [140] examined forest fire susceptibility through a hybrid artificial intelli-
gent approach that combined the usage of a neural fuzzy inference system (NF) and 
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particle swarm optimization (PSO) in Vietnam. This hybrid approach was named Particle 
Swarm Optimized Neural Fuzzy (PSO-NF). The spatial information of tropical forest fire 
susceptibility was extracted and modelled with the adoption of PSO-NF. The forest fire 
model was retrieved from NF, and the best parameter values were selected through the 
PSO. The authors created a GIS forest fire database based on 10 factors associated with 
forest fires, i.e., slope, aspect, elevation, land use, NDVI, distance to road, distance to res-
idence area, temperature, wind speed, and rainfall. Most of the factors were derived from 
the Landsat-8 remote sensing data, and the climatic data (i.e., temperature, wind speed 
and rainfall) were extracted from the National Climatic Data Center (NDCC) [126]. They 
also compared their proposed algorithm (PSO-NF) with random forest and support vector 
machine algorithms, and the classification accuracy attained by the PSO-NF (85.8%) sur-
passed the other two notable classifiers (85.2% and 84.9%, respectively). Later, Bui et al. 
[141] proposed a new hybrid methodology by amalgamating Multivariate Adaptive Re-
gression Splines (MARS) and Differential Flower Pollination (DFP) into a new methodol-
ogy named MARS-DFP. DFP was appended to the MARS as a feature extractor to retrieve 
the spatial patterns of forest fire severity. The proposed algorithm attained a classification 
accuracy of 86.57%. 

Fire kernel density was utilised to detect forest fires by Monjarás-Vega et al. [142], 
who extracted the spatial patterns of fire occurrence at the regional and national levels in 
Mexico by utilising geographically weighted regression (GWR) to predict fire density. The 
fire kernel density was calculated by using two different approaches, which are regular 
grid density and kernel density, over spatial resolutions ranging from 5 to 50 km on both 
the dependent and the independent variables captured from human and environmental 
candidates. 

The element of forest fire susceptibility was also exploited by Moayedi et al. [143] in 
a high fire-prone region in Iran. An ensemble fuzzy method was proposed by aggregating 
the results retrieved from an adaptive neuro-fuzzy inference system (ANFIS) with genetic 
algorithm (GA), PSO, and differential evolution (DE) evolutionary algorithms. The GIS 
forest fire database was built based on 15 ignition factors, i.e., elevation, slope aspect, wind 
speed, plan curvature, soil type, temperature, distance to river, distance from road, dis-
tance from village, land use, slope degree, rainfall, topographic wetness index, evapora-
tion, and NDVI. It should be noted that the authors did not specify the source for each of 
the mentioned factors. The best performance results were attained by ANFIS-GA, with 
which the area under receiver operating characteristics (AUROC) was calculated as 0.8503 
and the mean squared error (MSE) was calculated as 0.1638. 

Instead of predicting forest fire incidents akin to many other works, Sevinc et al. [144] 
sought to predict the probability of an event that triggered a forest fire by utilising a Bayes-
ian network model. The primary motivation of the authors was to investigate the reason 
behind each forest fire incident, as the probable causes for almost 54% of forest fires were 
disclosed to be unknown in the location of study. The empirical testing was conducted in 
the Mugla Regional Directorate of Forestry area located southwest of Turkey. To assemble 
the Bayesian network model for each of the causes of fire occurrence, the authors incor-
porated wind speed, month, distance from settlement, amount of burnt area, relative hu-
midity, temperature, distance from agricultural land, distance from road, and tree species. 
Sevinc et al. [144] reported an AUC score of 0.91 for hunting, indicating that hunting is 
the most plausible ignition factor for forest fires that happened between 2008 and 2018. 

Table 7 summarises the related works discussed in this section. A thorough review 
associated with machine learning techniques in the task of forest fire detection or predic-
tion as presented in [23,24]. 
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Table 7. Summary of general machine learning classification techniques used for forest fire detec-
tion tasks. 

Year of Pub-
lication 

Reference Year of Studies Dataset Objective 

2017 [140] Lam Dong, Vietnam 
GIS database built based on 

the 10 factors associated with 
forest fires  

To investigate forest fire susceptibility 
through the combined usage of neural 
fuzzy inference system (NF) and particle 
swarm optimization (PSO). 

2019 [141] Lam Dong, Vietnam 
GIS database built based on 

the 10 factors associated with 
forest fire 

To produce a forest fire susceptibility map 
through a hybrid methodology by combin-
ing Multivariate Adaptive Regression 
Splines (MARS) and Differential Flower 
Pollination (DFP). 

2020 [142] Mexico 
GIS database built based on 

the 16 factors associated with 
forest fires 

To adopt geographically weighted regres-
sion (GWR) to predict fire density.  

2020 [143] Iran 
GIS point database utilising 

15 forest fire factors 

To segregate the location into different fire-
prone risks by combining adaptive neuro-
fuzzy inference system (ANFIS) with the 
genetic algorithm (GA), particle swarm op-
timisation (PSO), or differential evolution 
(DE). 

2020 [144] Turkey 
Table data including fire 

causes and 9 ignition factors 

To investigate the probable causes for the 
fires by building Bayesian networks for 
each fire cause along with the ignition fac-
tors. 

Deep Learning and Forest Fire 
Deep learning techniques, which are gaining popularity in recent years, have also 

been adopted to improve the models in the forest fire domain. Due to their success in the 
field of image processing and handling spatial information [145], researchers from the fire 
domain have also exploited similar techniques by utilising satellite remote sensing data, 
satellite imageries, unmanned aerial vehicle (UAV) images (e.g., drone), and surveillance 
camera footage. 

Zhang et al. [146] proposed a deep convolutional neural network (CNN) to automat-
ically annotate the fire regions in an image by using bounding boxes. To improve the fire 
patch localisation annotation, the authors designed a two-level (cascaded) CNN where 
the first CNN model was trained with the full image to identify whether the image con-
tained at least one fire patch and the second CNN model was trained with the fire patches 
to accurately locate the fire regions in the image. A total of 25 videos from a fire detection 
dataset [147] were utilised to build their dataset. The authors then extracted one image 
from every five frames and resized them to 240 × 320, followed by the manual annotations 
of fire boundaries with 32 × 32 bounding boxes. A subset of the data comprising 178 train-
ing images (12,460 patches) and 59 testing images (4130 patches) was used to evaluate the 
CNN models. A comparison of the performance of the proposed CNN against the support 
vector machine linear classifier showed that the CNN achieved a detection accuracy of 
90.1% and the support vector machine only achieved a detection accuracy of 89% on the 
testing dataset. 

A fine-tuned CNN trained with a CCTV surveillance camera containing 68,457 im-
ages was devised by Muhammad, Ahmad and Baik [148]. The proposed algorithm was 
able to detect fire in images with distinct indoor and outdoor environments. The authors 
emphasised that the model could process 17 frames/s, and the performance of the model 
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in terms of precision, recall, and f-measure were recorded at 0.82, 0.98, and 0.89, respec-
tively. 

Hodges and Lattimer [149] presented a Deep Convolutional Inverse Graphic Net-
work (DCIGN) that combined both CNN and transpose convolutional layers to estimate 
the spread of wildfires after ignition from 6 h to 24 h. The authors exploited 13 fire attrib-
utes, such as aspect, fuel model, slope, moisture, and canopy height, to train the model. A 
precision of 0.97, sensitivity of 0.92, and f-measure of 0.93 were found when using the 
proposed technique. 

An AlexNet CNN model with modified adaptive pooling combined with traditional 
image processing was proposed by Wang et al. [150] to automatically locate fire pixels 
from images obtained from the Corsica Fire Database. The authors stated that the present 
studies only applied CNN directly to the fire images without considering colour features. 
Thus, they segregated the fire regions in the images by utilising the colour features before 
training the CNN model. Subsequently, the best classification accuracy of 90.7% was re-
ported by the authors when they trained and evaluated the model using only the seg-
mented images instead of the full original images. 

Zhang et al. [151] adopted 14 influencing fire factors—elevation, slope, aspect, aver-
age temperature, average precipitation, surface roughness, average wind speed, maxi-
mum temperature, specific humidity, precipitation rate, forest coverage ratio, NDVI, dis-
tance to roads, and distance to rivers—to train a CNN algorithm to forecast a spatial pre-
diction map. Data from 2002 to 2010 collected from the Yunnan Province of China were 
used in the study. The authors also applied feature selection techniques such as multicol-
linearity analysis and information gain ratio to evaluate the importance of each fire attrib-
ute. Additionally, an oversampling technique was employed to resolve the issue of the 
imbalance class while proportional stratified sampling was also utilised to fairly compare 
the performance of the CNN with other benchmark classifiers such as random forest, sup-
port vector machine, multi-layer perceptron (MLP), and kernel logistic regression. The 
authors reported that a high AUC of 0.86 was attained by the proposed CNN. 

To benefit from the real-time aerial images captured from UAVs, a low-power CNN 
deep learning algorithm based on YOLOv3 was devised by Jiao et al. [152] to improve the 
accuracy and speed of detection. The authors utilised the UAVs’ internal computing re-
sources to determine whether any fire pixels were detected from studied footage. They 
justified that the transmission of a large amount of data from the UAVs to the cloud ser-
vices was not feasible. At the same time, contents in the videos or images may be suscep-
tible to privacy issues. To resolve these concerns, only the results (i.e., fire or no fire de-
tected) were sent from the UAVs to the cloud services. It should be highlighted that the 
YOLOv3 model was trained on a desktop computer before embedding it onto the UAVs 
for evaluation and testing purposes. A precision of 0.82, recall of 0.79, and f1-score of 0.81 
were achieved by the proposed model. 

Ban et al. [102] proposed a deep learning framework based on a CNN to automati-
cally identify burnt regions by training the model with the Sentinel-1 Synthetic Aperture 
Radar (SAR) images. The experiments were conducted based on two fire incidents in Can-
ada and one fire incident in America. The authors emphasised the feasibility of SAR im-
ages in wildfire monitoring as SAR is an active sensor that can produce microwave signals 
and receive the returned signals (i.e., backscattered). In other words, SAR does not need 
to rely on the availability of sunlight, so it can capture all images during the day and night-
time. By training the CNN model with SAR images containing the VV and VH polarisa-
tion, the model was able to detect the progression of wildfires in all three of the study 
locations. When comparing the proposed CNN against the traditional log-ratio method, 
Ban et al. [102] reported a considerable improvement in terms of the Kappa metrics, which 
were improved by 0.11, 0.27, and 0.30 for the three respective incidents. 

Similar to the work of Jiao et al. [152], Wang et al. [153] developed a lightweight 
YOLO and MobileNetv3 integrated with a pruned network and knowledge distillation 
process to improve the speed and accuracy of real-time detection on a UAV. They 
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pretrained their models with the MSCOCO dataset before training the models utilising a 
fire dataset. A total of 1069 fire and 775 non-fire images were supplied to allow the model 
to learn the characteristics of fire regions. The proposed model was able to achieve a recall 
of 98.41%, precision of 88.57%, and accuracy of 96.11%. While the performance of the pro-
posed model was on par with other baseline models, the authors emphasised that the 
proposed technique was able to reduce the inference (i.e., testing) time required from 153.8 
ms (YOLOv4 model) to 37.4 ms (proposed model). This was enabled by tremendous re-
ductions in model parameters resulting in an approximate 95.87% inference time reduc-
tion compared with the YOLOv4 model. 

Table 8 summarises all the deep learning algorithms adopted in the forest fire do-
main. Among the eight pieces of literature reviewed in this section, five studies utilised 
images from UAV or CCTV to perform image recognition and three studies exploited the 
availability of remote sensing information to perform relevant fire detection tasks. 

Table 8. Summary of deep learning techniques in forest fire detection tasks. 

Year of Pub-
lication 

Reference Dataset Objective Algorithm 

2016 [146] 
Image: unmanned aerial ve-

hicle (UAV) 
Establish computer vi-
sion/image recognition 

Full image and fine-grained patch fire 
classifier with deep convolutional 
neural networks (CNNs) 

2018 [148] 
Image: CCTV surveillance 

camera 
Establish computer vi-
sion/image recognition 

Fine-tuned CNN 

2019 [149] 
Remote sensing data con-
sists of 13 fire-influencing 

attributes 

Estimate the spread of 
wildfires 

Deep Convolutional Inverse Graphic 
Network (DGIGN)—Deep CNN and 
transport CNN 

2019 [150] 
Image: Corsica Fire Data-

base 
Establish computer vi-
sion/image recognition 

Conventional image processing, 
AlexNet CNN, and modified adaptive 
pooling 

2019 [151] 
Remote sensing data con-
taining 14 fire-influencing 

factors 
Classify fire pixels  

Feature selection: multicollinearity 
analysis/information gain ratio and 
CNN 

2019 [152] Image: UAV 
Establish computer vi-
sion/image recognition 

(real-time) 
Low-power YOLOv3 CNN 

2020 [102] 
Satellite Image: SAR Image 
(Sentinel-1 Synthetic Aper-

ture Radar) 

Establish automatic 
burnt region detection 

CNN 

2021 [153] Image: UAV 
Establish computer vi-
sion/image recognition 

Lightweight YOLO and MobileNetV3 
with pruned network and knowledge 
distillation 

5. Challenges and Future Direction of Forest Fire Efforts in Malaysia 
To exploit the potential of machine learning for the task of forest fire detection in 

Malaysia, the first necessary step is to collect remote sensing data and any other ground 
data. However, there are various challenges involved in the data acquisition process. 
Though there are a tremendous amount of remote sensing data available, it remains chal-
lenging to collect and utilise them effectively to produce significant research results. Ad-
ditionally, data from the Malaysian government may be restricted to their department’s 
internal usage. An additional manual application is mandatory to obtain access to some 
data (e.g., historical forest fire data). In a situation when the historical forest fire data can-
not be obtained from the government department, researchers need to perform data vali-
dation of the fire location and fire occurrence time through other approaches (e.g., satellite 
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imagery validation and newspaper validation). Data validation is vital because the per-
formance of a model greatly relies on the precision of annotated data labels. 

As the works related to understanding the factors of fire occurrence in Malaysia re-
main limited, it is crucial to study the attributes of forest fires by correlating the fire inci-
dents with various remote sensing data and ground data. Subsequently, machine learning 
or deep learning algorithms can be adopted by utilising all remote sensing data and 
ground data collected to either predict fire pixels on spatial maps or to forecast future 
spatial fire maps. Alternatively, researchers can also consider tackling the issue of forest 
fires from the perspective of optical sensors (e.g., digital camera and UAV) [32,33], wire-
less sensor networks [154–156], or satellite imagery fire pixel classification [102]. 

It is also worth pointing out that several researchers have identified that most intense 
forest fires have arisen in peat swamp forests [8,35,85]. They have highlighted that fires in 
peat swamp forests cannot be easily detected as they unnoticeably spread through the 
underground. Thus, investigating the factors of forest fires in peat swamp forests is defi-
nitely a worthy future research direction. 

Open Research Questions 
Based on the reviewed literature, we formulated four research questions for future 

studies to address, which will be further discussed in the following paragraphs. 
Research Question #1: What are the influencing factors of forest fires in Malaysia? To 

understand the elements constituting forest fires in Malaysia, it is necessary to perform a 
thorough investigation of the historical forest fire incidents by utilising remote sensing 
data. Though several similar studies have been performed in Central Kalimantan, the 
Mediterranean region of Europe, and the North America continent [157–159], it is still 
extremely vital to perform this type of analysis to examine the local influencing factors of 
each fire occurrence because the factors contributing to fires may vary depending on lo-
cation since each region is influenced by distinct climates, temperatures, weather, local 
fuels, topography, etc. [25]. 

Research Question #2: How can remote sensing data (i.e., satellite data) be used to 
build a machine learning model in Malaysia for the task of forest fire detection? Unlike 
any other field of study, a general machine modelling technique cannot be deployed in 
the task of forest fire detection because of the variation in training data collected from 
different regions [26,138]. In other words, it is not feasible to build a fire model by using 
the data attained from a region in Australia and subsequently implement it in the country 
of Malaysia since fires might be affected by different factors. Thus, the analysis results 
following Research Question #1 can be further exploited to build a forest fire dataset spe-
cifically for the country of Malaysia. Once the dataset has been established, a few machine 
classifiers can then be employed to evaluate its usability (i.e., utility). 

Research Question #3: Can forest fire incidents be identified earlier to prevent disas-
trous fire tragedies? Once the model from Research Question #2 has been devised, it is 
feasible to forecast the risk or the occurrence of fires at certain locations by utilising the 
forecasted data (e.g., wind speed and land surface temperature) from satellites or meteor-
ology stations to the machine model. For a forecasted fire region, analysts or domain ex-
perts can further analyse the fire factors and undertake appropriate measures to prevent 
fire incident. For example, peat swamp fires tend to be triggered in prolonged drought 
scenarios [8]. Ideally, if the detected land surface temperature and drought level are rela-
tively high, authorities can then increase the water table level of the peat swamp region 
to prevent fire incidents [160]. To aid the task of factor analysis, we recommend exploring 
the use of fuzzy cognitive maps [161] or Bayesian networks for discovering the causal 
relationships between each factor and fire occurrence. Based on the relationship presented 
by the model, analysts and domain experts can certainly gain a more in-depth under-
standing of fire occurrence. 

Research Question #4: Can the models and experiments be made reproducible and 
scalable to a global level? In past works related to forest fires in Malaysia, researchers have 
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been required to access and pre-process satellite data before importing them into GIS soft-
ware to perform further analysis. The inconsistency of the pre-processing and analysis 
steps may hinder the experiments’ potential to be reproduced and scaled. With the avail-
ability of a big data platform for EO data, researchers can seamlessly access satellite data 
to perform their analysis. Since the same datasets are exploited by researchers, experi-
ments can be easily reproduced through code sharing. To accommodate the model on a 
global scale, some platforms would just require simple tweaks to their code. For instance, 
Open Data Cube [28], which is an open-source software, can be used if the local computing 
resources can accommodate the analysis task. However, in a scenario with a lack of com-
puting resources, the Google Earth Engine [29] and Planetary Computer [30] platforms 
can be exploited to alleviate the local computing resources as some of the heavy pro-
cessing can be performed on their servers. 

6. Proposed General Methodology to Utilise Remote Sensing Data for Forest Fire Ef-
forts in Malaysia 

The proposed methodology to utilise remote sensing data for forest fire efforts is suc-
cinctly deliberated in this section as a solution proposed to address the arising research 
questions described in Section 5. Figure 2 presents the general flow of the overall works 
that can be undertaken in the future. Each of the steps numbered in the figure will be 
elaborated to offer a better insight into the proposed research methodology. It is postu-
lated that the proposed methodology can also be applied to other locations or countries, 
as well as other research problems in the geoscience domain. 

Step 1: Data Discovery. Firstly, the study locations must be selected in this phase. The 
preferred locations are forests that have dealt with fire incidents in the past. Based on the 
historical fire incidence data provided in Table 4, (i) Pekan, Pahang; (ii) Raja Musa Forest 
Reserve, Selangor; and (iii) Klias, Sabah are the most suitable locations to be studied and 
investigated. To obtain the necessary information (i.e., statistics, area burnt, and location 
of forest fire) related to the selected locations, a request can be sent to the Forestry Depart-
ment of Peninsular Malaysia (JPSM) for Peninsular Malaysia or Sabah Forestry Depart-
ment for the state of Sabah. In the absence of historical fire incident information from gov-
ernment departments, MODIS active fire product hotspots [112] can be substituted as his-
torical fire spots. It should be noted that the hotspots from MODIS have been exploited in 
several works related to a forest fire in the literature [159,162,163]. 

Step 2: Remote Sensing Data Extraction. Once the locations and historical fire inci-
dents or hotspots have been identified, a big data platform for satellite data or direct access 
from a data provider (e.g., NASA) can be utilised to access and extract all the relevant 
remote sensing data from various satellite sensors. For instance, slope, aspect, elevation, 
land cover, land surface temperature, and sea surface temperature can be obtained or de-
rived from extracted data. It should be remarked that some of the information might be 
required to undergo further processing procedures before it can be utilised to build the 
forest fire dataset. The utilisation of big data platforms such as Open Data Cube [28], 
Google Earth Engine [29], and Planetary Computer [30] will undoubtedly facilitate and 
improve the process of satellite data acquisition. 

Step 3: Forest Fire Datasets Establishment. In addition to the remote sensing data 
mentioned in Step 2, other related data such as distance to road, distance to residential 
area, distance to river, population density, and socioeconomic information can also be as-
similated as the influencing factors to create the forest fire dataset. Some of these data can 
be obtained or accessed from the Malaysia government portal, as described in Table 6. 
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Step 4: Feature Analysis and Selection. After building the forest fire datasets, statisti-
cal analysis can then be exploited to assess the relationship between each attribute and 
forest fire incident. Some of the works in the literature adopted entropy reduction [144] 
and data analytical modelling in GIS [159] to discover the most significant influencing 
forest fire factors. Once the importance of each attribute has been evaluated, the metrics 
can be fine-tuned as the weight of each attribute and subsequently supplied to the ma-
chine classifiers. On the other hand, feature selection techniques through machine classi-
fiers such as multiple logistic regression [157] and random forest [157] have also been car-
ried out by researchers to select the primary affecting attributes to build their models. 

Steps 5 and 6: Machine Learning Training and Evaluation without Attribute 
Weighting and Feature Selection. Machine learning classification models (e.g., random 
forest, support vector machine, and decision tree) or other deep learning models can then 
be adopted to build the model using the forest fire datasets. Once the models have been 
trained, they can then be used as predictors to measure the likelihood of a certain pixel 
being a fire pixel or a normal pixel. 

Steps 7 and 8: Machine Learning Training and Evaluation with Attribute Weighting 
and Feature Selection. To assess the impacts of attribute weighting or feature selection 
obtained in Step 4, a similar experimental procedure as described in Steps 5 and 6 can be 
repeated by incorporating the weighted attributes or only the selected features to build 
the model. Some evaluation metrics (e.g., classification accuracy) can then be used to eval-
uate the improvement or degradation effects resulting from the application of attribute 
weighting or feature selection. 

Step 9: Forecasting Future Fire Incidence. Generally, three methods can be used to 
predict future fire incidents; the first strategy requires the forecasted data from satellite or 
weather station to be extracted and supplied as the testing data. For example, the next 
seven days of meteorological data (e.g., rainfall, temperature, and wind speed) can be 
provided to the trained models in Step 5 or 7 to foresee whether the location will be iden-
tified as a fire-prone pixel. On the other hand, advanced analysis techniques such as trend 
analysis or hotspot analysis schemes can be employed to visualise and forecast the future 
trends of fires. Alternatively, fuzzy cognitive mapping models can be exploited to uncover 
the causal relationships between the factors and fire incidents. 

7. Forest Fire Benchmark Datasets 
In the machine learning community, a benchmark dataset representing a real-world 

data science problem is commonly utilised to discover the best solution for a specific prob-
lem by measuring the performance of different machine learning models [164]. Generally, 
a classifier trained by tabular data (e.g., breast cancer [165]) or images (e.g., ImageNet 
[166]) can be used to perform prediction tasks. Unlike the typical machine learning field, 
the general geoscience domain must deal with a tremendous volume of remote sensing 
data to create a benchmark dataset. Before building such a dataset, it is also necessary to 
study the relevant factors contributing to the problem to extract the relevant attributes. 
For instance, land-cover types, temperature, humidity, and digital elevation models are 
some of the critical factors in forest fire occurrence based on previous studies, e.g., by 
Ganteaume et al. [101]. Additionally, the use of validation data from previous field studies 
(i.e., verifying forest fire locations from a field study) is also essential to enhance the cred-
ibility of a dataset. Furthermore, a prediction task in the geoscience domain can span from 
the present to several minutes, months, or even years. 

Though it is not an easy task to create a benchmark dataset, particularly in the geo-
science domain, several weather and climate benchmark datasets have been created and 
are directly accessible from http://mldata.pangeo.io/ (accessed on 10 August 2022). For 
example, the WeatherBench [167] benchmark dataset can be exploited with a machine 
learning algorithm to forecast 3–5 days of global weather patterns. Presently, there are 
only two publicly accessible forest fire datasets [135,168]. Cortez and Morais [135] focused 
on the regression problem to predict the burnt area regions in Portugal by exploiting 13 
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attributes and 517 instances, while Sayad et al. [168] attempted to classify fire and non-
fire pixels in Canada by utilising three influencing attributes and a total of 1713 instances. 
Both of the datasets only utilised a small number of attributes and instances. Referring to 
the geoscience benchmark dataset criteria set forth by Dueben et al. [164], it can be con-
cluded that no standard benchmark dataset for a forest fire is publicly available to date. 
Hence, we recommend utilising a big data platform in conjunction with the benchmark 
dataset guidelines as described by Dueben et al. [164] to create a forest fire benchmark 
dataset, starting from the country of Malaysia. 

Forest Fire Validation Data 
As mentioned earlier in Section 5, historical forest fire data can be requested from 

local government agencies. In a scenario in which such data cannot be obtained, the vali-
dation of the fire scene can be rendered with satellite imagery or newspaper articles. Al-
ternatively, post-fire burned area products from the Copernicus Emergency Management 
Service (EMS) [169] and European Forest Fire Information System (EFFIS) [170] can also 
be exploited to validate fire activity data. However, these products do not contain any 
record of fire activity in the country of Malaysia. Therefore, satellite-based, post-fire 
burned products such as FireCGI51 [171] or MCD64A1 [172,173] can be substituted to rec-
ognise burnt areas and to perform the validation of fire incident data. 

8. Overview of Forest Fire Detection and Monitoring 
Traditionally, human-based observation, either from the public or patrol staff, was 

utilised to discover the occurrence of forest fires. However, such an approach is not feasi-
ble in the sense that the fire incidents will only be reported once they are visible. Addi-
tionally, the surveillance time is limited to a certain period of the day. Thus, optical sen-
sors such as digital camera surveillance systems are designed to replace human observa-
tion. Though digital cameras can effectively detect fires with a low number of false alarms, 
the deployment of such systems is very expensive as it requires communication infra-
structure and a camera tower to establish them. Recently, UAV vision-based system de-
tection has also been developed by several authors [33]. It should be noted that most op-
tical sensor approaches require image processing techniques, along with machine learning 
or deep learning algorithms, to determine whether a fire occurs in an image. 

Alternatively, several works based on wireless sensor networks have also been de-
veloped to detect the occurrence of a fire before it is triggered [154–156]. Generally, a sen-
sor will collect and analyse parameters such as pressure, humidity, temperature, carbon 
dioxide, and nitrogen dioxide to determine the presence of a fire. A detailed survey of the 
variation of fire detection techniques was presented in [32,174] 

On the other hand, satellite-based systems such as AVHRR or VIIRS [115] and 
MODIS Active Fire Products [112] have been employed to determine the potential fire 
hotspots. The primary disadvantage of this mechanism is its inability to detect a fire in 
real time because the detection of a location is based on the cycle time of a satellite to 
return to the same location. With the advancement of technology, one recent research 
study was focused on uncovering the burnt area from a forest fire by performing deep 
learning image classification from SAR images [102]. To draw out the strength of the sat-
ellite remote sensing data, researchers have also exploited remote sensing data to forecast 
fire maps [151]. The availability of the public and an enormous amount of remote sensing 
data [27] have undoubtedly motivated researchers to utilise them in various applications. 
We refer to [23,24] for reviews of the application of machine learning to build forest fire 
prediction and detection systems. Figure 3 provides a general overview of forest fire de-
tection and monitoring technology. 
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Figure 3. Overview of forest fire detection and monitoring technology. 

9. Other Relevant Studies Commonly Employed in Forest Fire Domain 
In contrast to all the works presented in this manuscript, several research fields re-

lated to fire spread models commonly employed around the world have also yet to be 
adopted in Malaysia. Some of these include physical-based models [175,176], computa-
tional fluid dynamics (CFD) models [177–179], geometrical models [180,181], and cellular 
automata models [182–184]. The fundamentals of a physical model involve the chemistry 
and/or physics of combustion to simulate fire spread [175]. For example, Koo et al. [176] 
simulated fire spread activity by utilising the concepts of energy conversation and heat 
transfer. From their experiments, they discovered that wind and slope attributes were 
some influencing factors. The advancement of computational power has encouraged the 
usage of physical models exploiting the computational model to predict the spread of fire 
[178]. For instance, William et al. [179] utilised CFD to solve a three-dimensional time-
dependant equation considering fluid motion, combustion, and heat transfer in order to 
develop the Wildland Fire Dynamic Simulator. Geometrical modelling is focussed on the 
application of physical, mathematical and/or computational methods to study the geom-
etry (i.e., shape) of a flame in different scenarios. To illustrate, Lin et al. [180] studied flame 
geometry in terms of horizontal flame length, vertical flame height, flame base drag, and 
flame tilt angle in an experiment utilising propane as fuel for four distinct dimensions of 
gaseous burners with varying air speed (i.e., wind speed) conditions. A cellular automata 
model is a local grid-based stochastic modelling technique [183]. For example, such a 
model will split an entire forest into multiple smaller cells, and each cell changes state 
(e.g., no fuel, contain fuel but not burning, burning, and burnt) depending on the state of 
the neighbouring cells and time-steps [183]. Hence, researchers may also consider devel-
oping the aforementioned models from the physics, chemistry, or mathematics perspec-
tives to build fire spread models. 

10. Conclusions 
This manuscript predominantly summarises background information for forest fire 

research in Malaysia. It begins with an exploration of forest-fire-associated research works 
performed in Malaysia. Then, some of the influencing forest fire factors are briefly dis-
cussed. The procurement of data, especially public remote sensing (i.e., satellite date) data 
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that have been utilised in Malaysia, is provided in Section 3. It should be highlighted that 
only a small amount of satellite data has been adopted in Malaysia. In addition, a small 
discussion related to big data platforms for accessing remote sensing information is also 
provided. It is necessary to understand the different acquisition procedures to access the 
data because these remote sensing data are vital for the establishment of a machine learn-
ing-based forest fire dataset in Malaysia. 

Section 4 is mainly devoted to exploring the utilisation of machine learning to detect 
forest fires from a global perspective. From the presented literature, it can be recognised 
that the application of machine learning for fire detection tasks is definitely not new. How-
ever, a finding from the review presented in Section 2 shows that no one has exploited the 
potential of a machine learning algorithm for forest-fire-related tasks in Malaysia. Subse-
quently, some of the challenges to utilising machine classifiers for the task of forest fire 
detection in Malaysia are also discussed in Section 5. Additionally, some future directions 
and research questions are also contemplated in the same section to provide future re-
searchers in Malaysia avenues for the extension of the literature in the forest fire domain. 
A general methodology to apply machine learning by making use of remote sensing data 
and ground data for the task of forest fire detection in Malaysia is proposed in Section 6. 
In view of technology advancement, it is postulated that the application of machine learn-
ing or deep learning algorithms will undoubtedly improve fire monitoring and detection 
in Malaysia. It can be certain that the ability to accurately detect or forecast fires will assist 
authorities to efficiently allocate fire-fighting resources to reduce the severity of forest fire 
incidents. Next, Section 7 highlights that there are no presently available forest fire bench-
mark datasets, and some general recommendations to create a standard benchmark da-
taset are also provided in this section. An overview of forest fire detection and monitoring 
solutions such as human observation, optical sensors, and wireless sensors are briefly dis-
cussed in Section 8. Towards the end of the manuscript, some of the methods and tech-
niques associated with fire spread models from the perspectives of mathematics, chemis-
try, and/or physics are presented in Section 9. It is important to emphasise that these mod-
els have been commonly exploited across other countries, but the adoption of these mod-
els is still very rare in Malaysia. 

In conclusion, research in the forest fire domain in Malaysia comprises discovering 
the causes of fires, revealing the impacts of fires, and generating fire risk maps by utilising 
remote sensing data. From this review, it can be speculated that human activity and neg-
ligence are the predominant factors in instigating forest fires in Malaysia. To fathom 
whether environmental variables were some of the influencing fire factors, researchers 
have also exploited various remote sensing data in conjunction with fire activity infor-
mation to reveal the relationship between them. Specifically, temperature and precipita-
tion have been shown to exhibit a high correlation with most fire activity. While machine 
learning has not been utilised in Malaysia, our review suggests that the adoption of ma-
chine learning or deep learning techniques will definitely aid in the task of fire prediction 
or detection in Malaysia. In summation, this review paper aspires to serve as an avenue 
to facilitate future researchers in their initial stage of exploration for the battle against 
forest fires in Malaysia. 
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