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In this paper, we studied the unmanned aerial vehicle-assisted urban monitoring network, in which unmanned aerial vehicle (UAV)
withwireless power transmission provides energy transmission and data collection services for the network. Considering the density of
the urban monitoring network, we use the k-means algorithm to cluster the monitoring nodes and reduce the complexity of the UAV
services. The UAVs are serviced using a fly-hover-communication protocol. During hovering, the UAV works in the full-duplex
mode, collecting data from cluster head nodes on one side and recharging nodes in coverage on the other side. We propose a
multiobjective joint optimization problem that considers maximizing the amount of data collection and energy transfer and
minimizing the energy consumption of the UAV during the service period. In the optimization process, there is a partial conflict
between the three objectives. For this reason, the importance of the optimization objectives is considered and described by
weighting parameters. A multiobjective joint deep deterministic policy gradient algorithm is proposed for the multiobjective
control policy of UAVs. Numerical results show that the proposed algorithm can achieve the joint optimization of multiple
objectives and is compared with other algorithms to verify the superiority of the proposed algorithm.

1. Introduction

As a key technology for future networks, the internet of
things (IoT) can meet the transparent and seamless integra-
tion of massive heterogeneous nodes at any time, any place,
and any interconnection mode [1, 2] and can provide service
support for information exchange and content sharing
between nodes [3].

Internet of things (IoT) technologies are widely used,
and wireless monitoring networks are one of the application
scenarios. It is important for the development of the internet
to obtain environmental information and summarize and
analyze it by large-scale and intensive deployment of moni-
toring nodes in wireless monitoring networks to realize the
value exploitation of data. There are numerous application
scenarios for wireless monitoring networks, such as smart
agriculture [4], railroad systems [5], and environmental
monitoring [6].

In smart city monitoring networks, network nodes are
affected by deployment location and terrain, and the needs
of monitoring nodes are often not satisfied. In terms of data

acquisition, the complex building environment in the mon-
itoring network makes it difficult to transmit data between
monitoring nodes through multihop communication and
mobile access point communication. In terms of energy
transmission, the traditional wired energy charging and
natural environment energy acquisition methods are not
efficient enough to meet the energy transmission needs of
urban monitoring networks. Inefficient data collection and
energy transmission services can easily lead to data overflow
and energy voids in nodes. The introduction of unmanned
aerial vehicles (UAVs) and wireless energy-carrying technol-
ogy provides an effective solution for urban monitoring
networks [7, 8]. UAV-assisted wireless networks are a prom-
ising technology for improving network performance [9].
The UAV’s ability to fly allows it to get close to the device
quickly without being hindered by ground obstacles [10].
Through UAV-assisted data collection and energy transmis-
sion, it provides an efficient network service for urban
monitoring networks. Considering the high performance
demand for data collection services and energy transmission
services in the monitoring network and the low energy
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consumption requirements of UAVs, it is of great research
significance to improve the network performance by opti-
mizing the resource allocation in the UAV-assisted urban
monitoring network.

In urban monitoring networks, network nodes have the
characteristics of large-scale and dense distribution, while
the distribution of network nodes will be affected by their
own characteristics. Thus, the UAV’s data collection service
to the monitoring nodes as well as the energy transmission
service needs to first consider the clustering of the nodes.
The clustering of nodes based on their own characteristics
and distribution characteristics can effectively reduce the
complexity of the network and reduce the energy consump-
tion of UAVs. During the mission, the UAV sends data
collection information to the cluster monitoring nodes via
downlink and carries out energy transmission at the same
time and interacts with the cluster head nodes to collect
monitoring data via uplink. In this paper, we optimize the
UAV action strategy under the premise of ensuring the net-
work quality, which mainly includes flight decision, hover-
ing time position division, and UAV transmission power.
The UAV action strategy is optimized to reduce UAV
energy consumption while providing efficient data collection
and energy transmission services.

The main contributions of this paper are as follows.

(i) To address the high demand for data collection and
energy transmission services in urban monitoring
networks, the data collection quantity, energy trans-
mission quantity, and UAV energy consumption
are used as multiobjective optimization problems,
and to minimize node data overflow and energy
hole situations. An optimal resource allocation
strategy based on the antenna switching structure
is proposed, which can maximize network perfor-
mance and minimize UAV energy consumption
while guaranteeing network quality

(ii) The monitoring nodes are clustered based on the k
-means algorithm considering the strong correla-
tion between a large number of monitoring nodes
in the urban monitoring network, deployment dis-
tance, distribution characteristics, and data queue
characteristics

(iii) The decision problem in the UAV-assisted urban
monitoring network is modeled as a Markovian
decision process, and a dynamic resource alloca-
tion algorithm based on the multiobjective joint
optimization-oriented DDPG algorithm (MJDDPG)
is proposed to achieve the optimization objective by
jointly optimizing the UAV flight decision, hovering
time slot, and UAV launch power. Finally, the
effectiveness of the proposed algorithm is verified
in the simulation analysis, and the superiority of
the algorithm is verified by comparing it with the
baseline algorithm

The remainder of this paper is arranged as follows. In
Section 2, a brief summary of related work is presented. In

Section 3, we introduce the system model and present the
multiobjective optimization problem. In Section 4, we intro-
duce the MJDDPG-based resource allocation algorithm.
Section 5 gives the related simulation results and analysis.
In Section 6, we conclude the full paper.

2. Related Work

The data collection of large-scale monitoring nodes and the
optimization of energy transmission have been the research
hotspots of wireless monitoring networks. As a common
auxiliary method in wireless monitoring networks, a lot of
research work has been done on UAV-assisted wireless
monitoring networks. In [11], for a system of animal species
and health status monitoring, considering the strict require-
ments of monitoring data collection latency in this scenario,
the UAV trajectory and performance were optimized based
on the latency as well as the information value of the UAV
by deploying the UAV to collect monitoring information
in static nodes. In [12], a study was conducted for the data
collection task in a multi-UAV-assisted agricultural moni-
toring scenario, where the UAV flight speed and the node
data transmission rate were considered, the node upload
data should be defined as gradient upload, and the automatic
data collection function was realized by building an overall
architecture based on dual UAVs as well as ground data
terminals, which improved the data collection in real time
as well as accuracy. In [13], a medical health monitoring
scenario was studied to guarantee effective coverage by
deploying UAVs to cover health monitoring equipment in
the region, enabling the collection of health monitoring data
and providing real-time computational processing to guar-
antee timely rescue services in case of accidents. In [14],
the UAV-assisted maritime monitoring scenario was stud-
ied, in which the UAV acts as a mobile base station to
achieve energy transmission, and the monitoring nodes are
based on obtaining energy upload data information, and
the energy efficiency is obtained as a measure of the ratio
between the amount of data uploaded by the nodes and
the energy consumption of the UAV, and the impact of
the UAV hovering point on the network performance is
investigated. For the remote ocean monitoring scenario
[15], the data of underwater monitoring points are obtained
through the surface convergence point, and the data collec-
tion work is completed by UAVs, and the optimization goal
is to maximize the network lifetime by jointly allocating the
UAV deployment, subchannel matching, and joint alloca-
tion optimization of power matters, time, and other
resources to maximize the remaining energy of underwater
nodes while guaranteeing the delay requirements.

For the energy supply of monitoring nodes, Lin et al.
[16] conducted a study for a smart agriculture monitoring
scenario in which UAVs are used as data relays as well as
energy charging components to charge monitoring nodes
and meet the charging requirements of all nodes by planning
the optimal path of UAVs and considering the UAV move-
ment path length as well as UAV energy as constraints. In
[17], the charging of monitoring nodes in agricultural
monitoring scenarios is considered, and RF signals are sent
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to monitoring nodes, and monitoring data are collected
through wireless power transmission technology, where
UAV movements are controlled by developing systems as
well as feedback control algorithms. Considering the
recharge scenario of the wearable medical emergency
system, the authors in [18] investigated the problem of min-
imizing the total recharge and computational task offloading
time, in which the UAV hovering position, flight decision,
and recharge time were mainly considered and the optimi-
zation problem was solved based on an intelligent optimi-
zation algorithm.

In summary, most of the existing research works on
UAV-assisted wireless monitoring networks are oriented
towards data acquisition services of monitoring nodes,
without considering energy supply and data acquisition
optimization. Thus, it is necessary to optimize the resource
allocation strategy of wireless monitoring networks to pro-
vide efficient data acquisition and energy supply services.

3. System Model and Problem Formulation

In this section, we first present a UAV-assisted urban
monitoring network in which UAVs provide data collection
and energy transfer and then formulate the multiobjective
optimization problem.

3.1. UAV-Assisted Urban Monitoring Network Model. In this
paper, we consider UAV-assisted urban monitoring net-
works, with the specific scenario of a single UAV providing
energy transmission as well as data collection services for
multiple monitoring nodes through mobile. The urban mon-
itoring network model is shown in Figure 1, where the UAV
is equipped with a single antenna and the monitoring nodes
are equipped with multiple antennas. The flight altitude of
the UAV is H. The monitoring nodes perform information
decoding as well as energy collection based on the antenna
switching structure, respectively, and the monitoring nodes
will differ in data generation rate, distribution density, and
the importance of monitoring data according to the different
monitoring tasks.

Considering the limited energy of the UAV, each mis-
sion lasts for a period of time, the duration is T > 0, and
for the purpose of analysis, the total time is divided into N
equal time slots, i.e., t = T/N , as shown in Figure 2. The
UAV works with a flight-hover communication protocol,
where the UAV does not communicate with the monitoring
node during flight and only transmits energy and collects
data from the monitoring node during hovering. The UAV
hovering time slot is split into two parts, corresponding to
uplink and downlink communication, respectively. In the
downlink subtime slot, the UAV sends information to the
monitoring nodes in the cluster and carries out energy trans-
mission at the same time. Meanwhile, the monitoring nodes
receive RF signals for information decoding and energy col-
lection based on the antenna switching structure. In a single
time slot, the time size of the downlink subtime slot is τ½t�. In
the uplink subtime slot, the cluster head node uploads
monitoring data to the UAV. In a single time slot, the time
size of the uplink subtime slot is t − τ½t�.

3.2. Transmission Queue Model. In the urban monitoring
network, the monitoring node is denoted as M = 1,⋯,m
and the node location is ½xm, ym�. For monitoring node m,
λmðtÞ denotes the data generation rate of node m during
the monitoring task performed at time slot t. Due to moni-
toring node deployment location and hardware factors, λm
ðtÞ will be different. Consider that λmðtÞ obeys Poisson
distribution for different nodes, and this parameter is con-
stant during the monitoring task. bmðtÞ denotes the length
of data waiting to be uploaded in the data transmission
queue of monitoring node m at time slot t. At the begin-
ning of each time slot, the data transmission queue of
monitoring node m is

bm t + 1ð Þ = bm tð Þ + λm tð Þ, ð1Þ

where bmðtÞ ∈ ½0, bmax
m �, bmax

m is the maximum capacity of
the data transmission queue storage. We assume that
bmax is the same for all monitoring nodes. When bmðtÞ
exceeds bmax

m , the newly collected data of the monitoring
node not put into the data buffer will be discarded, result-
ing in data overflow.

Considering the energy transmission of the monitoring
node, δmðtÞ denotes the remaining battery energy of the
monitoring node m at time slot t. Let υmðtÞ denote the
energy consumption rate of the node at time slot t. The
energy consumption rate of the monitoring node varies
due to hardware factors and the deployment location. At
the beginning of each time slot t, the energy state of the
monitoring node is

δm t + 1ð Þ = δm tð Þ − υm tð Þ, ð2Þ

where δm ∈ ½0, δmax
m �, δmax

m is the maximum capacity of the
energy transfer queue storage. We assume that δmax

m is the
same for all monitoring nodes. When δm ≤ 0, it means that
the monitoring nodes run out of energy and there is an
energy hole situation.

3.3. Channel Model. Considering that the study scenario is
an urban area with many buildings, the free-space propa-
gation channel model is no longer applicable. The proba-
bilistic channel model that combined with the line-of-
sight (LOS) link and non-line-of-sight (NLOS) link is con-
sidered. Under this channel model, we define LkðtÞ as the
path loss. The mathematical description of the path loss is
shown below [19]:

Lk tð Þ =
γ0d

−~α
m , LOS link,

μNLOSγ0d
−~α
m , NLOS link,

(
ð3Þ

where γ0 = ð4πf c/cÞ−2 denotes the channel power gain at
the reference distance dm = 1m, with f c denoting the car-
rier frequency and c denoting the speed of light. And
d−~αm is the distance between the UAV and the target node,
where ~α denotes the path loss exponent. The term μNLOS is
the attenuation coefficient of the NLOS link.
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We define PLOS as the LOS probability. For monitoring
node m, the LOS probability [20] at moment t is

PLOS
m θm tð Þð Þ = 1

1 + a exp −b θm tð Þ − að Þð Þ , ð4Þ

where a and b are constants depending on the carrier fre-
quency and the type of environment. It is also influenced
by the relative position of the communicating nodes. θmðtÞ
is the elevation angle between the UAV and the target mon-
itoring node, denoted as

θm tð Þ = 180
π

� �
sin−1 H

dm tð Þ
� �

, ð5Þ

where dmðtÞ is denoted as the distance between the UAV

and the monitoring node and is calculated as dmðtÞ =
ðH2 + ðxuðtÞ − xmÞ2 + ðyuðtÞ − ymÞ2Þ

1/2
, with ½xuðtÞ, yuðtÞ�

being the horizontal position of the UAV at time slot t.

The non-line-of-sight link probability can be denoted as
PNLOS
t ðθmðtÞÞ = 1 − PLOS

t ðθmðtÞÞ. The downlink channel
power gain and uplink channel power gain of the communi-
cation link between the UAV and the target monitoring
node m can be denoted as hmðtÞ and gmðtÞ, respectively.
We assume that the uplink and downlink channels of the
UAV are approximately the same. The channel power gain
between the UAV and the target node can be expressed as

hm tð Þ ≈ gm tð Þ = PLOS
t θm tð Þð Þ + μNLOSPNLOS

t θm tð Þð Þ� �
γ0dm tð Þ−α:

ð6Þ

3.4. Energy Consumption Model. Assume that the UAV is
flying at a fixed altitude H > 0. The horizontal position at
time slot t is denoted as ½xuðtÞ, yuðtÞ�. We consider the
UAV moving in the horizontal direction and do not con-
sider the change of the UAV’s position in the vertical direc-
tion. The maximum flight speed of the UAV is vmax. The
UAV determines its next movement and updates its position
in real time during its movement. The flight trajectory of the

Monitoring nodes UAV

Energy transmission Information transmission

Figure 1: System model.

Time slot 1 Time slot t
(Hover) Time slot N

Downlink
energy transfer

Uplink
data collection

T

𝜏 (t) t–𝜏 (t)

………… …………

Figure 2: UAV-assisted urban monitoring network transmission protocol.
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UAV is controlled by controlling the flight speed vðtÞ and
yaw angle θðtÞ, where vðtÞ ∈ ½0, vmax� and θðtÞ ∈ ½−π, π�.
Consider the propulsion power consumption of the UAV
at speed V expressed as [21]

P Vð Þ = P0 1 + 3V2

U2
tip

 !
+ Pi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 + V4

4v40

s
−

V2

2v20

 !1/2

+ 1
2 d0ρsAV

3,

ð7Þ

where P0 is the blade profile power during hovering and U tip
is the rotor blade tip speed. Pi and v0 denote the induced
power and the mean rotor induced velocity under hovering
conditions. For parasitic power, d0, ρ, s, and A, denote the
fuselage drag ratio, air density, rotor solidity, and rotor disk
area, respectively. The propulsive power consumption of the
UAV includes blade profile, induced power, and parasitic
power. The hovering power consumption of the UAV by
setting V = 0 can be expressed as

Phov = P V = 0ð Þ = P0 + Pi: ð8Þ

In summary, the flight energy consumption of the UAV
during the time slot t can be expressed as

Ec v, tð Þ =
P vð Þt, flying status,
Phovt, hovering status:

(
ð9Þ

The UAV communication energy consumption mainly
considers the energy transmission loss in the process of
charging the monitoring nodes. In the actual scenario, the
energy transmission range of the UAV is limited, and only
the energy transmission and data collection are carried out
to the monitoring nodes within the coverage of the UAV
during the hovering phase.

The UAV moves to the target node location for service
by controlling the flight speed vðtÞ and the yaw angle θðtÞ.
The radio frequency signal is transmitted to the monitoring
node by transmitting at transmit power pd within subtime
slot τ½t� at time slot t, where pd is limited by ½0, pmax

d �. In τ½
t�, all monitoring nodes in the coverage area of UAV energy
transmission will be charged, and the received power at
monitoring node m can be expressed as

Pr
m tð Þ = hm tð Þj j2Pd tð Þ: ð10Þ

In order to be closer to the realistic scenario, a nonlinear
energy transfer model [22] is applied as the air-ground
energy transfer model in this paper. Compared with the lin-
ear model, the nonlinear energy transfer model considers the
saturation limit of the circuit and is more general as well as
practical. With the RF-EH model [23], the actual received
power of the node can be expressed as

Ph
m tð Þ = Plimite

cd − Plimite
−c Pr

m tð Þ−dð Þ

ecd 1 + e−c Pr
m tð Þ−dð Þ� � , ð11Þ

where Plimit is the maximum output direct current power
and c and d are both circuit characteristic-related constants.

3.5. Network Clustering Model. Consider the urban monitor-
ing network scenario in which the number of monitoring
nodes is large and densely distributed. UAVs traversing all
monitoring nodes in turn for energy transmission and data
collection will cause serious energy consumption. In addi-
tion, monitoring nodes without timely data collection and
energy transmission services will lead to serious energy voids
and data loss problems. Thus, the problem is considered to
be divided into two parts: cluster head election and resource
allocation. After clustering the nodes, a suitable monitoring
node is selected from each cluster as the cluster head, and
the cluster head node collects the data from the monitoring
nodes within the cluster and forwards it to the UAV. In this
paper, the k-means algorithm is chosen as the clustering
algorithm, and in terms of monitoring node characteristics,
the neighboring monitoring nodes have similarity in terms
of data generation rate and energy consumption rate.

The M monitoring nodes are divided into k clusters
according to the clustering algorithm, and each cluster cor-
responds to a subset of nodes denoted as Mk. In the cluster,
the node transmits its own monitoring data to the cluster
head node k. The UAV transmits energy to all nodes in
the cluster during the hovering phase, and the monitoring
node as the cluster head uploads monitoring data via uplink
during t − τ½t� time. In the data upload phase, the uplink
transmit power Pu

kðtÞ of the cluster head node depends on
the total energy collected in time τ½t�, i.e., Pu

kðtÞ is positively
related to the actual received power Ph

kðtÞ [24] and can be
expressed as

Pu
k tð Þ = ζPh

k tð Þτ t½ �
1 − τ t½ � , ð12Þ

where ζ is a constant value indicating the energy conversion
efficiency. The upload data rate of cluster head node k is
expressed as

Rk tð Þ =W log2 1 + Pu
k tð Þ gk tð Þ2�� ��

σ2k

 !
, ð13Þ

where σ2
k denoted the channel noise power of the UAV and

gkðtÞ denoted the channel power gain between UAV and
cluster head node k at time slot t.

At each time slot, the UAV selects a cluster head node as
the target node for the next service. If the target node is still
the current node, the UAV continues to maintain the hover-
ing service for the next time slot, and if the target node
changes, the UAV will be in the flight state and move to
the target node position by making a decision on the flight
speed as well as the yaw angle. The selection of the target
node requires consideration of the service priority of the
node, which includes data collection priority and distance
to the node, where the data collection priority is set based
on the data queue length and data generation rate of the
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monitoring node. The service priority of cluster head node k
at time slot t can be defined as

Qd
k tð Þ = λk tð Þ bk tð Þ

bmax
k

duk tð Þ, ð14Þ

where dukðtÞ denotes the relative distance between the mon-
itoring node k and the UAV. The priority of nodes does not
only depend on the data transmission queue ratio of the
node but also is influenced by the node data growth rate
and the relative distance from the node to the UAV. The
growth rate of node data contains the prediction of future
data queues. The relative distance between nodes and UAV
is considered in order to let UAV serve the whole area as
much as possible. Thus, the UAV is not served only in a cer-
tain area. Meanwhile, the relative distance includes the flight
process before the UAV provides the service.

3.6. Problem Formulation. Considering the UAV-assisted
urban monitoring network, a dynamic resource allocation
strategy based on the antenna switching structure is developed,
which can guarantee the network performance by considering
three aspects: data collection demand, energy transmission
demand, and UAV energy consumption. The data collection
demand ismainly reflected in the total amount of data collected
by the UAV to the monitoring nodes, the energy transmission
demand is the total amount of energy acquired by themonitor-
ing nodes, and the UAV energy consumption is the total
communication energy consumption and mobile energy
consumption of the UAV during the service period.

After the monitoring nodes are clustered, the monitoring
nodes within the cluster send the cached data in the data
transmission queue to the cluster head node in a single-
hop or multihop way. During the time slot t, the data collec-
tion of the UAV during hovering at the monitoring node m
is realized based on the cluster head node k. The amount of
data collected by the UAV can be expressed as

Dk tð Þ = Rk tð Þ t − τ t½ �ð Þ: ð15Þ

The total data collection from the UAV to the monitor-
ing nodes during the service period T can be expressed as

Dsum = 〠
T

t=1
Dk tð Þ: ð16Þ

During the time slot t, the UAV sends data collection
information and transmits energy to the cluster head node
k and the remaining monitoring nodes within the coverage
area of the UAV. During hovering at the position of cluster
head node k, the amount of energy transmitted by the UAV
within the time slot t can be expressed as

Ek tð Þ = 〠
i∈Mk

ζPh
i tð Þτ t½ �: ð17Þ

Thus, the total energy transfer from the UAV to the mon-
itoring node during the service period T can be expressed as

Esum =〠
t∈T

Ek tð Þ: ð18Þ

According to the state of the UAV in time slot t, the UAV
energy consumption can be divided into flight energy con-
sumption as well as hovering energy consumption, where hov-
ering energy consumption includes the UAV hovering energy
consumption and the total downlink transmission energy,
which can be expressed as

Euav tð Þ = Euav
k tð Þ = pd tð Þτ t½ � + phov tð Þt: ð19Þ

The energy consumption of the UAV in the flight state is
denoted as EuavðtÞ = pðvÞt. The energy consumption of the
UAV during the service period can be expressed as [23]

Euav
total =

ðT
0
Euav tð Þdt: ð20Þ

At the same time, to minimize data overflow and energy
hole, we consider the actual scenario. We consider bkðtÞ ≤ α
bmax, i.e., the data overflow situation is considered to occur
when the amount of data in the monitoring node is greater
than the threshold value αbmax, where α is a constant. Simi-
larly, we consider the energy hole case. An energy hole case
is considered when the energy of the monitored node is less
than βδmax, i.e., δkðtÞ ≥ βδmax, where β is a constant.

The optimization objectives are considered to maximize
the total amount of data collection and energy transmission
in the urban monitoring network, while minimizing the
energy consumption of the UAV. In the process of planning
the flight trajectory and hovering position of the UAV, it is
necessary to consider the status of the monitoring nodes
and the energy consumption of the UAV and try to avoid
the situation of data overflow and energy voids in the mon-
itoring nodes. The UAV accesses the monitoring nodes for
service in order according to the priority of the monitoring
section, i.e., monitoring node k = argmaxQd

kðtÞ is selected
as the target node for the UAV at time slot t.

By jointly optimizing the UAV flight strategy and resource
allocation strategy, maximizing the amount of uplink data col-
lection and downlink energy transfer, and minimizing the
UAV energy consumption, the multiobjective optimization
problem is defined as

max
v tð Þ,θ tð Þ,Pd tð Þ,τ t½ �½ �

Dsum, Eh
total,−Euav

total

� 	
s:t: C1 : v tð Þ ∈ 0, vmax½ �,∀t = 1, 2,⋯, T
  C2 : θ tð Þ ∈ −π, π½ �,∀t = 1, 2,⋯, T
  C3 : Pd tð Þ ∈ 0, Pmax

d½ �,∀t = 1, 2,⋯, T
  C4 : 0 < bm tð Þ < αbmax

m tð Þ,∀t = 1, 2,⋯, T
  C5 : βδmax

m < δem tð Þ < δmax
m tð Þ,∀t = 1, 2,⋯, T ,

ð21Þ

where C1 and C2 are the flight speed and yaw angle con-
straints of the UAV, C3 is the UAV transmission power
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constraint, and C4 and C5 are the constraints of the data
queue and energy queue of the monitoring nodes, respectively.

4. UAV-Assisted Urban Monitoring Network
Resource Allocation Algorithm

In this section, we first analyze the multiobjective optimiza-
tion problem, due to the complexity of solving it. To facili-
tate the solution, a deep reinforcement learning- (DRL-)
based approach is used to solve the problem and is presented
in detail.

4.1. Problem Analysis. In the optimization objective of the
problem, the maximization of the data collection volume
mainly depends on the allocation of time slots and transmis-
sion power during the hovering of the UAV at the target
monitoring node position, i.e., the amount of uploaded data
at the current target monitoring node can be increased by
optimizing the time slots and power. However, the energy
consumption of the UAV increases when too many
resources are allocated. At the same time, the energy transfer
also depends on the allocation of time slots and power by the
UAV during hovering. By allocating more time slots and
more transmission power, more energy can be transmitted
to the monitoring nodes, but it causes an increase in the
energy consumption of the UAV.

Based on the above analysis, the three optimization
objectives have optimization conflicts. How to find the best
hovering position, the optimal flight trajectory, and the opti-
mal resource allocation scheme of the UAV has a certain
complexity and brings a large computational cost in the
solution process. In addition, since the environment is
partially observable, traditional model-based approaches
such as dynamic programming methods cannot solve this
problem. Considering the dense distribution of monitoring
nodes in urban networks, the deep q network algorithm is
not suitable for continuous action spaces. The deep deter-
ministic policy gradient (DDPG) [25] as a classical DRL
algorithm has been shown to learn effective strategies in con-
tinuous action spaces through low-dimensional observations
[26]. The DDPG algorithm has a strong understanding and
decision-making capability to enable end-to-end learning.
It has shown great potential in solving complex network
optimization. Therefore, in order to reduce the computational
complexity and computational cost, the DDPG algorithm is
applied to the solution of the UAV decision problem. Consid-
ering the rewards as scalar values in the original DDPG
algorithm, a Multiobjective Joint DDPG (MJDDPG) algo-
rithm for UAV-assisted urban monitoring network data col-
lection and energy transmission is proposed to describe the
optimization objective preferences by introducing weight
parameters according to themultiobjective optimization prob-
lem extended to multidimensional rewards.

4.2. Markov Process Model

4.2.1. State Space. In the UAV-assisted urban monitoring
network, the state space is jointly determined by the moni-
toring nodes, UAVs, and environmental information. At

time slot t, ½dxnðtÞ, dynðtÞ� is the relative distance between
the target monitoring node and the UAV in the Cartesian
coordinate system. After the UAV finishes serving the
current target node, it selects a new monitoring node as
the target node based on the current system status. The rel-
ative distance between the UAV and the node helps guide
the UAV to include the target monitoring node in its data
collection coverage. The cumulative number of times that
the UAV exceeds the restricted area during the mission up
to time slot t is defined as Nf ðtÞ. Considering the absolute
position of the UAV helps to prevent the UAV from flying
out of the specified area and causing unnecessary waste of
resources. At the same time, considering the data queue sta-
tus, energy status, and transmission data size of nodes helps
UAV to make effective decisions and provide timely services.
Thus, the state space is defined as

S ≜ stf g = dxn tð Þ, dyn tð Þ, xu tð Þ, yu tð Þ,Nf tð Þ,Nd tð Þ,Ne tð Þ, Cd
n tð Þ

h in o
,

ð22Þ

where NdðtÞ denoted the number of nodes with overflow
data, NeðtÞ denoted the number of nodes with depleted
power, and CnðtÞ denoted the amount of data to be uploaded
on the current target node. Nf ðtÞ, NdðtÞ, and NeðtÞ are all 0
at the time t = 0.

4.2.2. Action Space. The UAV makes actions by observing
the state of the environment in real time. In this paper,
UAV acts as agents that need to map the state space to a
continuous action space. In the UAV-assisted urban moni-
toring network scenario, multiobjective optimization is
achieved by jointly optimizing UAV flight decisions, time
slot allocation, and power allocation. Based on the observed
current environmental state, the actions selected by the UAV
at time slot t include the UAV’s flight speed vðtÞ, yaw angle
θðtÞ, and subtime slot allocation τ and the transmit power
allocation pdðtÞ. The action variables of the UAV are all con-
tinuous variables. Thus, the actions that an agent can take at
time slot t can be expressed as

A ≜ atf g = v tð Þ, θ tð Þ, pd tð Þ, τ tð Þ½ �f g, ð23Þ

where the yaw of the UAV is denoted by ½cos ðθðtÞÞ, sin ðθ
ðtÞÞ� and τðtÞ denotes the proportion of time allocated to
downlink energy transmission within a single time slot.

4.2.3. Reward. In reinforcement learning, the reward func-
tion serves as a quantitative evaluation of an agent after tak-
ing action. Suitable reward functions are particularly
important for the performance of deep reinforcement learn-
ing algorithms. In this paper, a good reward function con-
tributes to the learning of unmanned control strategies.
The network performance is improved by optimizing the
amount of data collection, energy transmission, and energy
consumption of the UAVs while safeguarding the overall
quality of the network. The reward is defined as a multidi-
mensional vector, defined as
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R ≜ rtf g = rdc tð Þ, reh tð Þ, rec tð Þ, raux tð Þ½ �f g, ð24Þ

where rdcðtÞ, rehðtÞ, and recðtÞ are optimized objective
rewards and rauxðtÞ is a penalty term.

Based on the service provided by the UAV to the
monitoring node at time slot t, the reward value can be
expressed as

R ≜ rtf g = Dk tð Þ, Ek tð Þ, Euav
k tð Þ, raux tð Þ½ �f g, ð25Þ

where DkðtÞ denotes the reward value corresponding to
the total amount of data collected by the UAV hovering
at the monitoring node k. The larger the total amount of
data collected by the drone, the larger the reward value.
EkðtÞ denotes the reward value of the energy transferred
by the UAV in the hovering state at monitoring node k.
The larger the total amount of energy transferred, the
larger the reward value obtained. Euav

k ðtÞ denotes the total
energy consumption of the UAV in time slot t. If the
UAV is in flight, then Euav

k ðtÞ = pvt; if it is in hovering,
then it contains hovering energy consumption and communi-
cation energy consumption, i.e., Euav

k ðtÞ = pðvÞ + pdðtÞ. When
the target monitoring node is within the data collection cover-
age radius of the UAV, the UAV will hover and collect data
and transmit energy; otherwise, the UAV is in the flight phase.
In the flight phase of the UAV, rdcðtÞ, rehðtÞ are 0. The penalty
function r is defined as

raux tð Þ = −dxn tð Þ − dyn tð Þ −Nf tð Þ −Nd tð Þ −Ne tð Þ, ð26Þ

where the first two terms in rauxðtÞ are the distance between
the UAV and the target monitoring node. The value of the
penalty term is smaller if the UAV is further away from the
target monitoring node. This helps the UAV to identify the
location of the target monitoring node in order to approach
the target node. In addition, if the UAV appears to fly out of
the service area, it will receive a negative reward. Similarly,
the UAV will also receive a negative reward for untimely data
collection, resulting in data overflow or energy depletion of the
monitoring node. The quality of UAV service is guaranteed by
penalizing UAVs for incorrect flight decisions in order to
motivate them to learn the correct flight strategy.

4.3. MJDDPG-Based Resource Allocation Algorithm. The
MJDDPG architecture is shown in Figure 3. Unlike the orig-
inal DDPG, the DDPG is a single target MDP with a scalar
reward signal, and the reward in the experience tuple is a
vector. Since the value of the action depends on the prefer-
ence between competing targets, a linear weighting approach
is used to represent the reward vector, denoted as r = rwT ,
where w is the weight vector. It is worth noting that by this
design, the MJDDPG algorithm is applicable to optimization
problems with an arbitrary number of objectives. All weight
parameters are selected in the interval ½0:0, 1:0� according to
the importance preference of each subobjective in the
optimization objective.

The pseudocode related to the proposed MJDDPG-
based resource allocation algorithm is given in Algorithm 1.

5. Simulation Results and
Performance Analysis

In this section, the proposed algorithm is simulated and ver-
ified with performance analysis, in order to verify the supe-
riority of the proposed dynamic resource allocation
algorithm in urban monitoring networks. The MJDDPG-
based resource allocation algorithm and several baseline
algorithms are compared and analyzed; the baseline algo-
rithm is selected based on different resource allocation
strategies as follows:

(1) Random Resource Allocation (RRA). In this algo-
rithm, the UAV flying decision and the resource
allocation regarding hovering time slot division and
transmitting power are randomized.

(2) Constant Transmit Power (CTP). In this algorithm,
the transmit power of the UAV is constant, and the
resource allocation is achieved by optimizing the
UAV flying decision and hovering time slot.

(3) Constant Slot Allocation (CSA). In this algorithm, the
hovering time slot allocation ratio of the UAV is
constant, and the resource allocation is achieved by
optimizing the UAV flying decision and transmitting
power.

(4) Dynamic Resource Allocation Algorithm for Single-
Objective Optimization. With data collection quan-
tity, energy transmission quantity, and UAV energy
consumption as the optimization objectives, the flying
decision of UAV and resource allocation algorithm are
implemented based on DDPG, respectively.

The performance of the above algorithms is compared
for the three optimization objectives of network throughput,
energy transmission, and UAV energy consumption, and the
effectiveness and superiority of the proposed algorithms are
verified for different node densities.

5.1. Simulation Settings. In the parameter setting of the
UAV-assisted urban monitoring network scenario, it is
assumed that the urban monitoring network coverage area
is a square area of 400m × 400m, the UAV flying height is
set to H = 10m, and the number of ground monitoring
nodes is set to N = 100. The maximum UAV flying speed
is vmax = 20m/s [27]; the UAV single service period is T =
600 s, which starts at a random location in the area service.
The coverage radius of the UAV is D = 20m. The node
energy conversion factor ζ = 0:5; the maximum UAV trans-
mitting power pd = 40 dBm. The data cache volume of the
monitoring node is updated at a frequency f d = 1 time/
second; the expectation of the data generation rate is taken
as 4, 6, 10, and 18; the Poisson process expectation of the
energy loss rate is set as 0.1, 0.2, 0.4, and 0.6; the maximum
capacity of the data buffer is set as bmax = 5000; and the max-
imum capacity of the energy transmission queue δmax = 600.
The rest of the system parameters are listed in Table 1 [21].
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5.2. Performance Metrics and Analysis. In order to verify the
usability of the proposed algorithm, two aspects of network
quality of service and network performance will be used as
metrics, respectively.

5.2.1. Network Performance. For the network performance
analysis, the network performance is described based on
the optimization objectives, i.e., the network performance
is evaluated in terms of data collection, energy transmission,
and UAV energy consumption.

5.2.2. Network Quality of Service. Urban monitoring network
nodes due to data collection and energy charging service are

not timely resulting in data and energy hole phenomenon
seriously affecting the network quality. The quality of service
of an urban monitoring network is expressed by the number
of nodes with data overflow and energy voids, which can be
expressed as

NQoS =Ne +Nf : ð27Þ

First, we analyzed the convergence of the proposed algo-
rithm, as shown in Figures 4 and 5. By observing the cumu-
lative reward value as the change curve of the accumulated
reward value during the training process, it can be found

Actor network

Actor target network

Actor

Experience replay buffer

Adam optimizer

Critic network

Critic target network

Critic

Adam optimizer

Gaussian
noise

Figure 3: MJDDPG algorithm framework.

Initialize weights for main network and target networks;
Initialize experience replay buffer, exploration variance and action exploration probability;
for episode = 1 to N
for episode = 1 to T

Update the environment state and observe the current state st and record NdðtÞ and NeðtÞ;
Based on at ∼Nðμðst , θμÞ, εσ2Þ selection action;
Execute action at to update state st+1 and calculate reward value R;
Store the experience tuple a into the experience buffer;
if buffer is full then

Randomly sampled mini-batch samples from the experience buffer;
Computing the target network values;
Updating the critic network by minimizing the loss of the critic network;
Updating the actor network by maximizing actor network losses;
Updating target network parameters;
Updating the action random parameters;

end if
end for

end for

Algorithm 1: MJDDPG-based resource allocation algorithm.
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that as the number of iterations increases, the UAV quickly
learns the strategy to obtain higher reward values and con-
verges stably at a higher level. The accumulated reward value
is at a low level until the 50 episodes, which is due to the fact
that the algorithm has less experience in its experience buffer
and takes actions that rely more on random strategies. Also,
it can be observed from Figure 5 that the network loss at this
stage is 0 and all objectives are not optimized. When the
replay experience buffer is full, the UAV starts sampling
the replay experience buffer to train the network. Observing
the change curve of network loss in the training process, we
can see that the network loss decreases rapidly after a sharp
increase before the 300 episode, which is because the algo-
rithm is in the exploration and learning phase at that stage.

The optimization effect of the proposed algorithm with
multiple optimization objectives is shown in Figure 6,
where the optimization objective weight parameter is set
to wdc =weh =wec = 1. It can be observed that the total data
collection and the total collected energy increase rapidly
during 0-300 episodes and the UAV energy consumption
decreases rapidly because the UAV accesses more monitor-
ing nodes to maximize the data collection. At the same
time, the UAV maximizes the energy harvesting of the
monitoring nodes by allocating more transmission power.
As the number of training increases, the UAV energy con-
sumption gradually increases and the total harvested energy
is further increased, i.e., the UAV further adjusts the
control strategy to achieve the trade-off between data col-
lection, energy harvesting, and energy consumption. With
the oscillatory convergence of the loss function, the energy
consumption target of the UAV is largely stable, and the
data collection target and energy transfer target converge
in a certain interval. The distribution of users is random.
In some areas, the number of users is more concentrated,
i.e., the number of users located is high. When the UAV
moves to that area for service, more energy is transmitted.
Therefore, the change curves of the data collection target
and energy transfer target are not smooth. The results show
the effectiveness of the proposed algorithm.

To further analyze the effectiveness of the proposed algo-
rithm and compare different resource allocation algorithms,
the performance is analyzed under different monitoring node
densities. The number of monitoring nodes in the considered
urbanmonitoring network scenario is set to 100, 130, 150, 170,
and 200, respectively. The final experimental data results are
taken as the average of the 200 evaluated results.

The results of the amount of data collection for different
resource allocation algorithms in urban monitoring
networks with different densities are shown in Figure 7. As
the density increases, the data collection quantity of the
MJDDPG algorithm and CTP resource allocation algorithm
increases and then levels off with the increase of the number
of nodes. This is because as the number of monitoring nodes
in the cluster increases, the data to be uploaded in the cluster
head monitoring nodes increases. The UAV can make the
total amount of data uploaded by the monitoring nodes
increase by optimizing the hovering time slot allocation,
and the curve stabilizes and stops growing when the amount
of data that the nodes need to upload reaches a certain level.
Both the CSA algorithm and RRA algorithm do not involve
the optimization of UAV hovering time slot allocation. With
the number of monitoring nodes increasing, the CSA
algorithm shows a linear growth trend in the data collection
volume. The RRA algorithm shows a certain growth in the
data collection volume as the number of nodes increases,
but there are fluctuations overall. This is because the RRA
algorithm has certain randomness.

The results of the amount of energy transmitted by dif-
ferent resource allocation algorithms in urban monitoring
networks with different densities are shown in Figure 8.
With the increase in network node density, the energy trans-
mission curves of all algorithms show an increasing trend.
The CSA algorithm and the RRA algorithm grow the most,
and the MJDDPG algorithm and the CTP algorithm grow
more slowly. This is because in the multiobjective optimiza-
tion process, the MJDDPG algorithm and the CTP algo-
rithm optimize the UAV hovering time slot allocation in
order to achieve more data collection. This leads to an insig-
nificant growth of the total energy transmission. While the
CSA algorithm keeps the hovering time slot allocation con-
stant, the total energy transmission is proportional to the
number of monitoring nodes, and the total energy transmis-
sion grows approximately linearly as the density increases.
The RRA algorithm, as a random resource allocation algo-
rithm, is not affected by any optimization objective, but
there are certain fluctuations in the growth curve.

The results of considering the impact of different
resource allocation algorithms on UAV energy consumption
under different densities of urban monitoring networks are
shown in Figure 9. It can be observed that the energy con-
sumption of UAVs under all resource allocation algorithms
increases gradually with the rise of density, among which
the RAA algorithm still has fluctuations; the CTP algorithm
has an approximately linear growth curve of UAV energy
consumption with the increase of density because it main-
tains a constant transmitting power; the MJDDPG algorithm
and the CSA algorithm are limited by the optimization
objective, which will limit the transmitting power of UAVs
to ensure the low energy consumption of UAVs, so the
growth rate is slower and tends to be flat.

By analyzing the performance of different algorithms in
urban monitoring networks of different densities, it can be
seen that the dynamic resource allocation algorithm based
on multiobjective joint optimization proposed in this paper
has obvious advantages in multiobjective joint optimization.

Table 1: Simulation parameters.

Parameters Values

Bandwidth 1MHz

Channel power gain -30 dB

Noise power -90 dBm

Attenuation coefficients of NLOS link 0.2

Path loss exponent 2.3

Parameters of LOS probability (a, b) 10, 0.6

Parameters of EH model (c, d) 47083, 2.9
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With the increase in density, there is a significant improve-
ment in data collection, energy transmission, and UAV
energy consumption.

In order to analyze the impact of the number of optimi-
zation objectives on the performance of the algorithm, the
proposed algorithm is compared and analyzed with the sin-
gle optimization objective algorithm. The single-objective
DDPG algorithm with data collection volume, energy trans-
mission volume, and UAV energy consumption as optimiza-
tion objectives is considered for comparison to further
validate the performance of the proposed algorithm in terms
of overall network performance.

The single-objective optimization algorithm is as follows:
(1) SD-DDPG: the optimization objective is to maximize the
data collection volume and to ensure that the energy trans-
mission of nodes in the urban monitoring network exceeds

a certain threshold, while ensuring that the energy consump-
tion of UAVs is less than a certain threshold; (2) SE-DDPG:
the optimization objective is to maximize the energy trans-
mission volume, while ensuring that the data collection vol-
ume of the monitoring nodes exceeds a certain threshold
and the energy consumption of the UAV is controlled
within a certain range; and (3) SC-DDPG: the optimization
goal is to minimize the energy consumption of the UAV,
while ensuring that the data collection volume and energy
transmission volume of the monitoring nodes in the urban
monitoring network are maintained at a certain level.

The results of the different optimization objective algo-
rithms are shown in Figure 10. It can be seen that the SD-
DDPG, SE-DDPG, and SC-DDPG algorithms achieve the
optimization objectives of highest data collection, highest
energy transfer, and lowest UAV energy consumption,
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respectively. In the SD-DDPG algorithm, although the
UAV is able to adjust the hovering position, transmission
power, and time slot to ensure the maximum amount of
data collection from the monitoring nodes and to ensure
that the overall energy transmission is maintained at a
normal level, there is a large number of monitoring nodes
with an energy hole situation and increased energy con-

sumption of the UAV. Thus, the SD-DDPG algorithm is
not able to guarantee the overall performance of the net-
work. Similarly, the SE-DDPG algorithm and the SC-
DDPG algorithm cannot guarantee the overall perfor-
mance of the network. The MJDDPG algorithm proposed
in this paper performs well in all three suboptimization
objectives as well as data overflow and energy hole.
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6. Conclusion

In this paper, we investigate the resource allocation problem
in a UAV-assisted urban monitoring network, where UAVs
act as mobile base stations to provide data collection and
energy transmission services to monitoring nodes. By opti-
mizing UAV transmission power, hovering time slots, and
flight decisions, we maximize data collection, maximize
energy transmission, and minimize UAV energy consump-
tion in the monitoring network. At the same time, we try
to avoid data overflow or energy voids in the monitoring
nodes during the UAV decision-making process. Consider-
ing that the optimization problem of UAV is a multiobjec-
tive optimization problem, the dynamic resource allocation
algorithm based on MJDDPG is proposed. The effectiveness
of the algorithm is verified through simulation experiments.
Meanwhile, the dynamic resource allocation algorithm based
on MJDDPG is compared with other resource allocation
algorithms to verify the excellence of the algorithm. In the
future, we will expand our existing work to apply multiple
UAVs to assist the urban monitoring network and consider
collaborative control of UAVs to improve the network
performance further.
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