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Abstract: Proteins are vital for the significant cellular activities of living organisms. However, not
all of them are essential. Identifying essential proteins through different biological experiments is
relatively more laborious and time-consuming than the computational approaches used in recent
times. However, practical implementation of conventional scientific methods sometimes becomes
challenging due to poor performance impact in specific scenarios. Thus, more developed and efficient
computational prediction models are required for essential protein identification. An effective
methodology is proposed in this research, capable of predicting essential proteins in a refined yeast
protein–protein interaction network (PPIN). The rule-based refinement is done using protein complex
and local interaction density information derived from the neighborhood properties of proteins in the
network. Identification and pruning of non-essential proteins are equally crucial here. In the initial
phase, careful assessment is performed by applying node and edge weights to identify and discard
the non-essential proteins from the interaction network. Three cut-off levels are considered for each
node and edge weight for pruning the non-essential proteins. Once the PPIN has been filtered out,
the second phase starts with two centralities-based approaches: (1) local interaction density (LID)
and (2) local interaction density with protein complex (LIDC), which are successively implemented
to identify the essential proteins in the yeast PPIN. Our proposed methodology achieves better
performance in comparison to the existing state-of-the-art techniques.

Keywords: essential protein; edge weight; node weight; yeast PPIN; local interaction density

1. Introduction

Various research areas like protein structure prediction [1,2]; protein function predic-
tion using protein sequences [3,4], protein domains [5,6], and protein–protein interaction
networks (PPIN) [7–11]; protein subcellular localization identification [12,13]; and detection
of essential proteins [14–16] have significantly been exploited due to the increase in the
availability of a large number of proteins/protein sequences in the post-genomic era. In
general, essential proteins are the highly connected modules in a PPIN [17]. So, remov-
ing any essential protein from the existing network would be fatal, resulting in various
functional disorders of living organisms. Most of the research works [18–20] note the
fact that deeper analyses of essential proteins in a PPIN will lead to better assimilation of
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ideas about the mutation of genes, which is usually considered as the ultimate cause of
disease initiation. Thus, essential protein prediction has a significant role in the medical and
biological fields of study. Though computational approaches have become the recent trend
for establishing the topological relationship between a PPIN and the essentiality of proteins,
the previous biological methodologies [21,22] provided the base for the foundation for this
research field. Being directed by the centrality–lethality rule [17], centrality measures based
on the topological features of biological PPINs have become the center of attraction for
most of the existing methodologies [17,23,24] for the identification of essential proteins.

According to Luo et al. [23], computational approaches to essential protein prediction
can be broadly classified into two categories: (1) Topological centrality-based approaches
at the PPIN level: Centrality measures derived from the topological properties of a PPIN
are considered in the topological centrality-based approach. In the work of Li et al. [15],
each protein in a PPIN is represented as a material particle. The author estimated the value
of each of these particles’ topology potential, which gave them a unique ranking. Based
on these rankings, the essentiality of proteins is derived. Tang et al. [24] developed a Cy-
toscape [25] plugin named CytoNCA to evaluate biological PPINs through the computation
of various centrality scores. Currently, it supports eight centralities for both unweighted
and weighted PPINs: betweenness centrality (BC) [26], closeness centrality (CC) [27],
degree centrality (DC) [17], eigenvector centrality (EC) [28], local average connectivity-
based method (LAC) [29], network centrality (NC) [14], subgraph centrality (SC) [30], and
information centrality (IC) [31]. (2) Heterogeneous feature-based approach: The use of
topological centrality measures along with protein-specific features is usually considered
a heterogeneous feature-based approach. This can be accomplished by incorporating the
gene ontology (GO) terms of proteins [32], protein complexes [33,34], orthologous infor-
mation [35], subcellular protein localization [36], and gene expression data [37–39] along
with a PPIN. Another recent work by Dong et al. [40] considers five relevant features after
reviewing several related features in this field of essential protein prediction: (1) domain
information [41,42], (2) evolutionary conservation [43,44], (3) sequence components [45,46],
(4) network topology [14,33], and (5) expression level [47,48] for essential protein/gene
prediction. They have used a support vector machine (SVM) for the same task after splitting
the yeast and human data into train and test sets.

Existing computational approaches reveal a relation between protein degree and es-
sentiality. Nevertheless, some experimental analyses, like yeast two-hybrid (Y2H) analyses,
have also created conflict, stating that this association may be too fragile for binary or
transient PPINs [49,50]. Modular essentiality is highlighted in the work of Ryan et al. [51],
where all the proteins in a protein complex are considered to be essential. In contrast,
Wang et al. [52] established a strong foundation indicating that essential proteins do have
a more significant number of protein complex interactions. They also stated that larger
protein complexes are more likely to become essential than smaller ones. Various re-
searchers [53,54] have also shown that essential proteins are usually present in the denser
sub-modules of a PPIN formed by a single protein interacting with its adjacent neighbors
to perform a specific biological function. Hence, the relation between protein complexes
and essentiality must also be considered. In the work of Hart et al. [55], a scoring method
is proposed that can yield a subset of observed matrix-model interactions having high
confidence scores. Later, these sets are used to infer a yeast’s most accurate mapping of
protein complexes. The results generated from the proposed work of Hart et al. also estab-
lished that essentiality depends on a protein complex rather than an individual protein.
Ren et al. [33] introduced a centrality-based approach, ECC, which is based on SC [30]
and protein complexes. Li et al. [34] also proposed a similar approach to Ren et al., known
as united complex centrality (UC). An integrated system of gene expression information
and some centralities such as BC [26], PeC [37], DC [17], etc. is used in the work of Zhong
et al. [56] for the identification of essential proteins. Other related conventional method-
ologies in this field of study are range-limited centrality [57], L-index [58], coexpression
weighted by clustering coefficient (CoEWC) [59], LeaderRank [60], weighted degree cen-
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trality (WDC) [61], an iteration method for predicting essential proteins by integrating
orthology with a PPI network (ION) [35], and normalized α-centrality [62]. Among the pre-
viously discussed methodologies of essential protein function prediction, a few important
ones are highlighted in Table 1.

Table 1. Computational studies based on essential protein prediction.

Utilized
Features Description Database References

Subcellular localization

An efficient method to identify essential proteins
for different species by integrating

protein subcellular
localization information.

PPIN of
Saccharomyces cerevisiae,

Homo sapiens, Mus musculus
and Drosophila melanogaster

[36]

Protein
complex, degree,

subgraph

A new method for predicting essential proteins
based on participation degree in protein complex

and subgraph Density.

PPIN of
Saccharomyces cerevisiae [54]

Orthology, gene expression,
PPIN

Predicting essential proteins by integrating
orthology, gene expressions, and PPIN.

PPIN of
Saccharomyces cerevisiae [39]

CC and orthology United neighborhood closeness centrality and
orthology for predicting essential proteins.

PPIN of
Saccharomyces cerevisiae [63]

Node, edge
clustering coefficient

Identification of essential proteins using
improved node and edge clustering coefficient.

PPIN of
Saccharomyces cerevisiae and

Drosophila melanogaster
[22]

Centrality scores
CytoNCA: a cytoscape plugin for centrality

analysis and evaluation of protein
interaction networks.

_ [24]

Protein
complex

Identification of essential proteins based on a
new combination of local interaction density and

protein complexes.

PPIN of
Saccharomyces cerevisiae [23]

PPIN,
protein

complex

Prediction of essential proteins by integration of
PPI network topology and protein

complex information.

PPIN of
Saccharomyces cerevisiae [33]

Though the existing computational approaches can identify essential proteins effi-
ciently, these methods produce more false positives. To overcome this, a new methodology
for essential protein identification is proposed in this work. This method works in two
phases: (1) the first phase deals with the non-essential proteins present in the PPIN using
two topological features, node and edge weight [64], which ensure the presence of only
the reliable nodes and edges in the PPIN—in other words, they focus only on the densely
connected modules in the PPIN [7]. (2) In the next phase, local interaction density (LID) [23]
and local interaction density with protein complex (LIDC) [23] are used for the identifi-
cation of essential proteins in the PPIN. All the required data supporting the proposed
methodology, including basic terminologies like node weight, edge weight, LID, and LIDC
centralities, are given in the Supplementary Materials, available here.

In the upcoming section, the dataset of Yeast PPIN used for the proposed methodology
will be discussed. Following that, the detailed implementation of our rule-based pruning
research and the application of LID and LIDC will be highlighted, along with the pictorial
representation of PPIN-related terminologies. Finally, the paper will be ended with a results
and discussion section, followed by the conclusion.

2. Dataset

For the proposed work, the PPIN database of yeast, i.e., Saccharomyces cerevisiae, is
used. It was downloaded from the DIP database [65,66] (named YDIP_5093 in the work of
Luo et al. [23]), which includes 5093 proteins and 24,743 interactions. The PPIN of yeast
is highlighted in Figure S1 in Supplementary Materials. Moreover, a protein complex,
marked as Complex_745 [23], is also used along with LIDC [23] in the second phase of our
proposed methodology. It contains about 745 protein complexes involving 2167 proteins.



Cells 2022, 11, 2648 4 of 14

This protein complex is a combination of four natural protein complex datasets: (1) CM270
is obtained from the MIPS database [67]; (2) CM425 [68] is obtained from MIPS (Mewes
2005), Aloy et al. [69], and the SGD database [70]; (3) the last two, CYC408 and CYC428, are
obtained from CYC2008 of the Wodak Laboratory [71,72].

3. Methodology

This section proposes a methodology that identifies proteins as topologically more
connected by applying a network-based scoring technique to the processed and rule-based
pruned network. The network is pruned by removing some nodes and edges having less
node weight and edge weight than the specified cut-off value. Thus, less interconnected
proteins are identified based on their degree and other parameters and removed, as they
are not very topologically significant. The entire working mechanism of the proposed
methodology in this research work is highlighted in Algorithm 1.

The PPIN of yeast contains some topologically less important proteins, i.e., proteins
having degree 0 or 1 or fewer interconnections between their neighbors than the rest of the
proteins, representing their non-essentiality. Edge reliability is another factor that must be
considered for identifying essential proteins. Thus, the reliability of every node and edge is
investigated by calculating node and edge weights [64] in the first phase of the proposed
methodology. The node weight Wv of a node v ∈ V in PPI networks [64] is the average
degree of all nodes in G′v, a sub-graph of the network Gv. It is represented by

Wv= ∑u∈V′′ deg(u)/|V ′′ |

where V ′′ is the set of nodes in G′v. | V ′′| is the number of nodes in G′v, and deg(u)
is the degree of a node u ε V

′′
in Wv. The edge weight Wuv [64] of nodes u and v is

represented by
Wuv = (Γ(u) ∩ Γ(v))/(Γ(u) ∪ Γ(v))

where Γ (u) and Γ (v) are neighbors of u and v, respectively. Γ (u) ∩ Γ (v) represents all
common neighbors of u and v, and Γ (u) ∪ Γ (v) means all distinct neighbors of u and v.

Less reliable nodes and interconnections are pruned. Thus, in an interaction network,
a protein’s interconnectivity with other proteins and the reliability of those interactions
make the pruning strategy stronger. Moreover, setting various cut-off levels for node and
edge weights is integral to this phase. So, three cut-off levels, i.e., high, medium, and
low [73] (see Algorithm 1), are evaluated to see the changes in the prediction accuracy level
in the second phase of essential protein identification. The cut-off (θk) is calculated by the
following mathematical equation:

θk = α + k× σ×
(

1− 1
1 + σ2

)
where k ∈ {1, 2, 3} defines low, medium, and high cut-offs, respectively. α is determined
to be the mean of the node weight/edge weight values, while σ is considered to be the
standard deviation of the node weight/edge weight values.

This approach filters out a refined PPIN of yeast containing denser sub-modules [7].
Moreover, as discussed in the introduction, essential proteins tend to lie in the denser
sub-modules or protein complexes of a PPIN. Thus, the first phase plays a significant role
in this research. The computation of the node and edge weights of two different synthetic
networks are highlighted in Figures 1 and 2, respectively.
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As discussed in the introduction, computational approaches to essential protein pre-
diction can be of two types: (1) topological centrality-based approaches and (2) hetero-
geneous feature-based approaches. Experimental data [23] show the topology network
centrality-based scoring technique, LID [23], and the heterogeneous feature-based approach,
LIDC [23], perform better than the other existing approaches to essential protein identifica-
tion. So, for each node and edge weight cut-off level in the second phase, LID (Luo and Qi
2015) and LIDC [23] are computed for each protein. LIDC combines heterogeneous values
obtained from LID, in-degree centrality of complex (IDC) derived from protein complex
Complex_745 [23], and ranking of an individual protein. The procedure for computing
LIDC is shown in Figure 3. Finally, the proteins are sorted in descending order according to
their computed LIDC values. Protein sets are selected as essential in two different ranking
ranges (top 100–200 proteins). This selection strategy is the same as in Luo et al.’s work [23].

Cells 2022, 11, x FOR PEER REVIEW 6 of 14 
 

 

 
Figure 2. Schematic diagram of computation of edge weight. Edge weight retains only the reliable 
edges in a PPIN. Edge weight has been calculated for the edges connected with the nodes (proteins) 
marked with pink color whereas the neighbors (proteins) and their connected edges are highlighted 
in blue color. 

 
Figure 3. Schematic diagram of computation of LIDC. It is a combination of 3 scores: (1) LID, (2) 
IDC, and (3) ranking score. Disconnected neighbors (proteins) are highlighted in blue color whereas 
inter-connected neighbors (proteins) are represented in pink color. Protein complex is represented 
in yellow. 

  

Figure 3. Schematic diagram of computation of LIDC. It is a combination of 3 scores: (1) LID, (2) IDC,
and (3) ranking score. Disconnected neighbors (proteins) are highlighted in blue color whereas
inter-connected neighbors (proteins) are represented in pink color. Protein complex is represented
in yellow.



Cells 2022, 11, 2648 7 of 14

Algorithm 1 (Essential Protein Prediction)

Input: PPIN of yeast
Output: List of Essential and Non-essential Protein

Begin
//calculating node weight
for every node P in the network

Calculate the node weight, Wp = ∑u∈V′ (deg(u))
|V ′ |

//V′ is the set of neighbors of node P, and |V′| is the number of proteins in V′

//deg(u) is the degree of a node u ∈ V′

//end of calculating node weight
Compute θk = α + k× σ×

(
1− 1

1+σ2

)
// Cut-off calculation of node weight

//α is the mean of node weight, σ is the standard deviation of node weight, k ∈ {1, 2, 3} denotes three different
//cut-offs, i.e., low, medium, and high, respectively.
//reduction of network based on Thk of node weights
for every node P in the network

if node weight of P < θk
remove P from the network

//end of reduction of network based on Thk of node weights
//edge weight calculation
for every edge E in the network

Calculate edge weight, Wuv = |Γ(u) ∩ Γ(v)|
|Γ(u) ∪ Γ(v)|

//Γ(u) and Γ(v) are the neighbors of u and v, respectively
//Γ(u) ∩ Γ(v) represents all common neighbors of u and v
//Γ(u) ∪ Γ(v) represents all distinct neighbors of u and v

//end of edge weight calculation
Compute θk = α + k× σ×

(
1− 1

1+σ2

)
//Cut-off calculation of edge weight

//α is the mean of edge weight, σ is the standard deviation of edge weight, k ∈ {1, 2, 3} denotes three different
//cut-offs, i.e., low, medium, and high, respectively.
//reduction of network based on Thk of edge weights
for every edge E in the network

if edge weight of E < θk
remove E from the network

//end of reduction of network based on Thk of edge weights
//calculate LIDC for low, medium, and high node edge weight
//calculation of LIDC
for every node u in the pruned network, compute

LID(u) = |E(u)|
|V(u)|

//|E(u)| is the number of connections (edges) between neighbors of u, and |V(u)| are the number of neighbors
//connected with each other
//end of calculation of LID
IDC(u) = ∑

i∈ComplexSet(u)
IN − Degree(u)i

//ComplexSet(u) denotes a set of protein complexes that include protein u
//IN − Degree(u)i is the degree of protein u in ith protein complex that belongs to ComplexSet(u)
//end of calculation of IDC
LIDC(u) = LID(u)×

(
1− RANK(u)

N

)
+ IDC(u)× RANK(u)

N
//LID(u) is the value of the LID, IDC(u) is the value of IDC of the protein complex of protein u,
//N is the number of proteins in the current network,

//RANK(u) is the order number of the descending sort of protein u according to LID(u) in the current network
//end of calculation of LIDC

Choose proteins in six ranking ranges (top 100–600) as essential protein sets.
End
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4. Result and Discussion

As mentioned earlier, in this proposed work, an LIDC-based scoring technique [23] is
used to mark proteins as essential in the topologically processed PPIN, and six different
ranking ranges (top 100–600 proteins) are considered. The PPIN of yeast after predicting
essential and non-essential proteins at ranking 100 is highlighted in Figure 4. The essential-
ness of protein sets in the different ranking ranges (top 100–600) at three different cut-offs,
i.e., low node and edge weight, medium node and edge weight, and high node and edge
weight, are validated against the essential protein set [23] (containing 1285 essential and
4394 non-essential proteins) formed from different databases like MIPS [67], SGD [70],
DEG [74], and SGDP [75]. The comparison of the number of predicted essential proteins by
our proposed method and several other existing methods like DC [17], BC [26], NC [14],
LID [23], PeC [37], CoEWC [59], WDC [61], ION [35], LIDC [23], UC [34], etc. at the three
cut-off levels are highlighted in the Supplementary Figures, i.e., Figures S2, S3, and S5–S8.
From these figures, it is clear that our method generates an almost equal or greater number
of essential proteins compared to LIDC [23] in most cases of the cut-off. This number is
comparatively higher when compared to the other methods except for ION. The same
observation has also been noted when the jackknife methodology is used to evaluate the
proposed method against the others (see Figure 5). Though 20 percent of proteins are con-
sidered for evaluating precision, recall, and F-Score, our proposed methodology surpasses
the others (see Table 2).
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Figure 5. Validation of proposed methodology. All the methods are compared using the jackknife
methodology for six different ranking ranges (top 100–600 proteins).

Table 2. Performance analysis of proposed method with other methodologies.

Methods Precision Recall F-Score

DC (Jeong et al. 2001) 0.41 0.35 0.38
BC (Joy et al. 2005) 0.35 0.31 0.33

NC (Jianxin Wang et al. 2012) 0.46 0.40 0.43
LID (Luo and Qi 2015) 0.45 0.39 0.42

PeC (Li et al. 2012) 0.46 0.40 0.43
CoEWC (Zhang et al. 2013) 0.47 0.41 0.44

WDC (Xiwei et al. 2014) 0.48 0.42 0.45
ION (Peng et al. 2012) 0.53 0.41 0.46

UC (Li et al. 2017) 0.48 0.42 0.45
LIDC (Luo and Qi 2015) 0.50 0.44 0.47
Proposed Methodology 0.77 0.44 0.56

To compare and validate the performance of the proposed method, the top 20 percent
of proteins [23] from the ranking result are selected as essential, while the remaining
proteins are designated as non-essential. This selection strategy is the same as in Luo et al.’s
work [23]. Precision, recall, and F-score are considered performance evaluation metrics.
The performance analysis is highlighted in Table 2. It can be derived from Table 2 that our
proposed method performs better than the others in terms of precision, recall, and F-score.
This signifies that it succeeds in returning most of the relevant proteins compared to the
training set of essential proteins. High precision also indicates a low false positive rate.
Removing less important nodes and edges and working on the pruned network makes our
proposed method worthy and superior to the methods listed in Table 2 and enables us to
get high precision, recall, and F-score values.

Our proposed method’s satisfactory performance is achieved using node and edge
weights with three proper levels of cut-offs. The pruned PPIN network of yeast at ranking
100 is shown in Figure S4 in the Supplementary Materials. It should also be noted here
that though the working mechanisms of LIDC [23] and our proposed method are almost
the same, LIDC [23] is applied to the entire PPIN database of yeast, while our proposed
method works on a filtered PPIN generated by using three levels of cut-offs on both node
and edge weights. The statistics of predicted essential proteins in a filtered PPIN of yeast at
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three cut-off levels—low node and edge weight, medium node and edge weight, and high
node and edge weight—are displayed in Table 3. The overall precision, recall, and F-score
at three levels of cut-offs are shown in Table 4.

Table 3. Network statistics of pruned PPIN of yeast at three levels of cut-offs.

Cut-Off Levels
Proteins after

Node
Reduction

Interactions
after Node
Reduction

Proteins after
Edge

Reduction

Interactions
after Node
Reduction

Essential
Protein

Non-Essential
Protein

Low 1393 14,063 985 3907 198 787
Medium 1374 13,924 969 3847 194 775

High 1340 13,714 931 3733 187 744

Table 4. Performance analysis of our proposed method at three levels of cut-offs.

Cut-Off Levels Recall Precision F-Score

Low 0.41 0.75 0.53
Medium 0.42 0.76 0.54

High 0.44 0.77 0.56

5. Conclusions

Identifying essential proteins is considered one of the most challenging research areas.
It helps us identify the significant proteins that are biologically active and play a crucial
part in performing vital specific functions of the human body. These proteins might also
be essential in transmitting disease or infection when the body is exposed to pathogens.
Thus, the computational methods developed for identifying essential proteins should be
very effective. PPIN is one of the resources through which this can be done. However, it
should be borne in mind that all the network features must be adequately assessed, and
the presence of reliable nodes and edges must be ensured. The proposed methodology
efficiently identifies essential proteins from a pruned network using local interaction density
and local interaction density with a protein complex. The rule-based network pruning
is based on specific cut-off edge and node weight values. A detailed comparative study
on the performance evaluation of the proposed method and other methods reveals the
superiority of this method over others. Because this method solely depends on topological
attributes, care should be taken to use a noise-free protein–protein interaction network.
This work may be extended to the protein interaction network of any other organism in our
future work. However, it should be kept in mind that the essentiality of genes is dynamic.
It depends upon the surrounding environment. So, even if several PPIN data of yeast are
used for the computational identification of essential proteins/genes, it cannot be assured
that the genetic backgrounds set as an experimental environment for all the yeast strains
are similar or not [76].

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11172648/s1. Figure S1: PPIN Network of Yeast of YDIP_5093.
It contains 5093 proteins and 24743 interactions; Figure S2: Prediction comparison. Comparison of
number of predicted essential proteins for low node and edge weight threshold; Figure S3: Prediction
comparison. Comparison of top 100 and top 200 predicted essential proteins for medium node and
edge weight threshold; Figure S4: Pruned PPIN of yeast at Low Threshold. Yellow colored nodes
are non-essential proteins while the green colored nodes are the essential ones; Figure S5: Prediction
comparison. Comparison of top 100 and top 200 predicted essential proteins for high node and edge
weight threshold; Figure S6: Prediction comparison. Comparison of number of top 300, top 400,
top 500 and top 600 predicted essential proteins for low node and edge weight threshold; Figure S7:
Prediction comparison. Comparison of number of top 300, top 400, top 500 and top 600 predicted
essential proteins for medium node and edge weight threshold; Figure S8: Prediction comparison.
Comparison of number of top 300, top 400, top 500 and top 600 predicted essential proteins for high
node and edge weight threshold.

https://www.mdpi.com/article/10.3390/cells11172648/s1
https://www.mdpi.com/article/10.3390/cells11172648/s1
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