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The stable and reliable operation of microgrids requires the immediate communication and
accurate measuring data of cyber systems. The cyber security of smart grids consists of
detection and mitigation, where the latter mainly refers to resisting the attack and
recovering the physical operation state through various means after cyber attacks.
With the flexible electrical topology and the distributed control strategy based on the
public communication network and end-to-end neighbor communication, the application
and effect of cyber security technologies (firewall and encryption) in traditional cyber
systems are limited. However, due to the fact that the cyber system and power system are
coupled in microgrid cooperative control, countermeasures are added to the control to
enhance the cyber security of microgrids, which has drawn more attention. Therefore,
considering the control failure and even system results from the false data inject attack
(FDIA) on the cooperative control of microgrids, this study investigates the synchronous
mitigation framework based on local detection where the reactive power cooperative
control targets of microgrids with and without FDIA are compatible by the resilient control
method. The credibility is utilized to measure the reliability of local and neighbor data in the
proposed method. The consensus communication coupling gain is weighted corrected by
an adaptive update strategy of credibility to delete the attack signal. Moreover, the
proposed method directly improves the conventional distributed secondary controller
that reduces the complexity of controller design. Simulations investigate the effectiveness
of the proposed distributed resilient mitigation strategy under conditions of deception and
disruption attacks.

Keywords: cyber-physical system, microgrid, distributed resilient control, false data injection attack, local attack
detection

1 INTRODUCTION

The distributed generator (DG) integrates renewable energy into power systems by microgrids that
are one vital infrastructure of smart grids (Olivares et al., 2014). With the communication, control,
and computation technologies utilized in power systems to facilitate the optimal operation and
reliable supplement, power grids have been developing into typical cyber-physical systems (CPSs)
(Yu and Xue, 2016). The microgrid CPS exchanges measurement quantities and control signals
among sensors and actuators through wired or wireless links and conducts decision making through
channels like centralized or distributed computation. Despite the merits of CPS, microgrids are
confronting additional risks due to the deep cyber-physical coupling. Cyber events that include
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network fluctuations and cyber attacks have a marked impact on
the physical states of power systems (Cao et al., 2020).

As the controllable resources (DGs, energy storage, flexible
loads, etc.) are distributed scatteringly in distribution networks or
microgrids, their intelligent electronic devices will result in
massive amounts of communication data. Thus, the public
communication mechanisms are applied more widely to
reduce the cost and reinforce the flexibility of networks, which
is convenient for third-party applications to have easy access to
the cyber side of power systems. On one hand, it provides
ancillary services for customers and suppliers; on the other
hand, the level of cyber risk in cyber-physical power systems
is upgraded (Li et al., 2017; Alavi et al., 2018). Such a feature
brings more potential cyber attack access points for cyber systems
of microgrids (Li et al., 2016). In recent years, large-scale electric
power outages resulting from cyber attacks occur frequently (E-
ISAC, 2016). The famous blackout in Ukraine on December 23,
2015 (Lai et al., 2019), for example, caused 30 substations to
disconnect from the power grid and millions of residents to suffer
a massive 6-h power outage, which resulted from the Trojan horse
virus called BlackEnergy implanted into the network of a
Ukrainian electric power company by a malicious attacker.

Moreover, the denial-of-service (DoS) attack reduces the
availability of communication networks by blocking channels,
thereby interfering with data flow (Liu et al., 2021). The man-in-
the-middle (MITM) attack invades the communication link
between two communication nodes through the third-party
application, tampers with information data, or destroys data
channels (Sahoo et al., 2021). The false data injection attack
(FDIA) affects the physical operational status of CPS by invading
sensors, controllers, or other communication nodes and writing
false data into network loops (He et al., 2017).

As the typical attack form that directly disturbs the calculation
of control commands, FDIA has become the most studied cyber
attack in power CPS (Wang et al., 2017). In successful FDIAs, the
manager of power systems takes the status information injected
with attack signals as sensor measurement results, which may
result in the malfunction of some equipment and seriously
threaten the physical operation security. In Liu et al., 2015b,
the actual FDIA problem, and the mechanism model are studied,
where the attacker only acquires less system information to carry
out. The influence of FDIA on power system state estimation is
analyzed (Liang et al., 2016), and FDIA is introduced into a two-
layer optimization problem to maximize power line flows. Liang
et al . investigate several FDIA models consisting of the
deterministic constraint model, incomplete information model,
forged topology model, and AC power flow model (Liang et al.,
2017). The influences of FDIA on the electricity market, load
redistribution, and distributed energy routers are also explored.
Furthermore, optimization models with various constraints are
utilized to describe FDIA in different situations (Deng et al.,
2017). For the dynamic use of autonomous microgrids, Zhang
et al. studied the impact of FDIA on distributed load sharing and
derived the stability region and sufficient conditions for the stable
operation of microgrids (Zhang et al., 2019).

The distributed control based on multi-agent systems (MASs)
has become the main content in the research field of microgrid

control (Liu et al., 2014). For the problems where cyber attacks
impact physical system operations due to the cyber-physical
interdependence, some resilient control methods were
presented, which aim to solve the stability issue under
communication failures and cyber attacks. To resist actuator
fault and DoS attack, a resilient adaptive distributed observer
and fault-tolerant controller were proposed (Deng and Wen,
2020), which effectively improves the anti-cyber-attack ability of
MAS. Further considering the MAS with nonuniform
communication delays, a proposed distributed resilient control
method was presented by introducing a buffer mechanism and a
time-varying sampling period sequence (Deng andWen, 2021). It
was proved to have the ability to eliminate errors caused by time
delays and prevent the DoS attack. In Deng et al., 2021, a
distributed adaptive resilient control method is provided for
multiple energy storage systems in microgrids to balance the
state of charge and restore the frequency and voltage under cyber
fault and attack. For hybrid AC/DC microgrids, the authors
(Wang Y. et al., 2021) proposed a cyber-resilient cooperative
control strategy for bidirectional converters to defend an FDIA,
which is validated on the RT-LAB simulation system. These
researches primarily focus on the impact of cyber attacks and
mitigation by designing novel controllers, which requires a
significant cost to transform the controllers.

However, these methods invest cost to again switch the
additional controller instead of optimizing the control
parameter to improve the resilience of microgrids. We study
the distributed mitigation strategy against FDIA in microgrids.
Considering the reactive power and voltage control in microgrids,
a distributed resilient control methodology for autonomous
microgrids is presented in this study to eliminate the impact
of FDIA on microgrid control. The proposed method can not
only restore the deviation of reactive power and voltage in
microgrids but also adapt to the different types of FDIA.
Additionally, the distributed resilient consensus cooperative
control method avoids the extra communication traffic and
cumbersome switching of controllers.

The rest of this article is organized as follows: Section 2 gives
the introduction to the hierarchical control architecture and
distributed secondary voltage control of microgrids. The
synchronous mitigation framework against FDIA in microgrid
CPS is introduced in Section 3. In Section 4, the distributed
resilient consensus cooperative control method is presented.
Section 5 studies simulated cases to investigate the
effectiveness of the proposed strategy. Finally, Section 6
concludes this article.

2 HIERARCHICAL CONTROL STRUCTURE
OF MICROGRIDS

There are a variety of operating requirements in microgrids, such
as frequency and voltage regulation, load power distribution and
coordination, optimization cost, and so forth, corresponding to
different control strategies and time scales. Therefore, the two-
layer control structure is utilized in microgrids to realize the
different control objectives, as depicted in Figure 1. Due to the
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fact that the primary control directly guarantees the stability of
inverters, it is included in the physical system of microgrid CPS,
while the secondary control that requires the communication
network and operational data of other DGs is one part of the
cyber system, which is the target of FDIA (Wang T. et al., 2021).

2.1 Primary Control
The primary control maintains the frequency and voltage
stability, power balance, and plug and play function for DG,
which is deployed in the local side (Liu et al., 2015a; Lou et al.,
2017). The droop control changes the output power of inverters
automatically according to the deviation of frequency and
voltage. Specifically, the droop relationship between voltage
and reactive power is described as

vi � v0 − niQi, (1)
where vi is the voltage magnitude of DGi, v0 is the designed
nominal voltage magnitude, Qi is the output reactive power of
DGi, and ni is the voltage-reactive power droop coefficient of
DGi. Note that the primary control is the deviating regulation.

2.2 Secondary Control
Due to the compromise of primary control in deviating
adjustment, the secondary control aims to eliminate the
steady-state deviation of frequency and voltage and achieve
the rebalanced power sharing optimally among DGs, which
relies on communication networks. The distributed secondary
voltage controller (Cao et al., 2022) is the basis of the proposed
mitigation strategy, described as

vi � v0 − vi − niQi + ui

ui � cvi + cQi

cvi � (kPv + kIv
s
)(vref − �vi)

cQi � (kPQ + kIQ
s
)(Qref − uQ

i )

(2)

where ui is the secondary control input of DGi; cv i and cQ i are
the voltage and reactive power control inputs, respectively; vref
andQref are the voltage and reactive power reference values of the
microgrid, respectively; kPv, kIv, kPQ, and kIQ are the proportional
and integral parameters of proportional-integral (PI) controllers,
respectively; �vi is the average voltage estimate of DGi; and uQ i is
the reactive power offset of DGi. Based on the MAS and
consensus algorithm, the calculation of �vi and uQ i adopts a
distributed manner which is described as follows:

�vi � vi + ∫ uv
i dt

uv
i � ∑

j∈Ni

aij(�vj − �vi)
uQ
i � ∑

j∈Ni

aij(CjQj − CiQi)
(3)

where Ni is the set of neighbors of DGi and aij represents the
communication coupling gain, with aij>0 if there is a
communication path between DGi and DGj and aij = 0
implying otherwise. Ci donates the capacity coefficient of DGi.
The purpose of the secondary voltage control is to adjust the

FIGURE 1 | General cyber-physical structure of microgrids.
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average voltage of microgrids to the reference values, while
cooperatively averaging the load power sharing among DGs
according to their capacities. When satisfying the convergence
condition, �vi and uQ i will adjust to the reference values after the
dynamic process, that is, the average voltage estimators of all DGs
are the same and the reactive power of loads are shared
proportionately:

lim
t→∞

�vi � vref

lim
t→∞

uQ
i � 0

(4)

3 SYNCHRONOUS MITIGATION
FRAMEWORK AGAINST FALSE DATA
INJECT ATTACK
3.1 False Data Inject Attack Model and
Local Detection
Generally, the cyber attacker has two main paths to paralyze the
physical system: 1) immediately invade the cyber system to
result in instability and 2) secretly invade to seize the control of
the operator (Dibaji et al., 2019). In this article, we study the
single FDIA that only one agent is attacked at one time. For
convenience, we assume that the reactive power data are
injected with the attack signal. Thus, there are two forms of
FDIA:

Q̂i � Qi + μQa
i (5)

Q̂ij � Qij + μQa
i (6)

where Q̂i and Q̂ij are the native estimation data and the
estimation data that are sent to the neighbor agent,
respectively. Qa i is the attack signal that is assumed to be
constant. μ is the flag value that indicates the attack behavior:
μ = 1 if the FDIA occurs; otherwise, μ = 0. Based on the different
forms of FDIA, two types of FDIA are considered in this study: 1)
deception attack that does not affect the original secondary PI
controller inputs, and 2) disruption attack where the average
voltage and reactive power offset converge to illegal values
different from the preset reference values:

lim
t→∞

�vi � varef

lim
t→∞

uQ
i ≠ 0

(7)

The local detection can determine whether the local agent is
suffering from FDIA and the credibility of local data information.
According to the detailed model and analysis of FDIA (Cao et al.,
2022), the combination of local information can be selected for
local detection:

li(t) �
∣∣∣∣∣∣∣∣∣
CiQ̂i

�vi
− irefqi

∣∣∣∣∣∣∣∣∣ (8)

where li is the local detection signal of DGi. iref qi is the reference
value of q-axis current. Obviously, li = 0 if DGi is not attacked, and
the local data are credible; otherwise, li≠0 and the local data are
not credible.

Based on the two FDIA forms (Eq. 5) and (Eq. 6) and the
analysis in Sahoo et al., 2020, the two situations of FDIA are
considered in this article:

1) Both the FDIA forms (Eq. 5) and (Eq. 6) occur, that is,
deception attack. The local detection value li > 0.

2) Only FDIA form (Eq. 5) occurs, that is, disruption attack. The
local detection value li = 0.

3.2 Synchronous Mitigation Framework
Based on Local Detection
Considering the distributed control structure of cyber-physical
microgrids, a synchronous mitigation framework based on local
detection is proposed in this study, as depicted in Figure 2. The
mitigation framework can implement active synchronous defense
against FDIA by the FDIA identification for native DG based on
the local data and the adaptive updating for communication
coupling gain based on the credibility of neighbors. The proposed
synchronous mitigation framework avoids the disadvantage of
adding new communication traffic by using local detection and
neighbor data. The distributed resilient consensus cooperative
control method simplifies the design of secondary controllers,
which is applicable to switching network topologies and
communication latency. The detailed control method is
presented in the next section.

4 DISTRIBUTED RESILIENT CONSENSUS
COOPERATIVE CONTROL

The distributed resilient consensus cooperative control method is
proposed in this study to degrade the impact of FDIA on the
microgrid control. The proposed method can improve the
operational resilience of microgrid CPSs by evaluating the
information credibility according to the local detection result
and the communication data of neighbor DGs and by isolating
the data of the attacked agent by adaptive adjustment of
communication coupling gain in the consensus algorithm,
which prevents the attack signal from spreading in the cyber
system. Specifically, there are two stages:

1) Determine whether the native agent is suffering from FDIA
according to the local detection result. If the FDIA occurs, the

FIGURE 2 | Synchronous mitigation framework against FDIA.
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native agent exits the consensus synchronization process to
prevent the attack signal from influencing the local states in
the physical system.

2) Calculate the credibility of the neighbor agent by its
communication data. If the neighbor agent data are
injected into the attack signal, the credibility would be

FIGURE 3 | Distributed resilient consensus cooperative control diagram.

FIGURE 4 | Schematic diagram of the test microgrid CPS.
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lower than the threshold value. Thus, the native agent discards
the neighbor data to isolate the attack signal.

4.1 Distributed Resilient Consensus
Algorithm Based on Credibility
In order to overcome the disadvantage of the traditional average
consensus algorithm susceptible to cyber attacks, an improved
resilient consensus based on credibility is proposed in this section
to realize the distributed information exchange of MAS under
cyber attacks. Each agent sets credibility to measure the
confidence level of its native data and received neighbor data,
whose value depends on whether it is the attack target and how
close it is to the attack source. If the attacked agent detects the
FDIA, it exits the consensus synchronization process; meanwhile,
other agents calculate each neighbor credibility value. If one
credibility of the neighbor agent is lower than the threshold
value, it is judged as the attack resource and its data are discarded
in the consensus calculation process. The attacked agent is
isolated by adjusting communication coupling gains according
to credibility, which makes MAS resilient. The improved resilient
consensus algorithm based on credibility is described as follows:

_xi(t) � ci(t) ∑
j∈Ni

aijTij(t)[x̂j(t) − x̂i(t)] (9)

where xi represents the real state information of the ith agent. x̂i

represents the state estimation value of the ith agent. aij represents the
communication coupling gain in MAS. Ni represents the neighbor
agent set of the ith agent. ci represents the local credibility of the ith
agent. Tij represents the neighbor credibility of the ith agent. If there
is no FDIA in MAS, ci = 1, Tij = 1, and the consensus calculation is
normal. When the ith agent is suffering from FDIA (deception
attack), ci < 1, and the larger the attack signal is, the closer ci is to 0,
which means that the communication coupling gains between the
native agent and all its neighbor agents are reduced and this attacked
agent exits the consensus synchronization process gradually. When
the state estimation value of the neighbor jth agent is injected with an
attack signal (deception attack), the ith agent set the corresponding
neighbor credibility value Tij < 1, and the larger the attack signal is,
the closer Tij is to 0, that is, the communication coupling gain

between the native agent and the neighbor jth agent is reduced and
the impact of attacked state estimation data of the neighbor agent on
the native state update has degenerated.

4.2 Adaptive Update Strategy of Credibility
The key aspect of the distributed resilient consensus algorithm
based on credibility is that credibility values can adaptively update
according to whether theMAS is subjected to FDIA (Abhinav et al.,
2019). The reactive power control in (Eq. 3) is improved to the
distributed resilient consensus cooperative control:

uQ
i � ci(t) ∑

j∈Ni

aijTij(t)(CjQ̂j − CiQ̂i) (10)

Considering the FDIA forms against reactive power data, as in
(Eq. 5) and (Eq. 6), the adaptive update strategies of credibility
based on local detection and neighbor average are proposed in
this section to adjust the communication coupling gains
dynamically, which isolates the attack signal of FDIA and
improves the operational resilience of microgrid CPSs against
cyber attacks.

4.2.1 Adaptive Update of Credibility Based on Local
Detection
The update process of the local credibility value is directed as

_ci(t) � α[ki(t) − ci(t)] (11)
where 0 ≤ ci(t) ≤ 1. α > 0 is utilized to adjust the update speed of
local credibility value ci. ki (t) determines the value of ci, which can
be calculated as follows:

ki(t) � δi
δi + li(t) (12)

where δi represents the detection threshold value, which is
utilized to distinguish the attack signal from other
disturbances. li(t) represents the native detection signal
obtained from (Eq. 8). The local detection result indicates that
if no FDIA has occurred, then li(t) = 0 and ki(t) = 1 in the steady
state. Thus, ci = 1 means that the distributed control is carried out
normally in microgrids. Else, if the local detects the attack signal,
li(t)>δi and ki(t) < 1. Thus, ci < 1 depends on the size of the attack
signal, which indicates that the reactive power control offset is

TABLE 1 | Procedure of the proposed method.

Procedure: The secondary
control of DGi

1: initial local and neighbor credibility values ci = Tij = 1
2: while (t > 0)
3: input native data Q̂i , �vi , iref q, i, and neighbor data CjQ̂j

4: calculate the local detection result li of FDIA by (8)
5: update the neighbor credibility ci by (Eq. 11) and (Eq. 12)
6: if ci < cth,i
7: ci = 0
8: end if
9: update the neighbor credibility Tij by (Eq. 13) and (Eq. 14)
10: if Tij < Tth,ij
11: Tij = 0
12: end if
13: update secondary control input ui
14: end while

TABLE 2 | Electrical parameters of the microgrid.

Type Parameter Value Parameter Value

— Voltage 380 V Frequency 50 Hz

DG Droop coefficient Connection impedances
n1, n2 1 × 10−5 Zc1 0.2 + j0.3 Ω
n3 0.5 × 10−5 Zc2 0.1 + j0.22 Ω
n4, n5 1.5 × 10−5 Zc3 0.08 + j0.15 Ω
m1−m5 7.5 × 10−4 Zc4 0.15+j0.28 Ω
— — Zc5 0.05+j0.13 Ω

Load Load1 18 kW + 12 kvar Load2 12 kW+8 kvar

Line Zl1 0.05 + j0.1 Ω Zl2 0.13 + j0.2 Ω
Zl3 0.03 + j0.1 Ω Zl4 0.08 + j0.13 Ω
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reduced gradually. When ci < cth,i, the native DGi exits the
secondary control to prevent the system from instability.

4.2.2 Adaptive Updating of Credibility Based on
Neighbor Average
The update process of neighbor credibility value is directed as

_Tij(t) � βj[sij(t) − Tij(t)], (13)
where 0 ≤ Tij(t) ≤ 1. βj > 0 is utilized to adjust the update speed of
the neighbor’s credibility value Tij. sij(t) determines the value of
Tij, which can be calculated as follows:

sij(t) � σ i

σ i +
∣∣∣∣∣∣∣∣∣CjQ̂j(t) − 1

|Ni | ∑
k∈Ni

CkQ̂k(t)
∣∣∣∣∣∣∣∣∣
, (14)

where σi represents the update threshold value, which is utilized
to distinguish the attack signal from other cyber disturbances. |Ni|

represents the neighbor number of DGi. hi = 1
|Ni| ∑

k∈Ni

CkQ̂k

represents the mean value of neighbor reactive power estimations
in the consensus iterative of DGi. If the information of the neighbor
DGj is reliable,CjQ̂j = hi and sij(t) = 1 in the steady state. Thus, Tij =
1 means that the distributed control is carried out normally in
microgrids. If the data of neighbor DGj are injected into the attack
signal of FDIA, CjQ̂j ≠ hi and sij(t) < 1. Thus, Tij<1 depends on the
size of |CjQ̂j − hi|, which implies that the larger value means that Tij
is more close to 0, which indicates that the reactive power estimation
of DGj is less reliable. It is necessary to reduce the impact of the
neighbor estimation on the native reactive power control offset. If Tij
> Tth,ij, the data of neighbor DGj exit the consensus cooperative
process of native DGi to prevent the system from instability.

4.3 Control Procedure
The distributed resilient consensus cooperative control method is
suitable for both normal and FDIA situations. In the normal

FIGURE 5 | FDIA situation: (A) deception attack and (B) disruption attack.

FIGURE 6 | Simulation results of the test microgrid without FDIA.
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operation, both the local and neighbor credibility values are 1, which
do not affect the preset communication coupling gain parameters.
Therefore, the reactive power of the microgrid can converge to the
reference value according to (Eq. 10). When FDIA occurs, the
distributed resilient consensus cooperative control adjusts
communication coupling gain parameters by updating credibility
values, which guarantees the safe and stable operation ofmicrogrids.
For instance, if the attack signal is injected into the whole system by
attacking one agent, the attacked agent exits the consensus
calculation process; in the meanwhile, its neighbor agents discard

the attacked agent data that include the attack signal. Thus, the
operation state of the system is not impacted by FDIA. Note that
this way does not directly block the propagation of the attack signal
in the cyber system but “house arrest” the attack signal in the
distributed secondary control module, which isolates the attacked
agent in disguise and disconnects its external communication link
so that the attack signal cannot harm the power systemwith the help
of control commands.

By the synchronous mitigation based on local detection, the
distributed resilient consensus cooperative control method avoids

FIGURE 7 | Simulation results of the test microgrid with deception attack.

FIGURE 8 | Simulation results of the test microgrid with disruption attack.
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the extra communication traffic and cumbersome switching of
controllers, which only increases the local detection and
credibility computing module on the basis of the original
distributed secondary control. The controller design is not
complex to be implemented on embedded systems. The
control diagram of the proposed distributed resilient
consensus cooperative method is depicted in Figure 3.

To guarantee the resilient operation of microgrids under FDIA,
the distributed resilient consensus cooperative control method
consists of three parts: 1) recognize the native attack signal by
local credibility, 2) identify the neighbor attack signal by neighbor
credibility, and 3) adjust the communication coupling gain in real
time by adaptive update. The control flow is depicted in Table 1.

5 CASE STUDY

In this section, simulations are performed to investigate the
effectiveness of the proposed method by a test microgrid CPS
as depicted in Figure 4, where five DGs based on droop control
are connected and communicate through power and
communication lines. The control and electrical parameters
are listed in Table 2. Note that all DGs have the same

capacity. MATLAB/Simulink is utilized to simulate the test
microgrid CPS.

5.1 Case 1: False Data Inject Attack Impact
The simulation, in this case, concentrates on the normal scenario
and FDIA scenario as references. The simulation process is
described as follows: 1) at t = 0s, the microgrid operates in the
primary droop control; 2) at t = 0.5 s, the distributed secondary
control is activated; 3) at t = 2 s, an additional load 10 kW+ 5 kvar
is attached to Load1 and detached at t = 4 s; 4) at t = 3 s, the
different attack situation of FDIA is carried out in microgrid and
removed at t = 5 s, as presented in Figure 5. The simulation result
in the normal situation is depicted in Figure 6.

Then, the attacker implements the deception attack on the
reactive power data of cyber node A1 in Figure 5A to sneak on
the cyber system of the microgrid. The injected attack signal is 2.
The simulation result with the deception attack is depicted in
Figure 7. Due to the attack signal injected into A1, the voltage and
reactive power of DG1 adjust in the light of the error control
commands. Nevertheless, the average voltage and reactive power
offset can converge to the preset consensus value 311V and 0.
Thus, the microgrid operator cannot judge whether FDIA has
occurred.

FIGURE 9 | Simulation results of deception attack mitigation.
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FIGURE 10 | Simulation results of disruption attack mitigation.

FIGURE 11 | Simulation results of the median-based consensus algorithm.
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In the disruption attack, the attack signal 20 is injected into
the reactive power data of cyber node A1 in Figure 5B. The
transmitted reactive power data of A1 are sent to its neighbor
nodes A2, A3, and A4, which are none of the attack signals. The
simulation result with the disruption attack is depicted in
Figure 8. The average voltage and reactive power offset of
the microgrid converge to default values. Due to the impact
of the disruption attack, the output reactive power of DG1
reduces rapidly and even absorbs reactive power, which leads to
the reactive power changes of other DGs. Meanwhile, the
average voltage of the microgrid adjusts to an error value
(275 V in Figure 8) and the voltages of DGs continue to
decrease, resulting in voltage sag in the microgrid, which
means the voltage instability of the microgrid. It
demonstrates that the purpose of destroying the microgrid
operation has been achieved. The microgrid operator can
detect FDIA by the two control errors of average voltage and
reactive power control offset.

5.2 Case 2: Deception Attack Mitigation
This case tests the effectiveness of the distributed resilient
mitigation strategy against deception attacks. The attack
signal is injected into the secondary control of A1 and sent
to the neighbor nodes A2, A3, and A4. The simulation result is
depicted in Figure 9. According to Figure 7, although the
average voltage and reactive power offset can be adjusted to
the preset value under the deception attack, the actual voltage
and reactive power output of DGs have abnormal changes. From
Figure 9, when deception occurs (t = 3s), the output voltage and
reactive power of each DG remain normal. After power
disturbance, except for the attacked DG1, other DGs obtain
the equal sharing of reactive power, which indicates that the
proposed control approach makes the microgrid maintain
normal physical operation under deception attack. The
original control purpose of the microgrid has still not been
achieved either. Comparing Figure 6 and Figure 9, during the
deception attack, the reactive power of the attacked DG1
changes to the local control by the distributed resilient
control method. Thus, its reactive power automatically
adjusts according to the droop characteristic rather than
reaching equal sharing with other DGs after load disturbance
at t = 4 s. The local credibility of each DG and the neighbor
credibility of DG2 are depicted in Figure 9. The local detection
of A1 can effectively identify the native FDIA, verifying the
analysis of the FDIA situation in section 3.2. In the meantime,
the local credibility value c1 = 0 protects the physical state of
DG1 from the impact of the injected attack signal. Additionally,
for instance, A2 eliminates the reactive power data from A1 that
are injected by the attack signal by setting neighbor credibility
value T21 = 0. The results of A3 and A4 are the same as A2. In
this way, the attack signal is isolated in A1 to realize the resilient
operation of microgrid CPS.

5.3 Case 3: Disruption Attack Mitigation
In this case, the attack signal is injected into the attacked cyber
node A1, whose actual reactive power data are transmitted to
its neighbor nodes A2, A3, and A4. The simulation result is

depicted in Figure 10. Comparing Figure 8 and Figure 10, the
operation state is the same as that under disruption attack,
which indicates that the proposed resilient control method can
effectively avoid the voltage and reactive power instability
caused by disruption attack in the microgrid. From
Figure 10, the local detection successfully identifies FDIA.
Then, DG1 updates local credibility c1 = 0 to make its
secondary reactive power control exits, which guarantees
the cyber security of microgrid CPS. Besides, due to the
actual operation data sent from A1 to neighbor nodes, the
neighbor credibility value T21 remains around 1, as well as the
neighbor credibility values T31 and T41 of A3 and A4. Thus, A1
is equivalent to the leader in MAS. The output reactive power
of other DGs follows DG1 so that the output reactive power of
all DGs in the microgrid can still achieve average sharing.

5.4 Case 4: Comparison of Different
Resilient Control Algorithms
To verify the effectiveness and advantage of the distributed
credibility-based consensus algorithm, the median-based
consensus algorithm (Sheng et al., 2021) is used to mitigate
the FDIA in microgrids, which removes the attack signal by
selecting the median value of neighbor data to participate in the
iteration of consensus update. The FDIA scenario is the same as
that in Case 2. Figure 11 depicts the simulation results of the
distributed median-based consensus control method. According
to Figure 11, the distributed median-based consensus control
method has the ability to restrain the effect of the deception attack
during t = 3–5 s. Comparing Figure 9 and Figure 11, both the
resilient consensus algorithms can mitigate the deception attack.
However, in order to remove the attack signal, the median-based
consensus algorithm abandons the normal neighbor data as the
expense, which only retains the middle state of all neighbors.
Thus, the reactive power of DGs cannot synchronize the average
value when the load disturbance occurs at t = 4 s during the
deception attack. The proposed credibility-based consensus
algorithm only removes the data of the attacked neighbor by
an adaptive update of credibility values, which results in that the
normal DGs achieve the consensus whenever load disturbance
occurs. In addition, the median-based consensus algorithm only
has an effect in the situation where the transmitted data have been
injected with the attack signal. The proposedmethod canmitigate
FDIA whether in deception or disruption attack, which indicates
its advantage.

6 CONCLUSION

With the control failure and even system results from cyber
attack on the cooperative control of microgrids, this article
investigates the synchronous mitigation framework based on
local detection where the reactive power cooperative control
targets of microgrids with and without FDIA are compatible
with the resilient control method. The credibility is utilized to
measure the reliability of local and neighbor data in the
proposed method. The consensus communication coupling
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gain is weighted corrected by the adaptive update strategy of
credibility to delete the attack signal. Besides, the proposed
method directly improves the conventional distributed
secondary controller that reduces the complexity of
controller design. Simulations verify the effectiveness of the
distributed resilient consensus cooperative control method
under conditions of deception and disruption attacks.
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