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Abstract

Hidden Markov models (HMMs) belong to the class of double embedded stochastic models
which were originally leveraged for speech recognition and synthesis. HMMs subsequently
became a generic sequence model across multiple domains like NLP, bio-informatics and
thermodynamics to name a few. Literature has several heuristic metrics to compare two
HMDMs by factoring in their structure and emission probability distributions in HMM nodes.
However, typical structure-based metrics overlook the similarity between HMMs having
different structures yet similar behavior and typical behavior-based metrics rely on the
representativeness of the reference sequence used for assessing the similarity in behavior.
Further, little exploration has taken place in leveraging the recent advancements in deep
graph neural networks for learning effective representations for HMMs. In this paper, we
propose two novel deep neural network based approaches to learn embeddings for HMMs
and evaluate the validity of the embeddings based on subsequent clustering and classifica-
tion tasks. Our proposed approaches use a Graph variational Autoencoder and diffpooling
based Graph neural network (GNN) to learn embeddings for HMMs. The graph autoen-
coder infers latent low-dimensional flat embeddings for HMMs in a task-agnostic manner;
whereas the diffpooling based graph neural network learns class-label aware embeddings
by inferring and aggregating a hierarchical set of clusters and sub-clusters of graph nodes.
Empirical results reveal that the HMM embeddings learnt through the Graph variational
autoencoders and diffpooling based GNN outperform the popular heuristics as measured
by the cluster quality metrics and the classification accuracy in downstream tasks.
Keywords: Deep metric learning; Graph Neural Networks; Hidden Markov Models; Task
agnostic embeddings; Graph variational autoencoders; Diff-pooling based graph convolu-
tional networks.

1. Introduction

Hidden markov models are well known for their role as an enabler in different real word
applications, such as in customer relationship, molecular biology, body posture identifica-
tion, fraud detection and speech technology. Such applications benefit from the ability of
HMDMs in modeling long sequences of observations accurately. Typically, the following three
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standard problems (Rabiner and Juang, 1986) are considered to be of interest in HMMs: (i)
Computing the likelihood of generating a sequence of observations, (ii) Inferring the most
likely sequence of states that might have generated an observation sequence and, (iii) Com-
puting the parameters of the HMM given an observation sequence. However an accurate
estimation of the distance between HMMs is important for the performance of several de-
scriptive, predictive and prescriptive HMM-based models and hence the problem of learning
embeddings for HMMs in a metric space has become a research problem of interest.

Some of the earlier attempts to find a good metric are based on the following: (i) co-emission
probabilities (Lyngso et al., 1999), (ii) Monte Carlo approximation for entropy divergence
(Falkhausen et al., 1995) and Kullback-Leibler (KL) divergence (Juang and Rabiner, 1985),
(iii) graph-matching (Sahraeian and Yoon, 2011), (iv) Bayes probability of error (Bahlmann
and Burkhardt, 2001), (v) BP Metric (Panuccio et al., 2002) based on stationary cumulative
probability distribution function (Zeng et al., 2010) and (vi) system statistics (Lu et al.,
2013).

Typically, approaches cited above perform well only if models of similar structure exhibit
similar behaviour. The structure-based metrics have an inherent lapse of not accounting
for cases where the HMMSs have different structures yet similar behavior. Metrics based on
graph-matching will become intractable and impractical as the number of nodes and edges
in the HMM graph increases (Lubiw, 1981). Further, the accuracy of the distance estimated
by these metrics are heavily impacted by the inherent noise present in the observations used
for training HMMs. Behavior based metrics are influenced by the representativeness of the
reference sequence used for gauging the similarity between HMMs. Various graph network
models in the deep learning literature have been shown to effectively infer feature repre-
sentations to encode the key properties of graphs. However, to the best of our knowledge
little exploration has been done in studying the applicability of these recently developed
deep graph neural network models in the context of learning representations for HMMs. As
a first-of-its-kind attempt, we propose a graph variational autoencoder (GVAE) based task
agnostic model and a diffpoolng based graph convolutional neural network (GCN) model
to learn embeddings for HMMs. The following are the key contributions of this paper:

(i) We propose two task-agnostic learnt embeddings for HMMs based on Autoencoders
and Graph variational autoencoders in an attempt to effectively encode both the
structure and behavior of HMMs in the embeddings learnt.

(ii) We apply the learnt embeddings in the context of a representative complete-linkage
and a single-linkage clustering algorithm to showcase their validity. We have also
analyzed the efficacy of the embeddings learnt in the context of a classification task.

(iii) We also propose and evaluate a supervised class-label aware embedding for HMMs by
leveraging a Diffpooling based graph neural network in the event of a small amount
of labelled data being available.

The rest of the paper is organized as follows: Section 2 reviews some of the state of art prior
work and discusses the preliminaries. Section 3 describes the models and their architecture
we experimented with to propose the learned metric. Section 4 describes the experimental
setup, dataset, packages used and also discusses the evaluation methods and results with
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respect to performance metrics. Section 5 has our concluding remarks along with some
pointers for further research.

2. Prior work and Preliminaries

Juang and Rabiner (1985) proposed a probabilistic distance measure based on K-L
divergence for HMMs. It was a consistent probabilistic modelling technique which employs
a Monte Carlo procedure for evaluation. However its performance is affected by length of
observations and by the initial values of the parameters. Later another metric based on
co-emission probabilities was proposed by Rabiner and Juang (1986) for different types of
models. Zhong and Ghosh (2003) proposed variants of KL such as minKL and maxKL
which can be used to measure the distance between two generative models H; and Hs
using a dataset generated by one of the models as the reference set R. minKL and maxKL
are respectively the minimum and the maximum over all x € R of the differences between
the log likelihoods of = given the parameters of H; and Hy respectively. minKL and
maxKL are similar to single and complete-linkage metrics typically used in the context
of an agglomerative clustering model. Zeng et al. (2010) proposed a metric based on
stationary cumulative probability distribution function which uses the characteristics of a
stationary HMM and exhibited a lesser time complexity than KL. Earlier works on graph
based metrics mostly include metrics based on maximum common sub graphs (Bunke
and Shearer, 1998) and based on graph isomorphism (Dijkman et al., 2009) to cite a
few. As these metrics are NP-hard to compute, these metrics can be applied only on
a restricted class of smaller sized problem instances. With the advancements in deep
learning techniques many deep graph similarity-based learning models have been proposed
in the recent past. Deep graph learning models are popular as these models learn a better
representation of the graph features that helps in accurately performing the target task
(Wu et al., 2021).

Hidden Markov model

A hidden markov model (Rabiner and Juang, 1986) is represented as H = (7, A, B,n,C),
where 7 represents the prior probability distribution over states; n is the number of states;
A represents the transition matrix; B represents the matrix of emission probabilities in case
of discrete observations and linearized parameters of the emission probability distribution in
case of continuous observations. C represents either an alphabet of symbols to be emitted or
a continuous space of observations depending upon whether the support of the observation
sequence is continuous or discrete. As we have experimented with audio datasets, we have
assumed that the emission distribution in a state ¢ of H follows a multivariate normal
distribution with the probability density for the observation z in state i given by B;(z)
= W@\*lm exp {—%(:1: — )Xz — ,u,)T} of dimensionality d, where X is the diagonal
co-variance matrix and p is the mean vector. Hence, for continuous distributions row i of
the B matrix is assumed to contain the mean and linearized diagonal co-variance of the
emission distribution in state . The HMMs considered in this paper are ergodic in which
transitions are permitted from any state to any other state.
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3. Methodology

This section contains two subsections; the first of which discusses baselines that approxi-
mate the distance between HMMs by comparing their structure, behavior or both structure
cum behavior and based on embeddings derived through factorization of HMM’s adjacency
cum feature matrix. The next subsection discusses two task agnostic embeddings learnt
through autoencoders and graph autoencoders; it also contains a discussion on class-aware
representation learning for HMMs by training a diffpooling based network.

3.1. Baselines
3.1.1. BEHAVIOR BASED METRIC USING CROSS LOG-LIKELIHOOD ESTIMATES

The first metric is based on computing the original and the cross log-likelihoods (Rabiner
and Juang, 1986) of a pair of observation sequences each generated by a different HMM.
This metric is entirely based on the behavior of the HMMs being compared. The distance
returned by this algorithm is the mean of the cross-likelihood distances taken across ¢ such
pairs of observation sequences. However, the validity of the distance computed is entirely
dependent on the representativeness and discriminatory ability of the observation sequences
considered. Further, this is a direct metric which does not produce any embedding that can
be used in downstream tasks. This approach is outlined in Algorithm 1:

Algorithm 1 CrossLikelihoodBehaviorMetric

1: Input: Two Hidden Markov Models Hy, Ho.

2: Generate ¢ pairs of observation sequences (O1,01),(0%,03), .....(0%,0%) such that O}
and O} are of length k each and are generated by H; and Hj respectively.

3: Vi € [1,q] distance(i) = 3 x ([log(P(O1 | Hy)) + log(P(Oz | Hy))] — [log(P(O2 | Hy)) +
log(P(O1 | H2))])

4 d = % x (321, distance(i))

5: Return d

3.1.2. STRUCTURAL METRIC BASED ON STATE MAPPING

Given two HMMs H; = (my, A1, B1,n1,C) and Hy = (mg, Ag, B2, ng, C) as inputs, we nor-
malize the HMM having a relatively more number of states. This normalization is done by
treating the transition probability matrix of the larger HMM as the adjacency matrix of
the graph to be clustered. We have used a weighted min cut based formulation for directed
graphs proposed by Meila and Pentney (2007) for grouping the states. Post clustering, the
clusters containing more than one node are treated as super-states in the normalized HMM.
Multiple edges incident on super-states are coalesced with a weight equal to the sum of the
weights on the edges being coalesced. The emission probability distribution of a super-state
is estimated as the weighted mean of the parameters of the distributions of the nodes in
the state. The weight attributed to a state in a super-state is taken to be the sum of the
transition probabilities on the edges coming into the state from other states.

Subsequently, a random walk is performed on the two HMMs to determine the prob-
ability of being in a state after a certain number of steps. States in H; are mapped to
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Algorithm 2 StateMapping Metric
1: Input: Two Hidden Markov Models Hy; = (my, A1, By, n1, C) and Hy = (71, Ag, Ba,
no, C)
n = min (ny,ng)
H (x',A', B',n’,C) +— Model having greater than n states.
U = spectralClustering (A’,n/,n); //reduces the number of states from n’ to n.

For each node ¢; € U:
If (Jci| > 1):

e =17 161 S0 o, (Sapyen A'lascil) x i)

C 2= 1/ |Cl‘ Zcijeci ((Z(a,cij)EE Al [a”cij]> X Cij - E)
6: Perform a Random walk of ¢ steps on H; and Hos.
7. For each i € [1,n]:
Py[i] = probability of being in state 7 in H; after t steps.
P,[i] = probability of being in state i in Hs after ¢ steps.
8: J = Map node i in H; to a node j in Hs such that P;[i] and P[] are the & order
statistic in P, and P, respectively for some k € [1,n].
9: distance =0
10: For each mapping (i,7) € J:
distance + — (KL (Bili]| Balf]) + KL (4[] 42[)))
11: Return distance

those in Hy depending upon the agreement between the two states with respect to these
probability estimates. Subsequently the distance between the HMMs is approximated as
the sum of pairwise distances between the emission probability and transition probability
distributions of the corresponding mapped states as outlined in the Algorithm 2 entitled
StateMappingMetric, which is similar to the metric by Sahraeian and Yoon (2011). Though
the structures of HMMs are normalized, based on our empirical observations, this metric
fails to account for cases where two structurally different HMMs exhibit similar behavior.

3.1.3. BEHAVIOR BASED METRIC USING LIKELIHOOD OF A COMMON SEQUENCE

Let D be a sequence of n observations. The metric entitled UniSequenceLikelihoodMetric
(Falkhausen et al., 1995), approximates the distance between two HMMs H; and Hy as the
distance between the log-likelihood estimates of each of the n observations in D given H;
and Hs. This metric shares the same demerits as enlisted for the Crosslikelihood based
behavior metric and is computed as distance(log(P(D | Hy)),log(P(D | H2))).

3.1.4. HYBRID METRIC BASED ON BOTH STRUCTURE AND BEHAVIOR

A hybrid metric based on both structure and behavior is arrived at by approximating the
distance d between the HMMs H; and Hy as the weighted average of the distances dp
and d; inferred by the behavior metric described by Algorithm 1 and the structure metric
illustrated in Algorithm 2 respectively. The weighting factor « is in the range [0,1]. The
distance between the HMMs is computed as follows: d (H1, Hy) = axdy+(1—a) xds. From
our experiments we could observe that depending upon the value of «, the performance of



SONI SESHADRI RAVINDRAN

the hybrid embeddings lies between that of the structure based metric M2 and the behavior
based metric M1. When o« = 1 or a = 0 the performance is same as that of M1 or M2
respectively.

3.1.5. HELPER ROUTINES

The following approaches are used by the matrix factorization-based models and deep neural
net models to convert HMMs into matrices or a vector. The first approach converts an HMM
with n nodes into emission and transition matrices. For each node we compute the emission
vector by concatenating the linearized diagonal co-variance and mean vectors. We form
an emission matrix where each row represents the emission vector of a state; Row 7 of the
transition matrix is the out-transition probability distribution of the state . Dimensionality
of the emission matrix obtained is n x 2d. The second approach concatenates the emission
and transition matrices and linearizes the concatenated outputs to emit a vector V of size
(n? + 2nd) x 1.

3.1.6. MATRIX FACTORIZATION BASED LINEAR EMBEDDINGS

Given a pair of HMMs, Hy; and Hs, we construct the feature matrix of the HMMs by
invoking Convert_H M M _to_FeatureMatrices. The transition and emission matrices are
concatenated to obtain matrix representations Hj, H) of the HMMs each of dimensionality
n x (n + 2d). We subject these representations to Singular Value Decomposition (SVD)
to factorize them as follows: H| = L1S1RT and H) = L3SoRY, where L1 and Lo are the
matrices of left singular values of dimensionality n x r; and n x ro respectively, S; and S
are the singular diagonal matrices containing the eigen values of dimensionality r; X r; and
79 X 19 respectively and R and RI are the matrices of right eigen vectors of dimensionality
r1 X (n 4 2d) and ry x (n + 2d) respectively.

To obtain the projections of the HMM nodes, we fix a k << (n + 2d) and compute
E(H)) = Rg"k) X S%k’k) and E(Hs) = Rg"k) X Sgk’k), where Rg"k) and Ré"k) are respectively
the restrictions of Ry and Ry to the first k columns and S§k’k), Sék’k) are respectively the
restrictions of S1 and S to the first k£ rows and columns. Each row in F(H;) and E(Hz) rep-
resents the k-dimensional embedding of the respective nodes in Hy and Hs. Each node in H;
is mapped to its closest node in Ho, the closeness is measured in the k-dimensional Euclidean
space. The distance between the HMMs is computed as the sum of the KL-divergences be-
tween the corresponding transition probability and emission probability distributions over
all the pairs of mapped nodes in H; and Hy. However, our empirical observations re-
veal the lack of modeling power of such linear approaches in encoding HMMs; Such linear
embeddings of HMMSs are observed to perform poorly in the downstream clustering and
classification tasks.

3.2. Embeddings based on Deep Neural Nets

This section outlines our proposed approach to learn task agnostic embeddings for HMMs
through autoencoders and graph variational autoencoders, followed by our discussion on
class-aware representation learning for HMMs by training a diffpooling based graph convo-
lutional network.
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3.2.1. AUTOENCODER BASED TASK AGNOSTIC HMM EMBEDDINGS

We convert an HMM into a vector as mentioned in the section 3.1.5. The vector has both the
structural aspects and the emission probabilities which represent the first-order behavior
of the HMM. Our first approach uses the standard version of autoencoder architecture
to obtain low dimensional embeddings for the vector representations of the HMMSs to be
compared and returns the distance between the embeddings. However, the embeddings
learnt through autoencoders are optimized just with respect to the reconstruction loss and
do not have any regularization in the latent space to encode the generative ability of the
HMDMs in the embeddings learnt. As this demerit is evident in our empirical observations
of the performance of Autoencoder based embeddings in the downstream tasks, we propose
a Variational Graph Autoencoder based embedding in the next section to address this
concern.

3.2.2. GRAPH VARIATIONAL AUTOENCODER BASED TASK AGNOSTIC HMM EMBEDDINGS

We have adopted the graph encoder model proposed by Kipf and Welling (2016) to build
a variational autoencoder for an HMM H = (7, A, B,n,C). The proposed GVAE converts
H into a latent embedding ¢ in a lower dimension space. Let the emission probability
distribution be characterized by a d-dimensional Gaussian. The feature of a state i in H
(denoted by B;) has a dimensionality of 2d to accommodate the parameters of the emission
distribution of the state namely y; and the linearized form of diagonal o2?. The GVAE infers
a latent vector ¢; of dimensionality d, for each state ¢ in H, such that d, << 2d.

The GVAE uses a GCN for inferring ¢ = [¢1, 2, s, ...... , Un], which is a matrix of size n x d,.
Assuming that, the likelihood of ¢; is independent of that of the other states given A and
B, we get,

n
Pl A B)=]]pti| A B) (1)
i=1
There are two key problems to be overcome while learning the embedding. Firstly, as it
is intractable to compute p(A, B) by marginalizing over all possible distributions for ¢, we
assume that p (¢; | A, B) ~ N(fi;, 62) for some fi; € R% and 62 € R%. The second problem
is to encode the generative ability of the model in the embedding to incorporate behavioral
aspects of the model in the embedding. This is done by bifurcating the objective function
f into a typical term to capture the decoder’s reconstruction error and a regularizer to
optimize the KL-divergence between the inferred distribution p(.) and the ground truth
p(.). Parameters of the GCN are learnt using stochastic gradient descent. The optimization
objective is given as € in equation 2.

0 = —Eja,p)logp(A | ) + KL[p(¢ | A, B)||p(£))]] (2)

fi; and 67 are initialized using the Xavier uniform initializer for all i. p(¢) denotes the prior
distribution in which each ¢; is independently sampled from N(0,1). Reparameterization
of the latent variables are done, to use back propagation for adjusting the parameters of
GCN based on the error observed in the output layer. To obtain an embedding for H, we
input the A and B matrices to the GCN and in the inferred output matrix ¢, we treat each
row as the embedding of the corresponding state in H. The GCN used as the inference
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Figure 1: Latent variable inference using a graph AutoEncoder

model is two layered as shown in Figure 1. The transformation performed by the GCN is
given by A x 5(ABW(1)) x W®, where W) are the parameters or weights of the GCN
in the first layer. W) is the shared weight matrix of L(!) which is shared by the two sub
layers ng) and L§2). Lg2) and ng) separately infers fi; and (’}?. 0 is the Relu activation
given by maz(ABW ™, 0). The decoder that generates the state transition matrix A given
the latent parameters, is modeled using the dot product between the corresponding latent

vectors as given in Equation 3.

n

p(A10) =]]p(Ailt:0) (3)

i=1

The conditional likelihood of A;(Vi € [1,n]) is assumed to follow a Dirichlet distribution
as in equation 4. The distance between two HMMs can be computed using the Graph
variational autoencoder as outlined in the Algorithm 3.

p(A; | 4, 0) = Dir <Ai | (softmax ((zﬂ)))) (4)

Algorithm 3 Embedding HMMs using Graph variational autoencoder

1: Input: H| = (7T1, A1, B1, nq, C) and Hy = (’/Tl, As, Bo, ng, C)
2: Xq = G’I”aph,VAE(Al,Bl), X9 = GT‘aph,VAE(AQ,Bg)
3: distance = 0
4: for each v; € Hy do
5 vj = argmin euclidean_distance(X1(v;), Xo(vg))
v, EHo
6:  distance + = euclidean_distance(X1(v;), X2(v;))
7: end for
8: return distance

3.2.3. INFERENCE OF HIERARCHICAL EMBEDDINGS FOR HMMS USING A SUPERVISED
DIFFPOOLING GCN

One of the demerits of the previous two approaches based on autoencoders is that the
HMM representations learnt are flat. The approaches have no innate provision to encode
the hierarchical structures which are typically prevalent in HMMs. The overall behavior
exhibited by an HMM may be viewed as the aggregation of local behaviors exhibited by a
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set of closely knit clusters of states with high transition probabilities within a cluster than
that across clusters. Similarly, the behavior exhibited by each of these clusters of states can
be interpreted as the aggregate behavior exhibited by a set of sub-clusters within the clus-
ters. The idea proposed by Ying et al. (2018) for learning structural graph representations
has been adapted by us to encode both the hierarchical spectral-structures and behavior
exhibited by the spectral-sub-structures in HMMs as illustrated in Figure 2.

The hierarchical view captures detailed prominent localized features responsible for the over-
all behavior of an HMM, as opposed to Autoencoder based approaches that at one stroke
pool the individual node embeddings of an HMM to emit a global embedding, thereby losing
important hierarchical local patterns.

Each layer L(i) in the diffpooling network corresponds to a pair of GNNs GNN ](\? and

g[ﬂ) - (A[ﬂ))BUJ)’JUJ

GB)

Coarser graph

?D\ﬁpoulmg DP(1) Iy
37 il

H© ¥ ) ®)
3 3
GNN GNNE
G ‘ S =) G = (49, B®)
Gy B - —> .

Coarser graph

* Diffpooling DP(2) Iy
ikl ‘ Ty ‘

@) @)
GNN GNN

)
1 - A [ N
G L - i ~

W v - )
G = (4, po)
Coarser grapl

fD\ﬂpoolmg DP(1) A
ik T

] )
GNNf} GNN

level 0

feill]
D) — (Al")JBLﬂJ)
individual
embeddings
represents a cluster

Hierarchial graph template processed by
Diffpooling layers

Stacked Diffpooling network

Figure 2: Learning hierarchical HMM embedding -an illustration

GNN (i), having n;_; input nodes and n; output nodes followed by a diffpooling sub layer
named DP(i). In the layer L(i), n;—1 corresponds to the number of nodes in the input
graph GU=Y and n; indicates the number of clusters in the output coarsened graph G at
level i. '

Each GNN 1(\2) maps nodes in G~ to their degree of association with respect to each
output cluster node in G®, this mapping is done using the node embeddings in G(~1,
GNN](\Z) outputs the mapping of the node in G~ to a set of nodes in G® in the form
of a nj_1 x n; matrix M®, where each row j in M@ corresponds to the strength of the
mapping of j to each of the nodes in G as specified in equation 5.

MO = softmax (GNN‘AZ} (A(H% B”’”)) . (5)
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Similarly each of the GNN g) accepts the adjacency and emission matrices of G=1) and
generates the embedding () of each cluster in G as outlined in equation 6.

1) = GNNY) (A“*l), B(i’l)) (6)

For each layer L(i), A®~Y and B~ correspond to the transition and feature probability

matrices of the HMM respectively. The number of output nodes in GNN ](\2) and GN Ng) is
a hyper parameter that corresponds to the maximum number of clusters to be inferred in
L(i). The diffpooling sub-layer in L(i) takes as inputs the embeddings of the nodes in (),
the mapping matrix M@ and A~ to generate the feature matrix of the coarsened graph
G® ie. (BW) and the adjacency matrix of G i.e. (A®) of sizes n; x d and n; x n; re-
spectively. The feature matrix B® is computed as the weighted aggregation of embeddings
in ¢, where the weight of an embedding is the strength of association of the node to the
output clusters as mentioned in B = M @7 ¢, The strength of the association between
pairs of clusters/nodes in G is computed as A = M@OT AG1) (@),

If there are m diffpooling layers then the embedding [(™) is considered as the final embed-
ding of the HMM. The end-to-end training of the diffpooling network has been done using
stochastic gradient descent by using the cross-entropy loss function. The distance between
two HMMs can be computed as the distance between the hierarchical embeddings of the
HMMs obtained by a diffpooling network. The embeddings compared are the ones emitted
from the last diffpooling layer. The distance between two HMMs can be computed using a
Diffpooling network as outlined in the Algorithm 4.

Algorithm 4 Inferring an HMM Embedding using Diffpooling
1: Input: My, M.
: (T, Ey) = Convert_HM M _to_FeatureMatrices(M;) //as mentioned in section 3.1.5
: (Tn, Es) = Convert_HM M _to_FeatureM atrices(Ma)
//T1 and T; are transition matrices; Ey and Ey are emission matrices.
: Vi = Dif fpooling(Ty, E1) and Vo = Dif fpooling(Ts, E2)
5. Return distance(Vy, V3)

w N

W~

4. Experimental setup and Performance evaluation

The dataset used for our experiments is the open source Free Spoken Digi Dataset (FSDD).
FSDD dataset has 2K audio files each containing the utterance of a digit by one of the four
speakers. We have used Google Collab for performing our experiments. The key libraries
used are pytorch, numpy and scipy.

To validate the embeddings generated, we have performed two extrinsic tasks namely, clus-
tering and classification using the embeddings and measured the validity of the embeddings
through the performance metrics computed on the outputs of the tasks. For the clustering
task we have experimented using a complete-linkage based agglomerative clustering and a
single-linkage based Minimum Spanning Tree (MST) clustering algorithm. In the agglom-
erative clustering, initially we treat each HMM in the test-set as a singleton cluster and
repeatedly combine two closest clusters; closeness is measured by computing a complete-
linkage based distance between pairs of clusters. The merging of pairs of clusters is repeated
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until we obtain the desired number of clusters. In the MST based clustering procedure (Jana
and Naik, 2009), we treat each HMM in the test-set as a vertex of a complete graph in which
the distance between two vertices is taken to be the distance between the HMM embed-
dings. An MST is formed on this graph, and we disconnect m — 1 largest edges in the MST
to obtain m connected components. A DFS is performed to retrieve the m components as
m clusters. The validity of the clusters is assessed through the following metrics: Cluster
Purity (CP), Normalized Mutual Information (NMI) and Rand Index (RI). Classification is
leveraged as the second extrinsic task to validate the embeddings and classification accuracy
is used as the metric. M1 to M8 denote the following metrics: (i) M1: Cross Likelihood
based metric, (ii) M2: State mapping based metric, (iii) M3: Unisequence Likelihood met-
ric, (iv) M4: Matrix Factorization based metric (v) M5: Hybrid metric based on both
structure and behavior, (vi) M6: Autoencoder based metric (vii) M7: Graph Autoencoder
based metric, and (viii) M8: Diffpooling based metric.

4.1. Clustering task

The following sets of experiments are designed to validate the proposed embedding for
HMMs:

Training Set Size vs. Cluster quality: The objective of this experiment is to determine
the training set size on the clustering performance. We trained a set of HMMSs each with
ten audio files of the same digit, sampled uniformly at random without replacement from
the FSDD database. Let S be the set of HMMs trained which has an equal representation
of all the digits in [0,9]. We have split S into Sirqin and Siest such that [Sirainl: |Stest|
= 4 : 1 through a stratified sampling. We trained the Autoencoder, Graph Autoencoder and
Diffpooling based models using St-qin and tested the models using the tuples in Siest. Once
an embedding is obtained for the HMMs in Sies, we have clustered the embeddings using
both the agglomerative and MST based clustering algorithms and measured the quality of
the clusters generated using CP, RI and NMI metrics. We repeated this process for different
sizes of the set S such as 1000, 1300, 1600, 1900 and 2200, such that each of the smaller sized
sets is a subset of any larger sized set, to infuse fairness in our comparisons. The results
are plotted in the Figure 3. From the plots, it can be observed that the graph autoencoder
based embeddings performed better than the autoencoder based embeddings and matrix
factorization based linear embeddings. The behavioral baselines perform better than the
structural baseline. Further the autoencoder and graph autoencoder based embeddings
required lesser number of samples in the training set to achieve a better accuracy in the
complete-linkage clustering as compared to the MST-based single-linkage clustering. As the
number of test samples increases, the accuracy of the MST based clustering output dips
sharply for the graph autoencoder based embedding.

Number of Audio files vs. Cluster quality: We followed a similar experimental design
as that of the previous experiment; however, in this experiment for creating the set S, we
have used different numbers of audio files of a digit to train the HMMs. We repeated an
iteration of the previous experiment five times by setting |S| = 2000 with 5, 10, 15, 20
and 25 audio files each to train the HMMs in S. The cluster quality metrics obtained are
plotted in the Figure 4. The relative trends in the performance of the baselines and the
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Figure 3: Training set size vs. Cluster quality

learnt embeddings are similar to that of the previous experiment. The Graph variational
autoencoder based embedding seems to capture the generative ability of the HMMs and
preserves the behavior as opposed to the autoencoder based approach, which has resulted
in the former exhibiting a consistently better performance than the latter and also compared
to the other metrics. As the number of sequences used for training HMMs increases the

performance of the M7 embedding also exhibits an upward trend.
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Figure 4: No. of audio files vs. Cluster quality
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Variance in the number of HMM states vs. Cluster quality: This experiment is
designed to assess the ability of the metric to recognize the similarity between two HMMs
having different number of states but similar behavior. This experimental set-up is similar
to the previous two experiments. We have repeated an iteration of the experiment five
times by setting |S| = 1000, number of audio files to train an HMM = 25 and the number
of states in an HMM is n = [r ~ N(13,4)], where ¢ € [1,11] for each of the five iterations.
The mean number of states is inferred to be 13, by plotting the mean likelihoods of the
dataset given the HMMs for different number of states. The results of this experiment
are plotted in the Figure 5. The graph variational autoencoder based metric exhibited a
robust performance as the variance in n increases. This asserts that the embeddings learnt
by graph variational autoencoders have the ability to recognize structurally different yet
behaviorally similar HMMs.

We remark that the metrics that are not based on the learnt HMM embeddings, are not
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Figure 5: Variance in the No. of HMM states vs. Cluster quality

impacted by the variations in the training set; however, for comparison we have used the
same test-set Siesr as that of the learned metric, to assess the performance of the first four
metrics discussed in this paper.

Table 1: T-test stats for Agglomerative and MST clustering [df = 11,p = 0.05,1 — tailed]

Metric| M7 vs. M1 | M7 vs. M2 | M7 vs. M3 | M7 vs. M4 | M7 vs. M5 | M7 vs. M6
CPp -3.44,2.18 | 17.59, 7.04 | 17.81, 6.94 | 21.23, 7.04 | 15.82, 7.04 | 18.61, 6.94
RI -3.52,1.93 | 26.44, 7.38 | 13.11, 6.53 | 18.16, 6.64 | 14.54, 7.37 | 09.04, 7.21
NMI | -3.37,2.19 | 20.46, 7.72 | 25.55, 7.53 | 26.86,26.36 | 17.90, 7.74 | 27.03, 7.58
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Statistical tests M7 vs. Rest: We conducted 36 paired samples one-tailed t-tests for
comparing the performance of the graph variational autoencoder based metric M7 with
each of the other six metrics M1 to M6 with respect to the three performance indicators
(CP, RI and NMI) for each of the two clustering algorithms. The metrics used for the t-test
are spooled from the 15 experiments conducted and reported across the figures 3, 4 and 5.
The t-test statistics computed with 11 degrees of freedom (df) and 95% confidence level for
the agglomerative clustering algorithm and the MST-based algorithm are reported in the
Table 1 as the first and the second values respectively in each cell. The df is set to 11 as
the fifth experiment reported in 3, subsumes the other four. An entry M7 vs. Mi in the
table 1, with respect to an algorithm and a performance indicator (PI € {CP,RI,NMI})
is computed using the mean of the differences i = p(PI(M7) — PI(Mi)) and the standard

deviation of the differences 6 = o(PI(M7) — PI(M3)), as test-stat(M7 vs. Mi) = ’lxgﬂ
As the stats except M1 (agglomerative) in Table 1 are much higher than the rejection
threshold in the t-table, we remark that there is enough statistical evidence to accept the
alternate hypothesis that M7 performs better than the metrics M2, M3, M4, M5, M6
with respect to both the clustering tasks across the 11 independent datasets sampled from
FSDD. M1 beats M7 in the MST clustering task (highighted in red in Table 1). We further
remark that as the performance of M1 is heavily reliant on the reference sequence generated
for measuring the cross-likelihood, to make the competition tough, we have generated 10
reference sequences and averaged the cross-likelihood to give a fair advantage to M1. We
refer the reader to the supplementary material with this submission for a visualization of
the embeddings learnt by GVAE and diffpooling based GCN. The supplementary material
also contains the mean and confidence intervals of the performance indicators across the
experiments reported in this section.

4.2. Remarks on the superior performance of Diffpooling based GCN

While the other metrics performed poorly when the single-linkage MST clustering algorithm
is employed, the diffpooling based metric exhibited robustness with NMI, CP and RI values
of 1 for both the clustering algorithms across all the 15 experiments performed. We remark
that this is not surprising as the HMM representation trained by diffpooling is class-label
aware. The Diffpooling based metric achieved a perfect clustering accuracy even with lesser
number of audio files being used to train the HMMs in the dataset. The Diffpooling based
metric is resilient to the increase in the variance of the number of HMM states in the test-
set, thereby asserting that it is able to recognize the similarity between two structurally
different yet behaviorally similar HMM pairs like the graph autoencoder based embedding.

4.3. Classification task

The second extrinsic task of classification is performed using a multi-class classifier to rec-
ognize each of the ten digits in the audio files. For this task we have used 1600 training data
points and 400 test points. Each HMM is trained using 10 uniformly sampled audio files of
the utterance of the same digit in the FSDD dataset. A multi-class classifier neural network
is employed using a standard classification network architecture. The mean classification
accuracy across different test sets for the metrics M6, M7 and M8 are 0.45, 0.96 and 1.00
respectively. The diffpooling based model achieves a perfect classification accuracy for the
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HMMs constructed from the FSDD dataset due to its class-label aware training of HMM
embeddings.

5. Conclusion

Over the past few years, Graph Neural Networks have emerged as powerful and practical
tools for machine learning tasks over graph structures. In this paper, we have proposed
two novel methods for learning embeddings for Hidden Markov models that use graph
variational autoencoders and diffpooling based graph convolutional networks to effectively
learn the structure and behavior of HMMs. The following are the significant inferences
based on our experimental results:

(i) Baseline metrics based on behavior tend to learn better quality embeddings than those
that are based only on the structure.

(ii) Distance metrics based on learnt embeddings, typically yield better accuracy for the
clustering and classification tasks than those generated by structure-based baselines.

(iii) Graph variational autoencoder based embeddings are effective even in tasks where
the dataset contains structurally dissimilar yet behaviorally similar HMMs due to the
regularized, behavior-preserving and generative latent space learnt by the model.

(iv) Distance metrics based on learnt embeddings, that exploit the hierarchical graphi-
cal structure of HMMs perform better with respect to downstream tasks than the
structure agnostic flat embeddings.

(v) While other metrics falter when used with a single-linkage MST clustering algorithm,
diffpooling exhibits a robust performance for both single and complete linkage based
clustering algorithms.

A potential direction for future research will be to extend the proposed models to infer
embeddings for other temporal-behavioral graphical models.
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