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Abstract
Authentication schemes that include smartphones gain pop-

ularity. Instead of storing keys in app-private storage — clone-
able by privileged malware — recent research proposes au-
thentication with hardware fingerprints, arguing they will be
harder for attackers to fake. Notably, the use of camera sensor
fingerprints has been discussed recently. This paper revisits
the eligibility of this camera sensor noise for authentication.
The so-called Photo Response Non-Uniformity (PRNU) ex-
ploits use of production tolerances in the CMOS sensors,
commonly used in smartphone cameras, to trace a photo to
a specific phone and authenticate its user. We conducted
the first large-scale study for PRNU on smartphones, with
56,630 images stemming from individual 3,809 devices across
1036 models. Based on the collected dataset, we reproduce
proposed authentication schemes and uncover caveats not
discussed in prior work on authentication. In addition, we
give constraints an image used for authentication schemes
needs to fit, to increase the reliability of the results. We are
able to provide novel insights, implement attacks against the
proposed schemes and discuss future improvements.

1 Introduction

With the emergence of smartphones, users carry around pow-
erful multipurpose computing devices. As these devices are
highly personal, identifying the smartphones typically makes
it possible to identify the respective owner. For certain use
cases, for example banking apps, smartphone apps replaced
true second factors, such as hardware tokens. Some mod-
ern banking apps and the start-ups behind them value user
experience and time to market over security [27] — and the
majority of users seemingly prefers apps over purpose-built
hardware devices they have to buy and may lose. In contrast
to purpose-built hardware tokens without internet access, on
phones privileged malware can misuse any secrets stored in
apps. Haupert and Müller show that such app-based transac-
tion schemes for banking — even those relying on two sep-
arate devices — can be attacked [29, 30]. Instead of storing

secrets that can always be copied off [28], apps can calculate
unique fingerprints of phones on the fly. The idea of device
fingerprinting is simple: production tolerances in sensors and
other input hardware are assumed to be unique enough to be
utilized as identifying key for each individual device. Fin-
gerprinting of browsers and mobile phones alike, is already
used extensively for marketing purposes [57]. In recent years,
researchers and vendors also adapt fingerprinting schemes to
identify and authenticate the user and the device. One well-
suited sensor is the phone’s camera. On photos taken, the
imaging sensor leaves imperceptible noise that can be used
to identify the respective camera. Ba et al. [4] as well as
Valsesia et al. [56] constructed authentication schemes based
on camera fingerprinting. These schemes work on any current
smartphone without additional hardware and therefore with-
out impacting usability. Attackers, on the other hand, may
also be able to learn the respective fingerprints and abuse them
for malicious authentications. In this paper we take a close
look at the schemes proposed. We revisit the idea of camera
fingerprinting and put effort into providing an in-depth answer
to the question, if and how camera fingerprinting enables se-
cure smartphone authentication. An adversarial mindset and
the results of a large-scale study unveil drawbacks in camera
fingerprinting for authentication. Notably, we provide simple
attacks against each attack detection step Ba et al. [4] present.

Contributions

In detail, we make the following contributions:

• Our evaluation provides an in-depth view on PRNU cam-
era fingerprinting for authentication. As part of our re-
search, we gathered images from 3,809 unique smart-
phone devices yielding 56,630 pictures, from 1036 mod-
els running both iOS and Android. To the best of our
knowledge this is by far the largest dataset of images
from smartphones recorded under a controlled environ-
ment, e.g. our self-implemented app, allowing for a
realistic security assessment. With this, we were able

USENIX Association 23rd International Symposium on Research in Attacks, Intrusions and Defenses    31



to reproduce and proof prior assumptions and published
results.

• We introduce a forgery resistent camera authentication
scheme with potential real-world security benefits, even
on phones where keys can be securely stored.

• We present realistic attacks against proposed authenti-
cation schemes based on camera fingerprinting. We
uncover flaws in defenses of the ABC protocol proposed
by Ba et al. [4]. Most notably, we elaborate a replay
attack and two fingerprint forgery attacks.

2 Background

First we provide background and related work around device
and user fingerprinting as well as authentication. We discuss
a wide variety of ways to fingerprint devices and users to then
dive into details about camera fingerprinting.

2.1 Device Fingerprinting

For the web, fingerprinting users and their browsers in a pri-
vacy invading way is well researched and widely adopted
for advertisements and tracking [1, 14, 46, 57]. This trend
also emerges on phones, where an even larger variety of sen-
sors can be leveraged. Mobile device fingerprinting through
apps is of ongoing research interest. In the following, we
present the state-of-the-art in device fingerprinting for mobile
platforms.

Fingerprinting by Exploiting Properties of Sensors Prior
research proves that most hardware sensors on phones can
be used to fingerprint specific devices. Yue [60], Das et
al. [13] and Bojinov et al. [6] have all used position sen-
sors, accelerometer and the gyroscope, to fingerprint phones
and their users. Hupperich et al. [31, 32] go one step fur-
ther and use the available sensor data for an authentication
scheme based on the device fingerprint. Das et al. finger-
print the devices using microphones [12]. Zhou et al. [62]
and Das et al. [12] use speakers and microphones modules to
uniquely identify a smartphone.

Fingerprinting by Exploiting Human Characteristics Fin-
gerprinting the user directly, recognizing differences in indi-
vidual movements and behavior, for authentication, is another
theme. Nickel et al. recognize the users’ walking patterns
to authenticate them [45]. Frank et al. track specific touch
behaviors for authentication [17]. Gong et al. propose a
forgery resistant tracking method for user touches [25]. Bo
et al. [5] combine touch and sensor fingerprinting to authen-
ticate specific users. Instead of recognizing input, Kurtz et
al. [35] and Wu et al. [59] leverage user settings and files to
track iOS and Android devices with high accuracy. Further
proving users’ actions can be used for unique identification,
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Figure 1: Digital Camera Image Pipeline

Stöber et al. [54] identify smartphones by monitoring the net-
work traffic from Facebook, Skype, WhatsApp and Dropbox
for 15 minutes. Reaves et al. [51] propose the use of phone
calls to authenticate the user remotely.

2.2 Smartphone Camera Fingerprinting
With camera fingerprinting, this paper focuses on anomalies
in the CMOS sensor of smartphones. Before light reaches
the CMOS sensor of a camera, it passes through multiple
elements. All of these, as depicted in Figure 1, introduce im-
perfections specific to a device or make. Light travels through
lenses, an anti-aliasing filter and the color filter array. Typi-
cal parts of the image pipeline are discussed by Ramanath et
al. [50]. Like all elements in the pipeline, and other sensors
in a phone, the CMOS sensor of every camera is subject to
production tolerances. The phone camera’s megapixels trans-
late to the number of colored dots it captures. Every pixel in
the final photo then consists of intensities of the three colors
red, green and blue. These intensities are the amount of light
reported by the CMOS sensor at this position. Some CMOS
sensor elements will systematically interpret the light impact
more or less intense by a slight margin, that might exceed the
granularity of discretized pixel values. Ultimately, this leads
to a peculiar pattern that can be found with varying strength
throughout all images of a given imaging device. This pat-
tern is called Photo Response Non-Uniformity (PRNU). Even
though, this pattern is weak, usually imperceptible to the hu-
man eye, methods have been developed to extract it reliably
from images [22, 38]. Further, these works showed as a re-
markable property of PRNU that it is highly unique across
different devices. This holds even for different devices of
the same brand and model. We focus on PRNU in this paper
even though CMOS Image Sensor Fixed Pattern Noise is also
unique, as discussed by Kim and Lee [34], as it works with
brightly lit, captured photos. Lukás et al. [38] conclude that
other sources of noise, like fixed-pattern-noise and shot noise,
are not as well-suited.

For the mathematical explanation of the PRNU, refer to
Appendix A. The PRNU was shown to be reasonable stable
over the lifetime of a camera [19] and provides a solid way to
associate an image to its source device. For the sake of com-
pleteness it shall be mentioned that, for our study in Section 3,
further post-processing of the estimated fingerprint is done
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by our C++ code. Specifically, the code removes non-uniform
artifacts, as other implementations do as well. As these opti-
mizations are not fundamental to the concept of PRNU, we
do not elaborate on them here, but refer the interested reader
to literature like [21].

To verify if a new image was taken with a specific camera,
the residual of the new image is calculated as shown in Equa-
tion 2. Then this residual is correlated against a reference
fingerprint extracted of the camera in question. With the cor-
relation we obtain a value expressing the similarity between
the reference fingerprint and the new residual under test. As
correlation metric, the normal pearson correlation could be
used. However, the Peak Correlation Energy ρ has shown to
be a more suitable option for this application [21]:

ρ[I,K̂] = PCE(Wi, IK̂) . (4)

Based on this mathematical foundation, a considerable
amount of research went into improvements to increase the
quality of the extracted noise pattern [9, 23]. Furthermore,
several attacks and counterattacks were discussed. Entrieri
and Kirchner [15], Karaküçük et al. [33], as well as Li et
al. [37] show how erasing and spoofing of camera fingerprints
is possible and can be mitigated.

2.3 Camera Fingerprinting Authentication
We will briefly discuss two authentication protocols based on
PRNU. The idea for both schemes is to authenticate by the
unique fingerprint of a smartphone camera.

The elements commonly present in camera fingerprinting
authentication schemes are as follows:

Elements

The Verifier
The verifier poses an initial challenge to the smartphone
and verifies the final decision.

The Terminal
The terminal can be any device displaying the challenge
(QR-Code) to the smartphone. It could either be a POS
terminal, a computer screen or some other display and
will be fed by the verifier.

The Smartphone
The device to be authenticated. The smartphone takes
a photo of the terminal, adding its unique PRNU finger-
print to the image in this process. It will forward the
final photo(s) to the verifier.

ABC According to the ABC scheme by Ba et al. [4], the
verifier and terminal can be implemented on one device. The
verifier needs access to a database of all registered phones.
The basic interaction between all elements is depicted in
Figure 2 and is as follows:

Smartphone

Probe Signal,
Payload Final Image

Camera

Verifier

Terminal

Visible 
QR-Code

AuthenticatorGenerator

QR-Code
Display

1

2

4

PRNU3

Figure 2: Camera Authentication Building Blocks
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Fingerprint
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*

Figure 3: Layers of an image used for ABC authentication [4]

1 The Generator creates an image with a QR-Code. The
QR-Code contains transaction details and a timestamp.
Then the probe signal is added to the image and sent to
the terminal.

2 The image is presented to the user on a display on the
Terminal.

3 Agreeing with the content, the user captures an image of
the screen containing the QR-Code and the probe signal.
As a side effect of the image capturing, the PRNU of the
camera sensor is added to the photo. The final image is
then sent to the authenticator.

4 The Authenticator extracts the fingerprint of the final
image and compares this to the reference fingerprint of
the user stored at the server. If the PCE value is above a
certain threshold, the transaction is authenticated.

Based on the apps created for our study, discussed in Sec-
tion 3, we were able to implement the ABC protocol discussed
hereafter. It is based on a registration phase and an authenti-
cation phase. For the registration phase, the user uploads one
image taken through the smartphone. Ba et al. [4] claim that
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one image for extracting the reference fingerprint is sufficient.
During the authentication phase, the verifier challenges the
user to take two images of a screen with two different QR-
Codes. Both QR-Codes contain a time stamp and an excerpt
of the ongoing transaction. The user then verifies the informa-
tion about the transaction shown on the smartphone’s display,
see Figure 2. An additional probe signal, designed to survive
photographing but not fingerprint removal, gets added to the
QR-Code displayed on the terminals’ screen. It is specified
as additive white gaussian noise with a standard deviation of
5. The fingerprint in contrast, is multiplicative. A schematic
illustration of this pipeline is depicted in Figure 3. The phone
then sends the two photos to the verifier. The verifier deter-
mines the PCE value between the two images and each image
with the reference image. If both values are above a certain
threshold and equally high the verifier authenticates the user’s
request.

RAW vs JPEG Another camera fingerprint-based authenti-
cation protocol was proposed by Valsesia et al. [56]. They
also use the PRNU as physical unclonable property. For their
authentication scheme, they assume that only the user or au-
thentication app will have access to the RAW image data of
the smartphone. All publicly available images are compressed
and, therefore, do not contain the high-frequency components
of the fingerprint of a RAW photo. Valsesia et al. [56] intro-
duce a way to compress the fingerprint using random pro-
jections. This reduces their size and brings a big advantage
for transferring and storing the PRNU of multiple cameras.
Also, the raw fingerprints do not need to be sent over the
network completely. Secret side information for the random
projections never leaves the side of the smartphone. The
server does not store the compressed fingerprint itself, but
uses a fuzzy extractor scheme to create a uniformly random
bit string. This prevents an adversary, who gains access to
the server, to obtain the stored fingerprints of all users eas-
ily. Quiring et al. [48, 49] propose the use of Fragile Camera
Fingerprints, proofing the fingerprint cannot be recovered
from JPEG images, but RAW images alone. To attack these
schemes, access to the phone is required, as RAW images
rarely get posted to social media.

3 Large-Scale Data Acquisition

To study the real world applicability of the proposed schemes,
we implemented a setup for authentication and evaluated it on
thousands of images. The dataset was collected from scratch,
using apps that resemble implementations of the proposed
authentication solutions. We describe here how we designed
our apps but first discuss advantages of our new extensive
dataset in general, and compare it to other already existing
datasets.

Figure 4: Number of images for individual devices

3.1 Methodology for Data Acquisition

According to Zhang and Zhang [61], around 20 images as
training set are a good balance between image count and
strength of the PRNU. Our initial tests on a small number
of phones showed that additional images still increase the
PCE of generated patterns against new images. The PCE for
20 images was usually above the threshold of 60, proposed
by Goljan et al. [21]. We decided to let participants in our
study capture and upload around 20 images to learn their
individual PRNU pattern. User were free to quit the study
before completion and could upload more images, if desired.
This explains why the total number of images is not a multiple
of 20. To minimize the workload for participants further, one
click on the trigger captured batches of 5 photos in a few
seconds of time. Even a small delay between subsequent
images within a batch drastically increases the changes of
two back-to-back images being unaligned [58]. The apps save
JPEG files in full resolution and default quality offered by the
underlying platform. In Figure 4 the distribution over number
of images per unique device is shown. Even though our study
thoroughly informed the user about privacy implications and
asked to never upload photos of persons, we will not publicly
release the dataset at this point, as proper vetting of 56,630
images is infeasible. For reproducibility, access to the dataset
can be made available upon request.

Our large dataset is tailored for investigating authentication
schemes on mobile phones, and hence surpasses other im-
age forensic database for this purpose. For instance the large
dataset of Goljan et al.’s study [21] consists of samples from
photo platforms on the internet, however our dataset was only
collected through our auth-app, on which we have full control.
This tight grip means no (unknowingly) cropped, edited or
otherwise altered images impact our training set negatively.
The Dresden Database [18] is another image database, pop-
ular for image forensic works, containing images from 73
unique devices sampled from 27 models from 4 manufactur-
ers. Both datasets were collected prior to 2010, meaning on
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images taken with classic cameras, e.g., not contemporary
smartphones in the context of mobile authentication. The
VISION database [52] was tailored for mobile devices, how-
ever is rather small in comparison to our dataset, with only
35 devices. RAISE [11] is another database often used in
works focusing on image forensics. It was designed to offer
high-quality raw images from 4 professional DSLR cameras,
hence also not suitable for our purposes of vetting PRNU
based smartphone authentication schemes.

The authentication platform implemented for our study
and the backend consists of three main components, apps for
Android and iOS, the Database Server, and a worker server to
run PRNU comparisons and evaluations asynchronously.

The apps for iOS and Android can be compiled in different
modes: large-scale study or authentication. In large-scale
study mode, both apps for iOS and Android inform the user
about the study, goals and the types of photos they are sup-
posed to upload. It provides live information on how their
camera compares to that of other phones, including median,
mean, maximal and minimal PCE of the user phone’s PRNU
against other images. This mode was used to gather data
about the fingerprinting effectivity and to collect the dataset.

On the workers, the C++ core to extract the PRNU and com-
pare it to images, MagicFern, is a speedy reimplementation of
the popular Matlab framework by Goljan et al. [21] available
on their website. It is quick, due to the low level implementa-
tion and multi-threading. We benchmarked our tool against
the Matlab implementation to ensure we achieve a same level
of accuracy. All parts of the platform will be open sourced
upon publication.

3.2 Participants

All users participated voluntarily in our large-scale study. The
app was available to the public and announced on social media
and news outlets. First, it informs the participants about all
processes transparently. Then, it instructed them to upload
different scenes and never to upload personal or identifying
images. The only information gain associated with the image
and PRNU is, if a phone participated in our study. Although
we advised users to not photograph private entities, like other
people’s faces, we can not guarantee all users complied due
to the large amount of uploaded photos. We will therefore not
release the images publicly.

The large-scale study had a total of 3,809 participants from
both major mobile platforms over the course of one month. In
a platform breakdown, 25% of patterns were learned on iOS,
75% on Android. In total, 1036 different models from 137
manufacturers took part in the study. The top three brands
were Samsung, followed by Apple and Google. In total, we
collected 56,630 images.

Figure 5: Distribution of estimated PCE values for two
datasets. One dataset has only dark images the other one
arbitrary sampled images. Further, all images were picked
to not match a reference fingerprint. Normal images exhibit
a low PCE score, as desired. Dark images in turn behave
arbitrary, and often even have a large positive value.

4 Evaluation

Based on the study, discussed in Section 3, we evaluate and
rate the results we obtained from these 56,630 unique images
of 3,809 smartphones. We look into the quality of the finger-
prints on smartphones and determine constraints to obtain a
fingerprint of the highest possible quality. We examine the
behavior of the PCE as correlation measure for images and
fingerprints under varying characteristics. Images recorded
by the same camera should match, hence need to have a high
PCE value. Images from different cameras should not match.
Their PCE value should be close to zero. Since smartphone
cameras produce images of different resolutions calculating
the PCE value can be tricky. A common way of overcoming
this problem is by cropping out a fixed size patch from all
images [21, 23, 24, 36]. We picked a squared patch of size
1024 pixels always centered.

4.1 Effect of Illumination on PRNU

We examined the bad influence of known issues for noise
extraction and noise correlation to evaluate the importance
of the different constraints. In general, extreme PCE values
appear with photos that are too saturated. A setting that
is known to be challenging, or even preferable to avoid, if
possible, for fingerprint estimation [9, 23].

Influence Of Dark Areas We reproduced previous re-
search [22] showing a clear correlation between image il-
lumination and the PCE value. Our evaluation script inspects
all images from each user and compared them to all other im-
ages of this user/phone. This should always yield high PCE
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(a) Photo wih large homoge-
neous areas and a small local
standard deviation of 0.006.

(b) Corresponding histogram to
the homogenous photo.

Figure 6: Typical scenery image and histogram of its pixel
intensities.

values, because they were captured with the same camera,
but this oftentimes fails for very dark images. In Figure 5
we plotted the distribution of 21 comparisons of a camera
fingerprint from an arbitrary picked phone against random im-
ages of different phones by determining the PCE value. The
values of normal images are to be expected. They are close to
zero with small variance. In strong contrast, the other dataset
shows the PCE values of the comparison of only either dark
or completely black images from different cameras. The ab-
sence of any noise information sometimes randomly triggers
very high positive or negative correlations. They generate
almost arbitrary PCE values.

To improve the results, we then only took images which
met certain constraints, namely an intensity threshold. In
Figure 6b we show the histogram of Figure 6a. The varying
threshold is represented as the red line. From every image the
percentage of the pixels with an intensity below the threshold
was determined. This percentage of pixels is illustrated as the
yellow area. After this, we varied the constraints an image
needed to meet for being taken for fingerprint extraction.

The question arises if there is some sweet spot for the in-
tensity of the illumination of an image or if brighter is always
better. In theory, above a certain brightness the pixels of an
image are saturated and the fingerprint attenuates. Therefore
in the next step, we examined the dependency of the PCE
value under the constraint of brightness.

Influence Of Bright Areas The images used for determining
the PCE values again needed to fit two constraints. A vary-
ing amount of pixel intensities needed to be above a varying
threshold. This time we chose a varying threshold from 155
to 255. The threshold is illustrated as the red line in Figure 6b.
The yellow area represents the pixel intensities for determin-
ing the percentage. The histogram of Figure 6b belongs to the
image of Figure 6a. One image per user was compared with
all other images of the user, if they fitted the given constraints.
From this, the median of all PCE values was determined. Ev-
ery dot in Figure 8 represents one of the medians. Again we
used 100 users and determined the mean over all PCE values
per varying threshold. The mean values result in a quadratic

(a) Photo of a QR-Code. The
standard deviation of 0.174 is
very high

(b) Corresponding histogram of
QR-Code image.

Figure 7: Typical Image of QR-Code to forward transmission
details in an online banking scenario as suggested by [4]. To
the left the corresponding histogram of pixel intensities.

curve with a maximum at 173. Therefore we can conclude
that one obtains the best results for images that should match,
if the threshold for the brightness of the pixels is at 173.

Figure 8: Median PCE
for a set of images, where
a percentage of pixels is
above the depicted thresh-
old (155 to 255)

Figure 9: Median PCE
for a set of images, where
the depicted percentage
of pixels is above a cer-
tain threshold (155 to
255)

Figure 9 shows the same data as Figure 8. The difference
lies in the fact that we look at the varying percentage of pixels
with an intensity above a certain threshold. The mean over
all PCE values per percentage also result in a quadratic curve.
The maximum is located at 56%. We can observe that it is not
useful to have images as bright as possible but rather relatively
high.

Perfect Ratio Between Percentage And Threshold As a
further step we optimize for the perfect ratio between the
chosen percentage and threshold. If we vary both variables at
the same time we obtain a surface. We varied the percentage
of the pixels that need to be above a certain threshold from
0% to 100%. In addition we varied the threshold the pixel
intensities needed to be above, from 155 to 255. We then
used a box linear filter with the kernel size of 9 to smooth the
PCE peaks to make a more general statement. The resulting
surface is presented in Figure 10. The global maximum lays
at a percentage of 100 and at a threshold of 197. The plot
confirms that, with increasing percentage, the PCE value
increases as well. However, as depicted in Figure 8, the PCE
stops increasing and even decreases for very high values. In
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Figure 10 we see, that it falls off very fast after reaching the
maximum. Too bright images produce very bad results for
fingerprint correlation.

Concluding from this, the more areas of an image contain a
high pixel intensity, the better the fingerprint extraction works.
To obtain a fingerprint with the highest possible quality, im-
ages with 100 percent of the pixel intensities above 197 are
the best fit. This means, a possible authentication scheme can
optimize screen brightness on the one hand, and reject bad
images on the other.

4.2 Scenery as Constraint

Figure 10: Surface plot describing the behavior of the PCE of
images, which meet the constraints of the respective threshold
and percentage. A sweet spot is found if most pixels are at an
intensity of ≈ 200.

The photographed scenery impacts the quality of the ex-
tracted PRNU [9, 23], as well. The ultimate goal of the high-
pass filtering, as described in Equation 2, is to suppress the
image content. Nevertheless some content, even if weak, al-
ways remains, and leaks into the noise residual. This affects
the performance of authentication schemes.

From every image of our study, we determined the standard
deviation of every pixel intensity to its eight neighbors. We
then calculated the mean overall standard deviations and used
this value for further comparisons. As in the calculations
before, we calculated the PCE value from one image of a
user with all other images of the user. Then, we constrained
the images used for PRNU extraction to a mean standard
deviation above a certain threshold. In Figure 11, all dots
of a particular color belong to one user. The plot shows 60
different users. With each dot the constraint of the standard
deviation was increased to the point that one image dropped
out of the set. In most of the sets of the users, this resulted
in an increase of the mean over all PCE values of the images.

Figure 11: Calculated PCE value as a function of local stan-
dard deviation of pixel intensities in an image. The general
trend of the downwards sloping curves show that variance
impacts the magnitude of PCE.

Furthermore, we fitted a curve into the point clouds. The
behavior of the PCE values over a decreasing standard devi-
ation seems to be exponential. We can therefore conclude
that the local standard deviation of an image is crucial for
PRNU extraction. Homogeneous areas in an image increase
the quality of the extracted fingerprint. This results in a higher
PCE value for images that should match. Therefore, filtering
images under the constraint of the local standard deviation
results in a strong increase of the true positive rate.

The local standard deviation of the images of Figure 6a and
Figure 7a differ a lot. The QR-Code with a lot of edges and a
strong Moiré pattern has a local standard deviation of 0.174.
The image of the sky has a local standard deviation of 0.006,
which is extremely low, in fact about 30 times less. Therefore,
it seems that images containing a QR-Code are not optimal
for fingerprint extraction.

5 Discussion

In this section we discuss the impact of our results for camera
fingerprinting as authentication scheme. We look into flaws
in the authentication protocols based on our findings. We
present several possible attacks and defenses.

5.1 Images DO Need Constraints
Ba et al. [4] do not discuss possible constraints for photos
taken for their ABC scheme. As we show in Section 4, the
photo content has a strong impact on the PCE quality. Fig-
ure 11, for example, shows that the PRNU extraction is nega-
tively affected by high frequency scenery in the image.

Also, concluding from Section 4.1 we can say that the
brightness plays an important role for obtaining a good finger-
print resulting in a low false negative and low false positive
rate. Images with 100% of the pixel intensities above 197
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yield the best results. Since cameras adapt the brightness
automatically, taking such a photo might only be possible in
extreme lighting conditions. The QR codes used in [4] are
default black and white prints. Therefore, depending on the
exact exposure and recording, the color settings in such QR
codes are prone to produce pictures that are unsuitable for
proper PRNU analysis. To improve the true positive rate of an
authentication protocol even further, one could add a function
for determining the local standard deviation of the challenge
and reference images. From Section 4.2 we know that this
improves the quality of the extracted fingerprint as well. With
the mentioned constraints, we can essentially increase the
reliability of an authentication protocol.

Also, we can conclude that rejecting images for fingerprint
extraction with a high local standard deviation can decrease
the false positive rate and false negative rate. Images with a
low local standard deviation in many areas of the image are
suited very well for fingerprint extraction. The sample images
in Figure 6a and 7a depict histograms of comparable shapes,
as seen in the neighboring Figures 6b and 7b. However,
the images differ significant with respect to local variance.
The sky image has large flat areas, the QR image has many
transitions from black to white. The sky image has a very low
standard deviation of 0.006, but the QR image has a standard
deviation of 0.174. Looking at the plot in Figure 11 we see,
that with increasing standard deviation, the quality of the
PRNU decreases exponentially.

5.2 QR-Codes for Fingerprint Extraction

The ABC paper does not specify the size of the QR-Code
relative to the whole image [4].

We find that images containing QR-Codes have a high local
standard deviation. It is almost impossible to extract a correct
PRNU from an image area containing a large QR-Code as
scenery. The scenery of an image containing a QR-Code has
high frequencies: The black and white QR-Codes consist of
lot of edges, which leads to very high frequency components
in the image. Further, the QR images were taken by capturing
the QR-code from a LCD-screen of a monitor. This induced
a Moiré pattern. Since the PRNU also is a high frequency
signal, it is therefore not possible to differentiate between
the scenery and the fingerprint. This leads to artifacts and a
deterioration of the PCE value. To somewhat mitigate this
problem, our research shows that using grey and white QR-
Codes for fingerprint extraction improves the method. For our
proof of concept we used a Huawei P20 Pro. The resulting
PCE values for images taken by the same camera were five
times higher when using grey QR-Codes compared to black
QR-Codes. Therefore, we can conclude that grey and white
QR codes, while, still being accepted by QR code readers,
result in PCE values better suited for authentication, probably
as even the grey area still produces enough light for the sensor
to add a strong PRNU pattern. The contrast and therefore the

edges are not that strong, compared to black and white, and
the dark areas still contain light, thus resulting in an increased
PRNU.

5.3 Fingerprints Require Multiple Reference
Images

The user, in the scheme proposed by Ba et al. [4], only re-
quires the user to record a single image with a smartphone.
The image then is sent to the server, which extracts the finger-
print from this single image and stores it for later authentica-
tion processes with challenge images.

Assuming that images of smartphone cameras are well
fitted for PRNU extraction, we have doubts on the assump-
tion that one image is sufficient for creating a high quality
reference fingerprint. To our knowledge, this opposes the
prevailing opinion in literature. One of the key assumptions
in extracting PRNU is that other noises, like shot noise or
random noise, can be averaged out over a corpus of N images,
as Equation 3 states. In original works [38] up to 50 images
were suggested. This has been lowered to 20 by some authors,
eg. Zhang et Zhang [61]. With only one image at hand, other
sources of noise will essentially persist throughout fingerprint
extraction. Our experiments discussed in Section 5.1 suggest
that scene content plays a big factor, may it be, because the
overall images are too dark, or because they contain too much
high frequent content, in textured areas. To leverage this,
some authors even suggest to obtain the fingerprint exclu-
sively from images without texture [21]. In our experiments
we relaxed this condition and considered also images with
texture for extraction, and still got reasonable good results.
Nevertheless, in an authentication scheme, may it be for on-
line banking, we argue that no risk should be taken and a solid
number of high quality images with little standard deviation
should be used for creating the initial fingerprint.

6 Practical Attacks

First, we will introduce the assumed threat model, then we
will present three attacks on the ABC scheme, as we imple-
mented it based on [4].

6.1 Threat Model
The attacker assumed by Ba et al. [4] is, in our understanding,
rather weak. The threats do not factor in malware, which
could take photos on the phone and learn fingerprints with
ease, even though malware on smartphones is rather com-
mon [39,47]. The adversary may gain access to public photos
of the victim, is able to sniff the communication channel be-
tween victim and verifier, and can fake a display the victim
takes images of (phishing). It includes replay attacks, finger-
print forgery attacks (adding a learned fingerprint to photos
not taken with the original smartphone) as well as Man in the
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Middle (MitM) scenarios. The goal of the adversary lies in
convincing the victim to authorize a malicious request, or to
trick the verifier into authenticating the adversary’s request.

The scheme by Valsesia et al. [56] relies on an attacker that
will not be able to capture RAW images. As this even rules
out unprivileged malware with camera access, in our further
discussion we focus on the scheme of Ba et al. [4].

We assume the following threats.

6.2 Fingerprint Forgery
A well-known approach to tackle fingerprint forgery is to use
the triangle test [37]. Ba et al. [4] rightfully desist from using
this technique on the base, that it comes with high compu-
tational effort. A database with all public images for each
user would have to be curated and updated constantly. They
present a novel technique based on the recording of two im-
ages. During the authentication process, the user uploads not
one but two images of two different QR-Codes. If an adver-
sary applies the victim’s fingerprint on both photos, they still
carry their real fingerprint. Hence, their extracted fingerprints
have a higher correlation than the comparison with the ref-
erence fingerprint stored on the server. By this, Ba et al. [4]
detect an additional fingerprint on an image. Even if the
attacker were not able to erase fingerprints completely, for
which multiple ways have been proposed, for example by
Bonettini et al. [7], attacks are still possible. Using two dif-
ferent smartphones, a single dual camera phone or even just
rotating the phone by 90 degrees breaks this defense. For
our proof of concept attack, we cropped two, mostly disjoint
(they still need to contain the QR-Code), regions from the
same image sensor. Different parts of the same sensor have a
different PRNU as well.

6.3 Image Reuse
Despite the addition of QR-Codes, we are still able to reuse
any images from the victim’s phone, thanks to the noisiness
of QR-Codes. Due to this high noise, large black areas and
the many high-frequency edges of the scenery, as discussed
in Section 5, our tests show QR-Codes are almost ignored
during PCE calculation. We can use this fact to our favor. Af-
ter taking a photo of the QR-Code with a second smartphone,
including the probe signal (see Section 6.4), we crop the QR-
Code from the image and paste it into the victim’s image.
The QR-Code has to be as small as possible but still large
enough to be accepted by the server and containing enough of
the probe signal. Because of the small proportion of the QR-
Code compared to the whole image, the area containing the
fingerprint of the victim is still very big, with the QR-Code
having almost no impact. The correlation of the manipulated
challenge image and the one stored on the server is high. e
were able to create false positive results against our proof of
concept implementation this way. It is hard to defend against

this attack without adding some sort of image recognition
or different forgery detection: if the photographed QR-Code
needs to be too big, its noise can result in a high false nega-
tive rate, as the fingerprint may be blocked. Addressing this
vulnerability, we present a countermeasure in Section 7.3.

6.4 Probe Signal Preserving Fingerprint Re-
moval

In the Section 6.2, we showed that two parts of the image are
already enough to forge a foreign fingerprint without failing
the authentication process presented by Ba et al. [4]. A more
elaborate attack first erases the fingerprint of the adversary’s
camera to then add the fingerprint of the victim. To prevent
this, Ba et al. [4] introduce an additional probe signal. They
specify it as white gaussian noise. This probe signal is applied
to the QR-Code displayed by the terminal.

With a black-and-white QR-Code image as base, we as-
sume the signal to be additive. In Figure 3 the resulting layers
of noise are depicted. The QR-Code represents the scenery,
perceived by the user, containing a lot of high frequency com-
ponents itself. The probe signal symbolizes the additionally
added white gaussian noise. The authors claim that the noise
with a standard deviation of 5 is of the same variance as a
fingerprint. The top layer represents the fingerprint of the
camera sensor, the PRNU. It is added during the recording
phase of the image by the varying sensitivity of the camera
sensor. Our large-scale test indicates that the standard devi-
ation of the PRNU is a lot lower than 5. A deviation of 5
would result in images with visual noise.

The idea of the probe signal is, that it will be erased if the
adversary tries to erase her own fingerprint from the image
by using a low-pass filter. If the probe signal is not contained
in the challenge image, which is compared to the reference
fingerprint and to which the probe signal was added as well,
the correlation decreases. By this, Ba et al. [4] claim to detect
any erasing of a fingerprint from an image.

Our analysis shows that the challenge images can be an-
alyzed with a high-pass filter, to find all noises — both the
noise due to the probe signal, as well as the PRNU noise. We
can further estimate the fingerprint of the device, for example
from other pictures taken on it. With that, we are able to
dissect the probe signal from the inherent fingerprint, and
clean the attack. This works even if we assume that both
signals are of similar strengths. However, on our setup, the
noise of the PRNU is much weaker. So simply filtering strong
perturbations, with respect to the fingerprinting, suffices. The
underlying problem here is, that the probe signal can be con-
sidered as a watermark, which is by design detectable, even
if the detection should be done on the server.
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7 Beyond Camera Fingerprinting Authentica-
tion

Besides improving the PRNU extraction in general to im-
prove the significance of the results as proposed in 4 one can
undertake further steps. In this section, we propose a trans-
action security scheme that takes the current state-of-the-art
into consideration and improve upon the drawbacks.

7.1 General Camera Fingerprint Improve-
ments

Any fingerprint can be learned by attackers, then be replayed
or dropped directly in authenticating code. This is still pos-
sible — although harder — after applying probe signals and
checking multiple uploaded images, as proposed by Ba et
al. [4]. Still, attackers crawling images or malware on the
phone, can learn the fingerprint and forge correct images to
authenticate. Lukás et al. [38] note that it is “unlikely that
there exists a numerical identification characteristic computed
from digital images that could not be compromised by a suffi-
ciently sophisticated opponent”. Malware on the defending
phone can simply capture 20 images to gain the statistical
pattern and then learn the fingerprint. The malware then can
create a photo that passes any other requirements, for example
including the correct QR-Code for authentication. It can also
remove any fingerprints and apply the learned fingerprint on
top. However, defenses against fingerprint forgery (and coun-
terattacks) are an ongoing research topic for image forensics.
As it is common in the field of security, we are subjected
to an arms race between attacker and defender. Trivial anti-
forensics for camera fingerprinting have been broken early,
for example by the so called triangle test proposed in 2010 by
Goljan et al. [20], which can be attacked yet again [40]. The
arms race in camera fingerprint forgery detection is ongoing
with new defensive methods being proposed more than ten
years after the paper by Goljan et al. [55]. As an alternative
to ABC, Ba et al. [3] recently proposed CIM, a scheme that
combines additional noise in multiple burst photos, as well
as accelerometer fingerprinting for a more resistant finger-
print. Additional sensor inputs during photography could
even increase the attacker’s effort in cloning in the future. For
applications that need very high security standards, an authen-
tication scheme could go beyond checking the fingerprint for
correctness and also detect possible forgeries on the image
itself [10].

7.2 Trusted Secure Camera

Our study shows that the camera fingerprint poses little real
world use and leaves room for attackers. The current miti-
gation approaches proposed by Ba et al. [4] can be circum-
vented (see Section 5) and further defenses can only lead to
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Figure 12: Illustrated scheme of an updated authentication
protocol. The user can always cancel the ongoing transac-
tion. The terminal and smartphone can both be adversary-
controlled.

an arms race that the defender will lose. However, device au-
thentication through images could substantially be increased
if the camera output could not be forged. As a matter of fact,
cameras that introduce unforgeable cryptographic assets in a
captured image have been proposed before, for example Pho-
toProof by Naveh and Tromer [44]. If smartphones were to
implement such a secure camera module, secure image based
transaction schemes can be implemented. These cameras,
however, are state-of-the-art research objects, expensive, and
will hardly ever make it into smartphone hardware.

On the other hand, trusted execution environments are
steadily gaining ground and modules exist in most mobile
devices today. Direct access to external hardware is also al-
ready feasible, e.g. in ARM TrustZone [2]. Ultimately, by
hooking up trusted software to the camera directly, a system
for unforgeable camera fingerprints can be built as long as an
attacker cannot gain access to the TEE. Images (or videos)
taken by this Trusted Secure Camera could embed watermarks
or signatures like PhotoProof [44] inside the image. Another
approach is to attach a signature in the metadata before the
image leaves the trusted and attested code. An ideal solution
only allows write access to the memory region the camera
data is written to by the hardware and secure camera stack
in trusted code. This Trusted Secure Camera would render
normal camera fingerprinting redundant and help secure trans-
actions. Since our evaluation shows that almost all images are
traceable, drawbacks in privacy are minimal and the feature
could also be disabled by users if needed.

7.3 Securing Transactions

In this section we propose a forgery-resistant scheme for
secure transactions. Whereas for authentication purposes the
methods are flawed, it poses a real benefit for transaction
signing. For this, we have extended our camera fingerprinting
app built for the large scale study with a banking-like scenario.
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In our proof of concept application, our signing app uses
optical character recognition (OCR) with a QR-Code as redun-
dancy to ensure that the user really saw the correct transaction
contents.

The computer can display the TAN information directly
instead of relying on a phone. If malware fakes the on-screen
info, the user will immediately see it and is able to react. As
depicted in Figure 12, if the content on the display does not
match what the user wants to sign, a user can easily identify
the faults. The user will stop the transaction automatically
if the displayed data is wrong. The transaction does not get
signed. The signature is linked to a user’s intent. This results
in cancellation due to not using the second factor at all. We
can achieve this by linking the data displayed to the user in a
human and machine readable format. The camera fingerprint
then makes sure the user saw the photographed content at
least once.

A similar solution to this kind of simple human read-
able QR (HR-QR), has been proposed by Millican and Stan-
jano [42]. Their so-called SAVVIcode combines a QR-Code
with a more machine-friendly text above, making it even
easier to process without errors. As the codes, just as QR
codes, are very noisy, they should be grey and white.The key
components are as follows:

1. HR-QR: The user needs to know what she scans. The
only way to do this is to show the contents in clear
text. This human readable QR-Code is then checked by
attested code.

2. Authenticity is checked by extracting the PRNU: The
same attested code needs to check if the correct cam-
era took the photo at hand, using the camera fingerprint.
This will lower the risk that attackers directly insert im-
ages in the black box and run the authentication code
without the user’s knowledge. At the same time, an air
gap is enforced, making the phone a true second factor.

The two key components are

• Matrix code is human-readable: To counter MitM
schemes, the user needs to know what she scans. The
best way to do this is to display the contents in clear text.
We add OCR to a usual transaction scheme [41]. Since
OCR software is not fail-proof enough, the content is
sent along in a separate QR-code or other barcode or
matrix code, like [8]. Trusted code, either in the TEE or
on the server then checks if both parts match.

• Authenticity is checked by extracting PRNU or Finger-
print: The same, attested, code needs to check if the
correct camera took the photo at hand, using the PRNU.
This will lower the risk for attackers to directly insert
images in the black-box and running the authentication
code without the user’s knowledge. At the same time,
an air gap is enforced.

The camera has the merit, especially in the case of an HR-
QR, that it contains additional information that can be linked
to a user intent. The user will only scan the screen if she wants
to sign the authentication. For this study, we implemented an
HR-QR scheme. Details are discussed in Appendix B.

Everts et al. [16] note on their implementation of smart-
phone authentication scheme, that a secure element won’t
prevent malware on the phone to use the credentials. We ar-
gue that, using the camera fingerprint as input, this statement
no longer holds true. Instead of feeding data to the secure ele-
ment, the attacker now has to feed an image that satisfies all
imposed restrictions. For the future we plan to replace PRNU
with a secure camera, as discussed in 7.2. That means, as
long as the trusted execution environment can be considered
safe, HR-QR is then a secure transaction system, even with
compromised smartphones and displays.

8 Conclusion

The attacks on current authentication schemes, presented in
this paper, show the shortcomings of smartphone camera
fingerprinting We show attacks against defenses discussed
by a major authentication protocol leveraging camera finger-
printing, allowing us to impersonate the user, even with a
single photo. In our comprehensive large-scale study, col-
lecting 56,630 images, we can substantiate that all current
phone cameras work well as PUF, essentially pinning photos
to unique devices. After thorough vetting, we can conclude
that, in direct comparison with other authentication schemes,
the added complexity of camera-fingerprinting based authen-
tication does not add substantial security benefit over secrets
stored in the phone’s memory. While it does add benefits
over weak schemes, such as SMS based authentication [43],
possible alternatives exist: pushing an one-time password
(OTP) to the phone at the time of authentication through a
secured internet connection, through bluetooth or even via
sound. In all threat models discussed in Section 6.1, normal
app authentication schemes are either good enough, i.e., if
there is no privileged access to local contents on the phone,
secrets can be stored there — or the camera fingerprinting
authentication schemes also fail.

Just as it is the case with fingerprinting in general, it might
pose an additional hurdle for attackers, however, the knowl-
edge how to calculate camera fingerprints is readily available.
Apart from the special case where the defendant never dis-
closes RAW images and uses them for authentication only, as
proposed by Valsesia et al. [56], the security of camera finger-
printing is further damped by publicly available images. We
do see a benefit for transactions as the photographed screen
can replace a secure display. For the future, signing photos in
the trusted execution environment of a phone could replace
PRNU use-cases completely and provide security benefits.

We hope to enable fruitful future research based on our
findings as well as the code published as part of this research.
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A The PRNU

In this part of the Appendix, we derive the mathematical
foundation of PRNU, as it is well established in literature,
most prominently in [38] and [21]. Furthermore, we explain
the standard way to compare two noise patterns to determine
if they were made by the same camera.

The image I, read out at the camera-interface, differs from
the perfect ideal image I0 that might exist at the sensor with-
out any imperfections or perturbations. First i.i.d. sources
like shot-noise or dark-current-noise and random-noise are
additionally in the image. These noises are summarized in θ.
Then, the described PRNU as multiplicative source of noise
is casted on the image, expressed in the following equation
with K. The imaging formation pipeline catering for those
additional corruptions is given by

I = I0 + I0K +θ . (1)

The mentioned additive noise sources θ can be averaged
out over multiple images. However, the multiplicative noise
K, the PRNU we are seeking for, is not a random noise for
a given pixel at position (x,y). By averaging a number of
photos and filtering them to reduce other noise, the PRNU
can be extracted.

The procedure introduced by Lukás et al. [38] starts with
suppressing the image content of the single images, by taking
the difference of the low-pass filtered version of the image
and the image itself. This is described with

WI = I−F(I) , (2)

where F could any arbitrary low-pass filter, in practice, how-
ever usually a wavelet filter is used.

The residuals of this filter operation are weighted by the
pixel intensities and averaged over N samples like

K̂ =
∑

N
i=1 W i

I Ii

∑
N
i=1(Ii)2

. (3)

The superscript i in this equation is an image index going
from 1 to N. Also it is worth pointing out, that the product
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W iIi and similar operations are element-wise, e.g. at pixel
positions (x,y) and not regular matrix multiplications. Finally,
we are left with the estimated PRNU fingerprint K̂.

B HR-QR Implementation

The apps developed for this paper also include a practical
implementation of the HR-QR scheme. For the actual im-
plementation of an human-readable QR code, we needed to
have an error resilient solution. OCR results are never perfect
and other values may falsely be factored into the comparison.
With the knowledge that this allows for (easier to spot) attacks
by exchanging single numbers or letters, we suggest the use
of the Jaro-Winkler distance Djw, as a metric to check string
similarities [26]. Given the strings of the text X and a string
of the QR Code Y , the metric is calculated with

Djw(X , Y ) = D j(X , Y )+ l · p · (1−D j(X , Y )) , (5)

where p is a prefix coefficient, which promotes the chains
with the longest common prefix, and l being the common
prefix between X and Y . We use the default value of 0.1 for
p. Further, the distances in Dj are calculated by

Dj(X , Y ) =
1
3

(
c
|X |

+
c
|Y |

+
c− t

c

)
, (6)

with c the number of characters that match between X and Y
and t the number of transpositions.

As more text is potentially in the users’ view, for our proof
of concept we extracted the distance for substrings, as shown
in algorithm 1. A future implementation might instead re-
frain to an algorithm already fit for substring matching, like
an Smith-Waterman algorithm or use a way to transmit the
human-readable part intact while still being easy to read, sim-
ilar to the proposals of Millican and Stajano [42] and Simkin
et al. [53].

Algorithm 1 MaxJaro
1: procedure MAXJARO(check, text)
2: maxSimilarity ← JARONWINKLERDIS-

TANCE(check, text)
3: for each substr of text where LEN(substr) =

LEN(check) or LEN(check) + 1 do
4: similarity← JARONWINKLERDISTANCE(check,

substr)
5: maxSimilarity← MAX(max, similarity)
6: end for
7: return maxSimilarity
8: end procedure
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