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Abstract: In this paper, a class of uncertain nonlinear multi-agent systems with unknown control 

directions and a dead-zone fault is addressed, where unknown control gains exist in each 

subsystem. In terms of the approximation characteristic of a fuzzy logic system, it is used to 

approximate uncertain nonlinear dynamics, and then the relevant adaptive control laws are 

designed. Considering the presence of unknown control directions and a dead-zone fault, the 

Nussbaum gain function technique is introduced to design the intermediate control law and the 

adaptive fuzzy control law. A theoretical analysis shows that the tracking control problem of the 

given multi-agent systems can be effectively solved through the application of the proposed 

adaptive fuzzy control law and the tracking errors can converge to a small neighborhood of zero 

through an adjustment of the relevant parameters. Finally, the effectiveness of the theoretical 

analysis results is verified by two simulation cases. 
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1. Introduction 

In recent years, the control problems of multi-agent systems have been extensively 

studied in complex systems such as multi-UAV systems [1], multi-sensor network 

systems [2], and microgrid systems [3]. In order to solve the control problems of 

multi-agent systems, many control strategies have been proposed and put into practice, 

achieving good control. For example, the iterative learning control law was proposed in 

[4,5], where the tracking problem of nonlinear uncertain multi-agent systems was solved. 

In [6], the authors designed a finite time adaptive neural network controller using the 

command filter control technology, where the guaranteed cost control of 

nonstrict-feedback uncertain multi-agent systems with input nonlinearity was realized. 

Moreover, adaptive consensus control laws, which were used to study the tracking 

control of heterogeneous nonlinear multi-agent systems, were presented in [7,8]. In 

addition, the pulse consensus control law [9] and the event-triggered consensus control 

law [10,11] were successfully applied for the control of multi-agent systems. 

However, it should be noted that in some actual systems, the sign of control gains is 

sometimes not predicted in advance [12–14], which leads to the problem of an unknown 
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control direction. This makes it impossible to directly apply some existing achievements, 

such as those mentioned in [15–17], and many scholars have carried out research on this 

topic. In [18], to solve the control problem of an uncertain system with unknown control 

direction and unknown input power, an adaptive parameterized controller was designed 

to ensure that the signals of the closed-loop system were globally bounded. In [19], an 

adaptive robust tracking control law was developed for a class of uncertain nonlinear 

systems with unknown control directions, and the specified tracking control was 

achieved. Furthermore, on the basis of unknown control directions, the results of 

[13,20–22] further considered the existence of non-ideal conditions, such as time delay, 

input nonlinearity, output saturation, and actuator failure,  achieving the desired control 

level by applying the proposed control laws. Accordingly, the control problems of 

multi-agent systems with unknown control directions have also been studied to a certain 

extent. In [23], for the nonlinear multi-agent systems with unknown non-uniform control 

directions, the authors proposed the distributed control law to ensure that the consensus 

tracking problem was solved. Based on the hybrid Nussbaum control method, the 

consensus tracking control of high-energy nonlinear multi-agent systems with unknown 

control directions was studied in [24]. Additionally, for the consensus control problem of 

strict-feedback nonlinear leaderless multi-agent systems with unknown control 

directions, a decentralized inversion adaptive control law was presented in [25], where 

the local error surface of multi-agent systems remained bounded and converged to zero. 

Moreover, compared with [25], the distributed adaptive control law designed in [26] 

combined the conversion mechanism and did not consider the Nussbaum gain control 

technology. From the above description, although many achievements have been made 

in the research on the problem of unknown control directions, there remains little 

discussion on the existence of actuator fault with unknown control directions. 

As an important part of multi-agent systems, when the actuator breaks down it 

inevitably causes difficulties in the control of the system and even leads to the failure of 

the system. The distributed consensus control law and the adaptive cooperative control 

law were proposed in [27–29], where the consensus tracking control problems of 

nonlinear multi-agent systems with dead-zone inputs were solved. In [30], a distributed 

adaptive control strategy, which combined the backstepping control technology and the 

Nussbaum gain function technology, was design to achieve the progressive tracking 

control of nonlinear multi-agent systems with backlash such as hysteresis faults. In 

addition, the control problems of multi-agent systems with input saturation, input 

hysteresis, input quantization, and time-varying faults have also been studied in great 

depth [31–34]. However, as a kind of input nonlinearity, the occurrence of an actuator 

dead-zone fault can easily lead to a decline in system control performance and even to 

the instability of the closed-loop system. Furthermore, the existence of uncertainty causes 

difficulties in the control of the system. Some control strategies, such as fuzzy active 

disturbance rejection control [35], indirect adaptive iterative learning control [36], and 

adaptive sliding mode control [37], have been proposed and applied by researchers. For 

multi-agent systems, it is also important to consider the existence of uncertainty. 

Therefore, it is practical to study an uncertain multi-agent system with unknown control 

directions and a dead-zone fault. 

Motivated by the above-mentioned discussions, a class of uncertain multi-agent 

systems with unknown control directions and an actuator dead-zone fault is considered 

in this paper. To solve the tracking control problem of the multi-agent systems, a fuzzy 

logic system and Nussbaum gain function technology are simultaneously considered, 

and then the adaptive control law, the intermediate control law, and the adaptive fuzzy 

control law are designed. To this end, the main contributions of this paper can be 

summarized as follows: 

(i) The control problem of uncertain multi-agent systems with unknown control 

directions and an actuator dead-zone fault is studied, where unknown control gains 
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exist in each subsystem of the multi-agent systems. Compared with [6,8,9,23], the 

system model considered in this paper is more general. 

(ii) Considering the approximation characteristics of the fuzzy logic system, the 

unknown nonlinear dynamics in the analysis process are approximated, and the 

adaptive control laws are designed. Compared with [25,26], the analysis process is 

effectively simplified. 

(iii) The Nussbaum gain function technology is used in the design of the intermediate 

control law and of the adaptive fuzzy control law to solve the desired tracking 

control problem. Compared with [10,24,26,27], the control law designed in this 

paper can meet the control requirements when the control directions are unknown 

and coexists with the actuator dead-zone fault. 

(iv) Based on the designed Lyapunov function, the effectiveness of the proposed control 

law is proven. The simulation results show that the tracking errors can finally 

converge to a small neighborhood of zero following adjustments to the relevant 

parameters. 

The rest of this paper unfolds as follows: Section 2 introduces the multi-agent 

systems model, and some preliminaries are given in this section. The main results are 

provided in Section 3, which mainly involves the design of the adaptive fuzzy control 

law and the discussion of stability. In Section 4, the simulation analysis is described to 

illustrate the effectiveness of theoretical results, and the conclusions are briefly drawn in 

Section 5. 

Notations: A  stands for the absolute value of constant A . ,miniX  and ,maxiX  are the 

minimum and maximum values of variable iX , respectively. 1{ , , }ndiag x x  denotes a 

diagonal matrix with diagonal elements 1, , nx x . ( )T  represents the transposition 

operation. Ŵ  is the estimate of W , and ˆ= −W W W  stands for the estimation error. 

min ( )   and max ( )   represent the smallest and largest eigenvalues of matrix ( ) . 

2. Problem Formulation and Preliminaries 

In this section, the problem formulation is provided, and some preliminaries, 

including graph theory, the fuzzy logic system, and some lemmas, are provided for a 

subsequent analysis. 

2.1. Problem Formulation 

Consider a class of uncertain nonlinear multi-agent systems with unknown control 

directions and a dead-zone fault, which is composed of one leader agent and n  follower 

agents. The dynamics of follower agent i  is described as 

( )

( )

1 1

2 2

( ) ( ) ( ), ( ) ( )

( ) ( ) ( ), ( ) ( )

i i i i i i i

F

i i i i i i i

x t a v t f x t v t t

v t a u t g x t v t t

= + +


= + +

 (1) 

where 1, ,i n= , ( )ix t  and ( )iv t  represent the position vector and velocity vector; 

( )( ), ( )i i ig x t v t  and ( )( ), ( )i i if x t v t  are unknown smooth nonlinear functions, and for 

convenience, the functions ( )( ), ( )i i ig x t v t  and ( )( ), ( )i i if x t v t  are denoted by ig  and if , 

respectively; 1ia  and 2ia  represent non-zero unknown constants; 1( )i t  and 2 ( )i t  

are uncertain dynamics; and ( )F

iu t  represents the system input and is supposedly 

affected by the dead-zone fault. According to [29], the model of a dead-zone fault is: 

( ( ) ), ( )

( ) 0, ( )

( ( ) ), ( )

i ir i ir

F

i il i ir

i il i il

u t b u t b

u t b u t b

u t b u t b





− 


= −  
 +  −

 (2) 
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where 0   is an unknown bounded constant that represents the slope of the 

dead-zone; 0ilb   and 0irb   represent the left and right breakpoints of the dead-zone, 

respectively. By applying the mean value theorem, (2) can be rewritten as: 

( ) ( ) ( )F

i i iu t u t t = +  (3) 

where ( )i t  is a bounded function and satisfies ( )i t  , and the expression of ( )i t  is 

shown as: 

, ( )

( ) ( ), ( )

, ( )

ir i ir

i i il i ir

il i il

b u t b

t u t b u t b

b u t b



 



− 


= − −  
  −

 (4) 

The objective of this paper is to design an adaptive fuzzy control law ( )iu t  for the 

system (1), so that the output of each follower agent can track the trajectory of the leader 

agent when the control directions are unknown and an actuator dead-zone fault occurs, 

and the tracking error of each follower agent can converge to a small neighborhood of 

zero. 

Assumption 1. The unknown constants 1ia  and 2ia  are bounded; that is, there exist 

1,min 1 1,max0 ia a a    and 2,min 2 2,max0 ia a a   . To not lose generality, we further assume 

that 1,min 1 1,maxia a a   and 2,min 2 2,maxia a a  . 

Assumption 2. The uncertain dynamics 1( )i t  and 2 ( )i t  are bounded and satisfy 
*

1 1( )i it    and *

2 2( )i it   . 

2.2. Graph Theory 

Let ( , , )=  denote a directed graph with n  nodes, where  1, , nv v=  is 

the set of vertices, {( , ), , ,and }i j i j i j=    is the set of edges, and [ ] n n

ija R =   is 

the weighted adjacency matrix of . If there is an edge between node i  and j , then 

0ij jia a=  , and otherwise, 0ij jia a= = . The set of neighbors of node i  is denoted by 

{ : ( , ) }i j i jv v v=  . The Laplacian matrix of  is denoted by = − , where 

1{ , }ndiag d d=  with 
1

i

i ijj
d a

=
= . The graph  is connected if there is a path 

between any two vertices. 

An extended graph is defined as ( , )= , which is associated with the leader 

agent and follower agents. Let the leader adjacency matrix be  1diag , , nb b= , and if 

the follower agent i  obtains the information of leader agent, then 1ib = ; otherwise, 

0ib = . 

Assumption 3 [38]. The directed graph  contains a spanning tree, and the leader node is the 

root node. 

2.3. Fuzzy Logic System 

In the subsequent analysis, the fuzzy logic system is considered to approximate 

unknown uncertain dynamics. The fuzzy rule base is composed of “if-then” rules in the 

following form: 

lR : if 1x  is 1

lF , , and nx  is l

nF , then h  is lG , 1, ,l M= , 

where ix , 1, ,i n= , and h  are the fuzzy logic system’s input and output, 

respectively; M  is the total number of “if-then” rules; 1 , ,l l

nF F  and lG  are fuzzy 
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sets for linguistic variables. Additionally, by applying singleton fuzzifier, product 

inference, and a defuzzifier [32,39], the fuzzy logic system can be formulated as: 

11

11

( )
( )

( )

l
i

l
i

M n

l i iFl

M n

i iFl

h x
h

x





==

==


=

 
 




x  (5) 

where max ( )ll h R G
h h= . 

If  1 1, , , ,T

M Mh h w w = = W  and  1( ) ( ), , ( )
T

M = x x x , then the vector 

from the fuzzy logic system (5) can be written as: 

( ) ( )Th = x W x  (6) 

where ( ) ( )1 11
( ) ( ) ( )l l

i i

Mn n

l i i i iF Fl
x x  = ==

 =  
 x , 1, ,l M= ;  1, ,

T

nx x=x  is the input 

of the fuzzy logic system. 

Lemma 1 [21]. For any continuous function ( )f x  defined on a compact set   and any given 

positive constant  , there exists a fuzzy logic system * *( ) ( )Tf = x W x  in the form of (15) such 

that 

*sup ( ) ( , )f f 


− 
x

x W   (7) 

where *
W  is the ideal parameter vector, and   is the approximation accuracy and can be 

arbitrarily small. 

2.4. Definition and Lemmas 

Definition 1 [21]. The smooth continuous function ( )N   is called the Nussbaum gain function 

if the following properties hold: 

0

0

1
limsup ( )

1
liminf ( )

s

s

s

s

N d
s

N d
s

 

 

→

→


= +


 = −






 (8) 

Lemma 2 [21]. Let ( )V t  and ( )t  be smooth functions defined on [0, )ft  with ( ) 0V t  , and 

( )N   be a Nussbaum gain function. If the following inequality holds: 

( )0 0

0
0

( ) ( ) ( ) 1 ( ) , [0, )
t

k t k

n fV t e e G N d c t t
    −

 + +  x  (9) 

then ( )V t , ( )t , and ( )0

0
( ) ( ) 1 ( )

t
k

ne G N d
    + x  are bounded by [0, )ft , where ( )nG x  

satisfies ( )m n MG G G x  with nx  being the system state vector, and mG , MG , 0c , and 0k  

are positive constants. 

Lemma 3 [15]. For any x R  and y R , the following inequality holds: 

1p
p q

q
xy x y

p q




 +  (10) 
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where 0  , 1p  , 1q  , and ( 1)( 1) 1p q− − = . 

Lemma 4 [5]. For any b R  and 0  , the hyperbolic tangent function satisfies: 

0 tanh( ) 0.2785
b

b b 


 −   (11) 

3. Adaptive Control Law Design and Stability Analysis 

In order to solve the tracking control problem of an uncertain nonlinear multi-agent 

system (1) with unknown control directions and a dead-zone fault, in this section, the 

fuzzy logic system and Nussbaum gain function technology are introduced to design the 

adaptive fuzzy control law, intermediate control law, and adaptive control laws. 

3.1. Adaptive Fuzzy Control Law Design 

Considering the system (1), the consensus tracking error 1iz  and velocity tracking 

error 2iz , respectively, are defined by: 

1 ( ) ( )
i

i ij i j i i d

j

z a x x b x x


= − + −  (12) 

2i i iz v = −  (13) 

where dx  represents the trajectory of the leader agent, and i  is the intermediate 

control law to be designed. 

Let xi i dx x = −  stand for the position tracking error of the thi  follower agent, then 

the vector form of (12) is written as: 

1 xZ =  (14) 

where 1 11 1[ , , ]T

nZ z z= , = + , 1[ , , ]T

x x xn dx  = = − 1x  with  1, ,
T

nx x=x  

and  1, ,1
T

=1 . 

Define the candidate Lyapunov function 1V  as: 

-1

1 1 1

1

2

TV Z Z=  (15) 

According to (12)–(14), the time derivative of 1V  is: 

( )

-1

1 1

1 1 1 1 2 1 1

1

T

x

n

i i i i i i i i i d

i

V Z

a z a z z z f x




=

=

= + + +  −  
 (16) 

Considering Lemma 3 and letting 1 = , 2p = , 2q = , 1 1i ix a z= , and 2iy z= , we 

have: 

( )
2 2

1 1 2

1 1 2
2 2

i i i

i i i

a z z
a z z  +  (17) 

Substituting (17) into (16) yields: 

( )
2

2

1 1 1 1 1 1

1

+
2

n
i

i i i i i i d

i

z
V a z z F x

=

 
 +  − + 

 
  (18) 

where 2

1 1 1 2i i i iF a z f= + , a fuzzy logic system is introduced to approximate 1iF , then we 

obtain: 
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*

1 1 1 1( ) ( )T

i i i iF = +W X  (19) 

where 1 , , ,
T

i i i j dx v x x =  X , 1, ,i n= , ij , and 1i  is the approximation error. 

Noting Assumption 2 and Lemma 1, then there exists 

*

1 1 1+i i i    (20) 

where *

1i  is an unknown positive constant. 

Let 

*

* * 1 1

1 1 1 1 1( ) ( ) ( ) ( ) tanh( )T T i i

i i i i i d

z
x





= + −W X W X  (21) 

where 

*

1 1 ,1
T

i i
 =  W W  (22) 

*

* 1 1

1 1 1( ) ( ), tanh( )

T

i i

i i i d

z
x






 
= − 
 

X X   (23) 

Substituting (19) and (21) into (18), we have: 

( )
2

* 2

1 1 1 1 1 1 1 1

1

* 2

* 1 1 2

1 1 1 1 1 1 1 1

1

( ) ( ) +
2

( ) ( ) + tanh( )
2

n
T i

i i i i i i i i d

i

n
T i i i

i i i i i i i i i

i

z
V a z z x

z z
a z z

 


  



=

=

 
 + +  − + 

 

  
= + +  − +  

   





W X

W X



 (24) 

The intermediate control law i  and adaptive control law 1i  are designed as 

follows: 

( )1 1 1 1 1
ˆ( ) ( ) ( )T

i i i i i iN z  = +W X  (25) 

( )1 1 1 1 1 1
ˆ( ) ( )T

i i i i i iz z = +W X  (26) 

where 1
ˆ

iW  represents the estimate of 1iW , and 1i  is the positive constant to be 

designed. 

Considering Lemma 4, one obtains * *

1 1 1 1 1( ) tanh( ) 0.2785i i i i iz    + −  ; then, 

substituting (25) and (26) into (24), we have: 

( )

( )

* 2

2 * 1 1 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

2

2 2

1 1 1 1 1 1 1 1 1

1

( ) ( ) ( ) ( ) tanh( )
2

( ) ( ) ( ) 0.2785
2

n
T i i i

i i i i i i i i i i i i i i

i

n
T i

i i i i i i i i i

i

z z
V a N z z z z

z
a N z z


     



    

=

=

 
 + − + + +  − + 

 

 
 + − + + + 

 





W X

W X





 
(27) 

where 1 1 1
ˆ

i i i= −W W W . 

With reference to the description in [40], the adaptive control law 
1
ˆ

iW  can be 

designed as: 

( )1 1 1 1 1 1
ˆ ˆ( )i i i i i iz = −W X W  (28) 

where 1i  and 1i  are designed as positive constants. 

Furthermore, the candidate Lyapunov function 2V  is defined as: 

2 2 2

1

2

TV Z Z=  (29) 
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where 2 12 2[ , , ]T

nZ z z= . 

With reference to (3) and (13), the time derivative of 2V  is: 

( )

( )

( )

2 2

1

2 2 2

1

2 2 2 2 2 2 2

1

( ( ) ( ))

( ) ( ) ( )

n

i i i

i

n

i i i i i i i

i

n

i i i i i i i i i i i

i

V z v

z a u t t g

a z u t a t z z g z



  

  

=

=

=

= −

= + + +  −

= + + +  −







 (30) 

Similarly, considering Lemma (3), we have: 

2 2

2 2

2 2

( ) ( )
( )

2 2

i i i

i i i

a z t
a t z


  +  (31) 

Substituting (31) into (30) obtains: 

( )
2

2 2 2 2 2 2 2

1

( )
( ) +

2

n
i

i i i i i i i i

i

t
V a z u t z F z


 

=

 
 + +  − 

 
  (32) 

where 2

2 2 2 2i i i iF a z g= + , and a fuzzy logic system is introduced to approximate 2iF ; 

then, we obtain: 

*

2 2 2 2( ) ( )T

i i i iF = +W X  (33) 

where 2 , , ,
T

i i i j dx v x x =  X , 1, ,i n= , ij , and 2i  stands for the approximation 

error. 

Noting Assumption 2 and Lemma 1, we have: 

*

2 2 2+i i i    (34) 

where *

2i  is an unknown positive constant. 

Let 

*

* * 2 2

2 2 2 2 2( ) ( ) ( ) ( ) tanh( )T T i i

i i i i i

z



= +W X W X  (35) 

where 

*

2 2 ,1
T

i i
 =  W W  (36) 

*

* 2 2

2 2 2( ) ( ), tanh( )

T

i i

i i i

z




 
=  
 

X X   (37) 

Furthermore, substituting (33) and (35) into (32) yields: 

( )
2

*

2 2 2 2 2 2 2 2 2

1

* 2

* 2 2

2 2 2 2 2 2 2 2 2

1

( )
( ) ( ) ( ) +

2

( )
( ) ( ) ( ) tanh( ) +

2

n
T i

i i i i i i i i i i

i

n
T i i i

i i i i i i i i i i i

i

t
V a z u t z z

z t
a z u z z


  

 
   



=

=

 
 + + +  − 

 

  
= + + +  − −  

   





W X

W X


 

(38) 

The adaptive fuzzy control law ( )iu t  and adaptive control law 2i  are designed as 

follows: 

2

2 2 2 2 2
ˆ( ) ( ) ( ) ( )

2

T i

i i i i i i i

z
u t N z  

 
= + + − 

 
W X  (39) 



Mathematics 2022, 10, 2655 9 of 21 
 

 

2

2 2 2 2 2 2
ˆ( ) ( )

2

T i

i i i i i i i

z
z z  

 
= + + − 

 
W X  (40) 

where 2
ˆ

iW  represents the estimate of 2iW , and 2i  is the positive constant to be 

designed. 

By substituting (39) and (50) into (38), and considering Lemma 4, we have: 

2 2

2 2

2 2 2 2 2 2 2 2 2 2

1

( )
( ( ) ) ( ) ( ) + 0.2785

2 2

n
T i i

i i i i i i i i i

i

z t
V a N z z


     

=

 
 + − + − + 

 
 W X  (41) 

where 2 2 2
ˆ

i i i= −W W W . 

Similarly, we design the adaptive control law 
2

ˆ
iW  as: 

( )2 2 2 2 2 2
ˆ ˆ( )i i i i i iz = −W X W  (42) 

where 2i  and 2i  are the designed positive constants. 

3.2. Stability Analysis 

In order to verify the validity of the proposed adaptive fuzzy control law, the 

following theorem is provided. 

Theorem 1. Consider the uncertain nonlinear multi-agent systems (1) with unknown control 

directions and dead-zone fault under Assumptions 1–3, and the intermediate control law (25), 

adaptive control laws (26), (28), (40), and (42), and adaptive fuzzy control law (39) are applied 

such that the system (1) can track the trajectory of the leader agent, and the tracking errors of all 

follower agents finally converge to a small neighborhood of zero. 

Proof. We design the Lyapunov function V  as: 

1 1 2 2

1 2

1 11 2

( ) ( )

2 2

T Tn n
i i i i

i ii i

V V V
 = =

= + + + 
W W W W

 (43) 

In combination with (27), (28), (41), and (42), and considering 
1 1

ˆ
i i= −W W  and 

2 2
ˆ

i i= −W W , the time derivative of V  is given as: 

( ) ( ) ( )2 2

1 1 1 1 2 2 2 2 1 1 2 2

1 1 1

1 1 1 2 2 2

1 1 1

( ) ( )

ˆ ˆ( ) ( )

n n n

i i i i i i i i i i i i

i i i

n n n
T T

i i i i i i i

i i i

V a N a N z z

D

        

 

= = =

= = =

 + + + − +

+ + +

  

  W W W W

 (44) 

where 2= ( ) 2 0557i iD t + . 

Due to 

1 1 1 1

1 1

( ) ( )ˆ( )
2 2

T T

T i i i i

i i

W
 − +

W W W
W W  (45) 

2 2 2 2

2 2

( ) ( )ˆ( )
2 2

T T

T i i i i

i i  − +
W W W W

W W  (46) 

By substituting (45) and (46) into (44), we obtain: 

( ) ( ) ( )2 2

1 1 1 1 2 2 2 2 1 1 2 2

1 1 1

1 1 1 2 2 2 0

1 1

( ) ( )

1 1
( ) ( ) +

2 2

n n n

i i i i i i i i i i i i

i i i

n n
T T

i i i i i i

i i

V a N a N z z

d

        

 

= = =

= =

 + + + − +

− −

  

 W W W W

 (47) 
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where ( )0 1 1 1 2 2 2

1

1
( ) ( ) 2

2

n
T T

i i i i i i i

i

d D 
=

= + + W W W W . 

  is chosen so that 

 1

1 max 2 1 1 2 2
1, ,

= min 2 ( ),2 , ,i i i i i i
i n

       −

=
 (48) 

where 1

max ( ) −  represents the maximum characteristic value of 1− . 

Thus, (47) can be rewritten as: 

( ) ( )1 1 1 1 2 2 2 2 0

1 1

( ) ( )
n n

i i i i i i i i

i i

V V a N a N d       
= =

 − + + + + +   (49) 

Both sides of (50) are multiplied by te , and integrated over the interval [0, )t ; then, 

we have: 

( ) ( )1 1 1 1 2 2 2 2
0 0

1 1

0 0

( ) ( )

(0)

n nt t
t t

i i i i i i i i

i i

t

V e e a N d e e a N d

d d
V e

   



        

 

− −

= =

−

 + + +

 
+ − + 
 

  
 

(50) 

According to the previous analysis, the unknown constants 1ia  and 2ia  are 

bounded. Considering Lemma 2, it becomes evident that ( )V t , 

( )1 1 1 1
0

( )
t

i i i ie a N d    + , ( )2 2 2 2
0

( )
t

i i i ie a N d     + , and 1i  and 2i  for 1, ,i n= , 

are bounded over the interval [0, )t . Let 

( ) ( )1 1 1 1 2 2 2 2
0 01, ,

1 1

max ( ) ( )
n nt t

i i i i i i i i
i n

i i

C e a N d e a N d         
=

= =

 
= + + + 

 
    (51) 

Then, (50) can be simplified as: 

0 0(0) td d
V V C e 

 

− 
 + − + 
 

 (52) 

Considering (14), (15), and (43), for t →  , we obtain: 

0

min

2
lim lim

( )
xi i d

t t

d
x x

 → →
= −   (53) 

where min ( )  represents the minimum eigenvalue of . 

By observing (48) and adjusting 1i , 2i , 1i , 2i , 1i , and 2i ,   is sufficiently 

large. According to (53), the increase in   or decrease in 0d  ensures that the tracking 

error xi  converges to a small neighborhood of zero. The proof is completed. □ 

The control block diagram of the system is given in Figure 1. 

( )2 2 2 2 2 2

2
2 2 2 2 2 2

ˆ ˆ( )

ˆ( ) ( )
2

i i i i i i

T i
i i i i i i i

z

z
z z

 

  

= −

 
= + + − 

 

W X W

W X





( )

( )

1 1 1 1 1 1

1 1 1 1 1 1

ˆ ˆ( )

ˆ( ) ( )

i i i i i i

T

i i i i i i

z

z z

 

 

= −

= +

W X W

W X





(
)

1 1 1

1 1

ˆ( ) ( ) ( )T

i i i i

i i

N

z

 



=

+

W X (2 2 2

2
2 2

ˆ( ) ( ) ( ) ( )

2

T

i i i i

i
i i i

u t N

z
z



 

=

+ + − 


W X
1 1

2 2( )

i i i i i

F

i i i i i

x a v f

v a u t g

= + + 


= + + 

,i ix v
1 1
ˆ ,i iW

i

i

2 2
ˆ ,i iW

( )iu t

0.2+0.5sin(t)dx =

 

Figure 1. Block diagram of the control system. 
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Note 1. Noting (53), the tracking error 0 minlim 2 ( )t xi d  →   can converge to a 

small neighborhood of zero by adjusting the parameters of 0d  and  . We can decrease 

0d  by decreasing 1i  and 2i  or increase   by increasing 1i , 2i , 1i , and 2i . 

Nevertheless, the change in these parameters may cause the amplitude of the control 

signal to become larger. Therefore, to select the appropriate design parameters, a 

reasonable trade-off should be made between tracking performance and control signal 

amplitude. 

4. Simulation Analysis 

In this section, two simulation cases are provided to verify the effectiveness of 

theoretical analysis results. 

Case 1. Consider the following uncertain nonlinear multi-agent system with unknown 

control directions and a dead-zone fault: 

1.5 ( )
( ) 1.5 ( ) ( ) 0.01sin( )

( ) 2 ( ) 0.3sin( ( ))cos( ( )) 0.01cos( )

1,2,3,4

ix t

i i i

F

i i i

x t v t x t e t

v t u t x t v t t

i

− = + +


= + +
 =


 (54) 

The communication topology of the multi-agent systems is shown in Figure 2. Here, 

0L  represents the leader agent, and 1F , 2F , 3F , and 4F  represent the follower agents. 

The reference trajectory is given as 0.2 0.5sin( )dx t= + . 

0L

1F

2F 3F4F

 

Figure 2. Communication topology of multi-agent systems. 

According to Figure 1, we obtain the Laplacian matrix  and adjacency matrix  

as: 

0 0 0 0

1 1 0 0

0 1 1 0

0 1 0 1

 
 
−
 =
 −
 

− 

,  1,0,0,0diag=  

The initial conditions of four follower agents are set as 1(0) 0.25(m)x = , 

2 (0) 0.15(m)x = , 3(0) 0.1(m)x = , 4 (0) 0.35(m)x = , and 1 2 3 4(0) (0) (0) (0) 0(m/s)v v v v= = = = . 

The model of the actuator dead-zone fault is shown in (2), and the parameters are given 

as 1.5 = , 0.3irb = , and 0.1ilb = . 

The fuzzy logic systems are introduced to approximate the uncertain dynamics 
2

1 1 1 2 ( , )i i i i i iF a z f x v= +  and 2

2 2 2 2 ( , )i i i i i iF a z g x v= + , where 1,2,3,4i = . The selected 

membership functions as: 

( )1

2exp 0.5( 2.5)
i

iF
x = − − , ( )2

2exp 0.5( 1.5)
i

iF
x = − − , ( )3

2exp 0.5( 0.5)
i

iF
x = − −  

( )4

2exp 0.5( 0.5)
i

iF
x = − + , ( )5

2exp 0.5( 1.5)
i

iF
x = − + , ( )6

2exp 0.5( 2.5)
i

iF
x = − +  
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In this paper, the Nussbaum gain function is selected as 2( ) cos( )N   = ; the initial 

conditions of the adaptive control laws are set as 1 2(0) (0) 0.01i i = =  and 

1 2
ˆ ˆ(0) (0) 0.01i i= =W W ; the other parameters are given as 0.01 = , 1 50i = , 2 10i = , 

1 2 10i i = = , 1 2 20i i = = , * *

1 2 0.1i i = = , and 1,2,3,4i = ; and the simulation time is 

30(s)t = . The simulation results were obtained using the designed control law and are 

shown in Figures 3–9. 

 

Figure 3. The curves of the agents' output 
ix  and the reference trajectory 

dx . 

 

Figure 4. The curves of the position tracking error xi . 
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Figure 5. The curves of the agents' velocity 
iv . 

 

Figure 6. The curves of the intermediate control law 
i . 

 

Figure 7. The curves of the control law 
iu . 
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Figure 8. The curves of the norm for the adaptive control law 1
ˆ

iW . 

 

Figure 9. The curves of the norm for the adaptive control law 2
ˆ

iW . 

The curves of the position output ix  of four follower agents and the reference 

trajectory dx  of the leader agent are shown in Figure 3. It can be seen from Figure 3 that 

the position output of the four following agents can track the trajectory of the leader 

agent under the action of the designed control law. Notably, there is a large error within 

2(s)t =  at the beginning of the simulation due to the existence of a dead-zone fault, but 

with continuous simulation, good tracking performance can finally be obtained. Figure 4 

shows the curves of tracking error xi  of four following agents, and these tracking errors 

are seen to converge to a small neighborhood of zero in a short time, which also proves 

the effectiveness of the theoretical results from another angle. Figure 5 gives the curves of 

the velocity iv  of four follower agents. Moreover, the curves of the intermediate control 

laws i  are given in Figure 6, and Figure 7 gives the curves of the adaptive fuzzy 

control law iu . The curves of the norm for adaptive laws 1
ˆ

iW  and 2
ˆ

iW  are displayed as 

Figures 8 and 9, respectively. 

Case 2. In this case, to illustrate the effectiveness of the proposed control law, a class of 

practical uncertain nonlinear multi-agent systems is considered [41]. Each follower agent 

is a model of ship steering with an unknown control direction, where we assume that 
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each follower agent is affected by the dead-zone fault. The multi-agent systems dynamic 

model is given as: 

1 2 1 1

2 2 2

( )

( )

1,2,3,4

i i i i

F

i i i i i

x x f x

x B u f x

i

= +


= +
 =

 (55) 

where we assume that the model of each ship steering is identical for simplicity. The 

uncertain, unknown nonlinear dynamics in the models of ship steering are 1 1( ) 0i if x = , 
3

2 2 2 2( ) 21 0.3 21i i i if x x x= − − , and 0.23 21iB = . The communication topology is shown in 

Figure 1. The model of a dead-zone fault is described as (2). 

In the practical simulation, the initial conditions are given as 1(0) 0.3(m)x = , 

2 (0) 0.2(m)x = , 3(0) 0.1(m)x = , 4 (0) 0.05(m)x = , and 1 2 3 4(0) (0) (0) (0) 0(m/s)v v v v= = = = . 

The fuzzy logic systems are introduced to approximate the uncertain dynamics 
2

1 1 1 2i i iF a z=  and 2

2 2 2 2 22 ( )i i i i iF a z f x= + , 1,2,3,4i = , where 1 1.0ia =  and 2 0.23 / 21ia = . 

The membership functions and other design parameters are selected as in Case 1. 

Applying the adaptive fuzzy control law designed in this paper yields the simulation 

results that are shown in Figures 10–16. 

 

Figure 10. The curves of output 
1ix  and the reference trajectory 

dx . 

 

Figure 11. The curves of tracking error 
xi . 
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Figure 12. The curves of output 
2ix . 

 

Figure 13. The curves of the intermediate control law 
i . 

 

Figure 14. The curves of the control law 
iu . 
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Figure 15. The curves of the norm for the adaptive control law 1
ˆ

iW . 

 

Figure 16. The curves of the norm for the adaptive control law 2
ˆ

iW . 

The curves of the output 1ix  of four ship steering systems and reference trajectory 

dx  are shown in Figure 10, and the tracking error curves are given in Figure 11. It is 

evident from the two figures that our presented adaptive fuzzy control law can solve the 

tracking problem of ship steering systems. Additionally, the tracking error of each ship 

steering system can converge to a small neighborhood of zero. The curves of output 2ix  

are shown in Figure 12. Furthermore, the curves for the intermediate control law i  and 

final control law iu  are given in Figures 13 and 14, and Figures 15 and 16 display the 

curves of the norm for the adaptive control laws 1
ˆ

iW  and 2
ˆ

iW . 

To further clarify the effectiveness of the control law (Scheme 1) proposed in this 

paper, the results for the control law (Scheme 2) in [41] are displayed in Figures 17 and 18 

for comparison. The parameters of Scheme 1 are the same as those in Case 2. For Scheme 

2, the parameters are set as: 11 25c = , 12 15c = , 21 12c = , 22 8.0c = , 31 11c = , 32 5.5c = , 

41 10c = , 42 7.5c = , 12 10= , 22 7.5= , 32 6.5= , 42 8.5= , 1 2 3 4 30   = = = = , 

11 12 1.5r r= = , 21 22 3.5r r= = , 31 32 2.0r r= = , 41 42 4.0r r= = , 1 2 3 4 1.8   = = = = , and 

1 2 3 4 0.5   = = = = . The model of the actuator dead-zone fault is shown in (2), and the 

parameters are given as 1.5 = , 0.3irb = , and 0.1ilb = . The initial states are consistent 
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with Case 2. The comparison results of output 1ix  are shown in Figure 17, and those of 

output 2ix  are shown in Figure 18. 

 

Figure 17. The comparison results of output 1ix . 

 

Figure 18. The comparison results of output 2ix . 

It is observed from Figures 17 and 18 that the tracking control problem of the given 

system can be achieved using both Scheme 1 and Scheme 2. Although there is a certain 

overshoot, the system can obtain better performance under the action of Scheme 1. 

Furthermore, based on the application of the proposed adaptive control law (Scheme 1), 

the given multi-agent systems can achieve convergence in a relatively short time, and the 

tracking errors can converge to a small neighborhood of zero. 
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5. Conclusions 

In this paper, the problem of consensus tracking control for a class of uncertain 

nonlinear multi-agent systems with unknown control directions and an actuator 

dead-zone fault is discussed. By introducing the fuzzy logic system, the unknown 

uncertain nonlinear dynamics in the analysis process are approximated. The application 

of the Nussbaum gain function technology solves the problem of control law design in 

the presence of an unknown control direction and a dead-zone fault. Finally, an adaptive 

fuzzy tracking control law is proposed. The simulation results show that the given 

uncertain nonlinear multi-agent systems can accurately track the trajectory of the leader 

agent and that the tracking errors finally converge to a small neighborhood of zero. 

The adaptive fuzzy control law proposed in this paper has good control; therefore, it 

can solve the control problem of uncertain nonlinear multi-agent systems with unknown 

control directions and a dead-zone fault, and the tracking error can converge to a small 

neighborhood of zero by selecting the appropriate design parameters. However, the 

main limitation of this paper is that it does not consider more general cases, such as time 

delay, time-varying control gain, packet dropout and input constraint. Therefore, the 

authors will focus on these cases in future research. 
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