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Abstract: Regularization has become an important method in adversarial defense. However, the
existing regularization-based defense methods do not discuss which features in convolutional neural
networks (CNN) are more suitable for regularization. Thus, in this paper, we propose a multi-stage
feature fusion network with a feature regularization operation, which is called Enhanced Multi-Stage
Feature Fusion Network (EMSF2Net). EMSF2Net mainly combines three parts: multi-stage feature
enhancement (MSFE), multi-stage feature fusion (MSF2), and regularization. Specifically, MSFE aims
to obtain enhanced and expressive features in each stage by multiplying the features of each channel;
MSF2 aims to fuse the enhanced features of different stages to further enrich the information of the
feature, and the regularization part can regularize the fused and original features during the training
process. EMSF2Net has proved that if the regularization term of the enhanced multi-stage feature is
added, the adversarial robustness of CNN will be significantly improved. The experimental results
on extensive white-box attacks on the CIFAR-10 dataset illustrate the robustness and effectiveness of
the proposed method.

Keywords: adversarial defense; adversarial attack; feature enhancement; feature regularization

1. Introduction

Since deep learning technologies represented by a convolutional neural network
(CNN) were proposed, the field of computer vision (e.g., image classification, object de-
tection, and image retrieval) has developed rapidly. However, as the application range
of CNNs broadens, its safety and robustness have significantly attracted the attention of
academia and industry. CNNs highly depend on data, i.e., CNNs are fragile to some extent
since the complexity of the data will directly affect the classification accuracy of the CNN.
In 2014, Szegedy et al. [1] pointed out that if someone adds a perturbation to the original
image that is sufficiently small that the human eyes cannot distinguish it, the accuracy
of CNN will decrease significantly. An image added by these perturbations is called an
adversarial example.

The concept of adversarial examples has attracted significant attention from related
researchers since the existing CNN architectures may have huge loopholes. Furthermore,
the existence of adversarial examples is a serious threat to the application of CNNs in fields
of security and privacy [2]. Regarding the reasons for the existence of adversarial examples,
the researchers are still in the preliminary stage of exploration, and they have discussed
some possible explanations so far. Among these reasons, the idea proposed by IIyas et al. [3]
is relatively novel. They considered that the adversarial examples result from sensitive
features learned by the CNN. In other words, the CNN provides unrobust features.
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Many excellent methods have emerged for adversarial defense, and these methods are
mainly divided into four categories. The first is adversarial training [4–9]. These methods,
where some subtle perturbations are added to the input data during the training process,
can force CNN to adapt to these perturbations to improve the adversarial robustness.
The second is to process the input data, and these methods are designed to compress [10,11],
denoise [12–15], and transform [16–19] the input data to remove the adversarial noise.
With the popularity of the knowledge distillation [20], some related researchers have
introduced this technology into adversarial defense [21–23], achieving good defense effects.
The latest ones are the regularization-based methods [24–28]. These methods help CNNs
avoid overfitting and prevent the model from being too sensitive to small perturbations in
the input data.

Among these methods, the regularization-based adversarial defense methods are
becoming more important because of their effectiveness and low computational cost.
However, there are several features in CNNs. These existing regularization-based methods
do not discuss in depth what type of features are more suitable for regularization to further
improve the adversarial robustness of CNNs.

In this paper, we propose a new CNN architecture called Enhanced Multi-Stage Fea-
tures Fusion (EMSF2Net). EMSF2Net consists of three core operations: multi-stage features
enhancement (MSFE), multi-stage features fusion (MSF2), and regularization. For the MSFE
part inspired by SENet [29], we first perform the global average pooling (GAP) operation
on the features of each stage to obtain the channel-level global features. Then, we mul-
tiply the channel-level global features with the original features to obtain the enhanced
features. In the MSF2 part, we first flatten the enhanced multi-stage features directly into
one-dimensional features. Then, we directly perform the concatenation operation on them.
Although this operation is simple, it is very effective, since MSF2 can keep the global infor-
mation on each channel learned by MSFE. Finally, we perform the regularization operation
on the obtained fusion and original multi-stage features in the training process. Specifically,
we use a regularization loss function as the regularization operation of EMSF2Net. The pro-
posed EMSF2Net confirms that adding the regularization term of the enhanced multi-stage
fusion feature can significantly improve the adversarial robustness of CNN. It also shows
that the enhanced multi-stage fusion feature is more suitable for regularization. Further-
more, compared with existing global information-based adversarial defense approaches,
we introduce the regularization technique into the fused global features and demonstrate
that the regularized fused global features can further improve the adversarial robustness
of CNN.

The contributions of this study are summarized as follows:

• We propose a new network, EMSF2Net. The enhanced multi-stage fusion feature in
EMSF2Net can represent and keep the global information of each channel well.

• We show that regularizing the enhanced multi-stage fusion feature can significantly
improve the adversarial robustness of a CNN.

• The extensive experimental results on white-box attacks with different settings show
the effectiveness and robustness of the proposed approach.

2. The Proposed Method

Figure 1 and Table 1 show the architecture of the proposed EMSF2Net and the baseline,
respectively. As shown in Figure 1, we use the outputs of STAGES 2–4, whose details are
presented in Table 1, of the standard ResNet50 [30] as multi-stage features. The proposed
EMSF2Net consists of three core parts: MSFE, MSF2, and regularization. We will explain
these three parts in detail in the following subsections.
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Figure 1. Architecture details of the proposed EMSF2Net. We use ResNet50 [30] as the backbone of
the proposed EMSF2Net. The structures of STAGES 0–4 to are the same as those in baseline, where
their details are presented in Table 1. In this figure, the FE Block represents the feature enhancement
block; the Concat represents the concatenation operation; and the GAP in the FE Block represents the
global average pooling.

Table 1. Architecture details of the baseline in our method. Among them, LPC represents the loss
of the regularization method proposed by Mustafa et al. [26], and LCE represents the common
cross-entropy loss.

Layer ResNet50

STAGE 0 Conv(64, 3× 3), BN, ReLU

STAGE 1


Conv(64, 1× 1), BN, ReLU
Conv(64, 3× 3), BN, ReLU

Conv(256, 1× 1), BN
shortcut, ReLU

 ×3

STAGE 2


Conv(128, 1× 1), BN, ReLU
Conv(128, 3× 3), BN, ReLU

Conv(512, 1× 1), BN
shortcut, ReLU

 ×4

Max pooling→ LPC

STAGE 3


Conv(256, 1× 1), BN, ReLU
Conv(256, 3× 3), BN, ReLU

Conv(1024, 1× 1), BN
shortcut, ReLU

 ×6

Max pooling→ LPC

STAGE 4


Conv(512, 1× 1), BN, ReLU
Conv(512, 3× 3), BN, ReLU

Conv(2048, 1× 1), BN
shortcut, ReLU

 ×3

5 Average pooling→ LPC

6 FC(4096)→ LPC

7 FC(10)→ LCE

2.1. Multi-Stage Features Enhancement (MSFE)

In this subsection, we explain MSFE, and the details of this part are shown in the FE
Block in Figure 1. Suppose the output feature after the Conv Block in STAGE m (m = 2, 3, 4)
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is Um =
[
u1

m, u2
m, · · · , uCm

m

]
∈ RHm×Wm×Cm represented by Feature m (m = 2, 3, 4) in Figure 1.

Hm, Wm, and Cm represent the height, width, and the number of channels of Feature m,
respectively. Furthermore, ul

m (l = 1, · · · , Cm) represents the sub-feature of feature Um on
channel l.

As shown in Figure 1, we first perform the GAP operation on the input feature Um to
obtain the channel-level global feature Zm = [z1

m, z2
m, · · · , zCm

m ] ∈ R1×1×Cm . The operation
expression on channel l (l = 1, · · · , Cm) is shown as follows:

zl
m = GAP(ul

m)

=
1

Hm ×Wm

Hm

∑
i=1

Wm

∑
j=1

ul
m(i, j).

(1)

Next, we multiply the obtained channel-level global feature Zm with the original
input feature Um as the feature enhancement operation. The enhanced feature is repre-
sented by U ′m =

[
u′1m, u′2m, · · · , u′Cm

m

]
∈ RHm×Wm×Cm . The operation expression on channel l

(l = 1, · · · , Cm) is shown as follows:

u′lm = zl
m · ul

m. (2)

The original feature can produce feature weights with a global receptive field after
the GAP. If the feature weights and original feature are fused by channels, each channel of
the original feature will learn global information, thus enriching the original feature and
making the feature more expensive to realize. Finally, we put U ′m into the Conv Block to
obtain the final enhanced feature Ũm ∈ RHm×Wm×Cm , as shown in Figure 1.

2.2. Multi-Stage Features Fusion (MSF2)

After obtaining the enhanced feature Ũm ∈ RHm×Wm×Cm (m = 2, 3, 4) of each stage,
we perform the fusion operation on these features. First, we flatten each feature Ũm into a
vector vm as follows:

vm = F(AvgP(Ũm)) ∈ RCm . (3)

As shown in the above equation, we first use average pooling (AvgP) to map Ũm to the
1× 1×Cm dimension and perform a flattening operation (F) to map it to the Cm dimension.
Then, we fuse the flattened vectors of each stage, and its operations are shown as follows:

ṽ = FC([v2, v3, v4]) ∈ RC′ . (4)

As shown in the above equation, we first concatenate all vm into a new vector and use
a fully connected layer (FC) to map it to the C′ dimension.

Although this fusion method looks simple, it can keep the channel-wise global infor-
mation learned after the FE Block at each stage well maintained. However, the information
in the learned global features may be destroyed if other fusion methods are used.

2.3. Regularization

In this paper, we use a prototype conformity loss LPC [26] proposed by Mustafa et al.
as our regularization method. For a classification task with the number of classes k, given
training images, let fp be the output feature of one image xp with class yp. Therefore,
the expression of LPC is shown as follows:

LPC = ∑
p

{∥∥∥ fp −wc
yp

∥∥∥
2
− 1

k− 1 ∑
q 6=yp

(∥∥∥ fp −wc
q

∥∥∥
2
+
∥∥∥wc

yp −wc
q

∥∥∥
2

)}
, (5)
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where wc
yp is the class centroid corresponding to the true class yp, and wc

q is the class
centroids corresponding to other classes that are not class yp. We can see from the above
equation that LPC can increase the distance between different classes and reduce the
distance between fp and the class center wc

yp ; thus, the boundaries between different
classes are more obvious.

It is easier for LPC to learn the differences among the features of different classes when
the representation information of the features of each class is rich. Additionally, the output
features of EMSF2Net contain information-rich global channel features. Naturally, we
introduce LPC into our proposed network as the regularization method. Therefore, the total
loss function Lall used for training EMSF2Net is shown as follows:

Lall = LCE +
4

∑
k=1
Lk

PC, (6)

where the cross-entropy loss LCE is responsible for constraining the final classification out-
puts of EMSF2Net, and LPC aims to regularize the multi-stage features, and the enhanced
multi-stage fusion feature in EMSF2Net. ∑4

k=1 Lk
PC denotes the sum of all LPC in EMSF2Net.

Lall can increase the distances between samples with different classes and decrease the
distances between samples with the same classes in the output space.

3. Dataset and Adversarial Attacks

In this section, we introduce the dataset and seven popular adversarial attack methods
used in this paper to verify the adversarial robustness of our proposed method.

3.1. Dataset: CIFAR-10

We used the CIFAR-10 dataset [31], which has been widely used to verify adversarial
defense methods, to compare our method with other state-of-the-art and ablation analysis
methods. CIFAR-10 consists of 60,000 images with the size of 32 × 32 pixels; the training
set contains 50,000 images, and the test set consists of 10,000 images. This dataset is divided
into 10 classes: “airplane”, “automobile”, “bird”, “cat”, “deer”, “dog”, “frog”, “horse”,
“ship”, and “truck”.

3.2. Attack Methods

Given a clean image x and its corresponding true label y, the model is represented as f ,
and the adversarial attack aims to find a perturbation η that human eyes cannot distinguish.
This kind of perturbation should satisfy the following equation:

argmax
‖η‖p<ε

L( f (x + η), y), (7)

where L represents the loss function; ‖·‖p represents the Lp-norm with p ∈ {0, · · · , ∞},
and ε is the perturbation or attack strength.

Currently, many adversarial attack methods for finding the perturbation have been
proposed. In this paper, we used six popular adversarial attacks, which are shown in
detail below, to evaluate the robustness of the proposed EMSF2Net. The adversarial attack
toolbox used in the experiments is Torchattacks [32].

3.2.1. Fast Gradient Sign Method

The fast gradient sign method (FGSM) [4] is a classic adversarial attack method. It
generates the adversarial perturbation η based on the gradient of loss function of the clean
image x. The generated adversarial example x′ can be expressed as follows:

x′ = x + ε · sign(∇xL( f (x), y)), (8)

where ε represents the attack strength and the distance measure used for this attack is L∞.
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3.2.2. Projected Gradient Descent

Projected gradient descent (PGD) [5] is a kind of iterative adversarial attack method,
which can be regarded as a kind of iteration FGSM. The expression of step k+ 1 is as follows:

x′0 = x + U (−ε, ε),

x′k+1 = P
{

x′k + α · sign
[
∇x′k
L
(

f (x′k), y
)]}

,
(9)

where U (·, ·) is the uniform distribution, and α denotes the step size. The projection function
P{·} guarantees that after each iteration, the generated adversarial example x′ can always
be in the ε-ball with x as the center, and ε is the radius. The distance measurements used
for this attack are L∞ and L2. Specifically, the PGD attack adopted the L2-norm denoted as
the PGD_L2 in this paper.

3.2.3. Momentum Iterative Fast Gradient Sign Method

The momentum iterative FGSM (MI-FGSM, MIM) [33] integrates momentum into
the iteration process, which is unlike the traditional iteration-based FGSMs [5,34], and the
expressions of step k + 1 are shown as follows:

g0 = 0, x′0 = x,

gk+1 = µ · gk +
∇x′k
L( f (x′k), y)∥∥∥∇x′k
L( f (x′k), y)

∥∥∥
1

,

x′k+1 = P
{

x′k + α · sign(gk+1)
}

,

(10)

where µ is the decay factor for the gradient direction; α is the step size, and P{·} is the
projection function that can project the generated adversarial example x′ in the ε-ball. We
used the L∞ distance measure for the MI-FGSM attack.

3.2.4. Diverse Inputs Iterative Fast Gradient Sign Method

Inspired by data augmentation [35,36], the diverse inputs iterative FGSM (DI2-FGSM) [37]
introduces the input diversity to improve the transferability of adversarial examples. Specif-
ically, a random transformation function is designed to clean inputs and used in each itera-
tion of generating adversarial examples. In this paper, we employ the momentum-based
DI2-FGSM attack, and the expressions of step k + 1 are shown as follows:

x′0 = x + U (−ε, ε),

gk+1 = µ · gk +
∇x′k
L( f (T (x′k; P)), y)∥∥∥∇x′k
L( f (T (x′k; P)), y)

∥∥∥
1

,

x′k+1 = P
{

x′k + α · sign(gk+1)
}

,

T (x′k; P) =
{
T (x′k), with probability P
x′k, with probability 1− P,

(11)

Here, µ, α, and P{·} are defined the same as in Equation (10); T (·; ·) is the random
transformation function; and P is the transformation probability. We used the L∞-norm as
the distance measurement of DI2-FGSM.

3.2.5. Averaged Projected Gradient Descent

Inspired by expectation over transformation (EOT) [38], an averaged PGD (A-PGD,
EOTPGD) [39] was proposed to obtain a more stable and effective adversarial attack than
the vanilla PGD. It introduces the expectation into the PGD attack. The expressions on step
k + 1 of EOTPGD are shown as follows:
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x′0 = x + U (−ε, ε),

x′k+1 = P
{

x′k + α · sign
(
E
[
∇x′k
L
(

f (x′k), y
)])}

,
(12)

where E[·] and α denote the expectation and step size, respectively. We adopt the L∞-norm
as the distance measure of the EOTPGD attack.

3.2.6. Carlini and Wagner

Carlini and Wagner (CW) [40] is a novel optimization-based adversarial attack method.
Specifically, a new variable w is introduced and optimized according to the following
expressions to generate more deceptive adversarial examples:

w′ = min
w

∥∥∥∥1
2
(tanh(w) + 1)− x

∥∥∥∥2

2
+ c · G

(
1
2
(tanh(w) + 1)

)
,

x′ =
1
2
(tanh(w′) + 1),

G(·) = max
(

f (·)y −max
i 6=y

f (·)i,−κ

)
,

(13)

where c is a hyperparameter positively related to the strength of the generated adversarial
examples, whereas κ is a confidence hyperparameter that can make the adversarial example
x′ become misclassified more easily. f (·)y represents the output probability of the true label
y, and f (·)i represents the output probability of being misclassified. We used the L2-norm
distance measure for the CW attack.

4. Comparison Experiments
4.1. Comparison Methods

To fully verify the effectiveness and robustness of the proposed EMSF2Net, we chose
three state-of-the-art methods.
MART [41]:

A novel loss function for adversarial defense is proposed in this method, which can pay
more attention to the misclassified samples, thereby improving the adversarial robustness
of the deep model.
RobNet [42]:

In RobNet, the authors focus on the network structure and introduce the neural
architecture search (NAS) method into adversarial defense so that the robust network
structures can be searched and designed.
BPFC [43]:

To simulate human visual processing, the authors impose a regularizer for consistent
representation of the features learned from different quantized images in BPFC. This
regularizer can significantly improve the adversarial robustness of the deep model.

4.2. Performance against Adversarial Attacks with L∞-Norm

In this subsection, we will demonstrate the robust accuracy results of the proposed
EMSF2Net and the comparison methods under the adversarial attacks using the L∞-norm
on the CIFAR-10 dataset. Specifically, we choose FGSM, PGD, MI-FGSM, DI2-FGSM,
and EOTPGD with different attack strengths to show the superiority of the proposed
approach. These L∞-norm attacks are set to white-box. The attack strengths of these attacks
are set to 2/255, 4/255, 8/255, and 16/255.

First, we show the clean and robust accuracies against single-step FGSM attacks on
the CIFAR-10 dataset. The results are presented in Table 2. As shown in Table 2, we can
confirm that the proposed EMSF2Net outperforms the comparison methods under the
FGSM attack and keeps a high classification accuracy in the scene with clean images.
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Table 2. Clean and robust accuracies under the FGSM attack on CIFAR-10 dataset. The lightgray row
represents the results of the proposed method, and the bold results represent the best results.

FGSM
Method No Attack ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255

MART 83.6% 78.4% 72.9% 61.6% 42.6%
RobNet 82.7% 76.9% 70.6% 58.4% 38.0%
BPFC 82.4% 73.7% 64.6% 50.1% 33.7%

EMSF2Net (Ours) 92.7% 83.3% 81.1% 73.3% 42.7%

Next, we show the robust classification accuracy under the iteration-based L∞-norm
adversarial attacks with less complexity (iteration number = 10). For the convenience
of distinction, we use PGD-10, MI-FGSM-10, DI2-FGSM-10, and EOTPGD-10 to denote
these attacks with the iteration number of 10. The step size of these attacks is set to ε/10,
where ε denotes the attack strength. For MI-FGSM-10 and DI2-FGSM-10, the parameter
of the momentum factor is set to 0.5. For EOTPGD-10, the number for estimating the
mean gradient is set to 5. The results are presented in Table 3. As shown in the table, we
obtain that the proposed EMSF2Net still maintains the large advantages compared to the
comparison methods under more difficult iteration-based adversarial attacks. In particular,
the gaps between EMSF2Net and the other three comparison methods gradually increase
as the attack strength ε gradually increases. This phenomenon further illustrates the
robustness and effectiveness of the proposed approach.

Table 3. Robust accuracy against L∞-norm attacks with less complexity on CIFAR-10 dataset. The
lightgray row represents the results of the proposed method, and the bold results represent the best
results.

Attack Strength
ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255

PGD-10 MI-FGSM-10

MART 79.7% 75.6% 65.5% 43.3% 78.3% 72.4% 59.1% 32.9%
RobNet 78.3% 73.4% 62.1% 38.6% 76.8% 70.1% 55.7% 27.8%
BPFC 75.7% 68.2% 52.0% 26.9% 73.4% 63.2% 44.5% 20.5%

EMSF2Net (Ours) 82.1% 80.6% 74.8% 53.8% 82.1% 81.0% 77.5% 66.5%
DI2-FGSM-10 EOTPGD-10

MART 79.9% 76.1% 66.6% 45.8% 79.7% 75.6% 65.4% 43.5%
RobNet 78.6% 74.0% 63.3% 40.9% 78.3% 73.3% 62.1% 38.4%
BPFC 76.1% 69.4% 53.6% 29.1% 75.7% 68.3% 52.0% 26.9%

EMSF2Net (Ours) 81.2% 79.5% 73.8% 57.2% 82.1% 80.7% 74.7% 54.1%

Finally, we show the performance of the proposed EMSF2Net and the comparison
methods under more complex iteration-based adversarial attacks (iteration number = 20)
using the L∞-norm. We use PGD-20, MI-FGSM-20, DI2-FGSM-20, and EOTPGD-20 to
denote these attacks with the iteration number of 20. Except for the iteration number,
the other parameters in the attacks with more complexity are the same as those with less
complexity. The robust accuracy results are presented in Table 4. From this table, we can
conclude that the classification results of the comparison methods decrease significantly
as the attack strength ε increases under more complex attacks. In contrast, the proposed
EMSF2Net still maintains a high classification accuracy.

4.3. Performance against Adversarial Attacks with L2-Norm

In Section 4.2, we present the classification accuracy results of the proposed EMSF2Net
and three state-of-the-art comparison methods under white-box attacks with L∞-norm.
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These results reveal the robustness of EMSF2Net against L∞-norm attacks. In this sub-
section, we adopt another type of widely used adversarial attacks, the L2-norm attacks,
to further and more comprehensively verify the effectiveness of the proposed EMSF2Net.
Specifically, we use PGD_L2 attacks with different iteration numbers and CW attacks,
where PGD_L2-10, PGD_L2-20, and PGD_L2-40 represent PGD_L2 attacks with the itera-
tion numbers of 10, 20, and 40, respectively. Table 5 presents the robust accuracy results of
the proposed EMSF2Net and the comparison methods under L2-norm attacks with different
attack strengths ε or different iteration numbers. The step size of the PGD_L2 attacks is set
to ε/10, and the parameter c for box-constraint and confidence κ in CW are set to 1.0 and 0,
respectively. These L2-norm attacks are set to white-box.

Table 4. Robust accuracy against L∞-norm attacks with more complexity on the CIFAR-10 dataset.
The lightgray row represents the results of the proposed method, and the bold results represent the
best results.

Attack Strength
ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255 ε = 2

255 ε = 4
255 ε = 8

255 ε = 16
255

PGD-20 MI-FGSM-20

MART 78.3% 72.2% 57.7% 27.7% 78.3% 72.0% 57.3% 26.6%
RobNet 76.7% 69.7% 53.9% 22.5% 76.7% 69.6% 53.5% 21.8%
BPFC 73.3% 61.9% 39.9% 13.0% 73.2% 61.8% 39.7% 12.9%

EMSF2Net (Ours) 81.4% 79.0% 70.2% 45.9% 81.5% 79.0% 69.6% 50.5%
DI2-FGSM-20 EOTPGD-20

MART 78.6% 73.0% 59.1% 30.1% 78.3% 72.2% 57.9% 27.6%
RobNet 77.0% 70.5% 55.5% 24.5% 76.7% 69.7% 53.7% 22.5%
BPFC 73.8% 63.5% 41.9% 14.5% 73.3% 62.0% 39.8% 13.1%

EMSF2Net (Ours) 80.2% 76.9% 68.2% 45.1% 81.5% 79.4% 70.5% 45.4%

Table 5. Robust accuracy against adversarial attacks using the L2-norm on the CIFAR-10 dataset. The
lightgray row represents the results of the proposed method, and the bold results represent the best
results.

Attack Strength
ε = 1.0 ε = 2.0 ε = 3.0 ε = 1.0 ε = 2.0 ε = 3.0

PGD_L2-10 PGD_L2-20

MART 46.2% 17.2% 4.7% 37.5% 5.5% 0.4%
RobNet 42.8% 14.4% 3.9% 34.5% 4.9% 0.5%
BPFC 47.1% 23.0% 11.3% 41.7% 12.9% 3.3%

EMSF2Net (Ours) 78.8% 72.4% 64.1% 74.1% 62.9% 52.0%
Attack strength Iteration number (steps)

ε = 1.0 ε = 2.0 ε = 3.0 100 500 1000

PGD_L2-40 CW

MART 34.1% 3.1% 0.1% 22.9% 21.0% 20.9%
RobNet 31.5% 3.1% 0.1% 12.9% 10.8% 10.8%
BPFC 39.4% 8.7% 1.4% 59.4% 59.4% 59.4%

EMSF2Net (Ours) 67.6% 50.7% 39.6% 72.5% 69.1% 67.7%

Table 5 shows that EMSF2Net can always maintain the highest accuracy under differ-
ent L2-norm attacks with different strengths and iterations compared to the comparison
methods. In particular, the accuracy of the comparison methods drops rapidly, even lower
than 1.0% in some cases, with the increase in ε under the PGD_L2 attacks. In contrast,
the proposed EMSF2Net can still maintain a relatively high adversarial robustness. The pro-
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posed EMSF2Net can also maintain the comparable performance under the notoriously
difficult CW attack.

5. Ablation Analysis

In this section, we conducted a series of ablation experiments to further reveal the
effectiveness and robustness of EMSF2Net.

We used two approaches for the ablation analysis. The first one is the baseline ResNet-
50 shown in Table 1. We added threeLPC at the outputs of STAGES 2–4 for a fair comparison.
We also constructed a new architecture called MSF2Net (Multi-Stage Feature Fusion Net-
work) to verify the effectiveness of the FE Block. Compared with EMSF2Net, MSF2Net
removes the FE Block of each stage, and the remaining parts are the same as EMSF2Net.
The total loss functions of the baseline and MSF2Net during the training process are the
sum of LCE and LPC.

First, in Section 5.1, we vividly show the performance of the baseline, MSF2Net,
and EMSF2Net under the adversarial attacks with different parameter settings in the form
of line graphs. Then, in Section 5.2, we present the classification accuracy of each class in the
CIFAR-10 dataset for the three approaches against different attacks in the form of histograms
to reveal which classes in the CIFAR-10 dataset are more likely to be misclassified using
these methods. Furthermore, in Section 5.3, we use a powerful tool for interpretability,
grad-cam, to visualize each stage (STAGES 1–4) of the three methods. We also reveal
which features the three methods focus on under adversarial attacks. Thus, the reason
for the adversarial robustness of the proposed EMSF2Net can be understood. Finally, we
use another popular interpretability tool, t-SNE, to show the feature distributions of three
approaches under adversarial attacks with different settings.

5.1. Performance on Three Methods

In this subsection, we present the classification results of the baseline, MSF2Net,
and EMSF2Net under the L∞-norm and L2-norm attacks with the white-box setting on the
CIFAR-10 dataset. First, the performance under the L∞-norm attacks is given and shown in
Figure 2. The attack strengths ε of these attacks are set to 2/255, 4/255, 8/255, and 16/255,
respectively. Other parameters are set the same as the parameters explained in Section 4.2.
Next, we show the robust accuracy of these three methods under the L2-norm white-box
attacks in Figure 3. The attack strengths ε of PGD_L2 attacks are set to 1.0, 2.0, and 3.0,
whereas the iteration numbers of CW are set to 100, 500, and 1000, respectively. Other
parameters are set the same as the parameters explained in Section 4.3.

As shown in Figure 2, although the gaps between the three approaches are not obvious
under the FGSM attack, the advantages of the proposed EMSF2Net gradually emerge
under the iteration-based attacks. Moreover, the proposed EMSF2Net still outperforms
the baseline and MSF2Net under the L2-norm white-box attacks. Particularly, the robust
accuracy of the baseline and MSF2Net are below 50% under the CW attack, whereas the
accuracy of the proposed EMSF2Net is consistently above 60%. Thus, the effectiveness of
the FE Block is also clearly verified from Figures 2 and 3.

5.2. Performance on Each Class of CIFAR-10

To further investigate the impacts of white-box adversarial attacks, we output the
accuracy of each class of the baseline, MSF2Net, and EMSF2Net, and the results are shown
in Figures 4 and 5. Figure 4 shows the clean accuracy of each class and the robust accuracy
of each class under the L∞-norm white-box attacks, while Figure 5 shows the robust
accuracy under the white-box attacks with the L2-norm. In Figure 4, we use FGSM, PGD-10,
MI-FGSM-20, DI2-FGSM-10, and EOTPGD-20 with the same attack strength ε = 0.04.
For PGD-10, the step size is set to 0.004. For MI-FGSM-20 and DI2-FGSM-10, their step size
and momentum factor are set to 0.004 and 0.5, respectively. For EOTPGD-20, its step size
and number for estimating the mean gradient are set to 0.004 and 5. In Figure 5, we use the
PGD_L2 attacks (PGD_L2-10, PGD_L2-20, and PGD_L2-40) and CW attack. For the PGD_L2
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attacks, their attack strength and step size are set to 4.0 and 0.4, respectively. For CW, its
box-constraint parameter c, confidence κ, and iteration number are set to 1.0, 0, and 400,
respectively.

Figure 2. Robust classification accuracy of the baseline, MSF2Net, and EMSF2Net under adversarial
attacks using the L∞-norm on the CIFAR-10 dataset.

Figure 3. Robust classification accuracy of the baseline, MSF2Net, and EMSF2Net under adversarial
attacks using the L2-norm on the CIFAR-10 dataset.
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Figure 4. Clean and robust accuracies under L∞-norm attacks of the three methods on each class of
the CIFAR-10 dataset. The X-axis and Y-axis of each sub-figure represent the robust accuracy and
class name of CIFAR-10, respectively.

Figure 5. Robust accuracy under L2-norm attacks of the three methods on each class of the CIFAR-10
dataset. The X-axis and Y-axis of each sub-figure represent the robust accuracy and class name of
CIFAR-10, respectively.
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The upper left part of Figure 4 is the clean accuracy of each class. We can see that when
there is no attack, the accuracy of each class of the three methods almost has no difference.
However, after the adversarial attacks, the accuracy gaps between the three methods
appear. As shown in Figures 4 and 5, after the L∞- and L2-norm attacks, EMSF2Net can
always keep a comparable, or an even better, performance compared with the baseline and
MSF2Net. In particular, the accuracy of baseline and MSF2Net on class “cat” is extremely
low, but EMSF2Net still maintains high accuracy. Regarding the reason for this, we consider
that the structural information contained in the images with class “cat” is more complicated
than that contained in the images with other classes, and as mentioned earlier, the features
after the FE Block in EMSF2Net will have a strong ability to express information. Therefore,
they can better represent the information in the images with the class “cat”, while the
features in the baseline and MSF2Net may not be able to represent this rich information
well. So after regularization, the adversarial robustness of class “cat” will be weak.

5.3. Grad-Cam Visualization

In this subsection, to understand which features the three approaches pay attention
to when facing adversarial attacks, we use grad-cam to visualize the output features of
STAGES 1–4 in these three methods. In this way, the recognition mechanism of the three
methods under adversarial attacks can be revealed. It is also possible to know why the
proposed EMSF2Net can keep high robustness.

Figures 6 and 7 show the visualization results under the white-box L∞-norm and
white-box L2-norm attacks, respectively. The “BS” in Figures 6 and 7 denotes the baseline
method. For the L∞-norm attacks, we use PGD-10 and EOTPGD-20, and their attack
strength ε and step size are set to 0.02 and 0.002, respectively. Additionally, the parameter
for estimating the mean gradient in EOTPGD-20 is set to 5. For the L2-norm attacks, we
adopt the PGD_L2 attacks with different iterations (PGD_L2-10, PGD_L2-20, and PGD_L2-
40) and the CW attack, which is known for its difficulty. For the PGD_L2 attacks, their
attack strength and step size are set to 2.0 and 0.2, respectively. For CW, its box-constraint,
confidence, and iteration parameters are set to 1.0, 0, and 500, respectively.

From Figures 6 and 7, we can conclude that although the attention regions of STAGES
1–3 of the three approaches are confusing, the three methods begin to differ in the attention
regions of STAGE 4. Specifically, the attention regions of the baseline and MSF2Net at
STAGE 4 are either not the target class or are relatively large. However, the proposed
EMSF2Net can always focus on the most important features of the target. We believe
that for a non-denoising network, when the input is the adversarial image, it is easier to
misclassify if the attention regions of the network are larger. This is because the texture
features in the adversarial image have been contaminated, and if more regions are focused
on, more erroneous features will be extracted. In contrast, if a network can always focus on
and extract the most core features in the adversarial image, the classification accuracy can
be improved since the core features contain relatively fewer adversarial noises.

Figure 6. Grad-cam visualization results of the baseline, MSF2Net, and EMSF2Net under adversarial
attacks with L∞-norm.
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Figure 7. Grad-cam visualization results of the baseline, MSF2Net, and EMSF2Net under adversarial
attacks with L2-norm.

Moreover, regarding which features in CNN are more important, as can be seen from
Figures 6 and 7, the areas of interest of STAGE 1–3 (shallow layers) are not the target areas.
However, the outputs of STAGE 4 (deep layers) may affect the final classification results.
Therefore, we can conclude that the deep layers are more important and more suitable
for regularization.

5.4. t-SNE Visualization

In this subsection, we use t-SNE to visualize the output features of the last layer in these
three approaches to view the feature distributions of the baseline, MSF2Net, and EMSF2Net.
Figures 8–11 show the visualization results under no attacks, less complex L∞-norm attacks,
more complex L∞-norm attacks, and L2-norm attacks, respectively. In these figures, “BS”
denotes the baseline method, and the adversarial attacks used here are white-box settings.
The serial numbers 1–10 in these figures represent “airplane”, “automobile”, “bird”, “cat”,
“deer”, “dog”, “frog”, “horse”, “ship”, and “truck” on the CIFAR-10 dataset, respectively.

Figure 8. t-SNE visualization results of the baseline, MSF2Net, and EMSF2Net without any attacks
on the CIFAR-10 dataset.
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Figure 9. t-SNE visualization results of the baseline, MSF2Net, and EMSF2Net under the L∞-norm attacks with less complexity on the CIFAR-10 dataset.
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Figure 10. t-SNE visualization results of the baseline, MSF2Net, and EMSF2Net under the L∞-norm attacks with more complexity on the CIFAR-10 dataset.
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Figure 11. t-SNE visualization results of the baseline, MSF2Net, and EMSF2Net under the L2-norm attacks on the CIFAR-10 dataset.
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In Figure 9, we adopt FGSM, PGD-10, MI-FGSM-10, DI2-FGSM-10, and EOTPGD-10
with the same attack strength ε = 4/255 as L∞-norm attacks with less complexity. The step
size, momentum factor, and number for estimating the mean gradient are set to ε/10, 0.5,
and 5, respectively. For the more complex L∞-norm attacks in Figure 10, we use PGD-20,
MI-FGSM-20, DI2-FGSM-20, and EOTPGD-20. The parameters, except the iteration number,
are the same as the parameters used in Figure 9. Finally, we adopt the PGD_L2 attacks with
different iterations (PGD_L2-10, PGD_L2-20, and PGD_L2-40) and the CW attack as the
L2-norm attacks in Figure 11. For the PGD_L2 attacks, their attack strength ε and step size
are set to 1.0 and 0.1, respectively. For CW, its box-constraint, confidence, and iteration
parameters are set to 1.0, 0, and 50, respectively.

From Figure 8, we can conclude that the boundaries between each class of the CIFAR-10
dataset of the three methods are relatively obvious, indicating that these three methods can
classify CIFAR-10 well without any attacks. However, the gaps between the three methods
begin to appear under various adversarial attacks. From Figures 9–11, we can find that
under adversarial attacks, the classification results of the baseline are very chaotic, and the
boundaries between each class of CIFAR-10 are very blurred; however, the performance
of MSF2Net is slightly better. In contrast, the proposed EMSF2Net can always keep clear
classification boundaries in most cases, which fully demonstrates the robustness and
effectiveness of our method.

6. Conclusions

In this paper, we explored the adversarial defense based on regularization. We observe
that the existing regularization-based adversarial defense methods do not discuss in detail
what type of features are more suitable for regularization to further improve the adversarial
robustness of CNNs. Therefore, we propose a new CNN architecture called EMSF2Net, con-
sisting of three core operations: MSFE, MSF, and regularization. The proposed EMSF2Net
shows that the robustness of CNN will be significantly improved if the enhanced multi-
stage fusion feature is regularized. Extensive comparison experiments and ablation studies
of white-box adversarial attacks with different settings demonstrate the effectiveness and
robustness of our proposed method since the visual information processing mechanisms of
different CNN-based structures are similar. Specifically, we believe that the CNN-based
structures use operations such as convolution to extract the correlations between local
data to effectively learn the representation information of each specific class. Thus, we
have reason to believe that the proposed approach also performs well in other CNN-based
structures. Regarding the performance of the proposed method on other structures, we
would like to show it in future works.
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