
Zero-shot Cross-Lingual Phonetic Recognition with External Language
Embedding

Heting Gao1, Junrui Ni1, Yang Zhang2, Kaizhi Qian2, Shiyu Chang2, Mark Hasegawa-Johnson1

1University of Illinois at Urbana-Champaign, USA
2MIT-IBM Watson AI Lab, USA

{hgao17,junruin2,jhasegaw}@illinois.edu, {Yang.Zhang2,kqian,Shiyu.Chang}@ibm.com

Abstract
Many existing languages are too sparsely resourced for mono-
lingual deep learning networks to achieve high accuracy. Mul-
tilingual phonetic recognition systems mitigate data sparsity is-
sues by training models on data from multiple languages and
learning a speech-to-phone or speech-to-text model universal to
all languages. However, despite their good performance on the
seen training languages, multilingual systems have poor per-
formance on unseen languages. This paper argues that in the
real world, even an unseen language has metadata: linguists can
tell us the language name, its language family and, usually, its
phoneme inventory. Even with no transcribed speech, it is pos-
sible to train a language embedding using only data from lan-
guage typologies (phylogenetic node and phoneme inventory)
that reduces ASR error rates. Experiments on a 20-language
corpus show that our methods achieve phonetic token error rate
(PTER) reduction on all the unseen test languages. An ablation
study shows that using the wrong language embedding usually
harms PTER if the two languages are from different language
families. However, even the wrong language embedding often
improves PTER if the language embedding belongs to another
member of the same language family.
Index Terms: speech recognition, phonetic recognition, exter-
nal linguistic knowledge

1. Introduction
Modern end-to-end neural network based speech recognition
systems (ASR) have achieved great success on resource-rich
languages such as English and Mandarin [1]. However, most
existing languages are resource-deficient, making it hard for
neural networks to achieve similar accuracy.

Multilingual and Cross-lingual phonetic recognition at-
tempt to partially solve the low-resource problem by building a
universal phone recognizer that transcribes speech from differ-
ent languages into corresponding phone sequences, under the
assumption that there exists a universal acoustic model shared
by all languages. If this assumption holds, an ideal recog-
nizer should have low error rates on not only the languages it
is trained on, i.e. multilingual error rates, but also the unseen
languages, i.e. cross-lingual error rates, in a zero-shot setting.

However, although multilingual training is shown to im-
prove the performance on seen languages [2, 3, 4], it does not
greatly benefit zero-shot generalization to unseen languages [5].
This implies that acoustic models implicitly captured in these
multilingual systems are language-specific, and thus would not
generalize to unseen languages unless additional information
about the unseen languages is supplied.

Motivated by this, we propose to improve the zero-shot
cross-lingual recognition accuracy by incorporating a language

embedding that captures two types of external knowledge – phy-
logenetic similarity and phone inventory. For phylogenetic sim-
ilarity, we extract phylogenetic information from Glottolog [6],
which is a large graph specifying the belonging relations be-
tween nodes of dialects, languages and language families. As-
suming the closeness of the two languages in the graph cap-
tures the phylogenetic similarities between the languages, we
use node2vec [7] to extract vector representations for each node.
For the phone inventory information, we extract a binary vec-
tor to represent the phoneme inventory for each language from
Phoible [8]. The two vectors are combined and fed into a lan-
guage encoder and produce the language embedding, on which
the multilingual phoneme classifier is conditioned. The phone
inventory information is also imposed by masking on the output
logits with the binary vector.

The experiments show that the proposed algorithm with
language embedding and masking improves the performance
over the baselines on the unseen languages in the zero-shot set-
ting by a large margin (4%-8% absolute). Ablation study shows
that both the phylogenetic and phone inventory information are
crucial for performance improvement.

2. Related Work
There has been active research on multilingual recognition. A
large number of languages do not have enough parallel speech
and text data and deep learning models trained on these lan-
guages usually have high error rates [5]. Multilingual speech
recognition mitigates the data sparsity by training the network
on a combined dataset from several languages. The network
usually has a common encoder that extracts acoustic informa-
tion from audio features and can either have a common de-
coder with a shared phoneme inventory [4] or language-specific
decoders with private phone [3, 9, 10] or character invento-
ries [11, 12, 13]. Multilingual ASR can benefit from the use
of self-supervised pretraining algorithms such as contrastive
predictive coding [14, 15, 16], which pretrains a model on
large amounts of unlabeled raw audio data to predict neighbor-
ing frame representations given the center frame. Multilingual
models generally have better accuracy and robustness compared
to monolingual models [5, 4, 3, 9, 10] as they benefit from in-
creased amount and diversity of data.

Language or dialect embedding has been shown to improve
multilingual ASR systems [17, 18, 19, 20]. The embedding
can be a one-hot vector specifying language ID [17, 19] or a
vector learned from acoustic data under a standard multilin-
gual model [18, 20] and can be used as additional input fea-
tures to the network [17, 19], as adapter modules for language-
specific adjustments [19] or as interpolation weights for the
encoder [18]. However, the embeddings in all these previous
works depend on the test language being either one of the train-

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-18431304



ing languages (in the case of a one-hot embedding) or recorded
in a fashion that makes its acoustic embedding vector a useful
predictor of its phoneme-to-sound acoustic models.

Studies have found that multilingual models do not gen-
eralize well to unseen languages [5], without adapting to par-
allel data from that language. While multilingual training can
yield error rates 10–20% below monolingual training, the leave-
one-out cross-lingual error rate when applying the multilin-
gual model to an unseen language can be 70–90%. Because
of the high error rates of zero-shot cross-lingual ASR, most
researchers studying cross-lingual ASR have chosen pragmat-
ically to define that term to mean few-shot rather than zero-shot
recognition, e.g., by fine-tuning using one hour [21, 22] or a
few hours [23] of transcribed data in the target language. Per-
haps the prior work most similar to the work in this paper is a
set of experiments using the Phoible [8] phoneme inventory of
a language to define an untrained, knowledge-based linear out-
put layer called the “signature matrix” [24, 4]; our phone token
masking strategy is a simplification of the signature matrix, and
our proposed language encoding is an enrichment of the same.

3. Methods
Previous works have shown that it is hard to achieve good per-
formance on zero-shot cross-lingual recognition without any
knowledge about the testing language. We therefore consider
incorporating extra information about the testing language. Fig-
ure 1 shows the overview of the proposed architecture. The
proposed system is a CTC+Attention system based on [5], with
three additions: (1) wav2vec-based feature extraction based
on [15], (2) phoneme inventory masking similar to [4], and (3)
the proposed typology-based language encoder.

The language encoder The language encoder includes
two sets of information about the test language. The first is the
language phylogenetic information extracted from Glottolog,
which is a graph containing dialects, languages, language fam-
ilies as nodes and the belonging relationships as edges. We use
node2vec [7] to embed the nodes so that the languages that are
close in the graph have larger cosine similarities.

Similar to the multilingual allophone system in [4], we also
include phone inventory information from Phoible [8], a cross-
linguistic phonological inventory database for over 2000 dis-
tinct languages. We combine inventories for all the languages
to create a shared phoneme inventory and use a binary vector to
represent the phoneme set of each language.

The language node embedding and the binary phoneme in-
ventory vector are concatenated, forming a general representa-
tion applicable to at least 2,000 languages. The vector is then
fed into the language encoder, producing a language embedding
as an additional input to the phoneme classifier.

Wav2vec Feature Extraction Considering the remark-
able performance boost brought by pretrained unsupervised
acoustic representation, we experiment on the feature extrac-
tor (referred to as feature encoder in [16]) from wav2vec2.0 1

that is pretrained on 1000 hours of LibriSpeech [25].
Phone Inventory Masking In addition to feeding the

phone inventory asks as an input to the language encoder, we
also directly use it to mask out the non-existing phonetic tokens
in the output layer, which has been shown to be effective in re-
ducing the error rate, especially for unseen languages.

1https://github.com/pytorch/fairseq/tree/
master/examples/wav2vec
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Figure 1: Architecture overview

Table 1: Sources of data used in our cross-lingual experiment.
The upper part is the training languages and the lower part is
the testing languages. “Type” column denotes whether the cor-
pus contains spontaneous (Sp.) or read speech. “Len” column
shows the total duration of all utterances in hours. “Family”
column shows the language family.

Language Abbr Corpus Type Family Len

Bengali 103 Babel Sp. Indo-Aryan 215
Vietnamese 107 Babel Sp. Vietic 215
Zulu 206 Babel Sp. Bantu 211
Amharic 307 Babel Sp. Ethiopic 204
Javanese 402 Babel Sp. Austronesian 204
Georgian 404 Babel Sp. Kartvelian 190
Dutch N CGN Read Germanic 64
Czech CZ GP Read West Slavic 29
French FR GP Read Romance 25
Mandarin CH GP Read Sinitic 31
Thai TH GP Read Tai 22
German GE GP Read Germanic 18
Portuguese PO GP Read Romance 26
Turkish TU GP Read Turkic 17
Bulgarian BG GP Read South Slavic 21

Cantonese 101 Babel Sp. Sinitic 215
Lao 203 Babel Sp. Tai 207
Croatian CR GP Read South Slavic 16
Spanish SP GP Read Romance 22
Polish PL GP Read West Slavic 24

4. Experiment Setup
4.1. Dataset

The performance of our model is evaluated on a corpus that
consists of 20 languages, 8 from IARPA Babel project corpora,
1 from CGN (Spoken Dutch Corpus) [26] and 11 from Glob-
alphone [27] (GP) as summarized in Table 1. We only use the
read speech part of CGN corpus. We use the default 8:1:1 train-
dev-test partition provided by Babel corpora and split CGN and
Globalphone corpora into 8:1:1 partitions with non-overlapping
speakers. Since our task is cross-lingual phonetic token recog-
nition, the train and dev partitions of the testing languages are
not used. We select 5 languages, namely Cantonese, Lao, Croa-
tian, Spanish and Polish as the testing language set and use the
remaining 15 languages as a training language set. Each testing
language is selected to have a similar language belonging to the
same language family in the training set.

4.2. Data Preprocessing

We use ESPnet as our ASR framework [28] since ESPnet offers
a complete ASR pipeline including data preprocessing, Trans-
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Table 2: Phonetic token error rates (PTER) in percentage. The columns “103” to “BG” are PTER’s evaluated on the 15 seen languages
and the columns from “101” to “PL” are PTER’s evaluated on the 5 unseen languages. The column “AvgS” the is the average PTER
over the 15 seen languages and the column “AvgU” are the average PTER over the 5 unseen languages.

Exp 103 107 206 307 402 404 N CZ FR CH TH GE PO TU BG 101 203 CR SP PL AvgS AvgU

base 40.2 52.3 42.4 44.7 47.0 38.0 21.3 11.0 13.7 30.0 26.1 26.1 18.4 21.3 27.0 77.0 78.2 47.8 38.1 62.5 30.6 60.7
w2v 41.3 36.6 39.0 43.1 48.9 42.2 15.3 10.5 14.8 17.2 22.2 25.1 18.7 21.0 30.2 77.9 79.3 47.3 39.0 66.7 28.4 62.0

w2v+mask 41.1 36.6 38.8 43.1 48.4 41.7 15.3 10.5 14.8 17.2 22.2 25.1 18.7 21.0 30.2 76.5 76.8 42.8 36.8 61.2 28.3 58.8
w2v+linear 39.0 32.6 35.9 39.1 44.9 39.1 14.0 9.1 12.9 15.9 19.9 23.2 16.3 19.3 28.2 74.6 76.3 41.3 37.3 59.8 26.0 57.9

w2v+linear+mask 39.0 32.6 35.9 39.1 44.9 39.1 14.0 9.1 12.9 15.9 19.9 23.2 16.3 19.3 28.2 73.1 72.8 35.2 34.4 54.0 26.0 53.9
w2v+gcn 38.2 32.0 35.2 38.0 44.2 38.6 13.2 8.5 12.1 15.5 18.9 22.3 16.0 18.4 26.9 76.1 72.4 50.8 37.5 61.9 25.2 59.7

w2v+gcn+mask 38.2 32.0 35.2 38.0 44.2 38.6 13.2 8.5 12.1 15.5 18.9 22.3 16.0 18.4 26.9 73.1 69.3 39.6 35.3 56.3 25.2 54.7

former implementation, network training and decoding.
Due to the sampling rate difference between different cor-

pora, we upsample all audio signals to 16kHz. Using Kaldi [29],
we then extract 80-dim log Mel spectral coefficients with 25ms
frame size and 10ms shift between frames, and augment the
frame vectors with 3 extra dimensions for pitch features.

The transcriptions are converted to IPA symbols using
LanguageNet grapheme-to-phone (G2P) [30] models and the
unique IPA symbols, including base phones, diacritics and
suprasegmentals, in all 15 training languages are collected as
the shared phonetic token inventory. The resulting inventory
size is 95. The test languages contain phones that are not
present in any training languages, which causes an out-of-
vocabulary (OOV) problem as our network cannot predict a
phone it has never seen. We map each OOV phone to its closest
in-vocabulary phone according to its articulatory features de-
fined by IPA. For example, /B/ in Spanish is mapped to /v/.

4.3. Language Embedding

We experiment with two types of transformations to generate
the language embedding, a 3-layer fully-connected transfor-
mation and a 3-layer graph-convolutional transformation2 on
the language representations extracted from Glottolog [6] and
Phoible [8]. Each transformation layer is followed by a ReLU
activation and a dropout layer with a dropout rate of 10%. The
output of the transformation networks is used as language em-
bedding and as input to the self-attention based ASR network.

4.4. Model

We experiment with two audio embedding modules. One con-
sists of two 2D convolutional layers (randomly initialized) with
a subsampling factor of 4 that takes the extracted 83-dim au-
dio features as input, and the other is the feature extractor of a
pretrained wav2vec2.0 [16] model that directly takes the 16kHz
waveform as input. We fix the weights of the wav2vec feature
extractor during training.

The encoder of our model architecture is similar to the
transformer architecture in [31]. The audio embeddings are fed
into 12 self-attention encoder layers, each having 4 heads, an
attention dimension of 256 and a 2048-dim position-wise feed-
forward layer. The only difference is that input to each encoder
layer is additionally concatenated with the correct language em-
bedding to provide language information to the transformer.

Our preliminary experiments indicate that the self-attention
decoder framework does not outperform a simple CTC decoder
in cross-lingual recognition, which is consistent with the find-
ings in [23]. Therefore, we discard the self-attention decoder

2https://github.com/tkipf/gcn

in [31] and apply a dense layer to the encoder output to com-
pute the frame-wise phoneme posteriors and the CTC loss.

4.5. Evaluation

We use phonetic token error rate (PTER) [5] to evaluate our
models. It is calculated the same way as character error rate
except that the model predicts a set of language-universal IPA
tokens instead of normal orthographic characters. It treats di-
acritics (such as aspiration /h/), suprasegmentals (such as long
vowels /:/ and primary stress symbol /"/), and tones (such as
high tone /

Ă
£/ and low tone /Ă£/) as separate tokens. It also splits

diphthongs and affricates into individual symbols. For example
/"ta:/ would be viewed as 4 tokens. Therefore, our PTER met-
ric slightly differs from the phone error rate (PER) calculated in
other multilingual literature such as [4].

5. Results
5.1. Multilingual and Cross-lingual Phonetic Recognition

We train and test on our 20-language dataset with 7 dif-
ferent models: “base”, “w2v”, “w2v+mask”, “w2v+linear”,
“w2v+linear+mask”, “w2v+gcn”, “w2v+gcn+mask”. All the
models have a self-attention encoder and a CTC decoder.
“base” model uses a randomly initialized 2D convolutional fea-
ture extractor and the models with “w2v” label instead use a pre-
trained wav2vec feature extractor. The models with “linear” and
“gcn” labels have an additional linear or graph-convolutional
transformation network to compute the language embeddings.
Models with “mask” apply phone inventory masking to the soft-
max output layer of the decoder.

The performance is shown in Table 2, where both proposed
models (“w2v+linear+mask” and “w2v+gcn+mask”) outper-
form the “base” model; “w2v+gcn+mask” model achieves the
lowest multilingual error rate, while “w2v+linear+mask” model
achieves lowest cross-lingual error rate.

By comparing “base” and “w2v”, we see that a pretrained
wav2vec feature extractor reduces the average multilingual
recognition error rate. In particular, the reduction is 15.7% on
Vietnamese (107), 6% on Dutch (N) and 12.8% on Mandarin
(CH). Although it slightly increases the cross-lingual error rate,
we decide to build on “w2v” model instead of “base” model.

Comparing the average test PTER (AvgU) of “w2v”,
“w2v+linear” and “w2v+gcn” with that of “w2v+mask”,
“w2v+linear+mask” and “w2v+gcn+mask”, we see that mask-
ing out the non-existing phonetic tokens in the test language
greatly improves the recognition accuracy, possibly due to the
reduced prediction space. The“w2v+gcn+mask” model, which
places the most emphasis on language-family structure, gains
the largest improvement from phone masking, but still does
not outperform the “wav+linear+mask” model, suggesting that
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Figure 2: PTER of “w2v+linear+mask” model tested on Croa-
tian with correct and fake language labels.

Figure 3: t-SNE plot of language embedding. The left plot is the
embedding from “w2v+linear” and the right plot is the embed-
ding from “w2v+gcn”.

applying the graph constraint a second time (GCN on top of
node2vec embeddings) provides no extra reduction of PTER.

5.2. Cross-lingual Phonetic Recognition with Fake Lan-
guage Labels

To better understand how language embedding affects the
model’s performance, we feed both true and fake language em-
beddings to the model and plot the test PTERs across epochs.
Figure 2 shows the PTER of “w2v+linear+mask” model tested
on Croatian. The blue and orange triangle points are PTERs of
the “w2v” and “w2v+mask” models respectively. The blue solid
line labeled “CR CR” is the PTER curve with correct Croatian
embedding and the dash-dotted lines or dotted lines are PTER’s
of the model when provided with fake language embeddings.

We observe that when provided with correct language em-
bedding (CR CR), the model outperforms the masked wav2vec
baseline (w2v+mask). The PTER of the model when provided
with fake embedding varies from 35% to 80%. In particular,
when provided with fake embeddings of languages from the
same language family, Slavic family in this example, the model
generally has a lower PTER compared to others, as shown by
the curves of Polish (CR PL), Bulgarian (CR BG) and Czech
(CR CZ). This indicates that our model is able to leverage the
phylogenetic and phonetic similarities for better accuracy.

5.3. Visualization of Language Embedding

We visualize the language embeddings of “w2v+linear” and
“w2v+gcn” using t-SNE [32] in Figure 3. The small and light

Table 3: Phonetic token error rates (PTER) Ablation Study.

w2v+linear+mask 101 203 CR SP PL Avg

glotto+phoible 73.1 72.8 35.2 34.4 54.0 53.9
glotto 69.5 73.4 35.1 34.8 55.7 53.7

phoible 76.0 71.9 36.6 38.8 53.4 55.3

circles are the embeddings from earlier epochs and large and
solid circles are from later epochs. We use small and light text
to label the embeddings’ initial-epoch position and large and
solid text to label the final-epoch position. In the right plot, we
observe that graph convolutional transformation on language
vectors largely preserves the phylogenetic information; the lan-
guages that are close in the initial epoch remain close in the final
epoch. In contrast, the left plot shows that linear transformation
preserves the phylogenetic information only partially. For ex-
ample, while the Sinitic-language embeddings (CH and 101)
are close initially, Cantonese (101) moves away from Mandarin
(CH) towards the Slavic-languge embeddings (CR, CZ, PL and
BG) as the training epoch increases. This observation indicates
the linear transformation has larger flexibility to learn its em-
beddings; as shown in Table 2, this flexibility reduces the cross-
lingual error rate.

5.4. Ablation Study on Language Representation

We conduct an ablation study to see the role of the Glot-
tolog vector and Phoible vector in error rate reduction by train-
ing “w2v+linear” model with only Glottolog vector, with only
Phoible vector and with both. The results are shown in Ta-
ble 3. First, providing external information reduces error: all
three settings (“glotto”, “phoible”, “glotto+phoible”) beat the
“w2v+mask” baseline. Second, using only Glottolog vectors
reduces the Cantonese (101) error rate to 69.5% but raises the
Lao (203) error rate to 73.4%, which is close to the performance
of the “w2v+gcn+mask” model, while using only Phoible vec-
tors does the reverse, raising the Cantonese error rate but reduc-
ing the Lao error rate. These results show both vectors improve
the performance in different ways; “w2v+linear+mask” finds
a good trade-off between relying on phylogenetic information
and phonetic information. Finally, we notice that using only
Glottolog vectors (“glotto”) has nearly the same performance as
both vectors (“glotto+phoible”). We hypothesize that phoneme
masking is functioning as a substitution, reducing the necessity
of the phoible vector.

6. Conclusions
In this work, we propose to use external phylogenetic and
phonetic knowledge from language typologies to improve the
cross-lingual phoneme recognizer. We study the performance
of learning language embeddings using a linear transformation
network and a graph convolutional network and show that both
models outperform the baseline. In particular, we show both
phylogenetic and phonetic knowledge are necessary for good
cross-lingual accuracy and that a linear transformation network
can flexibly leverage both types of information to learn a better
phonetic model compared to a graph convolutional network.
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