
Gradient Regularization for Noise-Robust Speaker Verification

Jianchen Li, Jiqing Han, Hongwei Song

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
{lijianchen, jqhan, songhongwei}@hit.edu.cn

Abstract
Noise robustness is a challenge for speaker recognition systems.
To solve this problem, one of the most common approaches is
to joint-train a model by using both clean and noisy utterances.
However, the gradients calculated on noisy utterances generally
contain speaker-irrelevant noisy components, resulting in over-
fitting for the seen noisy data and poor generalization for the
unseen noisy environments. To alleviate this problem, we pro-
pose the gradient regularization method to reduce the speaker-
irrelevant noisy components by aligning the gradients among
the noisy utterances and their clean counterparts. Specifically,
the gradients on noisy utterances are forced to follow the direc-
tions of the gradients calculated on their clean counterparts, and
the gradients across different types of noisy utterances are also
aligned to point in similar directions. Since the noise-related
components of the gradients can be reduced by the above align-
ment, the speaker model can be prevented from encoding irrel-
evant noisy information. To achieve the gradient regularization
goals, a novel sequential inner training strategy is also proposed.
Experiments on the VoxCeleb1 dataset indicate that our method
achieves the best performance in seen and unseen noisy envi-
ronments.
Index Terms: gradient regularization, noise-robust, speaker
verification, speaker recognition

1. Introduction
Automatic Speaker Verification (ASV) is the task of verifying
if an utterance is spoken by a claimed speaker [1]. Recently,
with the development of deep learning, the state-of-the-art ASV
system has shifted from i-vector [2] with probabilistic linear
discriminant analysis (PLDA) [3] to deep speaker embedding
models [4, 5]. Although the deep speaker embedding model has
achieved significant success in the clean acoustic environment
[6], the performance tends to degrade when the model is de-
ployed in realistic complex environments, especially noisy en-
vironments. In general, there is no prior knowledge of noise
distribution in advance, which makes the noise problem more
difficult [7].

Tremendous research efforts have been invested to improve
noise robustness. One approach is to apply speech enhance-
ment techniques to recover the clean signals. Zhao et al. [8]
first proposed deep learning based speech enhancement mod-
ules for speaker recognition. Shon et al. [9] proposed the
VoiceID loss for generating ratio masks to filter out the unnec-
essary components of the spectrogram. Shi et al. [10] integrated
speech enhancement and speaker recognition modules into one
framework. Another approach regards noisy data as a differ-
ent domain from clean data and uses adversarial training to get
domain-invariant speaker models, in which the domain label of
training data can be various noise types or different SNRs [11].
For example, the multitask adversarial training framework was
proposed for training noise-robust speaker models [12], and the

unsupervised adversarial invariance architecture was adopted to
disentangle speaker-discriminative information [13]. There are
also other robust approaches. Kataria et al. [14] optimized a
deep feature loss for feature-domain denoising. Kim et al. [15]
proposed the orthogonal vector pooling strategy to remove ir-
relevant factors.

In addition to the above approaches, one of the most com-
monly used approach is joint training, which trains a single
model on the mixed dataset consisting of clean utterances and
noisy utterances obtained by data augmentation [16, 4]. In
most cases, joint training can achieve satisfactory results [12].
However, the speaker-irrelevant noisy information is usually en-
coded by the network during training process [17], causing the
model to overfit on the seen noisy utterances. Thus poor gen-
eralization may be observed when facing an unseen noisy envi-
ronment.

In this paper, we propose the gradient regularization method
to prevent the network from encoding speaker-irrelevant noisy
information. Our method is based on the intuitive idea that the
gradient vectors calculated on a clean utterance and its noisy
counterparts should be in the same direction since these utter-
ances contain the same acoustic content for recognizing speak-
ers. Specifically, the gradient regularization terms are appended
to the joint training loss to maximize the similarity of the gra-
dient vectors on clean utterances and their noisy counterparts.
Meanwhile, the similarity of the gradient vectors across differ-
ent types of noisy utterances is also maximized to suppress the
noise-related components of the gradients. In this manner, the
optimizer will find an optimization route where the gradients on
clean utterances and their noisy counterparts are in the similar
directions at all points along the route, thus the noise-related
components of the gradients on noisy utterances can be largely
reduced, ensuring that the main direction of the gradient is rel-
evant to learning speaker-discriminative embeddings. Further-
more, a new sequential inner training strategy is also proposed
to achieve the optimization goal.

2. Related Works
2.1. Deep Speaker Embedding Models

In general, the deep speaker embedding framework consists of a
frame-level feature extractor, an utterance-level encoding layer
and several fully connected layers for dimensionality reduction.
The most commonly used feature extraction network is time-
delayed neural network (TDNN) [18] or convolutional neu-
ral network (CNN) [19], it maps variable-length input speech
frames to intermediate frame-level deep hidden features. Then
the encoding layer (e.g. average pooling layer [20], statistic
pooling layer [6]) aggregates all frame-level features into a low-
dimensional utterance-level feature. The fully connected layers
and the loss function are employed to train the whole network.
Our method is based on the original speaker embedding model,
and improves the noise robustness by introducing the regular-

Copyright © 2021 ISCA

INTERSPEECH 2021

30 August – 3 September, 2021, Brno, Czechia

http://dx.doi.org/10.21437/Interspeech.2021-12161074



ization term into the loss function.

2.2. MLDG-based Method

Our method is related to the recently proposed Meta-Learning
Domain Generalization (MLDG) method [21], which is a meta-
learning based approach for training the domain-invariant mod-
els in computer vision. Inspired by MLDG, we propose the
gradient regularization method to achieve noise robustness. We
will elaborate on their differences and highlight the advantages
of our approach later in section 3.1.

3. Proposed Methods
Suppose we have the clean dataset and K noisy version
datasets, where K is the number of noise types. At each learn-
ing iteration, we sample clean batch D0 and its K noisy coun-
terparts D1,D2, . . . ,DK . The empirical risk on each batch
can be written as L (θ;Dj) = 1

B

∑B
i=1 `

(
fθ
(
xji
)
, yji
)
, where

j = 0, 1, . . . ,K, fθ is the embedding network with parame-
ters θ, y is the speaker label, B is the batch size and ` (·) is
the cross-entropy loss with softmax function. The joint training
loss aggregates the loss on each batch. And the gradient on each
batch can be expressed as gj = ∂L (θ;Dj)/∂θ. Ideally, these
gradient vectors should be in the similar directions. However,
as show in Figure 1(a), the gradient vector on the noisy batch
gk or gl has the component of encoding the speaker-irrelevant
noisy information.

3.1. Gradient Regularization

To suppress the noise-related components of the gradients on
noisy batches, the proposed gradient regularization loss is com-
posed of two terms. One is to force the gradients on the noisy
batches to follow the same direction as the gradient calculated
on clean counterpart, the other is to align all pairwise combina-
tions of gradients on K noisy batches. The gradient regulariza-
tion loss can be formulated as

LGR = −λ1

K∑
k=1

g0 · gk − λ2

K∑
k=2

k−1∑
l=1

gl · gk (1)

where g0 is the gradient on the clean batch, gk or gl is the gra-
dient on the noisy batch, λ1 and λ2 are trade-off parameters.

The first term in (1) maximize the inner product of g0 and its
noisy counterparts gk. Since the gradient on the clean batch is
more reliable than its noisy counterparts and the main direction
of g0 is relevant to learning speaker representations, aligning
gk to g0 can reduce the noise-related component of gk. Note
that g0 is treated as a constant vector in each update step. More
concretely, the gradient of each inner product term g0 · gk can
be expressed as H0gk + Hkg0, where Hk is the Hessian ma-
trix of L (θ;Dk). Intuitively, it can be understood as pushing
the gradient vector towards each other according to the second-
order derivative information. Since our purpose is to reduce the
noise-related component of gk, we omit the term H0gk to pre-
vent the noisy information of gk from disturbing the learning
direction on the clean batch.

The second term in (1) maximize the similarity of the gra-
dients across different types of noisy batches. In reality, it is
very expensive to collect completely clean utterances. Thus,
when the utterances used to calculate g0 are not strictly in clean
conditions, we align all gradient pairs on the noisy batches to

(a) Joint training

(b) Joint training with LGR

Figure 1: Optimization routes of (a) joint training and (b) joint
training with gradient regularization. g0 is the gradients on
clean batch, gk, gl are the gradients on noisy batches. The
orange solid line represents the component of encoding the
speaker information, and the red solid line represents the com-
ponent of encoding the noisy information.

further reduce the noise-related components. The same speaker-
related acoustic content of these different types of noisy utter-
ances ensures that the aligned gradient direction is mainly re-
lated to learning speaker representations.

Finally, appending LGR to the joint training loss, the total
loss function can be written as

L =

K∑
k=0

L (θ;Dk) + LGR (2)

From Figure 1(b), we can see that this loss can largely reduce
the noise-related component of the gradient on the noisy batch.

At this point, we would like to illustrate the difference be-
tween the MLDG [21] and our method. The MLDG is to find
an optimization route with aligned gradients by maximizing the
similarity of the gradients between one domain and remaining
source domains. Compared with our method, g0 is not treated
as a constant vector in the MLDG method to prevent the noisy
information of gk from disturbing the direction of g0, and all
pairs of gk and gl are not aligned to further reduce the noise-
related components.

3.2. Sequential Inner Training (SIT) Strategy

The optimization of (2) requires calculating the second-order
gradients of L, which is hard to directly compute. To avoid this,
a novel sequential inner training strategy is proposed. For easy
understanding, we first present the SIT algorithm, then we show
that it appropriately optimizes (2) in this section.

The SIT strategy involves an inner loop to produce the
higher-order gradients of L and an outer loop to update the pa-
rameters θ. At each iteration, assume the initial point is θ0, and
the gradient w.r.t θ0 is gk = ∂L

(
θ0;Dk

)
/∂θ. In the inner

loop, θ0 is first updated on the clean batch θ1 = θ0−λ1g0, and
then sequentially updated on the noisy batches in random order
θk+1 = θk − 2λ2gk, where gk = ∂L

(
θk;Dk

)
/∂θ. When

the final trained parameter θK+1 is obtained, the offset vector

1075



Table 1: EER(%) and DCF of various systems under the seen noisy environments. Best in bold.

Seen
Noise Types

SNR
(dB)

Clean Training Joint Training VI Loss [17] MLDG [21] Our Method

EER(%) DCF EER(%) DCF EER(%) DCF EER(%) DCF EER(%) DCF

Clean - 5.32 0.536 5.07 0.494 4.77 0.459 4.94 0.501 4.57 0.475

Ambient
Noise

0 16.85 0.945 10.42 0.763 9.57 0.753 10.04 0.740 9.49 0.754
5 12.14 0.834 8.22 0.670 7.35 0.682 7.92 0.672 7.31 0.658
10 9.15 0.740 6.82 0.632 6.21 0.610 6.69 0.637 6.12 0.601
15 7.33 0.635 6.04 0.593 5.51 0.554 5.98 0.588 5.48 0.546
20 6.28 0.577 5.66 0.557 5.23 0.504 5.49 0.548 5.04 0.526

Music

0 21.92 0.988 13.16 0.865 12.06 0.844 12.60 0.820 11.82 0.817
5 13.22 0.882 8.41 0.715 7.83 0.699 8.27 0.721 7.71 0.686
10 8.48 0.670 6.50 0.608 6.03 0.614 6.36 0.640 5.70 0.594
15 6.35 0.580 5.60 0.541 5.17 0.549 5.50 0.554 5.00 0.520
20 5.64 0.534 5.28 0.527 4.90 0.515 5.14 0.533 4.76 0.476

Babble

0 43.21 0.999 37.73 0.990 36.80 0.989 36.46 0.988 36.79 0.997
5 31.75 0.992 21.00 0.937 20.25 0.921 19.95 0.926 19.27 0.934
10 18.16 0.934 10.99 0.755 10.30 0.778 10.30 0.785 9.96 0.750
15 9.94 0.795 7.60 0.645 7.05 0.632 7.32 0.647 6.74 0.618
20 6.99 0.648 6.08 0.559 5.55 0.558 5.98 0.563 5.44 0.530

All Noises - 15.30 0.978 10.87 0.729 10.21 0.710 10.55 0.721 9.93 0.709

1
λ1

(
θ − θ1

)
+ 1

2λ2

(
θ1 − θK+1

)
is used as the gradient for up-

dating θ in the outer loop. The details of the strategy are shown
in Algorithm 1.

We then show that Algorithm 1 can optimize (2). After k
updates, θk can be written as θk = θ0 − λ1g0 − 2λ2

∑k−1
l=1 gl.

Thus the Taylor series of gk at θ0 is

gk = gk +Hk
(
θk − θ0

)
+O

(∥∥θk − θ0∥∥2)
= gk − λ1Hkg0 − 2λ2

k−1∑
l=1

Hkgl +O
(
λ2) (3)

where the last step is obtained by gl = gl + O (λ), Hk is the
Hessian matrix of L

(
θ0;Dk

)
, λ = λ1+2λ2. Bring gk into the

offset vector expression, we can get

1

λ1

(
θ − θ1

)
+

1

2λ2

(
θ1 − θK+1

)
= g0 +

K∑
k=1

gk

=

K∑
k=0

gk − λ1

K∑
k=1

Hkg0 − 2λ2

K∑
k=2

k−1∑
l=1

Hkgl +O(λ2)

(4)

According to [22], if we randomize the order of noisy
batches at each iteration, E [Hkgl] = E [Hlgk] =

1
2
∂(gl·gk)
∂θ

.
Therefore, this training strategy can appropriately optimize (2).

4. Experiments
4.1. Datasets

Following the common experiment settings [9, 17, 10], we con-
duct the experiments on the VoxCeleb1 [20] dataset. The train-
ing set contains 148,642 training utterances from 1211 speakers.
The test set contains 4,874 utterances from 40 speakers, which
constructs 37720 test trials. Although this dataset is not strictly
in clean conditions, we assume it as clean corpus and generate
the related noisy utterances [17].

Algorithm 1 Sequential Inner Training Strategy
Input: clean dataset and K noisy version datasets
Init: embedding network parameters θ, hyperparameters α, λ
1: while not done do # outer loop
2: θ0 = θ
3: Sample batches D0, [D1,D2, . . . ,DK ]
4: Shuffle ([D1,D2, . . . ,DK ])
5: θ1 = θ0 − λ1g0
6: for k in [1, 2, . . . ,K] do # inner loop
7: θk+1 = θk − 2λ2gk
8: end for
9: θ ← θ − α

λ1

(
θ − θ1

)
− α

2λ2

(
θ1 − θK+1

)
10: end while

A noise-corrupted version of the VoxCeleb1 dataset is gen-
erated by artificially adding different types of noise data. The
MUSAN [23] dataset is used as noise source, which contains
60 hours of speech, 42 hours of music and 6 hours ambient
noise. This noise dataset is divided into two non-overlapping
subsets for generating noisy training and testing utterances re-
spectively. At the training stage, for each clean utterance, three
noisy utterances (ambient noise, music and babble) are gener-
ated at the random SNR level from 0dB to 20dB. This forms a
mixed training set with a 3:1 ratio of noisy utterances to clean
utterances. The babble noise is constructed by mixing three to
six speech files into one. At the testing stage, we evaluate the
performance of the speaker verification systems under seen and
unseen noisy environments. For the seen noisy environments,
the noise data (ambient noise, music and babble) are sampled
from the remaining half of the MUSAN dataset. For the unseen
noisy environments, we select cafeteria and train station noises
from the BBC Noise dataset1 as another noise source to gener-
ate noisy testing utterances. We also combine all noisy testing
trials to form “All Noises” trials.

1http://bbcsfx.acropolis.org.uk/

1076



Table 2: EER(%) and DCF of various systems under the unseen noisy environments. Best in bold.

Unseen
Noise Types

SNR
(dB)

Clean Training Joint Training VI Loss [17] MLDG [21] Our Method

EER(%) DCF EER(%) DCF EER(%) DCF EER(%) DCF EER(%) DCF

Cafeteria

0 17.39 0.949 12.01 0.824 11.24 0.848 11.89 0.834 11.09 0.811
5 10.60 0.834 8.03 0.718 7.43 0.688 8.10 0.687 7.42 0.667
10 7.41 0.643 6.21 0.615 5.86 0.598 6.24 0.576 5.80 0.586
15 6.08 0.586 5.46 0.568 5.18 0.514 5.37 0.510 5.05 0.520
20 5.57 0.545 5.19 0.536 4.85 0.457 5.02 0.506 4.82 0.484

Train Station

0 18.67 0.963 11.36 0.814 10.77 0.803 11.41 0.810 10.65 0.809
5 11.26 0.806 8.21 0.664 7.55 0.675 8.11 0.648 7.36 0.657
10 7.60 0.621 6.54 0.581 6.06 0.568 6.41 0.563 5.81 0.554
15 6.29 0.564 5.73 0.532 5.31 0.501 5.56 0.519 5.03 0.499
20 5.65 0.549 5.31 0.496 4.94 0.481 5.20 0.520 4.74 0.479

All Noises - 10.84 0.924 7.61 0.697 7.00 0.674 7.42 0.682 6.79 0.652

4.2. Implementation Details

For input features, 23-dimensional MFCC and 3-dimensional
pitch features are extracted within a 25ms sliding window with
a hop size of 10ms. Cepstral mean normalization (CMN) is
performed within a 3 second sliding window and energy-based
voice activity detector (VAD) is used to remove silence frames.
Each utterance is cut into 200-frame chunks with 10% overlap.

TDNN [18] network is used as the speaker embedding ex-
tractor for its simplicity. However, our method is agnostic
to backbone networks. After training, the 128-dimensional
speaker embeddings are extracted from the penultimate layer
of the network, and the cosine similarity is used for scoring.
The equal error rate (EER) [24] and the detection cost function
(DCF) [24] with Ptarget = 0.01 is used as the performance met-
ric. The reported DCF is adopted in NIST SRE 2018 [25] and
VoxSRC 2019 [26].

For optimization, AdamW [27] optimizer with the learning
rate of 0.001 and the weight decay of 0.3 is used to train the
whole network. ReduceLROnPlateau scheduler in Pytorch [28]
is adopted to update the learning rate. The trade-off parameters
λ1 and λ2 in (1) are initialized to 1e-3 and 5e-4 respectively,
then updated in proportion to the learning rate. The batch size
B is 64 in this work. For final test, we use the best performing
model on the validation set.

4.3. Results

Table 1 and Table 2 show the performance under the seen and
unseen noisy conditions, respectively. Where clean training
means the model is trained on the original dataset and joint
training (Baseline) means the model is trained on the mixed
dataset. The model trained with the variability-invariant (VI)
loss [17] is used to compare. The VI loss minimizes the distance
of embeddings between clean and noisy utterances, which is an-
other recently proposed improvement approach for joint train-
ing loss. We re-implement it under the fair experimental set-
ting. We also compare the model that directly apply the MLDG
method to improve noise robustness.

Table 1 illustrates that our method can achieve the best re-
sults under the clean and seen noisy conditions. And the MLDG
method have only limited improvements compared to the joint
training under the clean and low SNR level conditions, since the
gradient information on the noisy batch will disturb the learning
direction on its clean counterpart.

Table 3: Ablation study of the proposed method

The 1st term The 2nd term EER(%) DCF

Baseline - - 7.61 0.697

Our
X - 6.81 0.678
- X 6.99 0.669
X X 6.79 0.652

Table 2 shows that our proposed method outperforms all
other models under the unseen noisy environments. The VI loss
only aligns the distribution of embeddings between clean and
noisy utterances. Compared with this method, our method not
only aligns the gradients between clean and noisy utterances,
but also aligns the gradient among different types of noisy ut-
terances, thus achieving better performance. Compared with
the baseline, our method achieves 10.8% and 6.5% reduction
in terms of EER and DCF respectively. It indicates that our
method can avoid learning the speaker-irrelevant noisy infor-
mation from seen noisy environments and improve the general-
ization ability in unseen noisy environments.

Ablation study is conducted to show the influences of the
first and second terms in LGR on the performance. The results
of “All Noises” trials under the unseen noisy environments are
shown in Table 3. This shows that adding either term boosts the
performance and combining the two gives best performance.

5. Conclusions
In this work, we proposed two gradient regularization terms to
prevent the network from encoding speaker-irrelevant noisy in-
formation. A novel sequential inner training strategy was also
proposed to achieve the optimization goal. Experimental re-
sults indicated that our method can avoid learning the speaker-
irrelevant noisy information from seen noisy environments, and
achieve the best generalization performance in unseen noisy en-
vironments.

6. Acknowledgements
This research is supported by the National Natural Science
Foundation of China under grant No. U1736210.

1077



7. References
[1] J. H. Hansen and T. Hasan, “Speaker recognition by machines and

humans: A tutorial review,” IEEE Signal processing magazine,
vol. 32, no. 6, pp. 74–99, 2015.

[2] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet,
“Front-end factor analysis for speaker verification,” IEEE Trans-
actions on Audio, Speech, and Language Processing, vol. 19,
no. 4, pp. 788–798, 2010.

[3] S. Ioffe, “Probabilistic linear discriminant analysis,” in European
Conference on Computer Vision. Springer, 2006, pp. 531–542.

[4] D. Snyder, D. Garcia-Romero, G. Sell, D. Povey, and S. Khudan-
pur, “X-vectors: Robust dnn embeddings for speaker recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5329–5333.

[5] C. Li, X. Ma, B. Jiang, X. Li, X. Zhang, X. Liu, Y. Cao, A. Kan-
nan, and Z. Zhu, “Deep speaker: an end-to-end neural speaker
embedding system,” arXiv preprint arXiv:1705.02304, vol. 650,
2017.

[6] D. Snyder, P. Ghahremani, D. Povey, D. Garcia-Romero,
Y. Carmiel, and S. Khudanpur, “Deep neural network-based
speaker embeddings for end-to-end speaker verification,” in 2016
IEEE Spoken Language Technology Workshop (SLT). IEEE,
2016, pp. 165–170.

[7] T. F. Zheng and L. Li, Robustness-related issues in speaker recog-
nition. Springer, 2017.

[8] X. Zhao, Y. Wang, and D. Wang, “Robust speaker identification
in noisy and reverberant conditions,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 22, no. 4, pp. 836–
845, 2014.

[9] S. Shon, H. Tang, and J. Glass, “Voiceid loss: Speech enhance-
ment for speaker verification,” arXiv preprint arXiv:1904.03601,
2019.

[10] Y. Shi, Q. Huang, and T. Hain, “Robust speaker recognition us-
ing speech enhancement and attention model,” arXiv preprint
arXiv:2001.05031, 2020.

[11] Z. Meng, Y. Zhao, J. Li, and Y. Gong, “Adversarial speaker ver-
ification,” in ICASSP 2019-2019 IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
2019, pp. 6216–6220.

[12] J. Zhou, T. Jiang, L. Li, Q. Hong, Z. Wang, and B. Xia, “Training
multi-task adversarial network for extracting noise-robust speaker
embedding,” in ICASSP 2019-2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2019, pp. 6196–6200.

[13] R. Peri, M. Pal, A. Jati, K. Somandepalli, and S. Narayanan, “Ro-
bust speaker recognition using unsupervised adversarial invari-
ance,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020,
pp. 6614–6618.

[14] S. Kataria, P. S. Nidadavolu, J. Villalba, N. Chen, P. Garcia-
Perera, and N. Dehak, “Feature enhancement with deep feature
losses for speaker verification,” in ICASSP 2020-2020 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2020, pp. 7584–7588.

[15] I. Kim, K. Kim, J. Kim, and C. Choi, “Deep speaker rep-
resentation using orthogonal decomposition and recombination
for speaker verification,” in ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 6126–6130.

[16] Y. Lei, L. Burget, and N. Scheffer, “A noise robust i-vector ex-
tractor using vector taylor series for speaker recognition,” in 2013
IEEE International Conference on Acoustics, Speech and Signal
Processing. IEEE, 2013, pp. 6788–6791.

[17] D. Cai, W. Cai, and M. Li, “Within-sample variability-invariant
loss for robust speaker recognition under noisy environments,” in
ICASSP 2020-2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). IEEE, 2020, pp. 6469–
6473.

[18] D. Snyder, D. Garcia-Romero, D. Povey, and S. Khudanpur,
“Deep neural network embeddings for text-independent speaker
verification.” in Interspeech, 2017, pp. 999–1003.

[19] J. S. Chung, A. Nagrani, and A. Zisserman, “Voxceleb2: Deep
speaker recognition,” Proc. Interspeech 2018, pp. 1086–1090,
2018.

[20] A. Nagrani, J. S. Chung, and A. Zisserman, “Voxceleb:
a large-scale speaker identification dataset,” arXiv preprint
arXiv:1706.08612, 2017.

[21] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales, “Learning to gen-
eralize: Meta-learning for domain generalization,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 32, no. 1,
2018.

[22] A. Nichol, J. Achiam, and J. Schulman, “On first-order meta-
learning algorithms,” arXiv preprint arXiv:1803.02999, 2018.

[23] D. Snyder, G. Chen, and D. Povey, “Musan: A music, speech, and
noise corpus,” arXiv preprint arXiv:1510.08484, 2015.

[24] D. Snyder, D. Garcia-Romero, G. Sell, A. McCree, D. Povey,
and S. Khudanpur, “Speaker recognition for multi-speaker con-
versations using x-vectors,” in ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2019, pp. 5796–5800.

[25] S. O. Sadjadi, C. Greenberg, E. Singer, D. Reynolds,
L. Mason, and J. Hernandez-Cordero, “The 2018 NIST Speaker
Recognition Evaluation,” in Proc. Interspeech 2019, 2019,
pp. 1483–1487. [Online]. Available: http://dx.doi.org/10.21437/
Interspeech.2019-1351

[26] J. S. Chung, A. Nagrani, E. Coto, W. Xie, M. McLaren, D. A.
Reynolds, and A. Zisserman, “Voxsrc 2019: The first voxceleb
speaker recognition challenge,” arXiv preprint arXiv:1912.02522,
2019.

[27] I. Loshchilov and F. Hutter, “Decoupled weight decay regulariza-
tion,” arXiv preprint arXiv:1711.05101, 2017.

[28] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” in Ad-
vances in neural information processing systems, 2019, pp. 8026–
8037.

1078


