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The image fusion algorithm has great application value in the domain of computer vision,
which makes the fused image have a more comprehensive and clearer description of the
scene, and is beneficial to human eye recognition and automatic mechanical detection. In
recent years, image fusion algorithms have achieved great success in different domains.
However, it still has huge challenges in terms of the generalization of multi-modal image
fusion. In reaction to this problem, this paper proposes a general image fusion framework
based on an improved convolutional neural network. Firstly, the feature information of the
input image is captured by the multiple feature extraction layers, and then multiple feature
maps are stacked along the number of channels to acquire the feature fusion map. Finally,
feature maps, which are derived from multiple feature extraction layers, are stacked in high
dimensions by skip connection and convolution filtering for reconstruction to produce the
final result. In this paper, multi-modal images are gained from multiple datasets to produce
a large sample space in which to adequately train the network. Compared with the existing
convolutional neural networks and traditional fusion algorithms, the proposed model not
only has generality and stability but also has some strengths in subjective visualization and
objective evaluation, while the average running time is at least 94% faster than the
reference algorithm based on neural network.

Keywords: bionic vision, multi-modal image fusion, convolutional neural network, y-distribution structure, multi-
convolution kernel, adaptive feature analysis

1 INTRODUCTION

Deep learning is a bio-inspired intelligent computing technology that is based on the principles of
neurotransmission processes in the human brain, which resembles the pattern of connections
between brain neurons (Xu et al., 2021). Unlike classical bionic techniques, i. e., ant colony
algorithms (Deng et al., 2020), bee algorithms (Çil et al., 2020), etc., and particle swarm
optimization (Elbes et al., 2019), etc., deep learning has an incredible and impressive ability to
resolve the complexity of real-world problems, which has caused the attention of many scholars and
has been successfully applied to practical problems (Chen et al., 2021b; Chen et al., 2022a; Chen et al.,
2022c; Sun et al., 2022). In recent years, deep learning, especially neural networks, has become one of
the most rapidly growing and widely applied artificial intelligence technologies. Several studies have
demonstrated the superior performance of neural networks in target detection (Jiang et al., 2021a;
Huang et al., 2021; Huang et al., 2022), image segmentation (Jiang et al., 2021b), data processing
(Chen et al., 2021a; Chen et al., 2022b), and depth estimation (Jiang et al., 2019), etc. In addition,
image fusion, which is an essential branch of neural network research, has been extensively
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implemented in various areas, especially in civil, military, and
industrial applications, since the research on neural networks has
gradually advanced. For example, mobile phones often integrate
with high dynamic range (Ma et al., 2015; Liu et al., 2018; Qi et al.,
2021) or refocus algorithms (Saha et al., 2013; Bai et al., 2015;
Zhang and Levine, 2016) to get stable and information-rich
images. Visible and infrared image fusion can provide a more
direct monitoring environment to the observers (Xue and Blum,
2003; Wan et al., 2009; Zhou et al., 2016; Zhang et al., 2017).

Convolutional neural network (CNN), which is a category
of neural networks, usually is superior to traditional manual
feature extractors in feature extraction (Yan et al., 2017; Li
et al., 2018), and the number of convolutional filters is
significantly larger than traditional filters. Therefore, CNN
can capture richer image details and is frequently used for
image feature extraction. As such a potent tool, CNN
provides new ideas and directions for research on image
fusion. In general, neural networks enable to excavate of
implicit rules in massive datasets and then predict the
result by the gained rules, which render the models with
exceptional generalization ability (Cheng et al., 2021; Huang
et al., 2021). For traditional image fusion algorithms, multi-
modal image fusion usually implies different fusion rules and
it is difficult to seek a harmonized approach. As for CNN,
CNN is not fully exploited in most cases and is primarily
applied for image feature extraction. Although a few fully
convolutional neural networks, which don’t need to impose
preprocessing and fusion rules, can automate image fused,
the fusion object is specified for single-modal images.
Therefore, the study of the generality of multi-modal
image fusion faces a tremendous challenge.

In this paper, a general CNN framework for image fusion,
called IY-Net, is designed. The structure of IY-Net is shown in
Figure 1. The proposed model has two innovations. First of all,
the proposed model has the characteristics of a fully
convolutional neural network with relatively good generality. It
doesn’t need to specify fusion rules and has a simple network
structure. This is the key innovation point. Secondly, since the
quality of training datasets constrains the model performance in
the field of deep learning, the appropriate dataset is particularly
critical. Theoretically, the performance of the model that is gained
by using images of the same modal as the training dataset is more
stable and accurate. However, this paper selects multi-modal
images as the training dataset, and the proposed model can
avoid the mutual influence of fusion results in some way.
Thus, these two innovations can make the proposed model
stand out from the current CNN methods.

The main contribution of this work is to propose a general
image fusion framework. It is superior to many traditional
algorithms and CNN methods in terms of image visual effects.
The proposed model achieves excellent performance in multi-
focus, infrared and visible, multi-exposure image fusion, etc.
There are two more specific contributions. Firstly, a multi-
feature extraction module is introduced, which effectively
extends the perceptual field of the convolutional layer and
thus captures more feature information. Secondly, a way of
image reconstruction is constructed to effectively solve the
problem of gradient disappearance and gradient explosion
caused by CNN.

The rest of this paper is organized as follows. In Section 2, the
paper discusses the related work. Section 3 introduces the
proposed model in detail. Section 4 describes the experimental

FIGURE 1 | The architecture of IY-Net. M represents the size of the feature map. The number at the top block represents the feature depth.
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results and discusses them. In Section 5, the paper shows the
conclusion and future research directions.

2 RELATED WORK

Regarding CNN and traditional algorithms, despite several research
results that have been achieved in image fusion algorithms, there is
still space for optimization and improvement. In addition, most
methods can only address image fusion of a few patterns and lack
generality.

In general, traditional image fusion algorithms can be divided
into two categories, i. e., spatial domain and transform domain
algorithms. For image fusion algorithms in the spatial domain
(Huang and Jing, 2007; Zhou et al., 2014; Zhang et al., 2017;
Amin-Naji et al., 2022), the source image is divided into small
pieces or regions according to certain criteria in the first
step. Then the significance of the corresponding regions is
evaluated, and finally, the most critical regions are fused.
These algorithms are mainly applied to same-mode images,
which may reduce the edge sharpness and contrast of the
fused image or even produce halos at the edges. On the other
hand, for the transform domain image fusion algorithm
(Haghighat et al., 2011), the source image is decomposed into
a feature domain by multi-scale geometry at the first step. Then,
feature weighted fusion is achieved on multiple input images, and
finally, the fused image is gained by the inverse transformation of
the fused features. Among the current transform domain
algorithms, multi-scale transform image fusion algorithms
(MSTIF) are becoming increasingly popular. Examples of such
transforms include pyramid-based decomposition (Liu et al.,
2001), curvelet transform (Tessens et al., 2007), dual-tree
complex wavelet transform (DTCWT) (Lewis et al., 2007),
discrete wavelet transform (DWT) (Zheng et al., 2007; Tian
and Chen, 2012) and non-subsampled contourlet transform
(NSCT) (Moonon and Hu, 2015), etc. MSTIF relies on the
selection of multi-scale decomposition methods and fusion
strategies for multi-scale coefficient fusion. As a result, such
algorithms have a relatively high manual factor, which leads to
obvious weaknesses and lack of generality. For example, NSCT is
weak at capturing curve details and curvelet transform is
computationally complex, as well as they are it is terrible at
multi-exposure and remote sensing image fusion. While fusing
some modal images, pyramid-based decomposition will be

FIGURE 2 | Structure of multi-feature extraction layer.

FIGURE 3 | Feature fusion structure.
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distorted and laplace pyramid transform will incur redundant
information, which is not available to infrared and visible image
fusion. In conclusion, traditional MSTIF has a wide variety of
filters, but it is always restricted in terms of the generality.

In recent years, image fusion methods based on neural
networks have been rapidly growing (Liu et al., 2018). Firstly
(Liu et al., 2017), regarded the fusion of multi-focus images as
a classification task and used CNN to predict the focus image
to obtain the fused image (Song et al., 2018). applied two
neural networks to perform super-resolution processing of
low-resolution terrestrial images and extract the feature
map. Then high-pass modulation and weighting strategies
are used to reconstruct the feature maps into fused images
(Bhalla et al., 2022). integrated fuzzy theory with Siamese
convolutional network to extract salient features of the source
image as well as high-frequency information, and finally
acquired fusion results by pixel strategy directly mapping
to the source image. The above methods require pre-
processing to generate fused images. In addition, they can
only fuse images of a single-modal and lacks generality
(Zhang et al., 2020). proposed a CNN-based image fusion
framework that is trained in an end-to-end manner, and the
parameters of the model can be jointly optimized without any
subsequent processing. Although they designed a generalized
model, it adopted human-selected fusion rules in the feature
fusion phase, which led to the degradation of the model
generality and the image fusion performance. For example,
when infrared and visible images are fused, the model applies
MAX fusion features to yield the best result. But when multi-
exposure images are fused, it employs SUM fusion features to
gain the best result. In summary, although CNN has achieved
some success in the domain of image fusion, the majority of
current models lack generality. In addition, most CNN is not
designed end-to-end (Wang et al., 2019a) and requires
additional steps to complete the task. Therefore, the CNN-

based image fusion model has not been fully exploited, and
there is still much potential to be boosted in terms of
generality.

3 METHODS AND MATERIALS

3.1 Feature Extraction Module
The convolutional layer in CNN extracts different feature
information from the training image by convolutional kernels
and then updates the filter parameters automatically. Therefore,
the selection of convolutional kernels is crucial for feature
extraction. The specific structure is shown in Supplementary
Figure S1. The small-size convolution kernel is used to extract the
low-frequency and small detail information, while high-
frequency and large detail information can’t be detected.
Likewise, the large size of the convolution kernel is preferable
for identifying high-frequency and large detail information.

As stated above, the paper utilizes multiple feature extraction
layers, each of which has convolution kernels of sizes 3 × 3, 5 × 5, and
7 × 7, to capture low and high-frequency information. The specific
structure is shown in Figure 2. The proposed model detects the
feature information of the input image by three multiple feature
extraction layers, but multiple convolutions can lead to over-fitting
and increasing the training time. Therefore, this paper adds a max-
pooling layer after both of the two previousmultiple feature extraction
layers to avoid such phenomena.

3.2 Feature Fusion Module
There are two generalmethods for feature fusion: 1) The featuremap
is maps are connected along with the number of channels. 2) The
featuremaps are fused according to certain fusion rules. If the second
feature fusionway is chosen, it will lead to a decrease in the generality
of themodel. Therefore, the paper chooses the firstmethod to get the
fused feature map. The specific structure is shown in Figure 3.

FIGURE 4 | Up-sampling operations and skip connection structure.
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Firstly, the feature maps are concatenated along the channel
dimension to gain the initial feature fusion map, and then it is
filtered by the convolution layer. Finally, it is down-dimensioned to
produce the final cross-channel fused feature map.

3.3 Image Reconstruction Module
Under the effect of the pooling layer, the image size is changed
from 256 × 256 to 64 × 64, which greatly reduces the resolution of
the original image, and some features may be ambiguous. For
restoring the size of the resource image, the paper applies the up-
sampling operation (i.e., transposed convolution) to restore the
resolution and optimize the image quality. However, it causes the
image edge information to be dropped and blurred, so we deal
with this problem by adding a skip connection based on the up-
sampling operation, which can further enhance the image edge
information. The module undergoes three up-sampling
operations, which each time doubles the image size, and
eventually produces a grayscale image with the original size.
The specific up-sampling operations and skip connection
structure are shown in Figure 4. Firstly, the feature map and
the fused feature map are skip-connected, and then up-sampling
operations are executed on them. Finally, the high-dimensional
map is down-dimensioned to a low-dimensional map by
convolutional layers.

3.4 Loss Function
Before training the model, it is necessary to optimize the model
parameters using an appropriate loss function to compare the
predicted values with the actual values. The proposed model aims
to form a fused image by regression of two input images.
Therefore, the paper chooses the structural similarity (SSIM)
(Wang et al., 2004) to coping with this problem. As shown in the
equation.

SSIM(x, y) � (2μxμy + C1)(2σxy + C2)
(μ2

x + μ2
y + C1)(σ2

x + σ2
y + C2)

(1)

Where x is the real image, y is the predicted image, μx, μy is mean,
σx, σy is variance, and σxy is covariance. C1 � (Lk1)2, C2 �
(Lk2)2 are stable constants. L is the dynamic range of pixel
values, k1 � 0.01, k2 � 0.03. The sliding window size is set as
11 × 11, it moves pixel by pixel in an image from top-left on an
image.

Thus, SSIM loss function can be defined as:

Lssim � 1
n
∑ 1 − SSIM(x, y) (2)

Where n represents the total number of sliding windows.

FIGURE 5 | Experiment on 4 pairs of multi-focus images. (A) DWT, (B) NSCT, (C) MFCNN, (D) ECNN, (E) SESF, (F) IY-Net.
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The proposed model has all components of the loss function
that are differentiable, thus the model parameters of the paper can
be updated by random gradient descent and back-propagation.

3.5 Training Dataset
It is well known that CNNs are data-driven. So large-scale image
datasets are the basis for achieving favorable performance (Liu et al.,
2017). randomly selected multi-focus images from the ImageNet
dataset. And the focused images were obscured with a random scale
of the Gaussian kernel to generate an image dataset consisting of
2 million pairs of images of size 16 × 16. Since no large-scale multi-
exposure image dataset was available (Ram Prabhakar et al., 2017),
randomly cropped 64 × 64 image segments from small multi-
exposure images to generate a multi-exposure dataset.

As mentioned above, current experimental objects are composed
mainly of small blocks of images as single-modal datasets, which can’t
fulfill the experimental requirements. Therefore, multi-focus images,
multi-exposure images, and remote sensing images are selected from
several datasets to form the training dataset with an image size of
256 × 256 in this paper. The images in the training dataset was are
randomly rotated, randomly contrast shifted, and randomly stretched
to boost diversity. The parts of multi-modal images in the dataset are
shown in Supplementary Figure S2.

4 EXPERIMENTS AND RESULTS

4.1 Experimental Settings

IY-Net is implemented by Pytorch 1.8.1 based on Python 3.9.4.
The proposed model is trained and tested on a computer
equipped with an Intel i5-1035G1 CPU (1 GHz) and 2 GB
GPU, and it is trained on the CPU. The paper trains
1826 pairs of images with an image size of 256 × 256 and a
batch size of 40 in the training process. The whole process takes
about 1 h. Concerning the learning rate, using the Adam
optimizer (Wang et al., 2004) and the learning rate was set to
0.0005.

In this paper, the proposedmodel is compared with traditional
multi-scale transform algorithms, i. e., discrete wavelet
transforms (DWT) (Zheng et al., 2007) and non-subsampled
contourlet transform (NSCT) (Moonon and Hu, 2015). To
further validate the advantages of the proposed model in the
area of deep learning, it is compared with three current neural
network-based image fusion models, i. e., multi-focus image
fusion model (MFCNN) (Liu et al., 2017), CNN integration
model for image fusion (ECNN) (Amin-Naji et al., 2019) and
unsupervised depth model for image fusion (SESF) (Ma et al.

FIGURE 6 | Experiment on 4 pairs of infrared and visible images. (A) DWT, (B) NSCT, (C) MFCNN, (D) ECNN, (E) SESF, (F) IY-Net.
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2021). To verify the generality of the proposedmodel, five types of
datasets (including multifocal images, infrared and visual images,
etc.) are experimented and evaluated in the paper. The five image
test datasets are shown in Supplementary Figures
S7,S8,S9,S10,S11.

For the evaluation of the image fusion algorithm, the paper
qualitatively judges the visual effect of the fused images. The
performance of different image fusion methods can’t be
distinguished by visual effects alone. Therefore, five metrics
are introduced to further estimate the quantitative
manifestation of IY-Net on multi-modal image fusion. The
five metrics are spatial frequency (SF), information entropy
(IE), average gradient (AG) (Petrović, 2007), and Peille index
(Peille) (Piella and Heijmans, 2003), and edge preservation
information (QAB) (Xydeas and Petrovic, 2000) respectively.

4.2 Experimental Results and Analysis
4.2.1 Multi-Focus Image Fusion
Experiments are conducted on multi-focus image test datasets as
shown in Supplementary Figure S3. It is verified that the
proposed model has a great performance in multi-focus image
fusion. Taking “Boy” as shown in Supplementary Figure S8 (A)
and (B) for example. The fusion result of DWT is blurred in some

regions and fails to retain the complete details and features, but
other algorithms can capture suitable feature information with
better visual effects. Figure 5 provides the fusion results of multi-
focus image test datasets based on all algorithms. Experimental
results show that the proposed model is practicable and stable in
multi-focus image fusion visually.

4.2.2 Infrared and Visible Image Fusion
As shown in Supplementary Figure S4, four groups of infrared
and visible images reveal different scene information.
Experiments are carried on them to confirm the capability of
IY-Net in infrared and visible image fusion. For simplicity, “Car”
is used for detailed analysis in Supplementary Figure S9.
Apparently, DWT basically preserves the infrared and visible
features, but the fused image has relatively low contrast. MFCNN
failed to capture the infrared features and the visual effect is weak.
NSCT, ECNN, and SESF produce large areas of dark spots and
shadows that generate no-desired results. Exhilaratingly, IY-Net
acquires the most observable fusion results, which be provided
with abundant visible details and infrared features as shown in
Supplementary Figure S9 (H). A similar situation occurs in
Figure 6 which is obtained from the images in Supplementary
Figure S4. To all appearances, IY-Net not only has the best visual

FIGURE 7 | Experiment on 4 pairs of infrared intensity and polarization images. (A) DWT, (B) NSCT, (C) MFCNN, (D) ECNN, (E) SESF, (F) IY-Net.
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effect but also possesses evident stability and adaptability in
infrared and visible image fusion.

4.2.3 Infrared Intensity and Polarization Image Fusion
Supplementary Figure S5 shows four pairs of infrared intensity
and polarization images that are used to check the performance of
the proposed model. A group of experimental results, taking
“SUV” for example, is presented in Supplementary Figure S10.
The source polarization and infrared intensity images are shown
in Supplementary Figure S10. From the results of the
experiment, we can see that DWT may maintain polarization
and intensity information, but some parts are obscured, which
results in poor visual effects. MFCNN cannot fuse the source
image validly at all. ECNN and SESF can only combine the
polarization and intensity information in part of the region and
generate many pixel blocks and black spots, which seriously
affects overall visual perception. In contrast, IY-Net and NSCT
perfectly integrate these two kinds of images. It shows that NSCT
and IY-Net could be employed availably in infrared intensity and
polarization image fusion compared to other algorithms. The
other fusion results are shown in Figure 7 Experiments
demonstrated that MFCNN, ECNN, and SESF failed to fuse
infrared intensity and polarization images in a dark

environment. In addition, it produces the phenomenon of
image distortion and partial texture being blurred in bright
environments. However, NSCT and IY-Net can be adapted for
infrared intensity and polarization image fusion in different
environments.

4.2.4 Multi-Exposure Image Fusion
Furthermore, fusion experiments are implemented in multi-
exposure images as shown in Supplementary Figure S6 to
evaluate the capability of the proposed model. The source
“Computer” image is shown in Supplementary Figure S4 (A)
and (B), and the two images show high and low exposure images.
Supplementary Figure S4 (C)-(H) shows the fusion results of all
algorithms. DWT can keep the source image features, but the
region of the curtain is ambiguous. The fused results of NSCT,
ECNN, and SESF appear with numerous black spots, and partial
details of MFCNN is failed to be preserved. In contrast, IY-Net
saves the fully-featured texture and achieves great visual effect in
multi-exposure image fusion. The results of all the test database
fusion are shown in Figure 8 DWT generates blurred textures in
some regions. NSCT, MFCNN, and ECNN can effectively
respond to fusion in dark environments, but it they can lose
efficacy for the images with bright information. SESF displays

FIGURE 8 | Experiment on 4 pairs of multi-exposure images. (A) DWT, (B) NSCT, (C) MFCNN, (D) ECNN, (E) SESF, (F) IY-Net.
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FIGURE 9 | Experiment on 4 pairs of remote sensing images. (A) DWT, (B) NSCT, (C) MFCNN, (D) ECNN, (E) SESF, (F) IY-Net.

TABLE 1 | Quantitative evaluation results of multi-focus image fusion.

Metrics DWT NSCT MFCNN ECNN SESF IY-Net

SF 21.41603 27.6822 27.5599 29.5400 29.4076 22.3491
AG 7.066 9.5068 9.3801 9.6744 9.7212 8.2074
IE 7.4132 7.4845 7.4694 7.4783 7.4713 7.4591
QAB 0.5012 0.7267 0.7430 0.7296 0.7212 0.6880
Peille 0.0076 0.0062 0.0065 0.0064 0.0072 0.0090

Bold indicates best values.

TABLE 3 | Quantitative evaluation results of infrared intensity and polarization
image fusion.

Metrics DWT NSCT MFCNN ECNN SESF IY-Net

SF 8.8792 13.7983 11.1476 17.0852 19.5567 14.2838
AG 3.0686 5.1073 3.9309 5.4514 6.1073 5.1259
IE 6.4152 7.1872 5.987 6.2169 6.4883 6.9192
QAB 0.3268 0.528 0.5246 0.6061 0.6156 0.4627
Peille 0.0073 0.0042 0.0358 0.0242 0.0241 0.0049

Bold indicates best values.

TABLE 2 | Quantitative evaluation results of infrared and visible image fusion.

Metrics DWT NSCT MFCNN ECNN SESF IY-Net

SF 8.1647 12.7831 9.5506 18.3357 24.9147 12.5291
AG 3.0915 5.0239 3.6153 5.4813 7.2602 4.8389
IE 6.4426 7.166 6.6088 7.1048 7.3101 6.8087
QAB 0.328 0.5085 0.4563 0.5811 0.5695 0.451
Peille 0.0064 0.0043 0.0189 0.0052 0.0129 0.0065

Bold indicates best values.

TABLE 4 | Quantitative evaluation results of multi-exposure image fusion.

Metrics DWT NSCT MFCNN ECNN SESF IY-Net

SF 15.5429 23.285 19.9213 29.3432 30.4046 22.0839
AG 5.4503 8.7552 6.8542 9.6245 9.8643 8.0654
IE 7.1778 7.2096 7.1206 7.3695 7.2344 7.2672
QAB 0.4376 0.7668 0.6826 0.7916 0.7453 0.7074
Peille 0.0048 0.0027 0.0103 0.0036 0.0042 0.0037

Bold indicates best values.
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terrible results for different environments, for example, the fused
images appear with extensive black spots and distortion of
textures. In contrast to these reference algorithms, the
proposed model is suitable for multi-exposure image fusion,
and the fusion results reflect clearer features and appropriate
visual perception.

4.2.5 Remote Sensing Image Fusion
Finally, this paper confirms the performance of the proposed
model in remote sensing image fusion, and the test dataset is
shown in Supplementary Figure S7. The source “Building”
images are shown in Supplementary Figures S12 (A) and
(B). Supplementary Figures S12 (C)-(H) show the fusion
results of all algorithms. DWT, ECNN, SESF, and NSCT
retain most of the detailed features, but some small details
are vague. MFCNN and IY-Net can completely detect
textures and details, nevertheless, IY-Net has higher
contrast and more obvious intensity information than
MFCNN. Concerning remote sensing image fusion, IY-Net
has a better visual effect. Other fusion results are shown in
Figure 9. Experiments reveal that DWT appears to texture
distortion, and NSCT has too high contrast and thus obscures
some feature information. MFCNN has only a visual
perception of single-source image feature information, and
ECNN and SESF have a lot of shadows and black spots locally.
Obviously, the proposed model has a good visual effect and
proper contrast.

4.3 Quantitative Comparison and
Discussion
Table 1, Table 2, Table 3, Table 4, Table 5 shows the quantitative
metrics corresponding to the above multi-modal image fusion
results respectively. In these tables, each value represents the
average measured value of the dataset, and the best values are
bolded. These metrics can be used to fairly and objectively reveal
the fusion performance of all the algorithms from an objective
perspective combined with subjective vision. As shown in
Table 1, IY-Net acquires the optimum Peille metric, which

denotes the proposed model is highly correlated with original
images compared to these reference algorithms. Although the
proposed model is failed to yield optimal values for other metrics,
the values achieved by the proposed model are acceptable.

As can be noticed from the objective metrics in Table 2, SESF
acquires the greatest SF, AG and IE values, while ECNN gains the
best QAB value. However, their fusion images present undesirable
visual effects as shown in Figure 6. Although the congeneric
values of the proposed model are not optimal, they are totally
acceptable, especially combining the visual properties of the
fusion results. It exhibits that the fusion result with the
proposed method is equipped with rich detail and feature
information from resource images.

Similar to the objective values in Tables 1 and 2, although the
SESF obtained the best values in SF, AG and QAB in Table 3, it
was also mainly caused by unreasonable distortion as shown in
Figure 7. There are similar situations in DWT, MFCNN, and
ECNN. Even though NSCT can achieve a similar visual effect to
the proposed model, the SF, AG, and Peilla values are lower than
IY-Net, which indicates that the proposed model has richer image
sharpness and edge information, and is highly relevant to the
source images.

In Table 4, although the best SF and AG values are attained by
SESF and the best QAB and IE values were yielded by ECNN, it is
resulting from the distorted and discordant fusion results as
shown in Figure 8. In contrast to these reference algorithms,
the proposed model is always stable in the expression of fusion
results and the objective metrics are also acceptable, despite IY-
Net is being unable to highlight the advantages in every metric.

Similar to Table 4, SESF and ECNN in Table 5 also produce
abnormal SF, AG and QAB values caused by partial loss and
distortion of image edge information. NSCT achieves a great IE
value since some of the fusion results produce redundant feature
information. Unlike these reference algorithms, the proposed
model can provide excellent visual perception with sound
objective values.

In addition to the visual analysis and objective evaluation
metrics discuss, the average running time is an important
indicator for evaluating algorithm performance. In Table 6,
the average running times of all kinds of algorithms are
displayed, where the shortest value is bolded. Apparently, the
average running time of IY-Net is significantly optimal compared
with these reference algorithms, and the proposed neural network
model is at least 94% faster than these reference network
algorithms. In general, the proposed model has a significant
advantage in terms of average running time, compared to
these reference algorithms.

Although the reference algorithms yield the best metrics for
some modal images, the majority are overestimated due to the
incongruous texture features in their fusion results, and they lack
generality and stability for different patterns of images. For
example, MFCNN, SESF, and ECNN achieved acceptable
visual effects only in multi-focus image fusion, and DWT
yielded favorable visual effects only in multi-exposure image
fusion. As for NSCT, it is also inadequate in generality despite
acquiring valuable visual effects in infrared intensity and
polarization image fusion and multi-focus image fusion. In

TABLE 5 | Quantitative evaluation results of remote sensing image fusion.

Metrics DWT NSCT MFCNN ECNN SESF IY-Net

SF 24.9828 31.6788 25.4795 34.3604 36.9394 30.3675
AG 9.7509 12.6092 10.1474 12.9351 13.7295 11.9796
IE 7.0700 7.2978 6.7970 6.8664 6.9975 6.9814
QAB 0.4699 0.6895 0.6557 0.7131 0.7049 0.6580
Peille 0.0063 0.0048 0.0106 0.0054 0.0069 0.0103

Bold indicates best values.

TABLE 6 | Average running time of various algorithms (Time unit: second).

Method DWT NSCT MFCNN ECNN SESF IY-Net

Runtime 0.76 2.025 0.38 0.34 0.31 0.16

Bold indicates best values.
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contrast, IY-Net can gain reasonable and acceptable quantitative
metrics, and it also has significant strengths in the visual effects of
multi-modal image fusion, while the computational speed is
much faster than these reference algorithms. It reveals that the
proposed model has premium generality, stability and rapidity.
With the quantitative analysis and running time comparison, it is
not difficult to realize that IY-Net achieves outstanding metrics in
certain aspects, but there is still much progress to be expected.

5 CONCLUSION

In the this paper, a general CNN framework for image fusion is
proposed. Compared to current image fusion models, the proposed
model has threemain advantages: 1) Since it is fully convolutional, the
model can be trained end-to-end and without pre-processing. 2)
Although the training dataset is comprised ofmulti-modal images, the
fused images not only have outstanding visual effects but also are not
impacted by other modal images. 3) Its structure is similar to MSTIF,
hence, it has outstanding generality in multi-modal image fusion. To
summarize, IY-Net is superior to partial traditional multi-scale
algorithms and existing neural network image fusion methods in
terms of generality.

The proposed model provides the optimal visual effects
compared to these reference algorithms through numerous
fusion experiments, but the quantitative metrics are slightly
inadequate. There are still several problems to be resolved to
get a better-performing image fusion model. Firstly, this paper
has a small training dataset, and increasing the large-scale
sample may raise the model performance. Secondly, the
proposed model consists of only three multiple feature
extraction layers, which is relatively simplified, and the
efficiency of the model can be enhanced by using a deeper

network structure. Thirdly, the loss functions of the model are
relatively simple, and the construction of more complex and
optimized loss functions may enhance the stability and
adaptability of the model.
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