
Personalizing Care Through Robotic
Assistance and Clinical Supervision
Alessandra Sorrentino1, Laura Fiorini 2, Gianmaria Mancioppi1, Filippo Cavallo1,2,
Alessandro Umbrico3*, Amedeo Cesta3 and Andrea Orlandini 3

1Scuola Superiore Sant’Anna, Pisa, Italy, 2Department of Industrial Engineering, University of Florence, Florence, Italy,
3CNR–Institute of Cognitive Sciences and Technologies (CNR-ISTC), Rome, Italy

By 2030, theWorld Health Organization (WHO) foresees a worldwide workforce shortfall of
healthcare professionals, with dramatic consequences for patients, economies, and
communities. Research in assistive robotics has experienced an increasing attention
during the last decade demonstrating its utility in the realization of intelligent robotic
solutions for healthcare and social assistance, also to compensate for such workforce
shortages. Nevertheless, a challenge for effective assistive robots is dealing with a high
variety of situations and contextualizing their interactions according to living contexts and
habits (or preferences) of assisted people. This study presents a novel cognitive system for
assistive robots that rely on artificial intelligence (AI) representation and reasoning features/
services to support decision-making processes of healthcare assistants. We proposed an
original integration of AI-based features, that is, knowledge representation and reasoning
and automated planning to 1) define a human-in-the-loop continuous assistance
procedure that helps clinicians in evaluating and managing patients and; 2) to
dynamically adapt robot behaviors to the specific needs and interaction abilities of
patients. The system is deployed in a realistic assistive scenario to demonstrate its
feasibility to support a clinician taking care of several patients with different conditions
and needs.

Keywords: socially assistive robot (SAR), knowledge representation and reasoning (KRR), automated planning (AP),
user modeling (UM), human–robot interaction (HRI)

1 INTRODUCTION

By 2030, the World Health Organization (WHO) foresees a worldwide workforce shortfall of about
18 million healthcare professionals, with dramatic consequences for patients, economies, and
communities (Liu et al., 2017). The development of ICT-based integrated care solutions offers a
variety of possible solutions to address this issue. Research in assistive robotics has experienced an
increasing attention during the last decade aiming at the realization of intelligent robotic solutions
for healthcare and social assistance, also to compensate for such workforce shortages. Also, the
potential impact of healthcare and assistive robots is also witnessed by their deployments to deal with
the COVID19 pandemic (Murphy et al., 2022). Remarkable results have been achieved integrating
social robots in realistic assistive scenarios with human users (see e.g., (Cavallo et al., 2018; Angelini
et al., 2019; D’Onofrio et al., 2016; Bertolini et al., 2016; Coradeschi et al., 2013)), also including the
case of assistance and monitoring of impaired and frail people (see, e.g., (Casey et al., 2016; Fiorini
et al., 2017; Mancioppi et al., 2019)). Assistive robots can be then used to support healthcare
professionals in their activities augmenting their capacities and strength in dealing with a wide
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number of patients. Moreover, human–robot interaction (HRI) is
now a very compelling field also used to better understand how
humans perceive, interact with, or accept these machines in social
contexts (Wykowska et al., 2016). Several studies investigated
the relationships between user needs and assistive robot
features when deployed inside integrated care solutions for
older adults living alone in their homes (see, e.g., (Cesta et al.,
2018; Cortellessa et al., 2021)). A crucial requirement for
effective assistive robotic systems is their ability to deal with
a high variety of situations and contextualize their interactions
according to living contexts and habits (or preferences) of
assisted people (Rossi et al., 2017; Bruno et al., 2019; Umbrico
et al., 2020c). A key current challenge consists in realizing
advanced control systems endowing assistive robots with a rich
portfolio of high-level cognitive and interaction capabilities
(Nocentini et al., 2019; Fiorini et al., 2020a) to realize
personalized and adaptive assistance (Tapus et al., 2007;
Umbrico et al., 2020a; Andriella et al., 2022) and thus
achieve a good level of acceptance (Rossi et al., 2017; Moro
et al., 2018).

This study presents a cognitive system for assistive robots that
rely on ontology-based representation and reasoning capabilities
to support healthcare professionals and elderly users during
assessment and therapy administration. More specifically, the
presented approach pursues a human-in-the-loop methodology
that leverages a “robot-based” user profiling and artificial
intelligence (AI) representation and reasoning features/services
to support decision-making processes of healthcare assistants.
The objective is, on the one hand, to support healthcare
professionals during patient assessment and therapy
administration and, on the other hand, to provide assistive
robots with personalization and adaptability features to
support patients characterized by heterogeneous health-related
needs. Taking inspiration from cognitive architecture research
(Langley et al., 2009; Lieto et al., 2018; Kotseruba and Tsotsos,
2020), we proposed the integration of AI-based features, that is,
knowledge representation and reasoning and automated planning
to 1) define a human-in-the-loop process for continuous
evaluation and treatment of patients and; 2) to dynamically
adapt robot behaviors to the specific needs and interaction
abilities of patients.

The system is deployed on a social assistive robot and
validated in a realistic scenario. We showed how an
assistive robot endowed with cognitive control features is
able to autonomously contextualize its behavior and
effectively support both patients and clinicians in the
synthesis of personalized cognitive interventions. A key
point stands in the mutual assistance between the clinician
and the robot through a “mixed-initiative” work flow. The role
of the clinician is essential to refine and validate decisions
made by the robot. In turn, the robot supports the clinician in
the screening and monitoring of patients as well as the
administration of a therapy. In this regard, the main
contribution of the work concerns the correlation between
standard screening practices used by therapists with the
internal user model used by the robot. This correlation
allows a robot to correctly interpret health-related data

about patients provided by therapists. In particular, it
enables the transfer of knowledge from clinicians to robots
and is thus crucial to synthesizing effective and personalized
assistive behaviors.

A profiling procedure is performed through a robotic
platform during the administration of the Mini-Mental
State Examination (MMSE) to patients with suspected
cognitive decline. As shown in Rossi et al. (2018) and Di
Nuovo et al. (2019), the use of a robot guarantees test
neutrality and attainable standardization for the
administration of cognitive tests. Data about the quality of
interaction are extracted to refine interaction modalities and
thus shape robot behaviors when interacting with users. User
modeling capabilities of the robot rely on an ontological
reification of the International Classification of Functioning,
Disability and Health1 (ICF). The obtained ontological model
defines a well-structured and general reference framework
suitable to autonomously reason about the health status of a
person and elicit fitting interaction parameters. Many works in
the literature deal with user modeling and propose different
frameworks, depending on the specific application needs
(Lema ignan et al., 2010; Awaad et al., 2015; Tenorth and
Beetz, 2015; Lemaignan et al., 2017; Porzel et al., 2020).

Concerning healthcare and assistive domains, user
modeling is particularly crucial to support a user-centered
design and realize effective assistive technologies (LeRouge
et al., 2013). Other works have used the ICF framework as a
reference to characterize cognitive and physical conditions of
users. For example, the work (Kostavelis et al., 2019)
introduced a novel robot-based assessment methodology of
users’ skills is proposed in order to characterize the needed
level of daily assistance. The work (Filippeschi et al., 2018)
used the ICF to characterize cognitive and physical skills of
users and accordingly represent the outcomes of the
implemented robot-based assessment procedures. Similarly,
the work (García-Betances et al., 2016) used ICF to represent
needs and requirements of different types of users and support
the user-centered design of ICT technologies. In particular,
this work integrates an ontological model of ICF into the
cognitive architecture ACT-R (Anderson et al., 1997) to
simulate the behaviors of different types of user.

Nevertheless, the aforementioned works present a “rigid” and
static representation as they usually do not rely on a well-
structured ontological formalism to characterize knowledge
about users (i.e., user profiles) in different situations. Related
works usually do not integrate online reasoning mechanisms that
allow assistive robots to autonomously reason about the specific
needs of a user and autonomously (or partially autonomously)
decide the kind of intervention that best fit such needs.
Conversely, our approach pursues a highly flexible solution
implementing the cognitive capabilities needed to understand
health conditions of users and (autonomously) personalize
assistance accordingly, under the supervision of a human
expert.

1https://www.who.int/standards/classifications
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2 CONTINUOUS ASSESSMENT AND
MONITORING

We aimed at leveraging the interaction capabilities of socially
assistive robots to support clinicians in assessing and monitoring
the cognitive state of patients. We envisage a multi-actor HRI
approach in which an assistive robot can facilitate the
interactions. In particular, we proposed a continuous
assessment and monitoring procedure in which a robot
supports a clinician by: 1) proposing a set of tests suitable for
the specific needs of a patient, 2) administering the chosen tests,
and 3) monitoring (and reasoning over) the performance of the
patient. In this way, the employment of assistive robots can
alleviate clinicians in some of their activities and, thus,
support them in dealing with a larger number of patients. In
addition, a robot can continuously and proactively stimulate
patients by administrating suitable exercises and generally
motivating the participation and the adherence to the therapy.

2.1 Mixed-Initiative Design of Cognitive
Stimulation Therapy
We envisage a novel cognitive intervention program where a
robot constantly supports clinicians in evaluating/monitoring the
cognitive state of a patient and in making decisions about the
intervention plan to follow. The general structure is depicted in
Figure 1. The process fosters a continuous “feedback loop”
between the robot and the clinician. It interleaves
patient–robot interactions (i.e., steps 1.1, 2.1, and 3.1 in
Figure 1) with direct clinician validation and involvement
(i.e., steps 1.2, 2.2, and 3.2 in Figure 1). The interleaving of
steps performed by the two actors aimed at achieving a fruitful
synergy combining the computational capabilities of the robot
with the analytical capabilities of the clinician.

It is worth noticing that the clinician is constantly involved in
the decisional process and maintains control over the decisions
made by the robot, validating them. Each cycle consists of a
number of human–robot interaction steps aiming at 1) profiling
the health state of a person (steps 1.1 and 1.2), 2) defining an
intervention plan suitable for the specific health needs of a patient
(steps 2.1 and 2.2) and, 3) executing the plan by administrating
exercises within a certain temporal horizon (e.g., a week or a
month) and evaluating outcomes (steps 3.1 and 3.2).

The cyclic repetition of these phases allows a clinician to
continuously monitor and assess the evolving cognitive state of a
patient with the support of a robot. Two “feedback chains” are

considered as shown in Figure 1. One feedback chain assesses
and (if necessary) updates the profile of the user at the end of each
cycle. In this way, it is possible to keep track of the outcomes of
synthesized plans, keep track of changes in the health state of a
person, and adapt the next cycle accordingly. Another feedback
chain concerns the continuous construction of a dataset
containing information about the evolution of user profiles
and the related outcomes of the cognitive interventions. This
information would, in particular, allow the clinician to analyze
the evolution over time of the state of a user and thus make better
decisions about next steps.

2.2 An AI-Based Cognitive Architecture
To implement the process of Figure 1, an assistive robot should
be able to reason about the health state/conditions of a patient
and autonomously make suitable decisions. In particular, a robot
needs a number of properly designed and integrated cognitive
capabilities in order to contextualize assistive behaviors and
effectively support both patients and clinicians. Taking
inspiration from cognitive architectures (Langley et al., 2009;
Kotseruba and Tsotsos, 2020), we focus on the development and
integration of AI-based technologies supporting knowledge
representation and reasoning and decision making and problem
solving. The integration of knowledge representation and
reasoning with automated planning has been shown to be
effective for the synthesis of flexible robot behaviors. They are
particularly crucial to realize advanced (cognitive) controllers
capable of (autonomously) personalize and adapt robot behaviors
to the specific features of different application scenarios, for
example, service robots (Awaad et al., 2015; Tenorth and Beetz,
2015; Porzel et al., 2020), daily assistance (Umbrico et al., 2020a;
Cortellessa et al., 2021), and manufacturing (Borgo et al., 2019).

Figure 2 provides an overview of modules developed to
support the considered capabilities and their integration within
a “cognitive loop.” On the one hand, an ontology-based
representation and reasoning module allows an assistive robot
to internally represent cognitive and physical information about
an assisted person and contextualize its interaction and
intervention capabilities accordingly. Pursuing a foundational
approach (Guarino, 1998), we defined a domain ontology
based on the ICF classification to represent user profiles and
reason on the health state of a person. It relies on DOLCE2 as a
theoretical foundation, and was written in OWL (Antoniou and

FIGURE 1 | Workflow of the devised cognitive intervention mixing on robot and human in skills.

2http://www.loa.istc.cnr.it/dolce/overview.html
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Harmelen, 2009) using Protégé3. The robot knowledge and related
knowledge-reasoning modules have been developed in Java using
the open-source library Apache Jena4. On the other hand, a
decision making and problem solving module allows an assistive
robot to synthesize and execute intervention plans, personalized
according to the “recommendations” extracted from the robot
knowledge. The synthesis and execution of such plans rely on
PLATINUm (Umbrico et al., 2017), a timeline-based planning
and execution framework deployed in assistive scenarios
(Umbrico et al., 2020a) and concrete human–robot
collaboration manufacturing scenarios (Pellegrinelli et al.,
2017). The contribution of this work specifically focuses on
the developed ontology-based representation and reasoning
capabilities.

3 ONTOLOGY-BASED MODELING OF
HEALTH-RELATED NEEDS

A user profile should encapsulate a rich and heterogeneous set of
information characterizing the general health state of a person.
We proposed an ontological model of health needs based on the
International Classification of Functioning, Disability and Health
(ICF), defined by theWorld Health Organization (WHO) (World
Health Organization, 2001). User profiles are thus represented on
top of such ICF-based ontological models in order to provide an
assistive robot with a complete characterization of patients’ needs.

3.1 Modeling Health-Related Knowledge
About Patients
There are several factors that can be considered when modeling
users. Different choices would support different robot behaviors
and different levels/types of adaptation. Broadly speaking, the
creation of a complete and effective user model is crucial to realize
human–robot interactions characterized by adaptability, trust
building, effective communication, and explainability (Tabrez
et al., 2020). In the context of cognitive assessment with
assistive robots, many works tend to focus on personality,
emotions, and engagement as aspects of the user profile that
the robot should take into account (Sorrentino et al., 2021). For

example, Tapus et al. (2008) described a socially assisted robot
therapist designed to monitor, assist, encourage, and socially
interact with post-stroke users engaged in rehabilitation
exercises. This work investigated the role of the robot’s
personality (i.e., introvert–extrovert) in the therapy process
taking into account the personality traits of a user. Similarly,
(Rossi et al. (2018) investigated the influence of the user’s
personality traits on the perception of the Pepper robot,
administrating a cognitive test. Their results suggested that the
usage of a robot in this context improved socialization among the
participants. On the other hand, the works of Desideri et al.
(2019) and (Pino et al. (2020) showed that the usage of a robotic
platform for cognitive stimulation engaged more participants to
the therapy. In the mentioned works, the influence of each aspect
was mostly investigated offline and it was mostly related to the
occurred quality of the interaction. In addition, the robotic
platform was adopted as a medium for the administration of
the clinical protocol, without providing any cues on how the
information collected by the robot could be used for planning
future interventions. The assumption behind this work is that the
robot should be able to adapt its intervention, by focusing on the
quality of the interaction, but also on the user cognitive profile.

Concerning our contribution, other works have used the ICF
framework to characterize cognitive and physical conditions of
users. The work (Kostavelis et al., 2019) introduced a novel robot-
based assessment methodology of users’ skills to characterize the
needed level of daily assistance. The work (Filippeschi et al., 2018)
used ICF to characterize cognitive and physical skills of users and
accordingly represent the outcomes of the implemented robot-
based assessment procedures. Similarly, the work (García-
Betances et al., 2016) used ICF to represent needs and
requirements of different types of users and support a user-
centered design of ICT technologies. This work integrates an
ontological model of ICF into the cognitive architecture ACT-R
(Anderson et al., 1997) to simulate the behaviors of different types
of user. Nevertheless, these works present a “rigid” and static
representation as they usually do not rely on a well-structured
ontological formalism to dynamically contextualize knowledge
about users (i.e., user profiles) in different situations. Such works
usually do not integrate online reasoning mechanisms to allow
assistive robots to autonomously reason about the specific needs
of a user and autonomously (or partially autonomously) decide
the kind of intervention that best fit such needs. Conversely, our
approach pursues a highly flexible solution implementing the
cognitive capabilities needed to understand health conditions of

FIGURE 2 | Overview of the AI-based cognitive architecture.

3https://protege.stanford.edu
4https://jena.apache.org/index.html
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users and (autonomously) personalize assistance accordingly,
under the supervision of a human expert.

3.2 ICF-Based Representation of User
Profiles
The ICF classification aimed at organizing and documenting
information on functioning and disability. It pursues the
interpretation of functioning as a dynamic interaction among
health conditions of a person, environmental factors, and
personal factors. Each defined concept characterizes a specific
aspect concerning the physical or cognitive functioning of a
person. The level of functioning of each physical/cognitive
aspect is represented by the following scale: 1) the value
0 denotes no impairment, 2) the value 1 denotes soft
impairment, 3) the value 2 denotes medium impairment, 4)
the value 3 denotes serious impairment, and 5) the value
4 denotes full impairment.

The ICF classification is organized into two parts. A part deals
with functioning and disabilities while the other part deals with
contextual factors. The former is further organized into the
components body functions and body structures that are the
ones considered in the design of the ontological model. The
body is an integral part of human functioning and the bio-
psychosocial model considers it in interaction with other
components. Body functions are thus the physiological aspects
of body systems, while structures are the anatomical support (e.g.,
sight is a function while the eye is a structure). Several ICF
concepts describe the functioning of mental faculties and have
been used to define user profiles. The concept
OrientationFunctioning characterizes the functioning
of general mental functions of known and ascertaining one’s
relation to time, to place, to self, objects, and space. The concept
AttentionFunctioning characterizes specific mental
functions focusing on external stimulus or internal experience
for the required period of time. The concept
MemoryFunctioning characterizes specific mental
functions of encoding, storing information, and retrieving it as
needed.

Other ICF concepts have been instead used to characterize the
interaction capabilities of a person and thus identify interaction
preferences determining the way a robot should interact with a
person while administrating exercises. The concept
SeeingFunctioning models specific functions related to
seeing the presence of light and sensing the form, the size,
shape, and color of visual stimuli. The concept
HearingFunctioning models sensory functions related to
sensing the presence of sounds and discriminating the location,
pitch, loudness, and quality of sounds.

4 KNOWLEDGE REASONING FOR
PERSONALIZATION

Information gathered during the profiling phase and its
representation based on ICF allow an assistive robot to
autonomously reason about the intervention plan that “best

fit” the specific needs of a person (e.g., what kind of cognitive
exercise a person needs) and the way such actions should be
executed (e.g., how a robot should interact with a person to
effectively administrate cognitive exercises).

4.1 From Impairments to Intervention
Actions
Following ICF classification, the ontological model defines a
number of concepts that represent different
FunctioningQuality of a person. As mentioned in
Section 2.2, we rely on DOLCE as foundational ontology.
Then, the ICF qualities are modeled as subclasses of DOLCE:
Quality and are associated to entities of type DOLCE:
Person. The concept Profile defines a descriptive context
of the overall functioning qualities of a particular person. It
represents the outcome of a profiling phase and consists of a
number of Measurements. Each measurement associates the
evaluation of a functioning quality to a value representing the
assigned ICF score (i.e., the outcome of the evaluation).
Knowledge-reasoning processes analyze such measurements
(i.e., a user profile) to autonomously infer the physical or
cognitive impairments characterizing the functioning state of a
person. Eq. 1 in the following section shows a general inference
rule used to detect such impairments.

∀x, y,w.∃z.(Measurement(x) ∧
measures(x, y) ∧

FunctioningQuality(y) ∧
hasOutcome(y,w) ∧

FunctioningRegion(w) ∧
greaterThan(hasICFscore(w), 0) ∧
lowerThan(hasICFscore(w), 5) → Impairment(z) ∧

concerns(z, y) ∧
satisfies(z, x)).

(1)

In addition to this knowledge, the ontology characterizes
properties of intervention plans. A robot can indeed be
endowed with a number of “programs” implementing known
tests suitable to evaluate/stimulate different functioning qualities,
for example, the Free and Cued Selective Reminding Test for
episodic long-term memory assessment or the Trailing Making
Test form A for selective attention assessment.

Taking inspiration from some works in manufacturing that
define the concept of function (Borgo and Leitão, 2004; Borgo
et al., 2009), we characterized intervention actions of a robot in
terms of their effects on the functioning qualities of a person. The
defined semantics characterizes these “programs” according to
the functioning qualities they address. For example, an interactive
program implementing the Free and Cued Selective Reminding
Test is classified as an intervention action whose effects can
“improve” (i.e., has positive effects on) the functioning quality
MemoryFunctioning. The obtained ontological model
fosters an integrated representation of knowledge about the
health state of a person and intervention capabilities of a
robot. Knowledge processing mechanisms then use this
integrated knowledge to infer a set of actions suited to address
the inferred impairments of a patient (Umbrico et al., 2020b). For
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example, if MemoryFunctioning is inferred as soft
impairment (value 1) and AttentionFunctioning as no
impairment (value 0) only actions implementing the Free and
Cued Selective Reminding Test (or other similar tests) are inferred
as suitable to a patient.

4.2 Reasoning on Interaction Preferences
A Profile encapsulates a rich set of information that can be
analyzed to infer interaction capabilities of a person and define
robot interaction preferences accordingly. If the analysis of a
profile infers a medium impairment of the quality
HearingFunctioning then, the interactions between the
patient and the robot should rely mainly on visual and textual
messages rather than voice and audio. In case that audio
interactions cannot be avoided (e.g., recorded audio
instructions and recommendations or video conferences) it
would be possible to properly set the sound level of the robot
in order to help the assisted person as much as possible.

Knowledge-reasoning mechanisms thus infer also how
intervention plans should be carried out by the robot in order
to effectively interact with the considered patient. In this regard,
we have defined four interaction parameters characterizing the
execution of robot actions: 1) sound level, 2) subtitle, 3) font size,
and 4) explanation. The sound level is an enumeration parameter
with values \{ none, regular, high\} specifying the volume of audio
communications and messages from the robot to the patient.
Patients with soft or medium hearing impairment represented as
HearingFunctioning would need a high sound level, while
audio would be completely excluded for persons with serious
impairments in order to use different interaction modalities. The
subtitle is an enumeration parameter with values \{ none, yes, no\}
specifying the need of supporting audio messages through text.
Patients with no, soft, or medium impairment of
SeeingFunctioning and medium or serious impairment
of HearingFunctioning would need subtitles to better
understand instructions and messages from the robot.

The font size is a binary parameter with values \{ regular,
large\} specifying the size of the font of text messages and
subtitles, if used. Patients with medium impairment of
SeeingFunctioning would need large fonts in text

messages in order to better read their content. Finally,
explanation is a binary parameter (i.e., yes or non) specifying
the need of explaining an exercise to a patient before its execution.
Such instructions would be particularly needed for patients with
impaired MemoryFunctioning or
OrientationFunctioning. Clearly, the way such
explanations are carried out complies with the interaction
parameters described earlier.

5 FEASIBILITY ASSESSMENT

To demonstrate the feasibility of our cycle-based approach, we
considered ASTRO, an assistive robot equipped with several
sensors (i.e. laser, RGB-D camera, microphones, speakers, and
force sensors) and two tablets (Fiorini et al., 2020b) (see
Figure 3). We deployed on ASTRO the architecture proposed
in Section 2 augmenting its capabilities with the cognitive
functionalities presented in Section 2.2 in order to implement
the human-in-the-loop cycle proposed in Section 2.1. Then, we
demonstrated the feasibility of such robotic functionalities to
support a clinician while responding to specific needs of some
older adult users. In particular, eight elderly persons, 3 males and
5 females (avg. age 82.25 years old, range 72–91 years old), were
enrolled for this study. All the recruited subjects live in a
residential facility in the same geographical region5.

The ASTRO robot equipped with the new proposed
functionalities was tested to demonstrate its ability to support
a clinician in realizing the functionalities to 1) represent user
profiles with respect to ICF (who you are), 2) synthesize
personalized intervention plans (what you need) considering a
set of 10 cognitive tests typically used to further investigate and
evaluate the cognitive state of a person, and 3) select the
appropriate interaction modalities of the robot (how you like
it) among the ones supported by the robotic platform. An off-line
analysis and discussion of the results with the clinicians are
reported at the end of the section to emphasize the
importance of the human-in-the-loop approach (see again
Figure 1).

5.1 Demonstrating User Profiling and Profile
Representation
As shown in Figure 1, user profiling is necessary at the beginning
of each intervention cycle to set/update robot knowledge about
the health state of an assisted person. The outcome of this step is a
profile describing the cognitive state of a person with respect to
the developed ontological model. A correct acquisition of this
information is crucial for the efficacy of the synthesized
intervention plan. The robot indeed relies on the user profile
to infer the set of cognitive tests (i.e., stimuli) that are suitable for
the considered user and then decide personalized intervention
plan (i.e., the further assessment).

FIGURE 3 | Experimental set-up: ASTRO robot is administering the
MMSE test to the subject.

5All procedures were in accordance with the 1964 Helsinki declaration and its later
amendments or comparable ethical standards
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The user profile is generated according to the scoring obtained
through the administration of the Mini-Mental State
Examination (MMSE). The MMSE represents the most used
screening test for cognitive status, and it is adopted worldwide
by clinicians to briefly assess persons with the suspect of
dementia. It encompasses 21 items which cover tests of
orientation, recall, registration, naming, comprehension,
calculation and attention, writing, repetition, drawing, and
reading (Folstein et al., 1983). The cognitive status level is
obtained by summing the score of the individual items and
normalizing it based on the educational level and the age of
the patient. Decreasing scores of repeated tests highlight
deterioration in cognition. In particular, the participants
were asked to undergo the MMSE administrated by
ASTRO. The assessment was performed with a Wizard-of-
Oz (WOz) method. A clinician guides the robot through the
examination phases using a dedicated web interface.
The patient is not aware of the presence of the clinician
and he/she directly interacts with the robot. The web
interface allows the clinician to select the appropriate
MMSE tests to perform. The tests require different
interaction modalities between the user and the robot, for
example, asking questions to the user or showing images to
the user through the front tablet. The clinician can ask the
robot to repeat the test if necessary.

The caregiver stores the results of the assessment into the
robot knowledge base through the same dedicated technical
interface. The overall score of the MMSE is automatically
processed by the robot at the end of the session, by parsing
the annotated answers. The robot automatically correlates
MMSE items with (relevant) ICF functions the robot uses to
represent the cognitive state of a patient. According to this
correlation, the robot then builds a user profile by mapping
received MMSE scores to ICF scores. Table 1 shows how each
ICF function can be described by one or multiple MMSE

categories. This is an original mapping performed by a
clinician between MMSE scores and ICF for generating a
user profile representation. For instance, the ICF concept
MemoryFunctioning is defined as specific mental
functions of registering and sorting information and
retrieving it as needed. This ICF function can be described
by the MMSE items which cover the recalling, counting, and
spelling tests. Based on the same similarity approach, the
overall mapping shown in Table 1 is obtained. In order to
convert the MMSE scoring of each category into the
measured level of impairment of the ICF profiling, a
proportional method is used. The current MMSE score
(i.e., the number of tasks correctly performed) in one
category is compared to the maximum MMSE score
achievable in the same category and then converted into
the ICF scoring. This mapping is based on an inverted
scale of values. For example, if the patient correctly
accomplished the requested task of MMSE items (high
values of MMSE), he/she gets a lower ICF score (no
impairment). If the patient partially accomplished the task,
an intermediate value of the ICF score is assigned (mild
impairment). If the patient did not accomplish the task, a
higher value of ICF score is attributed (hard impairment).

The video and audio of the administration sessions were
recorded by the robot’s frontal camera. The recorded videos
were off-line analyzed by the clinician to extract the quality of
interaction (e.g., the number of robot’s repetition) with the robot
and additional evidence of the cognitive decline (e.g., coherent
and incoherent interaction) (Sorrentino et al., 2021). Table 1
reports the complete list of extracted parameters. These data are
then merged with the individual MMSE score returned by the
robot and manually mapped into the ICF scores, following the
proposed mapping. Figure 4 reports the final results for each
user. Data were then analyzed with the proposed framework and
discussed with the clinician to corroborate the analysis. The

TABLE 1 | Mapping MMSE profiling to ICF profiling.

ICF function MMSE item Maximum score (MMSE) Total score (MMSE)

Orientation (ORI) Orientation in time 5 10
Orientation in space 5

Attention (ATT) Counting 5 5
Memory (MEM) Recalling 3 13

Counting 5
Spelling 5

Perceptual (PER) Robot’s perception - -
High level (HIL) Recalling 3 11

Counting 5
Comprehension 3
Coherent interaction -

Language (LAN) Naming 2 4
Repetition 1
Writing 1

Calculation (CAL) Counting 5 5
Communication (COM) Coherent interaction - 1

Incoherent interaction -
Speaking (SPE) Naming 2 3

Reception 1
Writing (WRI) Writing 1 1
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clinician found an adequate representation of the profiles and
validated all of them.

5.2 Demonstrating Intervention
Personalization
The subsequent considered actions consist in the selection of a
number of cognitive tests to administer, regarding the inferred
impaired functioning qualities of a patient. The assistive
capabilities of such actions depend on the features of the
associated cognitive tests and thus on the functioning qualities
stimulated by them. According to the inferred impairments and
the recommendations generated by the developed knowledge
processing mechanisms, a number of these tests are selected
for administration.

We have considered a total number of 10 cognitive tests that
are typically used to further investigate and evaluate the cognitive
state of a person. The Free and Cued Selective Reminding Test, the
Rey’s Figure Test, the Forward Digit Test, and the Backward Digit
Span Test evaluate and stimulate the functioning quality
MemoryFunctioning. The Trailing Making Test form A
and the Trailing Making Test form B evaluate and stimulate
the functioning quality AttentionFunctioning. The Stroop
Test evaluates and stimulates the functioning quality
OrientationFunctioning. The Boston Naming Test 40-
item, the Animals Test, and the Denomination Test evaluate and
stimulate the functioning quality LanguageFunctioning.

The experiments have been performed with the objective to
demonstrate the capability of combining this knowledge with the
ICF scores of Figure 4 (i.e., user profiles) to determine actions

FIGURE 4 | Final ICF scoring of users.

FIGURE 5 |Ranking intervention actions for different profiles (action enumeration: 1) Denomination test. 2) Forward digit test. 3) Free and Cued Selective Reminding
Test. 4) Stroop test. 5) Animals test. 6) Backward digit span test. 7) Rey’s figure test. 8) Trailing Making Test form B. 9) Trailing Making Test form A. 10) Boston Naming
Test 40-items.

FIGURE 6 | Charts show (A) inferred (cumulative) impairment state of patients and; (B) inferred impact of known actions on patients.

Frontiers in Robotics and AI | www.frontiersin.org July 2022 | Volume 9 | Article 8838148

Sorrentino et al. Personalizing Care Through Robotic Assistance

https://www.frontiersin.org/journals/robotics-and-ai
www.frontiersin.org
https://www.frontiersin.org/journals/robotics-and-ai#articles


that fit the cognitive status of the profiled users and thus achieve
personalization. Figure 5 shows results of the experiments. It
specifically shows a heat-map with the ranking values of known
cognitive tests (i.e., actions) for each user profile. The value
expresses the significance of a specific test/action considering
the cognitive impairments inferred for a particular user profile.
The higher the computed ranking value the more is the relevance
of a particular action for the corresponding user. Figure 6 then
shows aggregated numbers pointing out the total level of
impairments of the considered users in Figure 6A and the
inferred impact of each action in Figure 6B. These figures
clearly show the most compromised users (i.e., the users with
the highest level of impairment) and the most useful actions
(i.e., the actions that address the higher number and most
significant impairments of users) according to robot knowledge.

The higher the ranking value the higher the “seriousness” of
the associated impairments and consequently the significance of a
test with respect to the cognitive state of a user. An example is
profile 8 whose cognitive state is characterized by several
impairments as can be seen from the ICF scores resulting
from the outcome of MMSE in Figure 4. Consequently, as
shown in Figure 5, many of the considered tests have been
computed as relevant to the cognitive state of this patient.
Higher values have been computed for tests addressing
impaired qualities, for example, the Forward Digit Test
addressing MemoryFunctioning (medium impairment in
Figure 4) or the Trailing Making Test form A addressing
AttentionFunctioning (serious impairment in Figure 4).

Vice versa low ranking values have been computed for not so
serious impairments. An example is the user profile 5 whose
cognitive state is characterized by few soft impairments (see again
the ICF scores resulting from the outcome of MMSE in Figure 4).
In this case, a “minimum” ranking value has been computed only
for the Denomination Test, the Stroop Test, and the Boston
Naming Test 40-item that address the soft impaired
functioning qualities OrientationFunctioning and
LanguageFunctioning. The outcome of the knowledge-
based reasoning mechanisms has been assessed by an expert
clinician. The results of this validation are reported in Section 5.4.

5.3 Demonstrating Interaction
Personalization
Once a personalized set of interventions has been defined, user
profiles are further evaluated to decide how such actions should

be performed (i.e., interaction preferences). This reasoning step
relies on a number of inference rules that link ICF scores to the
interaction preferences introduced in Section 4.2. We have
considered ICF scores concerning PerceptualFunction
(PER) and MemoryFunctioning (MEM). MEM is linked
to the interaction preference explanation as described in
Section 4.2. PER is linked to the interaction preferences sound
level, font size, and subtitles. As shown in Table 1, a clinician
assigns a score to PER by evaluating the number of robot’s
repetitions. Given the lack of a precise evaluation of hearing
and seeing capabilities of users, we have used PER scores to
implicitly measure the functioning qualities
HearingFunctioning and SeeingFuncitoning and
infer the related interaction preferences as described in
Section 4.2.

Table 2 shows the interaction preferences inferred for the
considered users. The results show the capability of the developed
knowledge-reasoning mechanisms to contextualize the execution
of intervention actions (and thus robot behaviors) by defining a
number of coherent interaction parameters. Users with soft or no
impairment conditions of PerceptualFunctioning would
not require particular interaction preferences for the execution of
the associated intervention actions.

An example, is profile 5 that has no impairment of
PerceptualFunctioning (PER = 0 in Figure 4) and is
associated to the interaction parameters 〈 regular, regular, none,
and none 〉 in Table 2. Vice versa users with medium or serious
impairment conditions of PerceptualFunctioning would
require a specific configuration of robot behaviors for the
execution of the associated intervention actions. Examples are
profile 4 and profile 8 that have serious impairments of
PerceptualFunctioning (PER = 4 in Figure 4) and are
both associated to the interaction parameters 〈 high, large, yes,
and yes 〉 in Table 2. These experiments show the feasibility of the
developed knowledge-reasoning mechanisms in personalizing
and adapting robot assistive behaviors to the health needs of
different patients.

It is worth noting that the use of domain-dependent rules like
the ones defined for PER would not limit the generality of the
developed knowledge-reasoning approach. Rather, this situation
shows how developed reasoning behaviors can be easily tailored
to specific needs and features of different assistive scenarios.

5.4 Off-Line Result Discussion With the
Clinician
The system identifies the subjects with a higher level of
impairment, which needs more attention during a further
comprehensive neuropsychological testing. Therefore, based on
the stored profiles, the system suggests a broader set of further
cognitive tests to the users with a higher average of cognitive
issues, to provide more informative support for the clinician. We
are referring particularly to subject numbers 1, 2, 4, 6, 7, and
8 that, respectively, report a raw score of 16, 17, 12, 18, 15, and
17 out 30 on MMSE. For example, subjects 1, 6, and 8 were
strongly suggested to undergo the similar set of tests. In
particular, those subjects, which showed a mild to medium-

TABLE 2 | Inferred interaction parameters for different profiles.

User - Parameter Sound level Font size Subtitle Explanation

Profile 1 High Regular Yes Yes
Profile 2 High Regular Yes Yes
Profile 3 High Regular Yes None
Profile 4 High Large Yes Yes
Profile 5 Regular Regular None None
Profile 6 High Regular Yes Yes
Profile 7 High Regular Yes Yes
Profile 8 High Large Yes Yes
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cognitive impairment, were asked to undergo tests related to
executive functions and working memory (forward and backward
digit span, and Trailing Making Test form A and B). Such
cognitive impairments represent a crucial risk factor for the
transition to mild cognitive impairment to a full-blown
dementia syndrome. In addition, the subject number 8, which
showed a more severe impairment related to languages, was
suggested to undergo also a denomination test and the Boston
Naming Test, both tests for language domain. Such suggestions
were not mentioned in the other two subjects. Moreover, the
memory function, tested by the Free and Cued Selective
Reminding Test, was suggested to be studied in almost all the
subjects except for the not impaired subject numbers 3 and 5.

Interestingly, the system reports less need for further test
administration for subject numbers 4 and 7, respectively, the
two subjects with worst cognitive performances. This is an
expected performance as the implemented knowledge
processing mechanisms assign ranks to intervention actions in
a “non-linear way.” In particular, lower ranks are assigned to tests
addressing too compromised functions as they are supposed to be
managed separately. That may represent a counter-intuitive data,
but a common clinic routine. Too much compromised subjects’
condition makes the clinical picture already clear and further
analysis fruitless. Therefore, clinical practice is a balance between
the need to accomplish an explicit vision of the case, and the
economy of time and resources. On the other hand, regarding the
subjects with a non-impaired neuro-cognitive profile
(i.e., numbers 3 and 5. Score of 27 and 29 out 30), the system
proposed fewer tests as informative. In conclusion, such results
are aligned with standard clinical practice, thus the assistive robot
could represent a useful tool for assessment process refinement.

6 CONCLUSION AND FUTURE WORKS

This study presents an original cyclic procedure to support
healthcare assistance with robots endowed with a novel
integration of AI-based technologies supporting knowledge
representation and reasoning and decision making and problem
solving, two crucial capabilities to achieve personalization and
adaptation of assistive behaviors. A human-in-the-loop approach
is pursued to define a process in which a clinician is involved into the
decisional process and an interleave of cognitive state evaluation and
test administration allows her to maintain the control over the
decisions made by a robot and its resulting assistive behaviors. The
approach was demonstrated to be feasible and effective in a realistic
scenario with eight participants. A clinician supervised the procedure
evaluating the robot’s behavior.

This study presented a first concrete result of a research
initiative whose long-term goal is to foster the development of
intelligent assistive robots capable of supporting healthcare
professionals in dealing with larger number of patients.
Indeed, despite the small sample size, the results suggest how
the robot’s interaction parameters can be fine-tuned to the
residual abilities and the cognitive profile of the person who it
is interacting with. In this sense, a better understanding of
patients’ social, cognitive, and biological aspects will allow

assistive robots to represent such information into their
cognitive system, and use it to autonomously take more
initiative to support both clinicians and patients. According to
the feedback obtained during the off-line discussion with the
clinicians, the decision making module can suggest/schedule an
appropriate personalized care plan. This finding can suggest that
the proposed ontologies based on ICF score can be generalized to
be applied to social robots to improve and personalize the
human–robot interaction as well as to provide a care plan to
the caregiver.

The future work plan aims at addressing two main aspects of
overcoming current limitations. First, from a technical
perspective, it aims to investigate user assessment and profile-
building functions (e.g., via machine learning) to better identify
user needs and to extend the set of assistive services supported by
the cognitive architecture to enlarge the application
opportunities. Second, from the user perspective, future work
should consider larger involvement of participants’ cohort so as
to perform a systematic evaluation to assess its concrete
effectiveness, usability, and acceptance in real contexts.
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