
Genome-​wide association studies (GWAS) aim to iden-
tify associations of genotypes with phenotypes by testing 
for differences in the allele frequency of genetic variants 
between individuals who are ancestrally similar but dif-
fer phenotypically. GWAS can consider copy-​number 
variants or sequence variations in the human genome, 
although the most commonly studied genetic variants 
in GWAS are single-​nucleotide polymorphisms (SNPs). 
GWAS typically report blocks of correlated SNPs that all 
show a statistically significant association with the trait 
of interest, known as genomic risk loci. After 15 years of 
GWAS1, many replicated genomic risk loci have been 
associated with diseases and traits1, such as FTO2 for 
obesity and PTPN22 (ref.3) for autoimmune diseases.  
These results have sometimes provided hints into dis-
ease biology; for example, a GWAS implicated the  
IL-12/IL-23 pathway in the development of Crohn’s 
disease4, which supported subsequent clinical trials for 
drugs targeting the IL-12/IL-23 pathway5.

Results from GWAS can be used for a range of appli-
cations. For example, trait-​associated genetic variants 
can be used as control variables in epidemiology studies 
to account for confounding genetic group differences6. 
Further, results can be used to predict an individual’s risk 
for physical and mental disease based on their genetic 
profile. Indeed, a recent study showed that genomic 
risk prediction using genome-​wide polygenic risk scores 
(PRSs) for coronary artery disease, atrial fibrillation, 
type 2 diabetes, inflammatory bowel disease and breast 
cancer can identify disease risk as well as monogenic 
risk prediction strategies based on rare, highly pene-
trant mutations7. Genomic risk prediction may soon 

be allowed for clinical use as a stratification tool and a 
genetically based biomarker7.

More than 5,700 GWAS have now been conducted 
for more than 3,300 traits8 and a push for more statistical 
power has thrust GWAS sample sizes well beyond a mil-
lion participants9,10, yielding numerous associated and 
replicable variants for many heritable traits. Now that 
reliable genetic associations for various phenotypes are 
known, we are faced with the next big challenge: inter-
preting these associations in a biological and genomic 
context. Previous GWAS have shown that most traits are 
influenced by thousands of causal variants11 that indi-
vidually confer very little risk, are often associated with 
many other traits8 and are correlated with causal and 
non-​causal variants that are physically close as a result 
of linkage disequilibrium12, making direct biological, causal 
inferences complicated13. Further, genetic associations 
may differ across ancestries, complicating direct compar-
isons between groups of individuals. Some of these limi-
tations hamper drawing unambiguous conclusions about 
the biological meaning of GWAS results, sometimes lim-
iting their utility to produce mechanistic insights or to 
serve as starting points for drug development1.

In this Primer, we aim to provide the reader with a 
comprehensive overview of GWAS, covering practical 
considerations, such as experimental design, robust 
data analysis and data deposition, ethical implications 
and reproducibility of results. We also provide guidance 
on how to interpret results from GWAS using several 
post-​GWAS strategies and functional follow-​up exper-
iments, as well as a discussion of the above-​mentioned 
limitations and future challenges of GWAS.

Polygenic risk scores
(PRSs). Scores that provide  
an indication of an individual’s 
genetic liability to a trait or 
disease, calculated using an 
individual’s genome, weighted 
by effect sizes obtained from 
genome-​wide association 
studies (GWAS).

Linkage disequilibrium
The non-​independent 
association of two alleles  
in a population.
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Experimentation
The experimental workflow of a GWAS involves several 
steps, including the collection of DNA and phenotypic 
information from a group of individuals (such as dis-
ease status and demographic information such as age 
and sex); genotyping of each individual using available 
GWAS arrays or sequencing strategies; quality control; 
imputation of untyped variants using haplotype phasing 
and reference populations; conducting the statistical test 
for association; conducting a meta-​analysis (optional); 
seeking an independent replication; and interpreting 
the results by conducting multiple post-​GWAS analyses 
(Fig. 1). At each step, possible biases and errors may enter 
the study, and therefore careful planning is required 
when setting up a GWAS, and adherence to standard-
ized quality control and analysis protocols is advised. We 
detail these steps below. We note that most of the issues 
that may arise when conducting GWAS, such as care-
fully selecting participants or the steps that are needed in 
quality control, apply both to GWAS that include com-
mon variants and to studies that include rare variants 
such as whole-​exome sequencing (WES) studies and 
whole-​genome sequencing (WGS) studies; the sections 
below concern the analysis of common variants, except 
when explicitly stated (Box 1).

Conducting GWAS
Selecting study populations. GWAS often require very 
large sample sizes to identify reproducible genome-​wide 
significant associations and the desired sample size can 
be determined using power calculations in software tools 
such as CaTS14 or GPC15. Study designs can involve the 
inclusion of cases and controls when the trait of inter-
est is dichotomous, or quantitative measurements on 
the whole study sample when the trait is quantitative. In 
addition, one can choose between population-​based and  
family-​based designs. The choice of data resource  
and study design for a GWAS depends on the required 

sample size, the experimental question and the availabil-
ity of pre-​existing data or the ease with which new data  
can be collected. GWAS can be conducted using  
data from resources such as biobanks or cohorts with 
disease-​focused or population-​based recruitment, or 
through direct to consumer studies. Assembling data 
sets of a sufficient size to run a well-​powered GWAS for 
a complex trait requires major investments of time and 
money that go beyond the capacity of most individual 
laboratories. However, there are several excellent public 
resources available that provide access to large cohorts 
with both genotypic and phenotypic information, and the 
majority of GWAS are conducted using these pre-​existing 
resources. Even when new data have been collected in-​
house, these will typically be co-​analysed with data from 
pre-​existing resources; collecting new data is usually 
required when more refined phenotyping is desired.

For all study designs, recruitment strategies must be 
carefully considered as these can induce collider bias and 
other forms of bias in the resultant data16. For example, 
widely used research cohorts such as the UK Biobank 
recruit participants through a volunteer-​based strategy, 
which results in participants who are, on average, health-
ier, wealthier and more educated than the general popu
lation17. Further, cohorts that enrol participants from 
hospitals based on their disease status (such as BioBank 
Japan) will have different selection biases to cohorts 
recruited from the general population18. Different eth-
nicities can be included in the same study, as long as 
the population substructure is considered to avoid false 
positive results. Individual cohorts with detailed clinical 
measures may not be able to meet the required sample 
size; in these cases, ‘proxy’ phenotypes that are easier to 
measure and for which there are more data can be used 
(for example, educational attainment can be used as a 
proxy for intelligence, or depressive symptoms can be 
used as a proxy for a clinical diagnosis of depression)19.

Genotyping. Genotyping of individuals is typically 
done using microarrays for common variants or next-​
generation sequencing methods such as WES or WGS 
that also include rare variants. Microarray-​based geno-
typing is the most commonly used method for obtaining 
genotypes for GWAS owing to the current cost of next-​
generation sequencing. However, the choice of genotyp-
ing platform depends on many factors and tends to be 
guided by the purpose of the GWAS; for example, in a 
consortium-​led GWAS, it is usually wise to have all indi-
vidual cohorts genotyped on the same genotyping plat-
form. Ideally, WGS — which determines nearly every 
genotype of a full genome — is preferred over WES and 
microarrays, and is expected to become the method of 
choice over the next couple of years with the increasing 
availability of low-​cost WGS technology.

Data processing. Input files for a GWAS include 
anonymized individual ID numbers, coded family rela-
tions between individuals, sex, phenotype information, 
covariates, genotype calls for all called variants and 
information on the genotyping batch. Following input of 
the data, generating reliable results from GWAS requires 
careful quality control. Some example steps include 
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Collider bias
A bias that occurs when two 
variables (A and B) both 
influence a third variable (C), 
and the third variable is used 
to condition on. This can 
induce spurious correlations 
between variables A and B.
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removing rare or monomorphic variants, removing 
variants that are not in Hardy–Weinberg equilibrium, fil-
tering SNPs that are missing from a fraction of individ-
uals in the cohort, identifying and removing genotyping 
errors, and ensuring that phenotypes are well matched 
with genetic data, often by comparing self-​reported sex 
versus sex based on the X and Y chromosomes. Software 

tools such as PLINK have been specifically designed to 
analyse genetic data and can be used to conduct many 
of these quality control steps20 (further software for 
quality control analysis and other stages of GWAS are 
summarized in Table 1). Once sample and variant qual-
ity control have been performed on GWAS array data, 
variants usually undergo phasing and are imputed using 
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Fig. 1 | Overview of steps for conducting GWAS. a | Data can be collected from study cohorts or available genetic  
and phenotypic information can be used from biobanks or repositories. Confounders need to be carefully considered and 
recruitment strategies must not introduce biases such as collider bias. b | Genotypic data can be collected using 
microarrays to capture common variants, or next-​generation sequencing methods for whole-​genome sequencing  
(WGS) or whole-​exome sequencing (WES). c | Quality control includes steps at the wet-​laboratory stage, such as genotype 
calling and DNA switches, and dry-​laboratory stages on called genotypes, such as deletion of bad single-​nucleotide 
polymorphisms (SNPs) and individuals, detection of population strata in the sample and calculation of principle 
components. Figure depicts clustering of individuals according to genetic substrata. d | Genotypic data can be phased, 
and untyped genotypes imputed using information from matched reference populations from repositories such as  
1000 Genomes Project or TopMed. In this example, genotypes of SNP1 and SNP3 are imputed based on the directly assayed 
genotypes of other SNPs. e | Genetic association tests are run for each genetic variant, using an appropriate model  
(for example, additive, non-​additive, linear or logistic regression). Confounders are corrected for, including population 
strata, and multiple testing needs to be controlled. Output is inspected for unusual patterns and summary statistics are 
generated. f | Results from multiple smaller cohorts are combined using standardized statistical pipelines. g | Results can 
be replicated using internal replication or external replication in an independent cohort. For external replication, the 
independent cohort must be ancestrally matched and not share individuals or family members with the discovery cohort. 
h | In silico analysis of genome-​wide association studies (GWAS), using information from external resources. This can 
include in silico fine-​mapping, SNP to gene mapping, gene to function mapping, pathway analysis, genetic correlation 
analysis, Mendelian randomization and polygenic risk prediction. After GWAS, functional hypotheses can be tested  
using experimental techniques such as CRISPR or massively parallel reporter assays, or results can be validated in a human 
trait/disease model (not shown).

Hardy–Weinberg 
equilibrium
If the frequency of observed 
genotypes of a variant in a 
population can be derived 
from the observed allele 
frequencies, the genetic  
variant is said to be in  
Hardy–Weinberg equilibrium. 
A test for Hardy–Weinberg 
equilibrium is often used in 
quality control of genome-​wide 
association studies (GWAS) to 
filter out variants with possible 
genotype calling errors.

Phasing
The process of estimating 
whether genotyped alleles 
derive from the maternal or 
paternal allele.
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a sequenced haplotype reference panel such as the 1000 
Genomes Project or TOPMed21,22, which involves the 
statistical inference of genotypes that have not been 
assayed directly (Box 2). GWAS consortia routinely fol-
low pipelines for conducting quality control steps and 
imputation, using, for example, RICOPILI23 or similar 
software, or upload their data to imputation servers 
(for example, the Michigan Imputation Server or the 
TOPMed Imputation Server) where these standardized 
pipelines have been implemented. Because genetic data 
sets are typically large and analysis pipelines can be run 
in parallel, computer clusters or cloud environments that 
can distribute jobs to many computers are often used. To 
achieve the large sample sizes typical in genetic studies in 
a logistically feasible manner that follows data protection 
rules, the above steps are often done separately for many 
different cohorts of varying sample size (see section 
Genome-​wide association meta-​analysis (GWAMA)).

Ancestry and relatedness must be carefully consid-
ered and accounted for in GWAS, and indeed all genetic 
studies — particularly in data sets from participants of 
diverse backgrounds to avoid false positive or negative 
genetic signals and biased test statistics owing to popu-
lation stratification24–27. In GWAS, these signals can lead 
to overestimated SNP-​based heritability28 and biased 
PRSs29,30. They also may bias the results of Mendelian 
randomization studies31. Cases and controls should be 
matched by ancestry to avoid confounding; for example, 
a GWAS for chopstick use where cases are defined as 
‘using chopsticks regularly’ and controls as ‘not using 
chopsticks’ would likely result in cases being drawn 
more often from an East Asian population than con-
trols. Not accounting for ancestry in this study would 
identify associations among variants more common in 
East Asian populations than other populations, such 
as those at specific human leukocyte antigen (HLA) 
alleles, not because those variants contribute to dexter-
ity but because cultural practices, in this case, act as a 
confounder32. Ancestry is usually considered in GWAS 

through an iterative process using principal compo-
nent analysis; the genotypes of all individuals are used 
to define clusters of individuals with similar genotypes. 
This is done first to identify and exclude outliers, and 
then to compute and include principal components as 
covariates in subsequent GWAS regression models33.

Testing for associations. The theory of genetic association 
is based on the biometrical model (see Supplementary 
Note for more details). Typically in GWAS, linear or 
logistic regression models are used to test for associa-
tions, depending on whether the phenotype is continu-
ous (such as height, blood pressure or body mass index) 
or binary (such as the presence or absence of disease), 
respectively. Covariates such as age, sex and ancestry 
are included to account for stratification and avoid con-
founding effects from demographic factors, with the 
caveat that this may reduce statistical power for binary 
traits in ascertained samples34. Including an additional 
random effect term — which is individual-​specific in 
linear or logistic mixed models to account for genetic 
relatedness among individuals — can improve statisti-
cal power for genomic discovery and increase control 
for stratification at the cost of requiring greater com-
putational resources35,36 (although this limitation can be 
addressed by using tools such as fastGWA37). When con-
ducting a GWAS, it should be noted that the genotypes 
of genetic variants that are physically close together are 
not independent as they tend to be in linkage disequilib-
rium; this dependency of tests should also be considered 
when conducting a GWAS.

Linear regression models for GWAS can be written 
as follows:

∼Y Wα X β g e+ + + (1)s s

∼ ψg N σ(0, ) (2)A
2

∼ Ie N σ(0, ) (3)e
2

where, for each individual, Y is a vector of phenotype 
values, W is a matrix of covariates including an intercept 
term, α is a corresponding vector of effect sizes, Xs is a 
vector of genotype values for all individuals at SNP s, βs 
is the corresponding fixed effect size of genetic variant s 
(also known as the SNP effect size), g is a random effect 
that captures the polygenic effect of other SNPs, e is a 
random effect of residual errors, σA

2 measures the addi-
tive genetic variation of the phenotype, ψ is the standard 
genetic relationship matrix, σe

2 measures residual variance 
and I is an identity matrix. In logistic regression mod-
els, a logit link function is used for binomially distributed  
case–control phenotypes to model outcome odds.

Accounting for false discovery. Testing millions of associ-
ations between individual genetic variants and a pheno
type of interest requires a stringent multiple-​testing 
threshold to avoid false positives. The International 
HapMap Project and other studies have shown that 
there are approximately 1 million independent common 
genetic variants across the human genome on average, 
resulting in a Bonferroni testing threshold of P < 5 × 10–8 

Box 1 | Common and rare variants

Genome-​wide association studies (GWAS) generally 
involve targeted genotyping of specific and pre-​selected 
variants using microarrays, whereas whole-​exome 
sequencing (WES) and whole-​genome sequencing  
(WGS) studies aim to capture all genetic variation. 
Strictly speaking, both WES and WGS studies are also 
GWAS, although in the literature ‘GWAS’ mostly refers  
to genome-​wide studies of common variants and is 
sometimes considered separate from WGS and WES 
studies. Declaring a variant as common or rare is 
population-​specific and cannot be generalized across 
populations. Generally, common variants are those  
with a minor allele frequency above 10%, although as 
population sizes grow this threshold can be as low as  
1% as researchers typically adhere to a minimum minor 
allele count; for example, at least 100 individuals who 
carry at least one copy of the minor allele. With WGS and 
WES studies just beginning to mature, current analysis 
protocols may need to be extended to also cover specific 
issues that arise when analysing rare variants, for 
example, when controlling for population stratification, 
or imputing missing genotypes.

Population stratification
The presence of multiple 
genetically distinct 
subpopulations that differ in 
their mean phenotypic values. 
When not accounted for, this 
can lead to spurious genetic 
associations.

Random effect term
Random effects are effects that 
have so many levels (including 
more than the number of 
observations) that they are  
not individually estimable.  
By assigning these effects as 
random it is assumed that they 
are drawn from a population 
with a known variance and 
covariance structure. The effect 
for an individual can be 
predicted given the data and 
the distributional assumptions.

Logit link function
A function for converting a 
linear combination of covariate 
values into probabilities.

Bonferroni testing threshold
A correction for multiple 
testing that is typically applied 
by dividing the significance 
threshold by the number of 
independent tests that are 
carried out.
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Table 1 | Open access tools that can be applied at each stage of GWAS

Software Use

Quality control

PLINK/PLINK2 
(ref.20)

Can be used for many key steps in quality control, including filtering of bad SNPs (based on 
deviation from Hardy–Weinberg equilibrium, genotyping call rate and minor allele frequency) and 
bad individuals (based on sex check, genotyping call rate, sample call rate, heterozygosity and 
relatedness checks)

RICOPILI23 Quality control of raw genetic data and summary statistics used for input in meta-analyses

SMARTPCA Principal component analysis of raw genotyping data; provides individual-level principal 
components that can be used to correct for population stratification

FlashPCA255 Similar to SMARTPCA; faster and more scalable with increasing sample sizes

Imputation

IMPUTE2 
(refs256,257)

Imputation of missing genotypes against an existing reference panel matched for ancestry;  
tends to use more memory than other imputation tools

BEAGLE258 Imputation of missing genotypes against an existing reference panel matched for ancestry

MACH/Minimac259 Imputation of missing genotypes against an existing reference panel matched for ancestry; 
Minimac includes pre-phasing, which speeds up imputation time

Association

PLINK/PLINK2 
(ref.20)

Most widely known tool for conducting genetic associations

SNPTEST260 Genetic association testing; works well with IMPUTE2

GEMMA55 Genetic association testing based on linear mixed models

SAIGE35 Genetic association for binary phenotypes; analyses very large samples (N > 100,000)

BOLT-LMM261 Genetic association testing based on the BOLT-LMM algorithm for mixed model association 
testing and the BOLT-REML algorithm for variance components analysis (partitioning of SNP-based 
heritability and estimation of genetic correlations)

REGENIE56 Genetic association testing; analyses very large samples (N > 100,000); can assess multiple 
phenotypes at once; fast and memory efficient

BGENIE76 Genetic association for continuous phenotypes; analyses very large samples (N > 100,000); 
custom-made for the UK Biobank BGENv1.2 file format

fastGWA37 Mixed-model genetic association analysis

Statistical fine-mapping

CAVIAR127 Estimates the probability of each variant in a locus to be causal based on the observed pattern  
of P values and the level of linkage disequilibrium; allows for an arbitrary number of causal variants

PAINTOR95 Statistical fine-mapping using GWAS summary statistics and functional genomic data to prioritize 
likely causal variants

SuSIE96 Statistical fine-mapping using GWAS summary statistics and linkage disequilibrium information 
from a reference panel; based on a Bayesian modification of a forward selection model

FINEMAP94 Statistical fine-mapping using GWAS summary statistics as input; calculates effect sizes and 
heritability owing to likely causal SNPs

Meta-analysis

GWAMA262 Fixed and random effects meta-analysis; allows the specification of different genetic models

METAL39 Weighted meta-analysis using GWAS summary statistics as input

Variant annotation

VEP115 Functional annotation of genetic variants with their effect on genes, transcripts and protein 
sequence as well as regulatory regions

ANNOVAR114 Functional annotation of genetic variants with their effect on genes, transcripts and protein 
sequence as well as regulatory regions

FUMA88 Functional annotation of genetic variants with their effect on genes, transcripts and protein 
sequence as well as regulatory regions; includes chromatin interaction information and integrates 
and visualizes all output

Enrichment or gene-set analysis

MAGMA136 Gene-based and gene-set analysis using competitive testing with a regression framework; allows 
testing of custom gene sets and includes options for conditional and interaction testing between 
gene sets

DEPICT137 Systematic prioritization of genes and assessment of enriched pathways using predicted gene 
functions

LDSC174 Partitioned SNP-based heritability analyses showing enrichment in sets of functionally related SNPs
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(representing a false discovery rate of 0.05/106)38. The 
appropriate threshold might vary depending on the 
population; for example, a more stringent threshold may 
be needed for populations with larger effective popu-
lation sizes or if the minor allele frequency thresholds 
for inclusion in a GWAS are lowered as sample sizes 
increase, as low minor allele frequency variants are 
typically not in linkage disequilibrium with common 
variants and, therefore, add a greater multiple testing 
burden. Complex traits such as height, schizophrenia 
or type 2 diabetes tend to be highly polygenic and, as 
a result, many genetic variants with small effects con-
tribute to the phenotype. In these cases, winner’s curse is 
common, and effect size estimates close to the discovery 
threshold tend to be overestimated in initial GWAS.

Comparing effect sizes between discovery and inde-
pendent replication cohorts is the gold standard for 
accounting for false discovery and winner’s curse by 
calibrating effect size estimates. Replication cohorts 
are ideally considered at the outset of the GWAS and 
should give sufficient statistical power to correct for 
winner’s curse and multiple testing; however, effect sizes 
will, of course, be unknown before the GWAS. When 
comparing effect sizes between a discovery cohort and 

a replication cohort, the effect statistics and correspond-
ing error terms should be used (for example, the regres-
sion coefficient, odds ratio and so on) for each cohort, 
particularly when different software has been used to 
perform each GWAS. Replication cohorts must be com-
pletely independent from the discovery cohort, with no 
shared individuals or genetic relationships between  
individuals from the cohorts.

Genome-​wide association meta-​analysis. To increase 
sample size, GWAS is typically carried out in the 
context of a consortium such as the Psychiatric 
Genomics Consortium, the Genetic Investigation of 
Anthropometric Traits (GIANT) consortium or the 
Global Lipids Genetics Consortium where data from 
multiple cohorts are analysed together using tools 
such as METAL39, N-​GWAMA or MA-​GWAMA40 and 
quality control pipelines such as those implemented in 
RICOPILI23 or EasyQC41. For a detailed description of 
the quality control procedures specific to GWAMA, we 
refer readers to ref.42. The crucial steps for GWAMA 
are to first ensure individual cohorts follow the same 
predefined data analysis plan, use harmonized pheno-
types and communicate their results in a standardized 

Winner’s curse
The phenomenon that the 
effect sizes of newly discovered 
alleles tend to be 
overestimated.

Odds ratio
An effect size estimate of a risk 
factor that quantifies the 
increased odds of having the 
disease per risk allele count in 
genome-​wide association 
studies (GWAS) or one 
standard deviation increase of 
the polygenic risk score (PRS).

Software Use

QTL analysis

QTLTools263 Molecular QTL discovery and analysis; uses raw genomic (sequence) data as input

Genetic correlations

LDSC174 Assessment of genetic correlation between phenotypes using summary statistics as input;  
has various other functions, including partitioned SNP-based heritability and assessment of 
selection bias

GCTA173 Assessment of genetic correlation between phenotypes using raw genotypic data as input

SumHer264 Assessment of genetic correlation between phenotypes using summary statistics as input; has various 
other functions, including partitioned SNP-based heritability and assessment of selection bias

superGNOVA183 Assessment of local genetic correlations using GWAS summary statistics

ρ-HESS184 Assessment of local SNP-based heritability and genetic correlations using GWAS summary statistics

LAVA185 Assessment of local multivariate genetic correlations using GWAS summary statistics

GenomicSEM265 Assessment of multivariate genetic correlations based on GWAS summary statistics

Causality

Mendelian 
randomization266

Assessment of causal relation between traits based on genetic overlap, using GWAS summary 
statistics as input.

PRS analysis

PRScs146 Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

LDPred151/ 
LDPred-2 (ref.150)

Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

SBayesR147 Estimation of posterior effect sizes of SNPs using a Bayesian shrinkage approach

PRSice144 PRS analysis using a P value thresholding and clumping approach

TWAS

FUSION125 Performing TWAS by predicting functional/molecular phenotypes based on reference data;  
uses GWAS summary statistics as input

PrediXcan126 Prioritizing likely causal genes based on transcription data; uses GWAS summary statistics as input

SMR Testing whether SNP-trait associations are mediated by gene expression levels using a Mendelian 
randomization approach

GWAMA, genome-wide association meta-analysis; GWAS, genome-wide association studies; PRS, polygenic risk score;  
QTL, quantitative trait locus; SNP, single-nucleotide polymorphism; TWAS, transcriptome-wide association studies.

Table 1 (cont.) | Open access tools that can be applied at each stage of GWAS
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way. This can include scaling effect sizes to a standard 
normal distribution, as phenotypic measurements and 
their estimated absolute effect sizes sometimes cannot 
be compared across cohorts. Next, cohort-​level inspec-
tion of submitted results using a predefined quality con-
trol protocol is carried out by at least two independent 
analysts, with any issues resolved within the individual 
cohorts. Finally, meta-​analysis is performed on the 
summary statistics. Meta-​analyses can be performed using 
a fixed effect model — which assumes error variances 
are equal across cohorts — or a random effect model to 
test for heterogeneity in the results; for example, test-
ing whether one or two cohorts clearly deviate from the 
rest. Combining the contributions of all cohorts allows 
for a more precise estimation of effect sizes and the sig-
nificance of effects in GWAS by weighting each indi-
vidual cohort’s results by their sample size or by using 
the inverse variance method39. Sequencing data sets can 
identify rare variants, although current sequencing data 
sets are typically too underpowered to test their effects 
on a phenotype individually; instead, their effects are 
usually measured in aggregate, such as in genes or gene 
sets through rare variant burden testing43,44.

Populations used in GWAS
Population-​based GWAS. Genetic and phenotypic 
observations used in GWAS are often derived from a 
population-​based cohort where individuals are assumed 
to be a random draw from the population. Phenotypes 
corresponding to either continuous or binary dependent 
variables can be tested for association with genotyped or 
imputed variants. A common GWAS design is a case–
control study, in which cases and controls are defined 
based on the presence or absence of a certain pheno-
type, respectively. In many case–control studies, case 
and control cohorts are actively selected such that the 
frequency of the cases does not match the population-​
based frequency, and this should be reflected in the sta-
tistical analyses; for example, covariate adjustment will 
need additional consideration34,45. Using controls from a 
population cohort of unknown disease status can allow 
for the presence of cases at the population frequency in 
the ‘control’ population, although this will have little 

effect for diseases with population frequencies below 1%. 
Alternatively, controls can be actively matched to cases 
with respect to sex and ancestry. If the population fre-
quency of the disease is low (<20%), the latter approach 
has been shown to be adequately powered and cost-​
effective46. In terms of increasing statistical power and a 
limited amount of financial resources, active recruitment 
of cases and controls is usually preferred.

If cases and controls are not genotyped together 
on the same chip, extra effort must be made during 
quality control and subsequent analyses to minimize 
artefacts (for example, by adding the genotyping batch 
as a covariate in the analyses). It should be noted that 
although samples are assumed to be a random draw 
from the population, this assumption is not the case 
in the presence of participation bias and unmatched 
socio-​demographic factors17,47.

Family-​based GWAS. Family-​based association tests 
that make use of first-​degree relatives were frequently 
used in the early days of GWAS, largely owing to the 
availability of well-​phenotyped twin and other family 
cohorts48. Family-​based GWAS require larger sample 
sizes than GWAS of unrelated individuals to achieve the 
same statistical power49 but avoid issues with population 
stratification. Recently, there has been renewed interest 
in conducting within-​family studies as concerns about 
uncorrected stratification in population-​based GWAS 
have grown31,50,51. Within-​family methods typically use 
variations on the transmission disequilibrium test to exam-
ine the segregation of an allele within a family. Various 
forms of this test can be applied in PLINK52, such as a 
test for quantitative phenotypes that combines within-​
family and between-​family association53,54, although, 
importantly, only the within-​family part is immune 
to population stratification. Similarly, linear mixed 
model-​based approaches such as GEMMA55, SAIGE35 
and REGENIE56 use both within-​family and between-​
family information and are therefore not completely 
immune to stratification; however, if close relatives 
are available, these can be included to increase power. 
A benefit of using family data in GWAS is that they 
can be used to interrogate the effects of an allele on an 
individual’s phenotype from its indirect effects on close 
family members57–60. Further, making use of phenotypic 
information from non-​genotyped family members — a 
method sometimes known as GWAS by proxy — has 
been shown to substantially boost power for some traits, 
particularly when studying late-​onset diseases for which 
the collection of large data sets is challenging61,62. A note 
of caution here is that GWAS by proxy tends to rely on 
self-​reported family history, which may not always be 
accurate.

Isolated populations. There are some advantages to 
conducting GWAS in populations that have become 
isolated owing to a founder event such as geographic 
or cultural barriers, have remained isolated for a pro-
longed period and have restricted gene flow with neigh-
bouring populations63. A key advantage is that otherwise 
rare functional variants may be present in higher fre-
quencies within isolated populations64–66 and these 

Summary statistics
The primary outcome of 
genome-​wide association 
studies (GWAS), including a list 
of all tested single-​nucleotide 
polymorphisms (SNPs) and 
effect sizes. The minimum 
required information is SNP 
IDs, SNP locations and 
genomic build, alleles, strand, 
effect size and standard error, 
P value, test statistic, minor 
allele frequency and sample 
size.

Rare variant burden testing
A statistical technique in which 
the number of rare alleles per 
gene is used to determine 
genetic association with a trait.

Transmission disequilibrium 
test
A family-​based genetic 
association test in which alleles 
transmitted to affected 
offspring are contrasted with 
alleles not transmitted.

Gene flow
The transfer of genetic material 
between populations.

Box 2 | Imputation workflow

Imputation of ungenotyped single-​nucleotide polymorphisms (SNPs) can be done by 
using online imputation servers such as the Michigan Imputation Server or the TOPMed 
Imputation Server. Alternatively, one can carry out the imputation locally, using tools 
such as IMPUTE2, BEAGLE, MACH and SHAPEIT2. Imputation involves several steps.

•	Statistically phase individual genotypes

•	Decide whether to use hard calls or weight for uncertainty

•	Select an appropriate reference population panel

•	Convert reference panel and target population into the same genomic build

•	Check strand issues, resolve issues between different platforms, possibly remove 
ambiguous SNPs

•	Check for unusual minor allele frequencies and patterns of linkage disequilibrium 
between reference panel and target data

•	Impute missing genotypes against the selected population panel, ideally using cluster 
computing resources to distribute analysis jobs, or using an imputation server

•	Check imputation quality and possibly remove badly imputed SNPs (for example, 
those with an info score <0.7)
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populations can therefore give increased power for 
association studies for such variants. The long-​range 
linkage disequilibrium67 typical for isolated popula-
tions improves imputation accuracy and power over 
similarly sized non-​isolated cohorts68–71, particularly if 
even a small number of individuals from the isolated 
population are included in the reference panel72. Owing 
to the high relatedness in isolated populations, a linear 
mixed model-​based approach to GWAS is commonly 
used. Isolated populations tend to have high genetic 
homogeneity owing to the extinction of alleles through 
genetic bottlenecks, which can increase the power of bur-
den tests by reducing the number of neutral variants73. 
Discoveries in isolated populations can be difficult to 
replicate in other populations if the variant is too rare, 
although other variants implicating the same genes can 
add additional support; for example, variants implicating 
APOA5 associated with triglyceride levels in a Sardinian 
population74 could be supported by those implicating 
myocardial infarction in other European populations75.

Biobanks. Many large, open-​access population biobanks 
are available to researchers. Biobanks contain data from 
thousands of genotyped individuals who have been 
deeply phenotyped either through questionnaires, 
laboratory measurements and/or linkage to electronic 
health records and were not selected for particular dis-
ease traits. A notable example is the UK Biobank, which 
includes data from approximately 500,000 individuals76 
and has enabled well-​powered GWAS of hundreds of 
quantitative traits, including anthropometric traits77, 
blood cell traits78, metabolites79, cognitive traits80, brain 
imaging traits81 and depressive symptoms (as described 
in ref.82), as well as boosting sample sizes for GWAS of 
common diseases83–85.

Although biobanks and twin studies have histor-
ically been focused on populations with European 
ancestry, large biobanks of data from individuals with 
non-​European ancestries are being built86 and many 
new studies are based on ethnically diverse communi-
ties (Table 2) (see Ethical challenges section for a detailed 
discussion of diversity-​related issues). Most biobanks 

have used imputed genotype data for common variants, 
although WES data are already available for 50,000 UK 
Biobank participants87. In the next few years, WES and 
WGS data will be generated for all UK Biobank partici-
pants, greatly increasing power to assess the role of rare 
variants.

Results
The primary output of a GWAS analysis is a list of  
P values, effect sizes and their directions generated 
from the association tests of all tested genetic variants 
with a phenotype of interest. These data are routinely 
visualized using Manhattan plots and quantile–quantile  
plots (Fig. 2), generated using software tools such as R 
or web platforms such as FUMA88 or LocusZoom89. 
Further analysis is then needed to interpret this list of 
P values, determining the most likely causal variants, 
their functional interpretation and possible convergence 
in meaningful biological pathways (Fig. 3). We discuss 
these post-​GWAS analyses below.

Statistical fine-​mapping
Many non-​causal variants are significantly associated 
with a trait of interest owing to linkage disequilibrium; 
whether these reach the significance threshold depends 
on their level of correlation with and the strength of 
association of the causal variant12. The output of GWAS 
is therefore clustered in risk loci — sets of correlated var-
iants that all show a statistically significant association 
with the trait of interest — and linkage disequilibrium 
typically prevents pinpointing causal variants without 
further analysis.

Fine-​mapping is an in silico process designed to pri-
oritize the set of variants that are most likely to be causal 
to the target phenotype within each of the genetic loci 
identified by GWAS, based on observed patterns of link-
age disequilibrium and association statistics90,91. The set of 
variants that most parsimoniously explain regional asso-
ciation signals are defined as credible variants. The lead 
variant with the most significant association would be 
expected to be the most credible causal variant, although 
there are several situations where the most significant 
association may be non-​causal. For example, where mul-
tiple independent risk variants are present in a locus, the 
combination of multiple signals can shift the most signif-
icant association from causal variants to a neighbouring 
non-​causal variant. This can also occur owing to hetero
geneity in variant genotype imputation quality, which 
induces fluctuations in the association signal statistics 
among neighbouring variants in linkage disequilibrium.

The simplest fine-​mapping analysis is a conditional  
association analysis of the regional variants, which adjusts 
the regional association signals according to the set of 
variants in the locus by including the lead variant as a 
covariate in genotype–phenotype regression models. 
When multiple association signals exist, forward step-
wise selection is commonly used until no associations 
remain. This method, known as stepwise conditional 
analysis, is limited to searching all of the combinatory 
patterns of potential credible variants. This is because the 
variant search pattern in each iterative step is strongly 
dependent on the previously selected variant sets and the 

Genetic bottlenecks
Reductions in effective 
population size, for example, 
due to a migration followed by 
geographical isolation, or due 
to cultural endogamy, which 
leads to a reduction in 
diversity.

Conditional association 
analysis
A genetic association analysis 
that includes fixed effects of 
genetic variants.

Table 2 | Biobanks and large population-​based 
studies with genetic and phenotype data available 
for research

Data set Ancestry

UK Biobank76 Predominantly white British

BioBank Japan267 Japanese

China Kadoorie Biobank268 Chinese

Genes & Health269 British South Asian

H3Africa270 Various African ancestries

BioMe105 Multiple ancestries (based 
in New York)

TOPMed22 Multiple ancestries (USA)

Million Veteran 
Programme271

Multiple ancestries (USA)

‘All of Us’ initiative272 Multiple ancestries (USA)

23andMe Multiple ancestries (USA)
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lead initial step often includes the lead variant. When full 
genotype data are not available, conditional association 
analyses can be conducted on summary statistics using 
GCTA-​COJO software92.

Several sophisticated fine-​mapping approaches 
are based on Bayesian models, including CAVIAR93, 
FINEMAP94, PAINTOR95 and SuSIE96. These approaches 
optimize the selection of variables for a regression model 
by using a prior probability distribution, or prior, to esti-
mate a posterior probability distribution, or posterior. An 
advantage of using Bayesian models over conditional 
association analysis is that priors can consider additional 
information such as imputation accuracy in addition to 

association signals; however, sets of credible variants 
output using Bayesian modelling are generally not con-
sistent across different methods, especially when multi-
ple independent association signals exist within a locus. 
In general, the statistical power to correctly detect cred-
ible variant sets declines as the number of independent 
signals increases96.

In silico fine-​mapping can find credible variants 
that modulate the expression patterns and functions of 
causal genes (SNP to gene mapping) or contribute to the 
development of the target phenotype (SNP to biology 
mapping). A basic principle of successful fine-​mapping 
is to expand the coverage of the genetic variants assessed 
by using, for example, WGS-​based genotype imputation 
reference panels97. Reference panels with large sam-
ples sizes and/or that include other types of non-​SNP 
genetic variants such as insertions, deletions and copy  
number variants can further expand the coverage of 
variants for fine-​mapping. Recently released large-​scale 
WGS resources with detailed variant annotations 
(such as the gnomAD98 and TOPMed22 databases, 
which contain >10,000 and >90,000 whole-​genome 
sequences, respectively) serve as valuable resources for 
high-​resolution fine-​mapping. It should be noted that 
structural variants and short tandem repeats are not 
always accurately captured by current WGS technologies.  
Further, there are several regions where WGS-​based 
imputation estimates genotypes inaccurately and cus-
tom imputation approaches may be needed to fine-​map 
such regions. For example, the genomic region corre-
sponding to the HLA complex (also known as the major 
histocompatibility complex (MHC)) is highly pleiotropic 
for various human traits related to the immune system 
and infectious disease99. The complicated linkage dise-
quilibrium structure in this region prevents WGS-​based 
SNP imputation from unambiguously determining their 
genotypes. The construction of HLA reference panels 
and custom imputation methods targeting HLA poly-
morphisms, such as the software packages SNP2HLA 
(refs100–102), HIBAG103 and HLA*IMP104, have provided 
a catalogue of HLA variant–phenotype association 
maps105. Customized regional imputation methods 
have also been reported for targeting missing variants 
at other gene loci; for example, the KIR*IMP software 
for the killer-​cell immunoglobulin-​like receptor (KIR) 
gene locus106. Specific resources also exist for use with 
mitochondrial genomes107.

Prioritization of a credible SNP over highly correlated 
SNPs with absolute linkage disequilibrium is challeng-
ing. Fine-​mapping of associations from a GWAS for 
inflammatory bowel disease implicated a single can
didate causal variant in only 12% of loci and 1–5 candi-
date causal variants in 30% of loci108, and fine-​mapping 
of a breast cancer GWAS showed similar figures109. 
Prioritizing variants can be improved by integrating func-
tional annotations of the SNPs — for example, expression  
quantitative trait loci (eQTLs) or epigenomic motifs —  
into the priors of the Bayesian fine-​mapping models.  
A trans-​ethnic GWAS meta-​analysis can also help 
fine-​mapping of highly correlated SNPs as differences 
in linkage disequilibrium structure among ancestries 
can narrow down the regional windows of associations91.

Prior probability 
distribution
A term used in Bayesian 
statistics to describe the 
probability distribution of an 
unknown quantity based on 
beliefs an investigator has 
about the model parameters.

Posterior probability 
distribution
A term used in Bayesian 
statistics to describe the 
probability distribution of an 
unknown quantity based on 
observed data.
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Fig. 2 | Manhattan plot and quantile–quantile plot to visualize GWAS results.  
a | Manhattan plot showing significance of each variant’s association with a phenotype 
(body mass index in this case77). Each dot represents a single-​nucleotide polymorphism 
(SNP), with SNPs ordered on the x axis according to their genomic position. y axis 
represents strength of their association measured as –log10 transformed P values. Red line 
marks genome-​wide significance threshold of P < 5 × 10–8. b | Quantile–quantile plot 
showing distribution of expected P values under a null model of no significance versus 
observed P values. Expected –log10 transformed P values (x axis) for each association are 
plotted against observed values (y axis) to visualize the enrichment of association signal. 
Deviation from the expectation under the null hypothesis (red line) indicates the 
presence of either true causal effects or insufficiently corrected population stratification. 
In the case of true causal effects, one would expect to observe this deviation mostly at 
the right side of the plot, whereas population stratification causes the deviation to start 
closer to the origin. In this case, BMI is extremely polygenic and the genome-​wide 
association study (GWAS) was highly powered, which may also cause the deviation to 
start close to the origin, making it difficult to visually spot stratification. LDSC may be 
used to assess whether this inflation is due to bias or polygenicity.
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Functional inference from GWAS
A major motivation for conducting GWAS is to use 
the identified associations to determine the biological 
cause of heritable phenotypes and provide a starting 
point for investigating potential therapeutic interven-
tions. Although GWAS have led to the identification 
of thousands of complex trait-​associated genetic vari-
ants110 and fine-​mapping has provided sets of credible 
SNPs, the biological implications of these variants are 

typically not easily inferred (with some exceptions111). 
After fine-​mapping, the full mechanistic dissection 
of a locus identified by a GWAS includes identifying 
the immediate effects of causal variants (for example, 
on protein or enhancer function), the affected gene or 
genes in the locus that mediate the disease association, 
the downstream network or pathway effects that lead 
to changes in cellular and physiological function, and 
the relevant tissue, cell type and cell state for all these 
effects. Currently, this information exists for only a 
few loci, such as FTO112 and SORT1 (ref.113). However, 
a diverse set of approaches have been developed to infer 
the molecular effects of variants identified by GWAS.

Determining the affected gene. Prioritizing the likely 
affected gene is perhaps the most crucial part of the 
functional interpretation of GWAS loci. For the 2–3% 
of GWAS loci fine-​mapped to coding variants1, tools 
such as ANNOVAR114 or VEP115 can be used to infer 
their potential effect on genes. However, the vast major-
ity of associated, fine-​mapped SNPs are located outside 
coding regions, do not affect protein structure and have 
unknown regulatory functions116,117. The causal gene 
or genes in the locus — those for which regulatory 
changes mediate disease association — are often those 
closest to the association signal118,119, although a recent 
preprint article suggests this is not always the case120. 

Expression quantitative 
trait loci
(eQTLs). Dosage effects  
of genetic variants on  
gene expression profiles, 
including expression levels  
and mRNA splicing patterns.
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Fig. 3 | Illustration of functional follow-up of GWAS.  
a | Genome-​wide association studies (GWAS) are 
conducted to identify associated variants, often visualized 
as a Manhattan plot to show their genomic positions and 
strength of association. b | To prioritize likely causal 
variants, statistical fine-​mapping is applied to identify a  
set of variants that are likely to include the causal variant 
(blue box) as well as the most likely causal variant (rs12345; 
blue dot). Massively parallel reporter assays can be used to 
measure whether alleles differ in their ability to drive gene 
expression or other molecular activity for each variant  
(not shown). c | Functional annotations of the genome can 
be integrated with GWAS data to identify epigenetic 
mechanisms that may be perturbed by the causal variant, 
including enhancers, promoters or other functional 
elements. Additional approaches include mapping 
molecular quantitative trait loci (molQTL) or in vitro assays 
(not shown). d | Target gene for a GWAS locus can be 
prioritized by mapping expression quantitative trait loci 
(eQTLs) (left) and their co-​localization (right) to identify loci 
where the causal variant from GWAS is also a causal variant 
affecting gene expression. For GWAS variants in enhancers, 
high-​throughput chromosome conformation capture 
(Hi-​C) data and maps of enhancer target genes can be used 
together with simple prioritization by distance to identify 
genes affected by the causal variant (below). e | To identify 
pathways whose perturbation may mediate the trait in 
question (red box), one can analyse the enrichment of 
multiple GWAS-​implicated genes in predefined pathways. 
Additional approaches include trans-​eQTL mapping and 
CRISPR perturbation of GWAS loci/genes followed by 
cellular phenotyping (not shown). For these analyses, the 
context of a relevant tissue, cell type and cell state needs  
to be carefully considered and analysed. ATAC-​seq,  
assay for transposase-​accessible chromatin using 
sequencing; H3K27Ac, histone H3 acetylated at K27;  
SNP, single-​nucleotide polymorphism.
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One approach for identifying regulatory target genes 
of genetic variants is molecular quantitative trait loci 
(molQTLs) analysis, which associates genetic variants 
with specific molecular phenotypes; for example, eQTL 
analysis identifies loci associated with RNA expression. 
The same approach can be applied to other molecular 
phenotypes such as splicing, chromatin accessibility 
or methylation status. By integrating this information 
with GWAS results, trait-​associated variants can be 
mapped to the genes they are likely to regulate in spe-
cific tissues and the molecular processes mediating 
these associations121,122. Comprehensive, accessible QTL 
catalogues are available for community use; for exam-
ple, the Genotype–Tissue Expression (GTEx) resource 
catalogues eQTL and splicing QTL for 49 tissues122, the 
eQTLGen resource provides a map of both cis-​eQTL 
and trans-​eQTL123 associations in blood with data from 
more than 30,000 donors and the eQTL Catalogue has 
compiled multiple eQTL data sets, as reported in a recent 
preprint article124. The eQTL framework can be extended 
to transcriptome-​wide association studies125,126, where 
gene expression levels are imputed into data from GWAS 
and tested for association with a trait.

eQTL and splicing QTL approaches suffer from some 
limitations. As any non-​causal variant in high linkage 
disequilibrium with a truly causal variant will likely show 
a statistical association with a trait, assigning a functional 
or regulatory effect to a variant does not automatically 
mean that the variant is causal. eQTLs should be inte-
grated with GWAS data using co-​localization approaches 
to pinpoint loci where the regulatory association and 
disease association share the same causal variant127–129. 
Further, eQTLs often affect several genes and, there-
fore, other data sources or functional annotations can 
be used to prioritize those genes that mediate disease. 
Finally, molQTL catalogues lack data from many relevant 
tissues, and data from specific cell types and molecular 
phenotypes other than expression and splicing are lim-
ited. Thus, although molQTL mapping is a powerful and 
popular approach for creating hypotheses for the regu-
latory mechanisms and target genes behind GWAS loci, 
such gene mapping approaches are not as conclusive as 
those for coding variants (although it should be noted 
that detectable coding variants for most genes are rare).

As an alternative to molQTL mapping, fine-​mapped 
GWAS variants in enhancers can be linked to genes 
using methods based on chromatin conformation cap-
ture (3C), such as chromosome conformation capture 
on chip (4C), chromosome confirmation capture carbon 
copy (5C) and high-​throughput chromosome conforma-
tion capture (Hi-​C), which define regions of chromatin 
that are frequently in close spatial proximity and may 
reflect enhancer–promoter loops that control proximal 
or distal genes130,131. Other approaches include corre-
lating enhancer and gene activities132 and performing 
large-​scale experimental perturbation of enhancers133, 
although enhancer–gene catalogues are far from com-
plete. There is still a need for methods that integrate 
different types of data for probabilistic prioritization of 
target genes at GWAS loci.

Recently, the development of highly scalable exper-
imental assays for perturbation of the genome has 

expanded the functional genomics toolkit. These assays 
include massively parallel regulatory assays134, which test 
synthetic regulatory sequences by screening variants in 
thousands of untranscribed or untranslated sequences 
for functional effects in a single experiment, and CRISPR 
techniques that allow for the introduction of mutations 
into the genome and perturbation of regulatory element 
activity133,135. These approaches are increasingly popular 
and informative, but substantial work is still needed to 
improve the scalability and interpretability of the data. 
Although not restricted to existing genetic variation in 
linkage disequilibrium, they rely, to a large extent, on cel-
lular model systems that may not always recapitulate cells 
in vivo. Furthermore, the integration of data from both 
human populations and experimental perturbations  
is still in its infancy.

Determining regulatory pathways and cellular effects. 
Highly polygenic signals from GWAS for any given trait 
converge on a limited number of biological processes, 
and the pathway-​level effects of genetic variants can 
be determined and linked to cellular and physiological 
functions. One approach to achieve this is to test genes 
identified from GWAS and post-​GWAS analyses for 
convergent functions using tools such as MAGMA136 
and DEPICT137. These tools test sets of genes involved 
in specific biological pathways or linked to specific 
tissues, cell types, developmental stages or protein net-
works that are putative, proximal causes of the studied 
trait for association with that trait. The way gene sets are 
defined is critical; for example, a randomly chosen set 
of genes would not be biologically meaningful and sets 
created based on biological annotations rely on the accu-
racy of those annotations. We refer readers to a recent 
resource for defining gene sets13. Another approach is 
to associate genetic variants with molecular changes 
using trans-​molQTL approaches to identify distal genes 
that are regulated by the GWAS locus. trans-​eQTL have 
been shown to be strongly enriched among GWAS loci 
and have the potential to pinpoint distal genes regulated 
by the GWAS locus, although this approach requires 
molecular data from a large number of samples and 
the analysis and interpretation can be challenging122,138. 
Finally, experimental perturbation of genes followed by 
cellular phenotyping is becoming increasingly scalable 
and informative for interpretation of GWAS loci and 
genes139,140.

Considering the tissue type, cell type or cell state is 
essential for all functional interpretation work, and par-
ticularly important when analysing network effects as 
genes may have pleiotropic effects across different cel-
lular contexts. For example, tissue-​level molecular data 
can blend cell type-​specific signals, further complicat-
ing interpretation or masking true signals from rare 
cell types. Upcoming single-​cell and cell type-​specific 
functional genomic data sets123,141 are therefore likely to 
advance GWAS interpretation.

Applications
Above, we have described how GWAS can pinpoint 
statistically associated variants and be used to under-
stand the role of these variants in a biological context. 
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The results of GWAS can also be used for applications 
such as predicting disease risk and understanding the 
genetic architecture of traits. We discuss several of these 
applications of GWAS below.

Risk prediction
PRSs are commonly used to predict the risk of disease 
in a target cohort using the GWAS summary statistics 
of an independent discovery cohort (Fig. 4). PRSs can 
be used to identify individuals at a high risk of disease 
for clinical interventions and provide additional infor-
mation over traditional clinical risk scores for stratified 
screening. They are calculated as weighted sum scores of 
risk alleles, with weights based on the effect sizes from 
GWAS142,143. There are many methods for computing a 
PRS; the simplest and most practical method is pruning 

and thresholding, which involves selecting subsets of 
SNPs based on P values of statistical association with 
the trait144,145. More complex methods include those that 
model the linkage disequilibrium structure, incorporate 
functional information, weigh the results of multiple dis-
covery cohorts in proportion to genome-​wide admixture 
proportions and consider additional types of genomic 
or functional information; these methods can improve 
PRS prediction accuracy through improved estimation 
of marginal effect sizes146–151. Accuracy of the PRS can 
be assessed by various metrics, with the choice of metric 
based on downstream goals and whether the phenotype 
is continuous or binary. Accuracy measurements can 
be inflated if the discovery GWAS and the target cohort 
share individuals. For continuous traits, the phenotypic 
variance explained by the PRS is typically quantified as 
a coefficient of determination (R2). When computing 
effects of PRSs in GWAS regression models, covariates 
such as age, sex and ancestry are typically included, and 
PRS effects are assessed by comparing the difference in 
explained variance in two models, which can be written 
as follows:

~ eH : Phenotype covariates +0

~ eH : Phenotype PRS + covariates +1

where H0 represents the model used in the null hypoth-
esis with no effect of the PRS, H1 represents the model 
used in the alternative hypothesis that does include an 
effect of PRS on the phenotype and e denotes an error 
term. Analysis of variance comparing these two mod-
els can be performed to determine the phenotypic var-
iance explained specifically by the PRS term and not 
the other covariates included in the comparison model. 
For binary traits, pseudo-​R2 values are typically com-
puted using logistic regression models. To ensure that 
pseudo-​R2 values are comparable across studies and 
scaled appropriately, these are typically interpreted on 
the liability scale by adjusting for the prevalence of a trait 
or disease152,153. The maximum predictive accuracy of 
polygenic scores is determined by the SNP-​based her-
itability of the disease — the proportion of phenotypic 
variance explained by all SNPs — and the performance 
of PRS analysis depends on the polygenicity of the 
disease and the magnitude of the effect sizes of causal 
variants. One of the best-​performing PRSs to date has 
been developed for glaucoma; individuals in the top 
decile of the score distribution have a 4.2-​fold increase 
in risk compared with the bottom 90%154. A commonly 
used metric for assessing PRS accuracy is the area under 
the receiver operating characteristic curve (AUC). The 
AUC quantifies the performance of the models when 
the aim is to discriminate between two groups. For the 
best-​performing model, a threshold must be set at which 
to classify individuals as high risk; choosing a threshold 
is based on weighing the costs and benefits of false pos-
itives versus false negatives, and is thus context-​specific 
and often subjective (see ref.155 for software that can aid 
in selecting thresholds). Importantly, metrics such as the 
AUC or pseudo-​R2 do not necessarily reflect clinical util-
ity156,157. A high AUC or odds ratio (the odds of an event 

Pseudo-​R2

A statistical measure that 
indicates how well a model fits 
the data for binary traits and 
that can be used to compare 
models.

Liability scale
The assumed underlying 
normal distribution of 
dichotomous traits.
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Fig. 4 | Overview of the steps necessary for calculating 
PRSs. Step 1: genome-​wide association studies (GWAS) 
summary statistics are obtained, which detail the effect  
of each single-​nucleotide polymorphism (SNP) on the 
phenotype of interest. Step 2: genotype data for a set  
of individuals are referenced against GWAS summary 
statistics. Here, genotype data for four SNPs are shown for 
four individuals. Step 3: polygenic risk scores (PRSs) can be 
calculated for each individual by summing up the effect 
sizes of all risk alleles for each individual. Step 4: linear 
regression analysis is performed on the calculated PRS to 
assess the effect of the PRS on the outcome measure.
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given an exposure versus the odds in the absence of an 
exposure) does not promise an enrichment of high-​risk 
individuals in the top percentile of the score distribu-
tion158; a study converting odds ratios into other screen-
ing performance measures found that, at a 5% false 
positive rate, the polygenic score for coronary artery 
disease proposed in a recent study7 would miss 85% of 
individuals with diseases. Reclassification measures such 
as the net reclassification index are more clinically relevant 
than odds ratios or AUC curves and can assess the extent 
to which polygenic scores improve the reclassification 
of both patients and controls over existing clinical risk 
predictors159–162.

An obstacle to equitable clinical implementation of 
PRSs is that their accuracy decays with increasing ances-
tral distance between GWAS discovery cohorts and the 
target cohorts. As most discovery cohorts are European, 
this often results in PRSs that diminish in accuracy with 
ancestral distance from Europe163–165. The predictable 
basis of these disparities can be explained by differences 
in factors such as minor allele frequencies and linkage 
disequilibrium across populations. Further, subtle popu
lation stratification even within a single population is 
known to induce regional biases in the baseline values 
of PRS estimation29,166. Increasing diversity in GWAS 
discovery cohorts is the most impactful approach for 
improving PRS accuracy for all populations, with most 
benefit for populations currently under-​represented in 
GWAS cohorts167,168.

The Polygenic Risk Score Reporting Standards169 and 
the Polygenic Score Catalog170, a database of PRSs, have 
recently been developed to improve the dissemination 
of PRSs and encourage their application and translation 
into clinical care. Such continued standardization of 
PRS reporting and deposition promises to increase the  
reproducibility of PRSs in the future.

Understanding trait genetic architecture
Determining the genetic architecture of a trait involves 
estimating the number of causal variants, their corre-
sponding effect sizes and their frequencies, and allows the 
estimation of heritability, or the proportion of variation 
in the trait that can be explained by genetic variation in 
the population. Modern large-​scale human genetics data  
sets commonly estimate heritability in genotyped  
data sets of unrelated individuals. There are numerous 
statistical methods and computational tools for quanti-
fying heritability171. Approaches are typically delineated 
into broad-​sense heritability (H2) — which measures 
the fraction of phenotypic variation explained by both 
additive and dominance effects — and narrow-​sense 
heritability (h2), which considers additive effects only172. 
Population-​based methods can estimate SNP-​based her-
itability using individual-​level genotype and phenotype 
data; for example, genome-​based restricted maximum 
likelihood, as implemented in genome-​wide complex 
trait analysis173, partitions variance component mod-
els with a genomic relationship matrix, which allows 
the regression of the level of phenotypic similarity  
on the level of genotypic similarity. Alternatively, link-
age disequilibrium score regression can be used to 
estimate SNP-​based heritability from GWAS summary 

statistics and a panel of linkage disequilibrium scores174. 
Importantly, SNP-​based heritability only measures the 
variance explained by additive effects of the genotyped 
or imputed SNPs. Data discussed in a recent preprint 
article have highlighted the importance of including 
rare variants when assessing SNP-​based heritability175. 
Indeed, whereas common variants contribute more to 
SNP-​based heritability in a population176, rare variants 
can nevertheless have large effects in individuals177. 
Regardless of approach, heritability is importantly not 
a fixed entity and varies with age178, sex179, social fac-
tors180, phenotype precision and other complex factors. 
Ancestry heterogeneity is also important to consider, as 
population structure can inflate heritability estimates181.

Although it is informative to know heritability for 
a single trait, it is often more useful to understand the 
genetic relationships between multiple traits, as SNPs 
are often associated with many, sometimes seemingly 
unrelated, phenotypes8,182. Both linkage disequilibrium 
score regression and genome-​wide complex trait analysis 
allow the estimation of genetic correlations, or the extent 
to which genetic variants that account for a trait are also 
important for another trait, provided that the effects are 
in the same direction. Tools such as superGNOVA183, 
ρ-​HESS184 and LAVA185 from a recent preprint article 
allow the estimation of local correlations, determining 
which specific genomic regions exert genetic effects on 
the correlated phenotypes in the same or opposing direc-
tions. Genetic correlations should be interpreted in the 
context of SNP-​based heritabilities; for example, if these 
are low for the respective phenotypes, genetic correla-
tion is not expected to play a major part in explaining 
why two traits correlate at the phenotypic level. Further, 
genetic correlation does not provide information about 
causation between two traits. Indeed, genetic correlation 
can be caused by vertical pleiotropy, where trait A causes 
trait B; horizontal pleiotropy, where a variant directly 
influences two traits; linkage disequilibrium-​induced 
horizontal pleiotropy, where two different variants that 
are in linkage disequilibrium each influence one of two 
traits; or polygenicity-​induced pleiotropy, where mul-
tiple variants influence both traits and the underlying 
patterns are a mix of the above186.

Mendelian randomization can be employed to assess 
causal relations between different phenotypes using 
GWAS summary statistics187. Mendelian randomization 
is an epidemiological technique that uses genetic vari-
ants as instrumental variables acting as proxy measures 
for an environmental exposure. These techniques can 
be applied when a randomized control trial is not fea-
sible. Although Mendelian randomization is a powerful 
design, there are several strong assumptions: the genetic 
variants used as instrumental variables need to be associ-
ated with the exposure; those genetic variants should not 
be associated with any confounding variables; and those 
genetic variants are only associated with the outcome 
through their effect on the exposure188.

Reproducibility and data deposition
GWAS for most traits require large (>10,000) sample 
sizes to yield reproducible results. Such sample sizes 
can only be generated through collaboration and data 

Net reclassification index
A metric that measures how 
much a new model improves in 
terms of reclassification. It is 
calculated as the proportion of 
individuals who are correctly 
reclassified minus the 
proportion of individuals who 
are incorrectly reclassified.
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sharing agreements. Further, reproducible results 
depend on sound study design and robust methodology. 
To further the usefulness of GWAS results, a minimum 
set of statistics need to be reported. We discuss these 
considerations below.

Collaboration and data sharing in GWAS
One of the key factors driving the success of GWAS was 
an early commitment to collaboration and data sharing. 
In 1997, the Bermuda Principles set out that “all human 
genomic sequence information, generated by cen-
tres funded for large-​scale human sequencing, should 
be freely available and in the public domain”. These 
principles were enforced in the 2003 Fort Lauderdale 
Agreement189, which proposed the continued prepubli-
cation release of genomic data as a community resource 
and suggested a system of responsibility where funders, 
data generators and data users all carry responsibility 
to foster the responsible sharing of genomic data before 
publication. Sharing of prepublication genomic data 
is now a standard condition of funding for genomics 
research projects. The existence of many genetics con-
sortia and initiatives such as the Psychiatric Genomics 
Consortium and the recently formed COVID-19 
Host Genetics Initiative190 build on these initial agree-
ments and are enabled by the willingness of contribu-
tors to share and aggregate data. Attempts at fostering  
the interoperability of genomic databases through the 
agreement of shared principles and practices for data 
governance, for instance through the Global Alliance 
for Genomics and Health191, have strengthened the 
ability of researchers to share and use publicly available  
genomic data.

Data protections increasingly rely on specific consent 
by individuals before data can be shared or used. In the 
European Union, increased privacy protections intro-
duced with the General Data Protection Regulation have 
introduced stringent requirements for de-​identification 
and consent192, which complicates sharing of genomic 
data both within and between countries. Other juris-
dictions, including some in Africa, have equally moved 
to increase privacy protections193. To address concerns 
about the impact of data protection legislation on 
research, researchers globally have argued for the devel-
opment of codes of conduct for the sharing of genomic 
data in ways that are aligned with legislated data pro-
tection principles194. Codes of conduct would encourage 
data controllers or processors such as genomic research 
institutes to apply data protection provisions effectively 
and allow them to demonstrate compliance in a way 
that promotes national and international transfers of 
data. To date, the development of such codes of con-
duct has proven to be time and resource intensive, and 
it is not clear how perceived tensions between privacy 
concerns and sharing of research data will be adequately 
resolved. Other potential solutions are the introduction 
of separate privacy consent forms that particularly cover 
the use of personal information in research, the prepa-
ration of data privacy notices for participants and the 
completion of data privacy impact assessments for each 
research project. Several universities across Europe and 
North America have issued guidance to researchers for 

the preparation of privacy documents and templates for 
data privacy documents are available online.

To foster effective collaboration and to increase the 
use of genomic data — especially for rare conditions — it 
is essential that genomic data sets are interoperable. In 
recent years, steps have been taken to develop the tools 
and approaches that allow for interoperability. Central 
to this aim are the FAIR (findability, accessibility, intero
perability, reusability) principles for scientific data man-
agement and stewardship195, which are now a condition 
of funding for many GWAS.

Data equity. An important ethical challenge relating 
to the sharing of genomic data relates to ensuring fair-
ness for researchers. A key consideration is that data 
can be shared in a way that affords researchers across 
the world equal opportunities to analyse and publish 
results, including researchers in smaller institutions 
or based in lower-​income and middle-​income coun-
tries196. To address these concerns, initiatives such as 
the Ebola Data Platform and the H3Africa Consortium 
have identified principles and practices for governing 
genomics data to advance equity for researchers from 
lower-​resourced countries197,198, including solidarity, 
reciprocity, transparency and trust199. Other broader 
concerns relate to mitigating harmful uses of publicly 
available data and ensuring public benefit. To address 
these various concerns, many international genomic 
research collaborations have turned to the use of govern-
ance frameworks. A recent analysis of these initiatives 
found five key functions of good governance for data 
sharing, namely that the governance framework enables 
data access, ensures legal compliance, supports appro-
priate data use and mitigates harms, promotes equity 
in the use of genomic data and uses genomic data for 
public benefit200.

In addition to the sharing of individual-​level data, there 
is also an evolution towards the sharing of GWAS sum-
mary statistics. Databases such as the GWAS Catalog110 
and GWAS Atlas8 allow easy access to summary statis-
tics for thousands of traits (Table 3). Access to and use 
of GWAS summary statistics can further be improved 
through adoption of universal data formats, such as the 
recently proposed GWAS-​VCF format201. Summary sta-
tistics should include the genomic build, SNP ID and 
location, allele, strand information, effect size and asso-
ciated standard error, P value, test statistics, minor allele 
frequency and sample size.

Preregistration in GWAS
Preregistration of GWAS can improve reproducibility. In 
preregistration202, all analyses, variables, available pro-
tocols, data sets and analytic decisions are pre-​specified 
and recorded before the study is conducted to prevent 
post hoc rationalizing and ‘HARKing’ (hypothesiz-
ing after results are known)203,204, which could poten-
tially invalidate statistical inferences and inflate type I  
error rates. Indeed, these practices have contributed 
to a lack of reproducible results in genetic association 
studies205. Today, GWAS are generally performed in a 
hypothesis-​free manner, and corrected, reported and 
published regardless of the results; however, post-​GWAS 
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analyses have many more researcher degrees of free-
dom and are, nowadays, more determinant of publica-
tion than the mere number of GWAS hits. Hence, there 
are more incentives and possibilities for questionable 
research practices206 and the benefit of preregistration 
is greater for these analyses. Analysis plans can be 
uploaded at the Open Science Framework with a preset 
moratorium. In a format known as registered reports207, 
peer review occurs before data are collected or analysed 
and is based on the introduction and methods sections 
alone. As a consequence, publication is conditional on 
methodological rigour as opposed to results, which aids 
in attenuating publication bias208. In contrast to preregis-
tration, registered reports are submitted to specific jour-
nals that offer this scheme (more details can be found 
at the Open Science Framework Registered Reports 
resource). Preregistrations and registered reports are 
mostly used in data-​generating research but can also be 
beneficial for the more common analysis of secondary 
data209,210.

Limitations and optimizations
GWAS have proven to be a highly successful method 
for identifying trait-​associated variants, yet several 
outstanding methodological challenges still need to be 
addressed, such as population stratification and high 
polygenicity. Additionally, GWAS raise a range of eth-
ical issues that require careful consideration, which we 
discuss below.

Methodological challenges
Population stratification. Although current methods 
can address unaccounted-​for population stratification, 
it can still cause spurious or biased associations — par-
ticularly in the meta-​analyses of multiple cohorts211,212. 
Effects are most pronounced in the analyses of polygenic 
scores that include thousands of SNPs below genome-​
wide significance29,213. Population stratification can 
occur even in homogeneous populations; for example, 
studies have uncovered population stratification and 
related bias in the UK Biobank, which is predominantly 

composed of white British participants214,215. As cur-
rent methods for correcting the effects of stratifica-
tion are based on common variants, such as principal 
component analysis or linear mixed models, they are 
insufficient when many rare variants are included in 
the analyses, especially when population stratification 
is driven by recent demographic changes26,30. Family-​
based association studies31,50,216 can avoid stratification, 
although they tend to be underpowered compared with 
population-​based studies. Significant variants can be 
identified in population-​based GWAS and effect sizes 
re-​estimated in family-​based studies to try to obtain 
estimates that are not confounded by population struc-
ture50,51,211,217. However, this approach cannot completely 
eliminate population stratification in PRS data if the lead 
SNPs identified in the original GWAS are correlated with 
the environment30,51. Further work is needed to better 
correct for population structure in GWAS and associ-
ated analyses. Methods based on principal component 
analysis of rare variants or identity by descent may be 
appropriate in cases of recently acquired population  
substructure.

Polygenicity. The extreme polygenicity of many 
traits8,11,218–220 can pose a challenge when attempting to 
uncover underlying biological mechanisms, particularly 
in cases where thousands of variants each have a small 
effect on a trait13,221. To avoid these issues, WES and WGS 
studies are increasingly being used to discover rare var-
iants of large effect — particularly coding variants from 
exome sequencing — for which causal mechanisms 
are generally easier to elucidate87,222–224. Rare variants 
of large effect have yet to be reported for all traits and 
looking for convergence of the effects of thousands of 
variants remains the best strategy for traits not linked 
to rare variants of large effect. Further novel methods 
are needed that address polygenicity and facilitate trans-
lating the findings of GWAS into mechanistic insight. 
High polygenicity also implies that individuals with the 
same disease may have unique genetic profiles that map 
distinct biological routes towards the same disease. If 
genetic heterogeneity is also linked to treatment sensi-
tivity, the development of novel treatments should take 
this into account. However, as it is mostly unknown how 
patients should be genetically stratified, this remains an 
outstanding challenge, with treatments not yet fully  
tailored to relevant genetic profiles.

Ethical challenges
In addition to the data protection and equity issues 
discussed in the Reproducibility and data deposition 
section, GWAS raise ethical issues relating to consent 
for future use of samples and data, storage and reuse of 
samples and data, privacy challenges and sharing data 
with individual participants. Over the past decade, 
apparent consensus amongst researchers and bioeth-
icists suggests that broad and tiered consent models 
that seek permission for sample and data storage and 
unspecified future use are appropriate225–227. There is 
also apparent agreement in the research community that 
individual genetic research results that are medically 
actionable, robustly associated with the phenotype and 

Identity by descent
The property of two identical 
segments of DNA having been 
inherited from a common 
ancestor without 
recombination.

Table 3 | Databases of GWAS summary statistics

Database Content

GWAS Catalog110 GWAS summary statistics and GWAS lead SNPs reported in 
GWAS papers

GeneAtlas8 UK Biobank GWAS summary statistics

Pan UKBB UK Biobank GWAS summary statistics

GWAS Atlas273 Collection of publicly available GWAS summary statistics 
with follow-​up in silico analysis

FinnGen results GWAS summary statistics released from FinnGen, a project 
that collected biological samples from many sources in 
Finland

dbGAP Public depository of National Institutes of Health-​funded 
genomics data including GWAS summary statistics

OpenGWAS database GWAS summary data sets

Pheweb.jp GWAS summary statistics of Biobank Japan and 
cross-​population meta-​analyses

For a comprehensive list of genetic data resources, see ref.13. GWAS, genome-​wide 
association studies; SNP, single-​nucleotide polymorphism.
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predictive of conditions that are unlikely to have been 
otherwise diagnosed should be fed back to research 
participants if they consent to receive such results228,229, 
although this may not yet be possible in resource-​scarce  
contexts230.

Arguably, the primary ethical challenge facing GWAS 
today relates to issues of diversity and inclusion, ensur-
ing that GWAS result in fair opportunities to promote 
health and well-​being for all humans regardless of 
race, gender or geographical location231,232. This means, 
amongst other factors, proactively working to ensure 
that the samples and data used for GWAS are repre-
sentative of the global human population and that the 
genomics workforce is diverse. Equally important is  
the leadership that indigenous researchers in different 
parts of the world have shown in designing culturally 
appropriate approaches to indigenous genomics233,234 and 
the real-​time tracking of diversity in GWAS235.

The increasing research on and clinical use of PRSs 
raise questions about the communication of risk infor-
mation236,237 and raise issues regarding genetic deter-
minism, the perception that traits are unavoidable and 
unalterable. First, PRSs have been proposed as a means 
for embryo selection based on GWAS results, which has 
proved to be highly controversial238. Second, genetic 
determinism may lead to stigma for patients or their 
family members239,240. Robust community engagement 
and the development of mitigation strategies are imper-
ative in mitigating the possibility of stigmatization, as 
is ensuring that research teams have a high degree of 
cultural competence234. Additionally, researchers must 
not sensationalize or link their findings to pejorative 
stereotypes; an example of the latter is linking study 
findings to a supposed ‘warrior predisposition’ of the 
Maori241.

Finally, the growth of direct to consumer laboratory 
testing242 by companies offering genetic risk profiles 
or genetic ancestry information with sometimes ques-
tionable scientific validity243 and recruitment practices 
where scientists or companies recruit participants 
via the Internet244 raise important ethical challenges, 
including those around scientific evidence, the quality 
of the informed consent process, maintaining privacy 
and confidentiality, benefit sharing arrangements and 
challenges relating to social justice and equity. There 
are few agreed international guidelines or standards for 
ethical conduct in situations where GWAS and commer-
cial interests are interwoven and there is great need for 
their development.

Outlook
Following the publication of the first GWAS 15 years 
ago, an impressive number of trait-​associated variants 
have been revealed, along with important insights into 
biology. Current trends in GWAS include an increas-
ingly interdisciplinary approach, covering statistics, 
data science, genetics and molecular biology. As sam-
ple sizes reach more than 1 million participants and 
genotyping and sequencing costs reduce, GWAS are 
increasingly using WES and WGS to allow the identifi-
cation of rare variants, which could potentially explain 
much of the missing heritability in complex traits175,245,246 

(however, see ref.246 for a discussion of potential meth-
odological issues in ref.175). Minimal phenotyping may 
be a cost-​effective and quick way of gaining power247 
and deep phenotyping and item-​level analyses248 are 
becoming important to further our understanding 
of distinct symptoms as opposed to diagnoses, which 
tend to be a collection of symptoms. Finally, the GWAS 
field is expanding to better represent the global com-
munity through the inclusion of under-​represented  
populations.

GWAS could improve on the current low success 
rates and increasing costs and time required for drug 
development249. Retrospective reviews of drug develop-
ment projects have shown that studies targeting GWAS 
disease risk genes were less likely to fail owing to lack of 
efficacy250. Drug discovery efforts have been especially 
successful when targeting rare variants identified by 
Mendelian pedigree studies; for example, the indica-
tion of an inhibitor of the key cholesterol metabolism 
regulator PCSK9 for hyperlipidaemia was inspired by 
the discovery of the rare PCSK9 loss-​of-​function var-
iant249. Identifying drug targets from GWAS results is 
now a promising area of research. Chemical compounds 
that directly target the protein products of GWAS risk 
genes are promising candidates for drug repurposing; for 
example, CDK4/CDK6 inhibitors for rheumatoid arthri-
tis251. Databases such as Open Targets252 and software 
such as GREP253 — which integrate connective networks 
among GWAS risk genes, compounds and clinical indi-
cations — should accelerate the integration of GWAS 
disease risk genes into drug discovery efforts.

Genetic studies of complex disease may inform the 
clinical application of therapies. GWAS for measures of 
treatment responses could allow for the stratification  
of individuals into responders and non-​responders 
based on genetic factors. Further, integration of multi-​ 
omics data and the application of new machine learn-
ing approaches to these data sets could further improve 
patient stratification. A push for personalized med-
icine based on complex disease genetics seems ethi-
cally and economically necessary given that even the 
highest-​grossing drugs in the United States only benefit 
from 1 in 4 to 1 in 24 patients254.

Lastly, GWAS results are now actively used to direct 
biomedical science in novel, transdisciplinary collabo-
rations between geneticists and domain-​specific molec-
ular biologists. The International Common Disease 
Alliance has assembled a host of funders and scien-
tists in academia and industry with the aim of using 
genetic disease maps to gain biological and medical 
insight into common diseases. Similarly, the goal of the 
BRAINSCAPES consortium is to bridge the gap between 
genetics and neurobiology by designing and conduct-
ing GWAS-​informed functional follow-​up studies. 
The promise of the next 15 years of GWAS is thus to 
gain biological insight into more refined phenotypes, 
link genetics to biology, develop genetically informed 
drug treatments, improve clinical risk prediction and 
ensure that these have positive impacts for the global 
community.
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