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Abstract: Existing graph filters, polynomial or rational, are mainly of integer order forms. However,
there are some frequency responses which are not easily achieved by integer order approximation.
It will substantially increase the flexibility of the filters if we relax the integer order to fractional
ones. Motivated by fractional order models, we introduce the fractional order graph filters (FOGF),
and propose to design the filter coefficients by genetic algorithm. In order to implement distributed
computation on a graph, an FOGF can be approximated by the continued fraction expansion and
transformed to an infinite impulse response graph filter.

Keywords: graph signal processing; graph filter; fractional order filter design

1. Introduction

The theory of graph signal processing (GSP), developed over the last decade, gener-
alizes the classic digital signal processing to the cases where the signal is defined on an
irregular topology [1–4]. GSP merges algebraic and spectral graph theory with computa-
tional harmonic analysis to process such signals on graphs. GSP has resulted in advanced
solutions to manifold applications, such as computational science [5], image analysis [6]
and recommendation system [7,8]. Moreover, GSP can be used to extend convolutional
neural networks (CNNs) to graph data, which is called graph convolutional networks
(GCNs) [9].

Graph filters (GFs) [10–13] are one of the core tools in GSP, which inherits the funda-
mental methodology from classical digital signal processing. Recent advances in spectral
graph theory provide us with the frequency domain on graphs via the graph Fourier
transform (GFT), which can be utilized to define the concept of a filtering operation as
well as convolution for signals defined on graphs [1]. In [14,15], the authors propose a
definition of the graph fractional Fourier transform (GFRFT), which can be seen as a linear
operator, rotating from the vertex domain to the graph frequency domain. Thus, GFRFT
employs a different eigenspace from the GFT. Similar to classical frequency-domain filter-
ing, GFs manipulate the signal by selectively amplifying or attenuating its graph frequency
domain components. GFs have been adopted in applications such as signal analysis [16,17],
classification [8,18], reconstruction [10,19], denoising [20,21], clustering [22] and topology
identification [23].

According to [24], there are two prevailing design forms of GFs, rational and poly-
nomial, which correspond to infinite impulse response (IIR) and finite impulse response
(FIR). The rational GFs can provide flexibility and accuracy in design. The polynomial GF
is easy to be implemented distributedly, since it is constructed by some localized opera-
tors [25]. Consequently, the computation complexity of polynomial GFs is usually lower
than rational GFs [25,26]. Additionally, there are various methods to obtain a GF with an
approximation of the desired response, including least-squares fitting [11] and Chebyshev
polynomial fitting [27].

However, GFs with integer order polynomial or rational kernels suffer from limited
degrees of design freedom, which makes it difficult to implement filters with demanding
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spectral characteristics. For example, integer order polynomial filters may not be flat
enough in passband and stopband.

In classical filtering theory, some fractional order filters have a unique response which
can not be achieved by the integer order elements [28–30]. In [31], the authors present a
general procedure to design fractional order Butterworth filter, where the filter degree of
freedom increases due to the extra independent fractional order parameters. The extra
degrees of freedom allow the full manipulation of the filter specifications to obtain the
desired response [32]. However, the existing GF design still focuses on the classical integer
order filters [12,33]. It motivates us to propose and design fractional order GFs (FOGFs).

The building block of the classical time-domain filter is the time shift operator [34].
Similarly, an operator called graph shift is proposed to build GFs. If we implement a graph
shift operator on a directed ring graph, we can get a similar result as a delay filter. It is
natural to doubt whether the shift must be unit or not. In [35,36], the authors propose
different definitions of fractional graph shift operators. In [35], the fractional graph shift
operator derived from the fractional adjacency matrix, which can be viewed as an interme-
diate picture of a signal propagating through a network. In [36], the fractional graph shift
operator is based on fractional graph Laplacian matrix. The fractional graph Laplacian
matrix allows random walks with long-range dynamics providing a general framework for
anomalous diffusion and navigation, and inducing dynamically the small-world property
on any network. Compared with the GFRFT employing a different eigenspace, the frac-
tional graph shift operator employs different eigenvalues but reserves the same eigenspace.
Naturally, we can use the fractional graph shift operator as the building block of FOGF.

Next, we focus on the design of FOGFs. Many polynomial approximation methods
have been proposed and employed in the design of GFs [25,33]. However, these methods
are not suitable for FOGF. The traditional design methods of integer order filters can
determine the maximum order first and then other filter coefficients. But the fractional
order of each shift operator is hard to determine, which makes the design of FOGF more
complex than the traditional ones. In view of the strong multi-objective optimization
capability of the genetic algorithm (GA), we resort to GA to find the optimal order and
coefficients of FOGFs.

In many applications, such as wireless sensor networks, we have limited communi-
cation range and computation resources. Therefore, it is critical to implement distributed
FOGFs. We use the continued fraction equation (CFE) and the modified Lentz’s algorithm
to approximate the fractional order graph shift by rational form GF [37,38]. It is feasible to
implement rational form GF in a distributed way [10,11,39].

Our main contributions are as follows: (i) we propose the form of the FOGF. (ii) for
the sake of fast implementation, we approximate the GF with CFE and implement it in a
distributed method.

2. Preliminaries
2.1. Graph and Graph Signal

An undirected graph G consists of a vertex set V and a edge set E . For simplicity, we
only discuss the undirected graph in this paper, instead of the directed graph. Usually,
edges represent the physical connections or the intrinsic structures of data. The weight
associated with each edge in the graph often represents the similarity between the two
vertices it connects. The adjacency matrix W describes the weight of each edge, where
Wij is the weight between vertex i and vertex j. The degree matrix D illustrates the
connection level of each vertex, where Dii = ∑i Wij. The Laplacian matrix, defined as
L = D−W, has an eigen-decomposition L = UΛUT , where U is its orthonormal eigenbasis.
Λ = diag(λ1, . . . , λN) is a diagonal matrix, and its diagonal elements λi, i = 1, 2, . . . , N
constitute the spectrum of G. In addition, the normalized graph Laplacian matrix is defined
as Lnorm = D−

1
2 LD−

1
2 .
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The data defined on a graph can be formularized as a graph signal x, where xi
represents the value at the i-th vertex in the graph. In another perspective of view, graph
signal can be seen as a function x : V → RN defined on the vertices of graph.

In classical DSP, the Fourier transform decomposes a signal into oscillating modes [34].
Similarly, the GFT, which is defined as

x̂ = UTx, (1)

allows us to analyze oscillations along the edges [1]. The inverse GFT is defined as

x = Ux̂. (2)

The graph Laplacian eigenvector ui associated with low frequency λi varies slowly
across the graph, i.e., if two vertices are connected by an edge with a large weight, the values
of the eigenvector at those locations are likely to be similar. The eigenvector associated
with larger eigenvalue oscillates more rapidly and is more likely to have different values
on vertices connected by an edge with high weight, as shown in Figure 1.

(a) (b)
Figure 1. Two graph Laplacian eigenvectors of a random sensor network graph. The signals’ component values are
represented by the blue (positive) and black (negative) bars coming out of the vertices. (a) The constant eigenvector u1.
(b) The smooth Fiedler vector u2.

In Figure 1, we use a sensor network graph as an example. The edge weight of the
sensor network graph is the reciprocal of the distance between 2 sensors, and each sensor
only communicates with the 6 neighbor sensors. In Figure 1a, the constant eigenvector u1
corresponds to the smallest graph frequency λ1 = 0. u1 is similar to the DC component
of the classical signal. The smooth Fiedler vector u2 corresponds to the second smallest
graph frequency λ2. It is widely used in spectral clustering to separate a graph into two
parts [40].

2.2. Graph Shift

In classical DSP, the basic building block of filters is a special filter z−1 called the
time shift or delay [34]. But its definition on graphs is not so obvious due to the rich
underlying connectivity structure. Topologically, the signal shift on a graph can be viewed
as the diffusion of a signal sample from the considered vertex along all edges connected to
this vertex.

In GSP, the shift operator is extended to general graph signals x where the relational
dependencies among the data are represented by an arbitrary graph. Graph shift operator
(GSO) S has several different definitions [1]. If the values of the shifted signal are scaled
by the weighting coefficients of the corresponding edges, then the shifted signal is given
by Sx := Wx. The Laplacian matrix version Lx can also be considered as a graph shift
operator, since it is a combination of the scaled original signal Dx and the weighted shifted
signal Wx.
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When we design a fractional order filter, fractional calculus is the essential the-
ory [41,42]. In [35], the authors propose the definition of fractional graph shift. The
operation Wαx is similar to the standard graph shift, where α ∈ R is not limited to integers.

Actually, the classical fractional shift operator can be seen as a fractional delay digital
filter (FDDF), which is proposed in [41]. The ideal frequency response of FDDF is e−jωD,
where D is called group delay or phase delay. The inverse Fourier transform of the
frequency response is

h[n] =
sin[π(n− D)]

π(n− D)
. (3)

In Figure 2, it is obvious that the fractional shifted signal on a directed ring graph
plays a similar role as the fractional delay filter in classical DSP. The fractional graph shift
brings the phenomenon of interpolation, whose quality is bandwidth-dependent.
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Figure 2. Fractional shift of a directed ring graph. The original signal is x(t) = sin(πt
7 ) (a) The graph signal after

implementing fractional graph shift is Sx = W0.5x. (b) The signal after implementing classical fractional shift is h[n] ∗ x[n] =
x[n− 0.5]. (c) Difference between the previous 2 signals.

2.3. Graph Filtering

A GF H is a function h(·) applied to the shift operator L, i.e., H = h(L). The eigen-
decomposition of H is in the form H = Uh(Λ)U, where h(Λ) is a diagonal matrix that
highlights the filter’s impact on the graph frequencies λ1, λ1, . . . , λN . More specifically, the
filter output y for a filter input x can be written as

y = Hx, (4)
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which in the graph frequency domain can be translated into

ŷ = h(Λ)x̂, (5)

where x̂ and ŷ represent the GFT of the input and output signal, respectively [39]. The
concept of GFs is similar to the one used in traditional digital signal processing. However,
depending on the underlying graph topology, the shift operators might not have a simple
spectrum, i.e., the multiplicity of some eigenvalues is greater than one. Additionally, there
is no one-to-one mapping between the graph frequencies and graph nodes.

In analogy with the pivotal role of the time shift in standard system theory, filtering
graph signals can be implemented as a linear combination of a graph signal and its graph
shifted versions. The output graph signal can then be written as

y = h0S0x + h1S1x + · · ·+ hNSNx. (6)

A popular form of H is a polynomial of the GSO S,

H =
K

∑
k=0

hkSk, (7)

which we refer to as FIR GF [24]. It is convenient to run the FIR filter distributedly due to
the locality of S.

In [11,26], the authors defined the IIR GFs

H = n(L)−1d(L)x, (8)

where n(·) and d(·) are polynomial functions representing nominator and denominator.
They introduced different methods to implement IIR GFs. For example, the authors intro-
duced an autoregressive moving average (ARMA) recursion on graphs to distributively
implement IIR graph filtering [35].

3. Design of Fractional Order Graph Filter
3.1. Definition of Fractional Order Graph Filter

The traditional polynomial GF is defined in Equation (6). As discussed in the previous
section, we can extend the integer order n in Equation (6) to arbitrary number αi, e.g., 0.7,
1, 1.5. If we use fractional GSO Lα, we can get

H = h0I +
n

∑
i=1

hiLαi , (9)

where hi represents the filter coefficients and αi ∈ R represents the order of the fractional
order filter. The polynomial form fractional GF’s parameters can be written as a vector
θ = [h0, · · · , hn, α1, · · · , αn]T .

Similar to traditional polynomial GF, polynomial FOGF can get better performance
with more taps. It can achieve the same filter performance with fewer taps than traditional
polynomial GF. If we decrease or increase the number n of fractional GSOs employed in
the filter, the filter performance will change as shown in Figure 3. It is obvious that when
the number of fractional GSOs increases, the filter performance becomes more and more
similar to the ideal low-pass GF.

As in classical filter design, we also have rational form FOGF,

H =
a0I + ∑n

i=1 aiLαi

b0I + ∑m
i=1 biLβi

. (10)

Rational form FOGFs can provide much more degrees of freedom when designing
filters with some unique frequency response, just like those in classical filter design [28–30].
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Figure 3. The influence of numbers of fractional graph shift operators (GSOs) on filter performance.

3.2. Design Method

According to [43], if we wish to design the filter to approximate a desired response,
one approach is to choose the filter coefficients to minimize the peak error

E = max
λi∈Λr

|
n

∑
i=0

h(λi)− hd(λi)|, (11)

where Λr is a particular domain, in this case an interval of λ i.e., the passband, the stopband,
or the transition band. Here, we respectively notate passband peak error and stopband peak
error as Ep and Es. h(·) is the ideal FIR GF and hd(·) is the fractional order polynomial GF
we designed. The definition of passband and stopband peak error can help us design some
special filters with several dispersed passbands and stopbands, since the frequency points
λi ∈ Λp or λi ∈ Λs may be scattered in the spectrum of graph. With the extra degrees
of freedom provided by fractional orders, we can achieve a wider range of frequency
response curves.

The minimum mean square error (MMSE) between ideal and approximated filter
frequency response is defined as

Em = min
1
N
(

N

∑
i=1
|h(λi)− hd(λi)|2). (12)

In order to limit the ripple on the passband and the stopband, we need to minimize
the peak error. We also want to design the filter so as to approximate a desired response
hd(λ). The integrated error can be

J = cpEp + csEs + εmEm. (13)

In Equation (13), cp, cs and εm are all positive.
We denote the filter parameters as θ = [h0, h1, . . . , hn, α1, . . . , αn]T for polynomial

form, or θ = [a0, a1, . . . , an, b0, b1, . . . , bm, α1, . . . , αn, β1, . . . , βm]T for rational form. The
optimization problem is as follow

min
θ

J

s.t. θ̂min ≤ θ ≤ θ̂max.
(14)

θ̂min and θ̂max is the lower bound and upper bound of the parameter vector respectively.
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We use GA to solve the optimization problem in Equation (14). GA is a kind of
adaptive global optimization probability search algorithm that is formed by simulating the
evolutionary process of organisms in the natural environment. GA provides an effective
way and general framework for solving multi-objective nonlinear optimization problems
and creates a new global optimization search algorithm [44].

Due to the evolutionary characteristic of this algorithm, we can avoid getting a local
optimal result. Additionally, GA can help us when having little prior knowledge of filter
parameters. θ is defined as gene in GA. With the variable constraints θ̂min ≤ θ ≤ θ̂max,
we can generate the population of GA {θi, i = {1, 2, . . . , Np}} randomly, where Np is the
number of population. The crossover function is the two-point method, which sets two
crossover points in the vector of feasible solution randomly and then exchanges some genes
in the way of interval exchange. For example, if we have two feasible solutions [a b c d e f ]
and [1 2 3 4 5 6], the index of crossover points is 2 and 4, the crossover results are [1 b 3 d 5 6]
and [a 2 c 4 e f ]. When it comes to the mutation step, we randomly change the value of
some of the entries of θ according to the probability Pm.

The specific steps of GA is as follow.

• Set the number of population. With population increasing, the optimization result
may be better, but the speed may be slower. We use feasible population function to
create a random initial population that satisfies the bounds and linear constraints.

• Use roulette strategy to determine the fitness of individuals, and judge whether they
meet the optimization criteria. If they do, output the best individuals and their optimal
solutions. Otherwise, proceed to the next step.

• According to the fitness, the individuals with high fitness are selected with high
probability and the individuals with low fitness are eliminated.

• Generate new individuals according to crossover probability Pc. The crossover func-
tion is an arithmetic function.

• Generate new individuals according to the mutation function, which is adaptive
feasible function.

• Generate new population by crossover and mutation.
• Repeat the following steps until we get the optimal results or implement it for enough

number of times.

We firstly need to determine the form of FOGF. Then, we need to determine the
specific optimization problem Equation (14) according to the design specifications, e.g.,
passbands or stopbands.

3.3. Filter Performance

In the classical digital filter design, we often use the following specifications: passband
frequency ωp, stopband frequency ωs, cut-off frequency ωc, passband attenuation δp and
stopband attenuation δs. Among these specifications, the cut-off frequency is the frequency
point at which the signal power is reduced by half.

Firstly, we will analyze the difference of filter performance between traditional poly-
nomial GF and fractional polynomial GF approximated by GA. In the simulations, we set
the population to 500 and let crossover probability Pc = 0.95.

We use GA to design a traditional 9-order polynomial GF to approximate an ideal
lowpass FIR GF, where we employ only 4 fractional graph shift operator a0I + ∑n

i=3 aiLαi .
To put it in another way, the fractional order filter has 4 taps. The result is depicted in
Figure 4.



Electronics 2021, 10, 437 8 of 16

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

aprroximated by GA

aprroximated by polynomial

Figure 4. A illustration of the polynomial form fractional order graph filters (FOGF) approximated
by genetic algorithm (GA).

The design specifications is as follow λp = 0.5 Hz, λs = 3/Hz, λc = 0.75 Hz, δp = 0.1
and δs = 0.1. The maximum difference between the frequency response of GF and FOGF
in passband is 0.0308, while the maximum difference between the frequency response of
GF and FOGF in stopband is 0.0538. It is obvious that the filter performance of 9-order
polynomial GF and FOGF with n = 4 is similar.

In Figure 5, we directly use the rational form FOGF to approximate an ideal lowpass
filter by GA. We use a 25 nodes swiss-roll graph [45], as shown in Figure 6. The frequency
response function is in the following two forms

h1(λ) =
a0 + a1λα1

b0 + b1λβ1 + b2λβ2
, (15)

and
h2(λ) =

a0

b0 + b1λβ1 + b2λβ2
. (16)

The GA parameters remain unchanged. The objective function value of the opti-
mization problem Equation (14) is 0.0264. In this case, the peak error of passband Ep, the
peak error of stopband Es and MMSE of the approximated GF Em are shown in Table 1.
Moreover, we can get the filter parameters

h1(λ) =
5.4851− 0.7520λ−5.1940

5.4638− 4.3433λ6.8011 + 3.5065λ7.3959 , (17)

h2(λ) =
6.9703

7.3278− 4.8155λ6.7863 + 4.0030λ7.6361 . (18)

As shown in Figure 5, we can get a lowpass filter with a flat passband and an extremely
flat stopband, using rational form FOGFs. The traditional filter design methods, like
Butterworth or Chebyshev, have a flat passband. But the stopband of them has a lot of
ripples. Additionally, we can find that different form of frequency response influences filter
response, since filters in Figure 5a,b have different specifications.
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Figure 5. A illustration of the rational form FOGF approximated by GA. (a) Frequency response h1(λ). (b) Frequency
response h2(λ).

Figure 6. The swiss-roll graph with 25 nodes.

Table 1. Filter performance of rational form FOGFs.

Frequency Response J Ep Es Em

h1(λ) 0.0136 0.0109 0.0163 8.7160× 10−5

h2(λ) 0.0264 0.0485 0.0042 0.0010

3.4. Stability Analysis

When utilizing spectral GFs for learning representations, a necessary condition for
transferability in certain tasks is stability. Stability is defined to be the property such that if
we add a small perturbation to the input graph, the output of the filter is also perturbed by
a small amount [46].

The authors of [46] prove that polynomial GFs are stable with respect to the change in
the normalized graph Laplacian matrix. They defined filter distance as

d f = ||h(L)− h(Lp)||2. (19)

Similarly, the Laplacian distance is defined as

dL = ||L− Lp||2. (20)
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h(L) = ∑K
k=0 hkL̃k represents the polynomial GF. L̃ = L − I is the scaled normalized

Laplacian of an input graph. Lp is the Laplacian of the perturbed graph, which is generated
by remove some edges from some nodes’ k-hop neighborhood. A spectral filter is stable if

||h(L)− h(Lp)||2 ∈ O(||L− Lp||2).

We take the simplest polynomial form FOGF h(L) = Lα as an example. We gener-
ate Barabási-Albert graphs with n = 150 nodes and randomly remove each edge with
independent probability of 0.5 to give a perturbed graph [47]. The perturbed graph is still
connected. We then look at the filter distance for fractional order polynomial GF of order
0.2, 0.5 and 0.8. As shown in Figure 7, the filter distance can be seen to scale linearly with
the Laplacian distance consistent with Theorem 2 in [46] which states that polynomial
filters are linearly stable.

filter order

Figure 7. A plot of the Laplacian distance and the filter distance for different fractional order
polynomial GFs. The bars indicate the standard deviation of the filter distance.

4. Distributed Implementation

Due to the limited communication range of a large network, each node is likely to
communicate with its neighbor nodes. Thus, we are interested in the filter’s distributed im-
plementation. Distributed implementations of GFs emerged as a way to deal with the ubiq-
uity of big data applications and to improve the scalability of computation. From [10,26,39],
we can learn that distributed methods’ of GFs can reduce communication cost and speed
up the calculation. In this section, we only focus on the distributed implementation of
polynomial form FOGFs.

4.1. Continued Fraction Equation Method

As discussed in the previous sections, fractional order GSO, which is a fractional order
power of the GSO matrix, is the building block of FOGF. To compute a fractional order
power of a matrix will require a lot of computation resources. In order to implement an
FOGF faster, we need to approximate it by some integer order operators.

In addition, the integer order GSOs, like adjacency matrix W and Laplacian matrix
L, can naturally be implemented distributedly. Since, W and L are all localized operators,
which allow nodes to exchange only local information [39]. According to Equation (9), the
polynomial form FOGF is

H = h0I +
n

∑
i=1

hiHαi . (21)

Equation (21) is a linear combination of several fractional order GSOs Lαi . Our target
is to implement Lαi distributedly.

Continued fraction expansion (CFE) is a very effective estimation method for function
approximation or numerical approximation. It can approximate a function into multiple
fractions by means of continuous division. The convergence speed of this method is faster
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than that of exponential expansion [38,48]. CFE is useful for the expansion of fractional
order function [37]. A continued fraction expansion looks like this:

f (λ) = λα = 1 +
α(λ− 1)

1 + (1−α)(λ−1)

2+ (1+α)(λ−1)

3+ (2−α)(λ−1)
2+···

, α ∈ R (22)

This infinite continued fraction representation Equation (22) needs a large number of
terms for convergence to a given accuracy. In [49], the authors propose the modified Lentz’s
method. It reverses the order of coefficients in CFE. That is, each succeeding continued
fraction is made by taking the previous fraction’s reciprocal and adding it to the current
coefficient. The algorithm can be terminated until the floating-point precision is achieved.
It is one of the best general methods for evaluating continued fractions seems [38].

A polynomial form FOGF is the sum of a few fractional order GSOs. So, we can
implement in a parallel way, which means implement each Lαi at the same time. The
framework of our algorithm is shown in Figure 8.

start

h0I

h1Lα1

h2Lα2

· · ·

hKLαK

CFE Approximation ∑ gh(L)

Figure 8. The structure of distributed polynomial form FOGF.

Since the Lentz’s algorithm is not for matrix functions, we need to convert it into
matrix version, which is shown in Algorithm 1. In Algorithm 1, we denote filter parameters
a and b according to Equation (22)

a = [a0, a1, · · · ] = [1, 1, 2, 3, 2, 5, · · · ], (23)

b = [b1, b2, · · · ] = [α(λ− 1), (1− α)(λ− 1), (1 + α)(λ− 1), (2− α)(λ− 1), (2 + α)(λ− 1), · · · ]. (24)

Additionally, eps is the accuracy of approximation, say 10−7 or 10−10. The parameter ε
should be less than typical values of eps · |bj|, say 10−30. With Algorithm 1, we can compute
CFE iteratively according to f (λ) = ∆N∆N−1 · · ·∆0, where ∆j is defined in the line 9 of
Algorithm 1. In Equation (22), if we replace λ− 1 with L− I, the fractional order GSO Lαi

can be implemented iteratively.
For example, if we use 3 terms in CFE of f (λ), the approximation form is as follow

λα ≈ 1 +
α(λ− 1)

1 + (1−α)(λ−1)

2+ (1+α)(λ−1)
3

= 1 +
α(1 + α)(λ− 1)2 + 6α(λ− 1)

(4− 2α)(λ− 1) + 6
. (25)

The eigenvalue of L− I is λi − 1, and the function acting on the eigenvalue is equiv-
alent to that acting on the corresponding matrix. As a result, the approximation of the
fractional order power of Lα is

Lα ≈ I + [α(1 + α)(L− I)2 + 6α(L− I)] · [(4− 2α)(L− I) + 6I]−1. (26)
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Algorithm 1: The Matrix Version of Modified Lentz’s Algorithm
Require: Filter parameters a, b, accuracy parameters eps, ε
Ensure: Approximation result FTM

Set F0 = b0I; if b0 = 0, set F0 = ε · I.
Set C0 = F0, D0 = 0.
Set j = 0.
repeat

Set Dj = bjI + ajDj−1.
If Dj = 0, set Dj = ε · I.
Set Cj = bjI + aj/Cj−1.
If Cj = 0, set Cj = ε · I.
Set ∆j = CjD−1

j .
Set Fj = ∆jFj−1
j→ j + 1

until |∆j − I| < eps
T ← j

After approximating the fractional order GSOs by CFE, we convert the FOGF into
an integer order IIR filter. As discussed in the previous section, there are some state-of-
the-art methods to implement IIR GFs distributedly [10,11,26,39]. In [26], the authors
propose a distributed algorithm called FastIDIIR, which is designed to solve the following
optimization problem

arg min
y
||By− x||2. (27)

It is an inverse FIR module y = B−1x. Inspired by the gradient descent method, this
problem can be solved by the iteration

y(t+1) = y(t) − γ(By(t) − x), (28)

where γ is the step length parameter of FastIDIIR algorithm.
Adding distributed IIR GF design methods, we propose our own distributed imple-

mentation of FOGFs in Algorithm 2. In our algorithm, B = gj(L), y = yj and x = rj(L)yj−1.
gj(L) and rj(L) are all polynomial GFs. For example, at the second iteration,

C2 = 2I + (1− α)(L− I)[I + α(L− I)]−1, (29)

D2 = 2I + (1− α)(L− I). (30)

It is obvious that D2y2 = C2y1. After simplification, we can get

g2(L) = [I + α(L− I)][2I + (1− α)(L− I)], (31)

r2(L) = 2I + (1 + α)(L− I). (32)

In summary, we split the FOGF into several fractional order GSOs, and approximate
the fractional order GSOs with CFE. In order to compute CFE iteratively, we extend
the modified Lentz’s algorithm to the matrix domain. After the previous procedures,
we obtain a polynomial form GF and implement it distributedly and iteratively by the
FastIDIIR algorithm.
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Algorithm 2: Distributed Implementation of Fractional Order GSO Approxi-
mated by CFE

Require: Input signal x, Step length γ, Iterative times T, Iterative parameters
∆j, j = {1, 2, · · · , TM}.

Ensure: Output signal y
Set j = 0.
repeat

yj = ∆jyj−1.
gj(L)yj = rj(L)yj−1.

Let y(0)
j = yj−1, t = 0.

repeat
y(t+1)

j = y(t)
j − γ(gj(L)y

(t)
j − rj(L)yj−1).

t→ t + 1.
until t = T
yj = y(T)

j .
j→ j + 1.

until ||∆j − I|| < eps
y = yj

4.2. Analysis

First, we will analyze the approximation accuracy of CFE. We will keep different
number of terms and analyze their approximation accuracy.

As shown in Figure 9, with more terms kept in CFE, the approximation is more
accurate. It is explicit that the approximation is precise enough when we keep 8 or 10 terms
in CFE. Here, we analyze the approximation error on a sensor graph G with 20 vertices.
For simplicity, we employ the simplest fractional order polynomial GF H = L0.5. The error
function is defined as e = ||hi(Λ)−h(Λ)||2

||h(Λ||2
, where i denotes the number of terms we kept in

CFE. We can find that the approximation error of CFE with 8 terms is negligibly small.
Second, we will analyze the performance of Algorithm 2. We use a sensor graph with

16 vertices as an example. As shown in Figure 10, there is almost no error when using the
matrix version of the modified Lentz’s algorithm to approximate an FOGF.
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Figure 9. (a) The fractional order function h(λ) = λ0.5 approximated by continued fraction equation (CFE) containing
different number of terms. (b) The approximation error of CFE on a sensor graph with 20 vertices.
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Figure 10. The frequency response of H = L0.5 and an approximation using the proposed algorithm.

5. Conclusions

In this paper, we introduce FOGF design methods as well as their distributed imple-
mentation methods. We use GA to solve the optimization problem of filter design and
get the filter parameters. Then, we employ CFE and the modified Lentz’s algorithm to
approximate the FOGFs by integer order IIR GFs. Due to the limited communication
range of some large networks, we employ the FastIDIIR algorithm to implement FOGFs
distributedly. Moreover, we analyze the filter performance and approximation error. There
are still a lot of problems which need exploration, analysis, and perfection. In the future,
we will continue to investigate the theoretical issues of FOGFs.
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