
Citation: Luo, H.; Liu, K.; Jiang, S.; Li,

Q.; Wang, L.; Jiang, W. CAISOV:

Collinear Affine Invariance and

Scale-Orientation Voting for Reliable

Feature Matching. Remote Sens. 2022,

14, 3175. https://doi.org/10.3390/

rs14133175

Academic Editor: Lionel Bombrun

Received: 26 May 2022

Accepted: 29 June 2022

Published: 1 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

CAISOV: Collinear Affine Invariance and Scale-Orientation
Voting for Reliable Feature Matching
Haihan Luo 1,2, Kai Liu 1, San Jiang 1,3,4,* , Qingquan Li 2,5, Lizhe Wang 1,3 and Wanshou Jiang 6

1 School of Computer Science, China University of Geosciences, Wuhan 430074, China;
20151003394@cug.edu.cn (H.L.); 1202021540@cug.edu.cn (K.L.); lzwang@cug.edu.cn (L.W.)

2 Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen 518060, China;
liqq@szu.edu.cn

3 Hubei Key Laboratory of Intelligent Geo-Information Processing, China University of Geosciences,
Wuhan 430078, China

4 Key Laboratory of Geological Survey and Evaluation of Ministry of Education, China University of
Geosciences, Wuhan 430078, China

5 Shenzhen Key Laboratory of Spatial Smart Sensing and Services, Shenzhen University,
Shenzhen 518060, China

6 State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing,
Wuhan University, Wuhan 430072, China; jws@whu.edu.cn

* Correspondence: jiangsan@cug.edu.cn

Abstract: Reliable feature matching plays an important role in the fields of computer vision and
photogrammetry. Due to the complex transformation model caused by photometric and geometric
deformations, and the limited discriminative power of local feature descriptors, initial matches with
high outlier ratios cannot be addressed very well. This study proposes a reliable outlier-removal
algorithm by combining two affine-invariant geometric constraints. First, a very simple geometric
constraint, namely, CAI (collinear affine invariance) has been implemented, which is based on the
observation that the collinear property of any two points is invariant under affine transformation.
Second, after the first-step outlier removal based on the CAI constraint, the SOV (scale-orientation
voting) scheme was then adopted to remove remaining outliers and recover the lost inliers, in which
the peaks of both scale and orientation voting define the parameters of the geometric transformation
model. Finally, match expansion was executed using the Delaunay triangulation of refined matches.
By using close-range (rigid and non-rigid images) and UAV (unmanned aerial vehicle) datasets,
comprehensive comparison and analysis are conducted in this study. The results demonstrate that
the proposed outlier-removal algorithm achieves the best overall performance when compared with
RANSAC-like and local geometric constraint-based methods, and it can also be applied to achieve
reliable outlier removal in the workflow of SfM-based UAV image orientation.

Keywords: feature matching; outlier removal; geometric constraint; match expansion; collinear affine
invariance; structure-from-motion

1. Introduction

Feature matching is a long-studied topic in the fields of computer vision and pho-
togrammetry [1]. The purpose of feature matching is to find sufficient and accurate cor-
respondences from two or multiple overlapped images. The correspondences are then
used to estimate the relative geometry between image pairs [2]. Feature matching has
a very wide range of applications including, but not limited to, remote sensing image
registration [3], image retrieval and geo-localization [4,5], Structure from Motion [6], and
3D reconstruction [7]. In the literature, extensive research has been conducted to promote
the development of feature matching towards high automation and precision.

Nowadays, feature matching is usually implemented by using local feature-based
image matching, in which correspondences are searched by comparing two sets of feature
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descriptors that are calculated from local image patches around detected feature points.
In general, existing methods can be divided into two groups according to whether or not
they use deep learning techniques, i.e., handcrafted methods and learned methods [8]. For
handcrafted methods, feature points are first detected from image corners or salient blobs,
such as the earlier Harris [9] and the recent SIFT (Scale Invariant Feature Transform) [10]
feature points, and feature descriptors are then computed by using gray values within the
window that are centered on detected feature points, such as the SIFT algorithm and its
variants [11–13]. Feature matches are finally obtained by searching the descriptors with the
smallest Euclidean distance.

Due to the extensive usage of deep learning techniques, CNN (Convolutional Neural
Network) based neural networks have also been exploited for feature matching. In the
context of feature matching, existing networks can be grouped into three categories, i.e.,
joint feature and metric learning networks, separate detector and descriptor learning
networks, and joint detector and descriptor learning networks [8]. The first group uses
CNN networks to learn feature representation and similarity calculation, which are usually
designed as Siamese networks with two inputs or triplet networks with three inputs [14,15].
The second group, i.e., separate detector and descriptor learning networks, focuses on
the representation learning of feature descriptors, in which feature matching is achieved
by using the widely-used L2-norm Euclidean distance instead of the metric networks
used in joint feature and metric learning networks. Among the proposed algorithms,
HardNet [16], L2-Net [17], and ContextDesc [18] are the representative CNN models. In
contrast to the above-mentioned networks, the third group attempts to achieve feature
detection and matching in an end-to-end model, which is usually designed to cope with
some extreme conditions, such as day-and-night images. The typical networks include
SuperPoint [19] and D2Net [20]. However, false matches have inevitably existed in the
correspondences since they are only determined by using feature descriptors calculated
from local image patches, as well as large perspective deformations and illumination
changes. Thus, outlier removal is conducted as the last step of feature matching.

In the literature, outlier-removal methods are mainly categorized into two major
groups, i.e., parametric and non-parametric methods [21]. The former depends on the
estimation of a pre-defined geometric model to separate outliers from initial matches, such
as the fundamental matrix that builds the epipolar geometry between correspondences. In
this group, RANSAC (Random Sample Consensus) [22] and its variants, such as LOSAC
(Locally optimized RANSAC) [23] and USAC (Universal RANSAC) [24], have become
the most used explicit parametric methods for the robust estimation of geometry transfor-
mations, which are implemented by the iterative execution of hypothesis generation and
model verification. The performance of RANSAC-based methods, however, degenerates
dramatically with the increase of outlier ratios, especially when they exceed the value of
50 percent. In contrast to explicit parametric methods, some researchers attempt to design
implicit parametric methods, instead of the explicit estimation of model parameters. In this
field, the HT (Hough transformation) is the extensively used technique, which converts
the explicit model estimation in the parametric space to implicit voting in the feature
space. In the work of [25], the estimation of the similarity transformation is reformed as a
two-dimensional weighted HT voting strategy, which is parameterized by using the scale
and rotation variants between image pairs. The experimental results demonstrate its high
efficiency and robust resistance to outliers. Similarly, ref. [26] designed an outlier-removal
algorithm by using the motion consistency of projected correspondences on the object
space, which is termed HMCC (hierarchical motion consistency constraint). Due to its
robustness to outliers, HMCC is used as a filter to remove obvious outliers from initial
matches, and is bundled with RANSAC to refine the final matches.

Even with the advantage of high precision, parametric methods cannot deal with
images with non-rigid transformations and their performance can be dramatically influ-
enced by the outlier ratio of initial matches due to the explicit or implicit model estimation.
To cope with these issues, other researchers focus on the development of non-parametric
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methods that are modeled without pre-defined transformation and have high robustness
to outliers. In contrast to parametric methods, non-parametric methods are commonly
implemented by using local or global constraints between matched points, which have
two advantages. On the one hand, they are suitable for outlier removal of both rigid and
non-rigid images; on the other hand, they are resistant to extremely high outlier ratios. For
non-parametric methods, local constraints can be obtained by using either photometric
or geometric information. Considering the low discriminative power of feature point
descriptors, line descriptors are then exploited to construct the two-dimensional photo-
metric constraint [27,28]. In the work of [28], an algorithm, termed 4FP-Structure, was
proposed by using three nearest neighbors of the current feature point to construct the local
photometric constraint for outlier removal and the local geometric constraint for match
expansion. Due to the local structure degeneration when considering nearest neighbors,
ref. [27] exploited the Delaunay triangulation to form a local connection of initial matches
and designed a virtual line descriptor (VLD)-based photometric constraint and a spatial an-
gular order (SAO)-based geometric constraint, in which outliers are hierarchically removed
by removing false matches with the highest probability.

Despite the high discriminative power of line descriptor-based photometric constraints,
their computational costs are extremely high, especially for high-resolution images [29].
Therefore, local geometric constraints are exploited in outlier removal, which are used
to filter obvious outliers and increase inlier ratios of initial matches as they are robust to
outliers and computationally efficient [29,30]. In the work of [30], three local geometric con-
straints were designed by using the position, angular, and connection between neighboring
features, which were utilized as the post-filter after the execution of RANSAC. Ref. [29]
adopted the SAO constraint as a pre-filter to remove obvious outliers in feature matching
of UAV (unmanned aerial vehicle) images. In contrast to the local geometric constraint, the
global geometric constraint has also been extensively used, and a graph matching technique
is the classical solution, such as graph transformation matching (GTM) [31] and weighted
GTM (WGTM) [32] algorithms. The graph matching technique casts the problem of feature
matching as the purpose of finding two identical graphs, which are constructed by using
initial matches. In addition, the constraint that global motion deduced from inliers should
be piece-wise smooth, has been also exploited, such as the VFC (vector field consensus)
reported in [33] and the GMS (grid-based motion statistics) proposed in [34].

Outlier removal is still a non-trivial task in feature matching, although extensive
research has been conducted and documented in the literature. On one hand, it is far
from modeling the transformation between images by using an individual mathematical
model because of the complex geometric deformations. In other words, the widely used
RANSAC-based methods are not capable of addressing special feature-matching cases,
such as non-rigid images. On the other hand, initial matches could be dominated by outliers
due to large geometric deformations caused by oblique imaging and dramatic photometric
deformations arising from illumination changes. All these issues cause difficulties in
feature matching and outlier removal. Thus, this study proposes a reliable outlier-removal
algorithm by combining two affine-invariant geometric constraints. First, a very simple
geometric constraint, namely CAI (collinear affine invariance), has been designed, which
is based on the observation that the collinear property of any two points is invariant to
affine transformation. Compared with other local geometric constraints, it not only has
a simple mathematical model but also has a more global observation of initial matches.
Second, after the first-step outlier removal based on the CAI constraint, the SOV (scale-
orientation voting) scheme was then adopted to remove remaining outliers and recover the
lost inliers, in which the peaks of both scale and orientation voting define the parameters
of the geometric transformation model. Finally, match expansion was executed based on
local affine transformation, which is constructed by using the Delaunay triangulation of
refined matches. For performance evaluation, the proposed algorithm has been analyzed
and compared by using close-range and UAV datasets. The major contribution of this study
is described as follows:
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(1) A reliable geometric constraint, namely CAI (Collinear Affine Invariance) has been
designed, which has two advantages. On one hand, the mathematical model of the
CAI (collinear affine invariance) is simple, which uses the collinearity of feature points
as support to separate outliers from initial matches. Compared with RANSAC-like
methods, this enables the ability of processing rigid and non-rigid images; on the other
hand, CAI uses the collinear features within image space and has a global observation
of initial matches, in contrast to the other local constraint based methods.

(2) Based on CAI and SOV (Scale-Orientation Voting) constraints, a hierarchical outlier-
removal algorithm has been designed and implemented, which is reliable to high
outlier ratios. By using both rigid and non-rigid images, the performance of the
proposed algorithm has been verified and compared with state-of-the-art methods.
Furthermore, the proposed algorithm achieves good performance in UAV image ori-
entation.

This paper is organized as follows. Section 2 presents the workflow of the proposed
outlier-removal algorithm. Comprehensive analysis and comparison with state-of-the-art
methods are presented in Section 3. Finally, Section 4 presents the conclusions.

2. Methodology
2.1. The Overview of the Proposed Algorithm

Combining the CAI and SOV constraints, this paper designs a reliable outlier-removal
algorithm, termed CAISAO. The overall workflow is shown in Figure 1, which mainly
consists of two major steps. In the first step, initial matches are obtained based on the
classical workflow of local feature matching. For two images, SIFT features are detected
individually, and initial matches are calculated by comparing two sets of feature descriptors.
As reported in [10], the cross-check and ratio-test strategies are used to remove a large
proportion of false matches from initial matches. In the second step, outliers are removed
gradually by executing the CAI and SOV constraints. First, based on the CAI geometric
constraint, obvious outliers are removed. In this study, the CAI geometric constraint has
a more global observation of initial matches, and is designed to increase the inlier ratio
of initial matches. Second, the SOV geometric constraint is applied to estimate the scale
and rotation transformation parameters between these two input images based on the HT
voting scheme, which is designed to remove retained false matches and recover lost true
correspondences. Third, after the refinement based on the CAI and SOV constraints, match
expansion is finally executed, which could further increase the number of true matches.
The details of each step are presented in the following sections.

2.2. Collinear Affine Invariance-Based Geometric Constraint

Initial matches are established by using the classical workflow of local feature match-
ing. Considering the high computational costs in scale pyramid construction and feature
descriptor comparison, the GPU (graphics processing unit) accelerated SIFT algorithm,
termed SIFTGPU [35], has been utilized in this study to detect and match features. Due
to geometric and photometric deformations, and the only usage of local appearances for
descriptor generation, false matches have inevitably existed in initial matches. After the
establishment of initial matches, false matches are then filtered based on the CAI geometric
constraint. The basic idea of the CAI geometric constraint is that the collinearity of inliers
is invariant under an affine transformation, which would be used to calculate the similarity
score of initial matches, as illustrated in Figure 2.
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Figure 1. The workflow of the proposed outlier-removal algorithm. Step 1 is initial matching; step 2
is outlier removal based on the proposed CAISOV.

Figure 2. The illustration of the CAI geometric constraint.

Suppose that feature points P and Q are detected from two input images i1 and i2,
respectively; n initial matches are obtained and indicated as M = {(pi, qi), i = 1, 2, · · · , n}
with piεP and qiεQ. For each initial match (pi, qi), the similarity score Si is then calculated
according to the CAI geometric constraint. For the target feature points pi in image i1, its K
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closest feature points Ni = {pik, k = 1, 2, · · · , K} are first searched from matched feature
points of image i1. Then, a straight line lik is constructed by connecting the target feature
point pi and one of its closest feature points pik. After the buffering operation on the straight
line lik by using the buffer threshold Tb, the search region Bik around the straight line lik can
be formed, and all matched feature points within the search region Bik are labeled as the
support point set Cik between points pi and pik. Therefore, for the K closest feature points
in Ni, the union Ci of the support point set Cik is defined as the support point set of the
target feature points pi. Similarly, the K closest feature points Ni

′
= {qik, k = 1, 2, · · · , K}

of the corresponding point qi in image i2 can be directly determined according to the
relationship of initial matches, and the support point set Ci

′
of the corresponding point qi

can be found by using the same operation. Based on these two support point sets Ci and
Ci
′
, the similarity score Si of the initial match (pi, qi) is defined by Equation (1)

Si =
ηi
Nc

(1)

where ηi is the number of common feature points between support point sets Ci and Ci
′
; Nc

is the maximal number of elements of support point sets Ci and Ci
′
, i.e., Nc = max(|Ci|, |C

′
i |).

The similarity score Si indicates the probability that one initial match belongs to the true
correspondences, which are deduced from its supporting point set.

2.3. Scale-Orientation Voting-Based Geometric Constraint

Obvious outliers can be removed based on the CAI geometric constraint. Due to
relativly lower discriminative power, and the global construction of support point sets,
false matches would still exist in the filtered matches, and a proportion of true matches
would be removed at the same time. Therefore, inspired by the work of [25], this study
further uses the scale-orientation voting to refine matches and retrieve falsely removed
inliers, as illustrated in Figure 3.

Figure 3. The illustration of the SOV geometric constraint.

Suppose that the refined matches ICAI are generated based on the CAI geometric
constraint; for one target match (pi, qi) ∈ ICAI , its neighboring match (pj, qj) ∈ ICAI can
be found under the constraint that pj is the neighbor of pi, and qj is the neighbor of qi.

Two lines lij and lij
′

can then be created by connecting one target feature point with its

neighboring feature points, i.e., lij connects pi and pj; lij
′

connects qi and qj. Thus, the scale

change scalei from feature point pi to qi is defined as the length ratio of lines lij and lij
′

by
Equation (2)
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scaleij =
lij
l′ij

(2)

Similarly, the orientation change rotationi from feature point pi to qi is defined as the
anticlockwise angle that rotates line lij to line lij

′
, as represented by Equation (3)

rotationij = angle(lij, l
′
ij) (3)

Based on the definition of scale and orientation, the HT voting scheme is then used to
find the correct scale and orientation range. The core idea is that the votes of inliers in scale
and orientation are accumulated in the voting space; conversely, the votes of outliers are
randomly distributed in the voting space. In this study, 9 ranges are used as the voting bins
of scales, which are represented as

{
1
5 , 1

4 , 1
3 , 1

2 , 1, 2, 3, 4, 5
}

; 36 ranges are used as the voting
bins of rotation, which are defined with an interval value of 10◦ and range from 0◦ to 360◦.
Thus, the purpose of finding the correct scale and orientation range is cast as finding the
bin with peak values in the voting space. For one target match (pi, qi) ∈ ICAI , K nearest
neighbors Npi =

{
pij, j = 1, 2, · · · , K

}
and Npi =

{
qij, j = 1, 2, · · · , K

}
of matched points

pi and qi are first determined, and the lines lij and lij
′

created by using the matched point
and one of its nearest neighbors are used to calculate the scale scalei and rotation rotationi
based on Equations (2) and (3), and they are then used to vote bins of scale and rotation.
After the voting of all matches in ICAI , the bins with peak votes define the correct scale
scaletrue and rotation rotationtrue changes from image i1 to i2. In other words, matches are
labeled as inliers if their scale and rotation are within the correct ranges.

2.4. Implementation of the Proposed Algorithm

Based on the CAI and SOV geometric constraints as presented in Sections 2.2 and 2.3,
this study implements a reliable outlier-removal algorithm. The workflow of the proposed
algorithm consists of three major steps: (1) initial matches that are generated by using
the classical local feature matching are refined based on the CAI geometric constraint,
in which obvious outliers are eliminated to increase the inlier ratio; (2) by using the
refined matches, the SOV constraint is then executed to find the correct scale and rotation
parameters between image pairs, which are used to remove retained false matches and
recover falsely removed true matches; (3) finally, match expansion is conducted by using
the transformation that is deduced from two corresponding triangles. The details of the
workflow are presented as follows:

(1) Outlier removal based on the CAI geometric constraint. According to Equation (1),
the similarity score Si of each match (pi, qi) can be calculated. To cope with high
outlier ratios, initial matches with the similarity score Si that equals zero are first
directly eliminated. For the remaining matches, the similarity score Si is calculated
again, and the matches with a similarity score Si less than a pre-defined threshold
Td are removed. The above-mentioned operations are iteratively executed until the
similarity scores of all matches are greater than Td. In this study, the threshold Td is
set as 0.1.

(2) Outlier removal based on the SOV geometric constraint. After the execution of step
(1), the retained matches ICAI with higher inlier ratios are then used to search the
correct scale scaletrue and rotation rotationtrue parameters between image pairs i1 and
i2. The matches are labeled as inliers if their scale and rotation parameters fall into
the correct voting bins; otherwise, the matches are labeled as outliers. To recover
falsely removed matches, match expansion is simultaneously executed in this step. In
detail, for each removed match (pi, qi)εOSOV , the scale and rotation parameters are
calculated again. If these parameters fall into the correct voting bin, the match (pi, qi)
is grouped with the inliers.
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(3) Match expansion based on the triangle constraint. After the execution of CAI and SOV
constraints, refined matches ISOV with high inlier ratios can be obtained. To further
recover more inliers, match expansion is conducted again based on the transformation
deduced from corresponding triangles, as presented in [29]. During match expansion,
refined matches ISOV are used to construct the Delaunay triangulation and its corre-
sponding graph. For each feature point pi, candidate feature points

{
cj
}

are found by
using the transformation that is deduced from two corresponding triangles, and the
classical local feature matching is executed between feature point pi and candidate
feature points

{
cj
}

. The workflow of the proposed CAISOV algorithm is presented in
Algorithm 1.

Algorithm 1 CAISOV
Input: Initial candidate matches M
Output: final matches M f in

1: procedure CAI-FILTER
2: Calculate the similarity score Si of each match (pi, qi)
3: Remove matches with a similarity score Si that equals zero
4: Iteratively calculate Si and remove matches whose similarity scores are less than Td
5: Obtain refined matches ICAI ← M
6: end procedure
1: procedure SOV-FILTER
2: Scale and orientation calculation for refined matches ICAI
3: HT voting to determine the correct scale and orientation parameters
4: Outlier removal and inlier resume based on SOV constraint
5: Obtain refined matches ISOV ← ICAI
6: end procedure
1: procedure MATCH-EXPANSION
2: Construct Delaunay triangulation and its corresponding graph using ISOV
3: Match expansion based on the triangle-deduced transformation
4: Obtain final matches (M f in ← ISOV)
5: end procedure

3. Experimental Results

For performance evaluation, three close-range image datasets and two UAV remote-
sensing image datasets have been used in the experiments. First, the influence of the
distance threshold Tb for support-point searching is analyzed by using a close-range bench-
mark dataset. Second, the robustness of the proposed algorithm to outliers is analyzed for
varying outlier ratios. Third, the details of outlier removal are presented by using both rigid
and non-rigid image pairs. Finally, the proposed algorithm is compared comprehensively
with classical outlier-removal methods, and its application to UAV image orientation based
on SfM (Structure from Motion) is also presented.

3.1. Datasets and Evaluation Metrics

Three close-range image datasets and two UAV remote-sensing datasets are utilized
for the performance evaluation in this study. The three close-range image datasets include
both rigid and non-rigid image pairs.

• The first dataset is the well-known benchmark dataset, termed the Oxford dataset,
which has been widely used for the evaluation of feature detectors and descriptors [36],
as presented in Figure 4. This dataset consists of a total number of eight image
sequences, in which each image sequence has six images with varying photometric
and geometric deformations, e.g., changes of viewpoint and illumination, motion blur,
and scale and rotation.
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• The second dataset is the well-known HPatches benchmark [37], which has been
widely used for training and testing feature descriptors based on CNN models. Similar
to the Oxford dataset, 117 image sequences that consist of 6 images have been prepared
in this dataset, among which 8 image sequences have been selected for the performance
evaluation in rigid image matching, as shown in Figure 5.

• The third dataset includes 8 image pairs that have non-rigid deformations, such as
blend and extrusion, as shown in Figure 6. For the used three datasets, the first and
second datasets have the ground-truth transformation between image pairs, such as
the homography matrix for the first and the other images in each image sequence. For
these two datasets, the provided model parameters have been used to separate inliers
from initial matches. In this study, the matches with the transformation errors that
are less than 5 pixels are defined as inliers. For the third dataset, we have prepared
ground-truth data through manual inspection.

(a) Bark (b) Bikes (c) Boat (d) Trees

(e) Graf (f) Wall (g) Leuven (h) Ubc

Figure 4. The Oxford dataset (close-range dataset 1).

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. (a–h) The rigid dataset (close-range dataset 2).
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. (a–h) The non-rigid dataset (close-range dataset 3).

To verify the application of the proposed outlier-removal algorithm to remote-sensing
images, two UAV datasets are also selected in this study. The first dataset is collected from
a suburban region, which is mainly covered by vegetation with some crossed railways. By
using a two-camera imaging system equipped with Sony RX1R cameras, a total number
of 320 images have been recorded at a flight height of 165 m, whose resolution is 6000 by
4000 pixels. The second dataset is collected from one urban resident region that is centered
on a shopping plaza and surrounded by high buildings. In this test site, a multi-rotor
UAV platform equipped with one penta-view photogrammetric imaging system has been
utilized for outdoor data acquisition, which can capture images from five directions and
facilitate 3D modeling of urban buildings. At a flight height of 175 m, a total number of
750 images have been recorded with simensions of 6000 by 4000 pixels. Figure 7 illustrates
the images of these two UAV datasets.

For comparative performance evaluation, three criteria, namely precision, recall and
inlier number, are utilized as measurements. Precision is the ratio of the numbers of inliers
and total matches generated from the proposed algorithm, as presented by Equation (4);
recall is the ratio of the number of inliers to the number of total inliers in the ground-truth
data, as shown by Equation (5); inlier number is the total number of true matches that are
generated by outlier-removal methods.

precision =
retained inliers

total retained matches
(4)

recall =
retained inliers

total re f erence inliers
(5)



Remote Sens. 2022, 14, 3175 11 of 26

(a) UAV dataset 1

(b) UAV dataset 2

Figure 7. The illustration of these two UAV datasets.

3.2. The Influence of the Collinear Distance Threshold on Outlier Removal

In the proposed CAISOV outlier-removal algorithm, the collinear distance threshold
Tb determines the buffer region of one line that connects the target point and its neighbor
point, which directly influences the searching of support points in the CAI geometric
constraint. In this section, we analyze the influence of the distance threshold Tb on outlier
removal and select the optical value for the remaining analysis and comparison.

For performance evaluation, the first dataset (close-range dataset 1) has been used in
this experiment. For each image sequence, five image pairs can be made by using the first
image and one of the others, in which photometric and geometric deformations increase
gradually. Thus, there are a total of 40 image pairs, and the average precision and recall
have been calculated. Moreover, the collinear distance threshold is sampled from 1.0 to
7.0 with an interval value of 1.0. Figure 8 presents the statistical results. It is clearly shown
that, with the increase of the collinear distance threshold, the metric recall increases. This is
obviously because more and more support points can be found and further increase the
value of the similarity score. The maximal value of recall reaches 0.9 when the collinear
distance threshold is 7.0. Conversely, the metric precision gradually decreases with the
increase of the collinear distance threshold. The main reason is that false matches are
prone to be classified as inliers when the threshold is too large. To make a balance between
precision and recall, the collinear distance threshold is set as 5.0 in the following tests.
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Figure 8. The influence of the collinear distance threshold Tb on image matching.

3.3. The Analysis of the Robustness to Outliers of the Algorithm

The robustness to varying outlier ratios is a very critical characteristic for outlier
removal which influences the validation and performance of outlier-removal algorithms.
In this section, we analyze the robustness to outliers for the proposed algorithm. Similar to
Section 3.2, the first dataset (close-range dataset 1) has been used for this test. To prepare
image pairs with specified outliers, inliers are first identified by using the ground-truth
transformation, and a specified number of the remaining feature points are randomly
added into the inliers to create matches with the specified outlier ratio. In this test, the
outlier ratio ranges from 0.1 to 0.9 with an interval value of 0.1, and match expansion in the
third step is not performed.

For performance evaluation, the average precision and recall of five image pairs are
calculated for each image sequence. Figures 9 and 10 present the statistical results of
precision and recall, respectively. The experimental results show that the precision is almost
constant with the increase of outlier ratios, and high precision has been achieved for the
eight image pairs. Even when the outlier ratio reaches 0.9, the precision is still greater than
98%, except for the image pairs graf and tree, as shown in Figure 9. By observation of the
metric recall as shown in Figure 10, we find that a similar trend can also be observed with
an increase of outlier ratios from 0.1 to 0.9. That is, the recall is almost constant for the
eight image pairs, except for image pairs graf and tree. In addition, these image pairs can
be divided into three groups. The first group includes image pairs bark, leuven and ubc,
whose recall is approximately 0.95; the second group consists of image pairs bike, wall, boat
and tree, whose recall ranges from 0.8 to 0.9. In conclusion, the proposed outlier-removal
algorithm can achieve stable precision and recall under varying outlier ratios; the precision
is very high even under the outlier ratio with the value of 0.9.
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Figure 9. Statistical results for the precision for the eight sequences in dataset 1.

Figure 10. Statistical results for the recall for the eight sequences in dataset 1.

3.4. Outlier Elimination Based on the Proposed Algorithm

To obtain further insight from the analysis, two image pairs that come from the second
rigid dataset (close-range dataset 2) and the third non-rigid dataset (close-range dataset 3)
are selected to analyze the intermediate steps in the workflow of the proposed outlier-
removal algorithm. Figures 11 and 12 present the experimental results for the rigid and
non-rigid image pairs, respectively. For each image pair, the results of four intermediate
steps are collected and reported, which include initial match, collinear constraint, scale-
orientation voting, and match expansion.

For the rigid case, as shown in Figure 11, the results of the four steps are presented
in Figure 11a–d, respectively. For initial matches, there are 228 inliers with a precision of
43.67%. After the execution of the CAI constraint, 201 inliers are retained with a recall of
88.15%, and the precision increases to 79.76%. As shown in Figure 11b, a large proportion
of outliers have been removed, which are rendered in blue lines. SOV is then conducted to
further refine the matches, and the precision increases to 93.51%. In this step, 173 inliers are
retained with a recall of 75.87%. Although some inliers are lost in the collinear constraint
and the scale-orientation voting, match expansion is executed to resume falsely removed
inliers at last. In this case, a total number of 276 inliers are retained with a precision value
of 95.83%, as shown in Figure 11d.
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(a) 228/43.67%

(b) 201/79.76%/88.15%

(c) 173/93.51%/75.87%

(d) 276/95.83%/121.05%

Figure 11. Image matching of one rigid pair from dataset 2. The values in sub-title (a) indicate the
number of initial matches and its precision; the values in other sub-titles indicate the number of
refined matches and its precision and recall.

For the non-rigid image pair as shown in Figure 12, there are 33 inliers in initial
matches with a precision of 41.25%. After the execution of the CAI constraint, all inliers are
retained and the precision increases to 67.34%, as shown in Figure 12b. We can see that some
false matches still exist. SOV is then conducted, which eliminates the remaining outliers
and increases the precision to 100% with a sacrifice of recall of 75.75%. Finally, match
expansion retrieves falsely removed inliers, which generates 35 inliers with a precision of
100%, as shown in Figure 12d. Based on the observation of the intermediate results, we find
that: (1) the collinear constraint can cope with high outlier ratios and increase the precision
of initial matches; (2) although high precision can be obtained from scale-orientation voting,
the recall of this geometric constraint is relatively low, which can be enhanced by match
expansion. In a word, the proposed outlier-removal algorithm achieves high precision and
recall for both rigid and non-rigid image pairs.
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(a) 33/41.25%

(b) 33/67.34%/100%

(c) 25/100%/75.75%

(d) 35/100%/106.06%

Figure 12. Image matching of one rigid pair from dataset 3. The values in sub-title (a) indicate the
number of initial matches and its precision; the values in other sub-titles indicate the number of
refined matches and its precision and recall.

3.5. Comparison with State-of-the-Art Methods

In this section, the proposed algorithm is compared with the other methods, including
RANSAC, K-VLD (K Virtual Line Descriptor), WGTM (Weighted GTM), LLT (Locally Linear
Transforming), GMS (Grid-based Motion Statistic), and LAM (Locality Affine Invariant).
K-VLD adopts the virtual line descriptor as the local photometric constraint to detect false
matches [38]; WGTM is the classical outlier-removal method based on graph matching [32];
LLT is based on the local geometric constraint that is invariant between rigid and non-rigid
image pairs [33]; GMS uses the motion smoothness constraint to translate feature number to
match quality [34]; LAM depends on the local barycentric coordinate (LBC) and matching
coordinate matrices (MCMs) for outlier removal [39]. In this comparison, the outlier ratio
of initial matches is greater than 60%.

3.5.1. Performance Comparison Using the Rigid Dataset

The performance of the selected methods is first evaluated by using the rigid dataset
(close-range dataset 2), as shown in Figure 5. In this test, four metrics, namely precision,
recall, inlier number and time, are used to evaluate the performance of the selected methods.
Table 1 lists the statistical results of all image pairs, in which the values in the brackets
indicate the statistical results without match expansion. The results listed in Table 1 are
the average value of each metric. In addition, Figure 13 shows the statistical results in
terms of precision, recall and inlier number. It is shown that the proposed algorithm
achieves the highest precision among all compared methods, which reaches 97.27% and
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98.06% without and with match expansion, respectively. LAM ranks second with a value of
97.02%. When considering the metric recall, RANSAC achieves the best performance with
a value of 99.99%, which is followed by WGTM with a value of 97.36%. For the proposed
algorithm, the scale-rotation voting strategy decreases the recall although high precision
can be achieved, which has been demonstrated in Section 3.4. With the usage of match
expansion, lost inliers can be recovered and the number of inliers is 1210 for the proposed
algorithm. In this test, the average time cost of the proposed algorithm is 1.054 s, which
ranks fifth among all methods. The main reason is that the number of initial matches is
very large, which causes high computation costs in the CAI constraint.

(a)

(b)

(c)

Figure 13. Statistical results for the rigid dataset (dataset 2): (a) precision; (b) recall; (c) number of
inliers.
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Table 1. Statistical results for the rigid dataset (value in the bracket indicates the statistical results
without match expansion).

Item RANSAC K-VLD WGTM LLT GMS LAM Ours

Precision (%) 94.62 96.08 96.31 96.13 96.93 97.02 (97.27) 98.06

Recall (%) 99.99 89.65 97.36 94.76 78.36 96.12 (81.21) 106.21

No. inliers 1101 1003 1099 1065 952 1096 (951) 1210

Time (s) 0.043 0.833 1276.081 1.261 0.122 0.107 1.054

For further comparison, Figures 14–16 illustrate the results of three image pairs in
the rigid dataset, in which large changes in scale and viewpoints exist. For these three
figures, the values in sub-title (a) indicate the number of initial matches and its precision;
the values in other sub-titles indicate the number of refined matches and its precision and
recall. For all the three image pairs, we can see that the proposed algorithm achieves the
highest precision in Figure 14, the second-highest precision in Figures 15 and 16, which
is 92.3%, 97.4%, and 93.6% for the three image pairs, respectively. The GMS algorithm
achieves the highest precision in Figure 16, but it retains only three matches. K-VLD and
LLT have a high recall for the three image pairs. However, their precision is lower than
the proposed algorithm, especially for image pairs 6 and 8 as shown in Figures 14 and 16,
respectively. For GMS, its recall is obviously lower than precision for the three image pairs.
In addition, RANSAC achieves a very high recall for the three datasets since it is suitable
for rigid image pairs.

(a) 263/42.6% (b) 263/79.2%/100%

(c) 258/81.6%/98.1% (d) 228/83.2%/86.7%

(e) 253/83.2%/94.4% (f) 158/84.5%/60.0%

(g) 234/82.6%/88.9% (h) 241/92.3%/94.6%

Figure 14. Matching results of image pair 6 in the rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.
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(a) 195/43.5% (b) 195/93.3%/100%

(c) 190/96.9%/97.4% (d) 164/94.3%/84.1%

(e) 181/95.8/92.8% (f) 96/96.0%/49.2%

(g) 179/97.8/91.8% (h) 185/97.4%/94.9%

Figure 15. Matching results of image pair 7 in the rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.

(a) 55/40.4% (b) 55/79.7%/100%

(c) 49/77.8%/89.1% (d) 35/77.8%/63.6%

(e) 47/75.8%/85.5% (f) 3/100.0%/5.5%

(g) 14/87.5%/25.4% (h) 45/93.6%/81.8%

Figure 16. Matching results of image pair 8 in the rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.
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3.5.2. Performance Comparison Using the Non-Rigid Dataset

The performance of selected methods is first evaluated by using the non-rigid dataset
(close-range dataset 3), as shown in Figure 6. Similar to Section 3.5.1, four metrics are used
for performance evaluation. Table 2 and Figure 17 show the statistical results of the eight
image pairs. We can see that for the non-rigid dataset, GMS achieves the highest precision
with a value of 99.23%, which is followed by the proposed algorithm with a value of 99.19%
for the test without match expansion; K-VLD ranks third with a precision of 98.77%. Due to
its dependency on a pre-defined transformation model, RANSAC has the lowest precision
in the non-rigid dataset. Similar to the performance in the rigid dataset, the recall of the
proposed algorithm is relative lower than K-VLD, WGTM, LLT and LAM when match
expansion is not executed. On the contrary, the number of inliers increases dramatically
after match expansion. In contrast to the time cost in the rigid dataset, the efficiency of the
proposed algorithm ranks second among all compared methods.

(a)

(b)

(c)

Figure 17. Statistical results for the non-rigid dataset (dataset 3): (a) precision; (b) recall; (c) number
of inliers.
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Table 2. Statistical results for the non-rigid dataset (value in the bracket indicates the statistical results
without match expansion).

Item RANSAC K-VLD WGTM LLT GMS LAM Ours

Precision (%) 90.83 98.77 96.83 92.00 99.23 98.57 (99.19) 99.43

Recall (%) 70.23 93.75 95.36 91.43 53.60 77.14 (74.59) 117.84

No. inliers 108 150 151 142 82 122 (120) 195

Time (s) 0.146 0.842 55.711 0.705 0.250 0.031 0.062

For further analysis, Figures 18–20 illustrate the outlier-removal results of three image
pairs in the non-rigid dataset. It is shown that the proposed algorithm achieves the best
performance when considering these metrics. For image pair 1, as shown in Figure 18, the
precision of WGTM and LLT are relatively lower than the proposed algorithm although
they achieve high recall. Especially for LLT, its precision is 78.6% due to many false matches
not being removed, as shown in Figure 18e. For image pair 2, as shown in Figure 19, all
compared methods have good performance except for RANSAC as it relies on the specified
model to separate outliers and cannot be adapted to non-rigid images. For image pair, 5
with multiple transformation models, K-VLD, WGTM, LAM and the proposed methods
have good performance. Conversely, both precision and recall are low for LLT. Briefly, the
proposed algorithm achieves the best overall performance for the three image pairs.

(a) 33/41.3% (b) 33/75.0%/100.0%

(c) 29/100.0%/87.9% (d) 32/86.5%/97.0%

(e) 33/78.6%/100.0% (f) 25/96.1%/75.7%

(g) 33/94.2%/100.0% (h) 35/100.0%/106.1%

Figure 18. Matching results of image pair 1 in the non-rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.
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(a) 187/42.3% (b) 87/93.5%/46.5%

(c) 172/98.9%/92.0% (d) 177/97.8%/94.6%

(e) 174/98.9%/93.0% (f) 91/100.0%/48.6%

(g) 139/97.8%/74.3% (h) 175/98.3%/93.6%

Figure 19. Matching results of image pair 2 in the non-rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.

(a) 199/55.1% (b) 129/89.6%/64.8%

(c) 198/99.0%/99.5% (d) 192/99.5%/96.5%

(e) 150/85.2%/75.4% (f) 139/99.2%/69.8%

(g) 185/100.0%/92.9% (h) 236/99.5%/118.6%

Figure 20. Matching results of image pair 5 in the non-rigid dataset: (a) initial matches; (b) RANSAC;
(c) K-VLD; (d) WGTM; (e) LLT; (f) GMS; (g) LAM; (h) Ours.
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3.6. Application of the Proposed Algorithm for SfM-Based UAV Image Orientation

In this section, two UAV datasets have been used to verify the application of the
proposed algorithm for remote sensing images. The proposed outlier-removal algorithm is
embedded into a classical SfM-based image-orientation pipeline [40], which takes as input
UAV images and produces camera poses and scene 3D points. In the SfM-based image
orientation pipeline, overlapped image pairs are selected by using the vocabulary-based
image-retrieval technique [2] after the execution of SIFT feature extraction. Guided by the
selected image pairs, feature matching is then conducted by searching the nearest neighbor
between their two descriptor sets. False matches are removed by using the proposed
algorithm, which is finally fed into the SfM pipeline for image orientation.

In this test, a total number of 1786 and 16,394 image pairs have been obtained for
these two UAV datasets, respectively. Classical feature extraction and matching are then
executed to search for initial candidate matches. Due to the limited discriminative power
of local descriptors and the existence of repetitive patterns, many false matches can be
found in the initial matches, as illustrated by the top sub-figures in Figure 21, in which
two image pairs are selected from these two UAV datasets, respectively. Due to serious
occlusions and repetitive patterns, many more false matches are observed from the second
image pair. By using the proposed algorithm, false matches can be detected and removed,
as demonstrated by the bottom sub-figures in Figure 21. Noticeably, RANSAC has not
cooperated with the proposed algorithm in this test.

After outlier removal of all image pairs, refined matches can be obtained and fed into
the SfM pipeline to achieve UAV image orientation. To evaluate the performance of the
proposed algorithm, the matching results of RANSAC have also been used in this test.
Table 3 lists the statistical results of SfM-based image orientation for the two UAV datasets.
Three metrics, namely, efficiency, precision and completeness, are used for performance
evaluation. The metric efficiency indicates time costs consumed in image orientation; the
metric precision is the re-projection error in bundle adjustment optimization; the metric
completeness is quantified by the numbers of resumed 3D points and connected images.

It is shown that for these two UAV datasets, both RANSAC and the proposed algorithm
can provide enough reliable matching results for SfM-based image orientation since all
images have been connected in this test. When considering the metrics’ efficiency, we can
find that little more time cost is incurred by the proposed algorithm. The main reason is that
the proposed algorithm provides more feature matches for SfM-based image orientation.
This can be observed from the numbers of reconstructed 3D points, which are 236,800 and
379,989 for the proposed algorithm. For the two algorithms, comparative accuracy has been
achieved. That is, the proposed algorithm can be used for outlier removal in both rigid and
non-rigid images, and it can also provide reliable feature matches for UAV datasets. The
SfM-based image orientation results by using the matches from the proposed algorithm are
shown in Figure 22.
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(a) image pair from UAV dataset 1 (717/677)

(b) image pair from UAV dataset 2 (561/272)

Figure 21. The illustration of feature matching of image pairs from UAV datasets. The values in the
bracket indicate the number of matches before and after outlier removal.

Table 3. The statistical results of SfM-based image orientation for the two UAV datasets in terms of
efficiency, completeness, and precision. The values in the bracket indicate the number of connected
images in the final models.

Dataset Efficiency (min) Precision (Pixel) Completeness

RANSAC Our RANSAC Our RANSAC Our

1 12.9 14.5 0.632 0.646 209,514 (320) 236,800 (320)

2 37.5 40.7 0.725 0.731 370,055 (750) 379,989 (750)
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(a) UAV dataset 1

(b) UAV dataset 2

Figure 22. The SfM-based image orientation by using the matching results from the proposed
algorithm. Blue rectangles represent the oriented camera frames, and 3D points are rendered by
using true image color.

4. Conclusions

In this study, we propose a reliable outlier-removal algorithm by combining two
affine-invariant geometric constraints, termed CAI (collinear affine invariance) and SOV
(scale-orientation voting) constraints. These two geometric constraints are hierarchically
executed to remove outliers, and match expansion is finally performance to resume falsely
removed inliers. The CAI geometric constraint is based on the observation that the collinear
property of any two points is invariant to affine transformation. Compared with other
local geometric constraints, it has two advantages. On one hand, its mathematical model
is very simple; on the other hand, it has a more global observation of initial matches. The
SOV geometric constraint is designed to remove remaining outliers and recover the lost
inliers, in which the peaks of both scale and orientation voting define the parameters of the
geometric transformation model. By using both close-range datasets (rigid and non-rigid
images) and UAV datasets for experiments, the results demonstrate that the proposed
algorithm can achieve the best overall performance compared with RANSAC-like and local
geometric constraint-based methods, and it can also provide reliable feature matches for
UAV datasets in SfM-based image orientation.
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