
 
 

 

 
Appl. Sci. 2022, 12, 6451. https://doi.org/10.3390/app12136451 www.mdpi.com/journal/applsci 

Article 

Adversarial Robust and Explainable Network Intrusion  
Detection Systems Based on Deep Learning 
Kudzai Sauka, Gun-Yoo Shin, Dong-Wook Kim and Myung-Mook Han * 

School of Computing, Gachon University, Seongnam-si 13120, Korea, 201940084@gachon.ac.kr (K.S.); 
bobo7754@gachon.ac.kr (G.-Y.S.); kog73006@gachon.ac.kr (D.-W.K.) 
* Correspondence: mmhan@gachon.ac.kr 

Abstract: The ever-evolving cybersecurity environment has given rise to sophisticated adversaries 
who constantly explore new ways to attack cyberinfrastructure. Recently, the use of deep learning-
based intrusion detection systems has been on the rise. This rise is due to deep neural networks 
(DNN) complexity and efficiency in making anomaly detection activities more accurate. However, 
the complexity of these models makes them black-box models, as they lack explainability and inter-
pretability. Not only is the DNN perceived as a black-box model, but recent research evidence has 
also shown that they are vulnerable to adversarial attacks. This paper developed an adversarial 
robust and explainable network intrusion detection system based on deep learning by applying ad-
versarial training and implementing explainable AI techniques. In our experiments with the NSL-
KDD dataset, the PGD adversarial-trained model was a more robust model than DeepFool adver-
sarial-trained and FGSM adversarial-trained models, with a ROC-AUC of 0.87. The FGSM attack 
did not affect the PGD adversarial-trained model’s ROC-AUC, while the DeepFool attack caused a 
minimal 9.20% reduction in PGD adversarial-trained model’s ROC-AUC. PGD attack caused a 
15.12% reduction in the DeepFool adversarial-trained model’s ROC-AUC and a 12.79% reduction 
in FGSM trained model’s ROC-AUC. 

Keywords: machine learning; adversarial attacks; explainable; network intrusion detection system; 
deep neural networks (DNN); adversarial robust 
 

1. Introduction 
Cyber security has recently faced enormous attention from many researchers in the 

IT research community. The growth of computer computational power and the wide dis-
tribution of the internet of things have put cyber security in the limelight. With the ad-
vancement of IT infrastructure and telecommunication facilities distribution, there is a 
noticeable growth of cyber-attacks continually exploiting the weakness of the cybersecu-
rity infrastructure. Network intrusion detection systems have recently become more pop-
ular because of their capabilities for detecting anomaly activities. These architectures are 
a significant component in the security infrastructure against network attacks. Cyber se-
curity researchers have been working tirelessly on new ways to counter the recent attacks 
with the increased complexity of the attacks. In addition, much research has been per-
formed to augment their detection capabilities by incorporating machine learning and 
deep learning techniques into IDS. 

This incorporation has improved the NIDS detection capabilities even for zero-day 
attacks. However, new research findings from the mainstream ML and DL have shown 
that ML and DL models are vulnerable to adversarial attacks, defined as carefully crafted 
imperceptible changes of inputs used to fool or weaken the capabilities of ML or DL [1]. 
Adversarial examples can be prepared by intentionally imputing small perturbations to 
the original inputs. leading to the misclassification of deep learning models with high 

Citation: Sauka, K.; Shin, G.-Y.; Kim, 

D.-W.; Han, M.-M. Adversarial Ro-

bust and Explainable Network  

Intrusion Detection Systems Based 

on Deep Learning. Appl. Sci. 2022, 

12, 6451. https://doi.org/10.3390/ 

app12136451 

Received: 29 April 2022 

Accepted: 24 May 2022 

Published: 25 June 2022 

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional 

claims in published maps and institu-

tional affiliations. 

 

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland. 

This article is an open access article 

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/). 



Appl. Sci. 2022, 12, 6451 2 of 29 
 

confidence. Fast gradient sign method (FGSM) [2], Projected Gradient Descent (PGD) [3], 
Jacobian-based saliency map attack (JSMA) [4], DeepFool [5], and C&W [6]] attack are 
representative adversarial examples of generation methods. 

Several adversarial defenses and attacks have been crafted and studied in different 
domains such as malware detection, computer vision, and voice recognition. However, 
some of these attacks are deemed ill-suited for intrusion detection systems. Hence, there 
have been few research works on implementing some attacks and defenses from other 
domains in intrusion detection systems. The main reason given by the IDS research com-
munity is that attacks in other fields modify feature vectors instead of real input space. In 
addition, in crafting attacks for IDS, there is a need to ensure no communication violation 
or compromise of maliciousness when modifying malicious traffic, which is not a problem 
for other non-security domains [7]. Regaki et al. [8] studied adversarial examples in NIDS. 
They showed that adversarial examples generated by FGSM and JSMA methods could 
significantly reduce the accuracy of deep learning models applied in NIDS. Wang [9] ex-
plored the vulnerabilities of deep learning-based intrusion detection systems with JSMA 
attack, FGSM attack, DeepFool attack, and C&W attack. Their results further proved that 
the attacks algorithm proposed to fool the deep learning-based image classification can 
also be employed in intrusion detection. 

1.1. Anomaly-Based NIDS 
Anomaly-based NIDS consists of three major components: traffic capture, feature en-

gineering, and classification, as shown in Figure 1. The feature extractor receives a stream 
of packets from the monitoring network, extracts features from them, and then feeds them 
to the anomaly detector. This process also involves an initial step of data preprocessing to 
make the data ready for the DL-based NIDS for good predictions. Next, the anomaly de-
tector processes the data and finally gives a score for each input it had received, compared 
to the threshold. The threshold acts as a boundary between malicious and benign inputs; 
if the score is less than the threshold, it will be deemed benign, and if it is greater than the 
threshold, the input is malicious [10]. This study focused on crafting an adversarial, ro-
bust, and explainable deep learning-based NIDS. 

 
Figure 1. Anomaly-based NIDS. 



Appl. Sci. 2022, 12, 6451 3 of 29 
 

1.2. Explainable Deep Learning-Based NIDS 
The black-box nature of deep learning models has given rise to trust issues regarding 

how these models are making predictions, resulting in many organizations being reluc-
tant to implement deep learning-based NIDS [11]. This predicament has sparked research 
in the field of explainable artificial intelligence (XAI) to aim at making insightful explana-
tions of the internal operation of ML and DL models [12]. 

The interpretability of AI models can generally be grouped into two major categories: 
intrinsic interpretability and post hoc interpretability, where intrinsic interpretability is 
derived by directly incorporating interpretability into the model’s structure, which some 
self-explanatory models such as decision trees, rule-based models, and attention models 
do. Conversely, the post hoc requires creating a surrogate model to provide explanations 
from an existing model. Xia Hu [12] et al. further differentiated the AI interpretability into 
global interpretability and local interpretability, where local interpretability refers to the 
local explanation of an individual prediction of a model, revealing how some decisions 
are derived. AI interpretability will aid in unveiling the relationship between specific in-
put and its matching output. Global interpretability involves the inspection of the struc-
ture and parameters of a complex model to understand the modalities of the model. 

Global interpretability demystifies the internal mechanism of AI models, thereby in-
creasing their transparency. Given this growing trend of XAI and its applicability in other 
domains such as computer vision, it is also imperative to apply these technologies into 
deep learning-based NIDS to demystify them, thus encouraging operational deployment. 
There are many recommended ways to generate model explanations. This paper used the 
SHapley Additive exPlanations (SHAP) [8] method. SHAP combines local and global in-
terpretability simultaneously, thus improving the interpretation of IDSs. 

1.3. Adversarial Machine Learning 
Szegedy et al., 2013 [1], and Goodfellow et al., 2014 [2], pioneered the research of 

DNN vulnerability, and they indicated that adversarial samples could easily fool DNNs. 
An adversary formulates adversarial examples by applying almost imperceptible human 
perturbations to examples from the dataset. These perturbations lead the model to make 
wrong predictions with high confidence. Adversarial machine learning is crafting pertur-
bations (adversarial samples) to fool machine learning models. Adversarial sample genera-
tion can be performed at all phases of machine learning models, as shown in Figure 2. An 
attacker can craft perturbations by modifying input data during training or prediction 
phases. 



Appl. Sci. 2022, 12, 6451 4 of 29 
 

 
Figure 2. Adversarial machine learning. Reproduced with permission from [13], CEUR (http://ceur-
ws.org/Vol-2057/), 2017. 

Adversarial attacks can be categorized based on the adversary’s goal or based on the 
adversary’s knowledge. Classification of adversarial attacks based on adversarial goals 
can be further classified into poisoning attacks and evasion attacks [14], where poisoning 
attacks refer to a process where an adversary modifies the training dataset by inputting 
malicious samples. During an evasion attack, adversaries do not have the power or access 
to change the model or its parameters, but they can create malicious samples foreign to 
the model; hence during testing, the classifier will not recognize these samples resulting 
in wrong classifications. In addition, an attack can be targeted or non-targeted under the 
adversary’s goal classification. A targeted attack is where the adversary’s objective is to 
trick the model into producing the specified output. While a non-targeted attack, the ad-
versary’s goal is to make the model perform poorly by misclassifying some samples with 
high accuracy. 

Classification based on the adversary’s knowledge can also be further categorized 
into white-box attacks, black-box attacks, and grey-box attacks based on the amount of 
information the adversary has on the model. A white-box attack refers to a situation where 
the adversary has full access to the target model. They have information about the model 
at their disposal. Under the black-box attack scenario, the adversary does not have access 
to the model’s inner configuration. They can only input data and query the output of the 
model, and then the adversary can be able to create their dataset, which can be used to 
develop surrogate models. Finally, they can use transfer learning techniques to develop 
adversarial samples for a target model. In the grey-box scenario, the adversary has partial 
knowledge about the model architecture but does not have access to the weights in the 
model [15]. This paper used evasion, non-targeted and white-box attacks for the proposed 
framework evaluation. The attacks are FGSM, PGD, and DeepFool. 

1.3.1. Fast Gradient Sign Method (FGSM) 
FGSM was proposed by Goodfellow et al. [2] with an obligation of generating a per-

turbation 𝜂 by computing the gradient of the cost function 𝐽 with respect to the input x. 
Instead of a leaner search to find the optimal value of the perturbation, Goodfellow et al. 
[2] proposed a one-step gradient update along the direction of the gradient sign. This can 



Appl. Sci. 2022, 12, 6451 5 of 29 
 

be performed efficiently using backpropagation. Their perturbation can be expressed as 
(1) where 𝜃 represents the model’s parameters, 𝜖 is the perturbation size, x represents 
the model inputs, and y represents targets associated with 𝑥 [2] performed some experi-
ments on GoogLeNet. They managed to fool GoogLeNet into classifying a Panda as a 
Gibbon by adding an imperceptibly small vector whose elements are equal to the sign of 
the elements of the gradient of the cost function with respect to the input, as shown in 
Figure 3. 𝜂 = 𝜖 𝑠𝑖𝑔𝑛(𝛻௫𝐽ఏ(𝑥, 𝑦))  (1)

 
Figure 3. An illustration of applying FGSM on GoogLeNet. Adapted with permission from [2], 
arXiv, 2013 

1.3.2. Projected Gradient Descent (PGD) 
The PGD can be considered as a generalized version of BIM without the constraint 𝛼𝑇 = ∈. To constrain the adversarial perturbations, the PGD projects the adversarial sam-

ples learned from each iteration in the ∈ −𝐿ஶ neighbor of the benign samples. Hence, the 
adversarial perturbation size is smaller than ∈. 𝑥௧ାଵᇱ = 𝑃𝑟𝑜𝑗ሼ𝑥௧ᇱ + 𝛼. 𝑠𝑖𝑔𝑛ሾ𝛻௫𝐽(𝜃, 𝑥ᇱ, 𝑦)ሿሽ  (2)

where Proj projects the updated adversarial sample into the ∈ −𝐿ஶ neighbor and a valid 
range. 

1.3.3. DeepFool 
The DeepFool algorithm was designed to find an adversarial example to an image by 

finding the closest decision boundary and orthogonally projecting it onto the boundary 
[5]. Once it crosses the boundary, it will be an adversarial image, as shown in Figure 4, 
where there is 𝑓, an affine classifier that can be generalized to any differentiable binary 
classifier (3). It can be easily be seen that the robustness of point (4), is equal to the distance 
from 𝑥଴, the separating affine hyperplane (5). The minimal perturbation to change the 
classifier’s decision corresponds to the orthogonal projection of 𝑥଴ onto 𝐹. In the case of 𝑓 being a general binary differentiable classifier, an iterative procedure to estimate the 
robustness ∆(𝑥଴; 𝑓) is adopted. 𝑓(𝑥) = 𝑤்𝑥 + 𝑏 (3)𝑥଴, ∆(𝑥଴; 𝑓)ଶ (4)𝐹 = ሼ𝑥: 𝑤்𝑥 + 𝑏 = 0ሽ (5)



Appl. Sci. 2022, 12, 6451 6 of 29 
 

 
Figure 4. DeepFool adversarial examples for a linear binary classifier illustration. 

1.3.4. Carlini and Wagner attack (C&W) 
Carlini and Wagner proposed a set of optimization-based adversarial attacks (C&W 

attacks) that can generate  𝐿଴, 𝐿ଶ, 𝐿ஶ  norm-measured adversarial samples, namely 𝐶𝑊଴, 𝐶𝑊ଶ, 𝐶𝑊ஶ. 
The optimization objective is as follows: minఋ 𝐷(𝑥, 𝑥 + 𝛿) + 𝑐 . 𝑓(𝑥 + 𝛿) 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑥 + 𝛿 ∈ ሾ0,1ሿ  (6)

where: 𝛿  denotes the adversarial perturbation, 𝐷(∙,∙)  denotes the distance metric 𝐿଴, 𝐿ଶ, 𝐿ஶ, 𝑓(𝑥 + 𝛿) denotes a customized adversarial loss that satisfies 𝑓(𝑥 + 𝛿)  ൑ 0 if 
the DNN’s prediction is the attack target. 

1.3.5. Jacobian-Based Saliency Map Approach (JSMA) 
Papernot et al. proposed an efficient target attack that can fool DNNs with small 𝐿଴  

perturbations. The method first computes the Jacobian matrix of the logit outputs 𝑙(𝑥)  
before the SoftMax layer. ∇𝑙(𝑥) = 𝜕𝑙(𝑥)𝜕𝑥௬ = ቈ𝜕𝑙௝(𝑥)𝜕𝑥ఊ ቉ఊఢଵ…….ெ೔೙ ௝ఢଵ…..ெ೚ೠ೟ (7)

where 𝑀௜௡  is the number of neurons on the input layer; 𝑀௢௨௧  is the number of neurons 
on the output layer; 𝛾 is the index for input 𝑥 component; 𝑗 is the index for output 𝑙 
component. 

1.4. Adversarial Robustness 
Adversarial robustness entails efforts to defend neural networks against adversarial 

inputs. Defense against adversarial attacks can be grouped into three categories: gradient 
masking, robust optimization, and adversarial examples detection [14]. Gradient masking 
is when the model’s gradient information is deliberately hidden to confuse the adver-
saries, as most attack algorithms depend on the model’s gradient information [14]. Meth-
ods for gradient masking include: defensive distillation [16], shattered gradient [17], ran-
domized gradients [18]. Carlin and Wanger [6] performed experiments against defensive 
distillation; their results revealed that defensive distillation is effective against the Deep-
Fool, Fast gradient method, and JSMA-F attack but not against C&W attack (𝑙଴,𝑙ଶ, 𝑎𝑛𝑑 𝑙ஶ). 
Xu et al. [14] indicated that the main weakness of gradient masking is that it can only 
confront the adversaries, but it cannot eliminate their existence. 



Appl. Sci. 2022, 12, 6451 7 of 29 
 

Adversarial example detection involves the study of normal samples distribution 
and then using the knowledge to detect adversarial examples and disallowing their inputs 
into the model. 

Robust optimization involves modifying the way the neural network model learns 
its parameters. Adversarial training is the primary technique under robust optimization, 
which [1,2] indicates that it is the most effective defense against adversarial attacks. Ad-
versarial training injects adversarial examples into the training set to make it more robust 
to attack or to reduce its test error on clean inputs [1]. Most adversarial training studies 
were evaluated using the same adversarial attack, which would have been used to gener-
ate the adversarial example. Goodfellow et al. [2] tested an FGSM-trained model on an 
FGSM-generated adversarial sample. Mnady et al. propose adversarial training using a 
PGD attack. Their model was resistant to FGSM, PGD, and C&W. Debicha et al. [19] used 
PGD to examine the effectiveness of adversarial training, making the intrusion detection 
systems robust against adversarial attacks. This paper proposes a different approach to 
developing an adversarial robust deep learning-based network intrusion detection system 
by retraining our model with DeepFool adversarial samples and then testing the model 
against FGSM and PGD methods. 

Although several researchers in the cybersecurity community have been focusing on 
the detection accuracy of various ML-based NIDS, a few have focused on the explainabil-
ity and interpretability of deep learning-based intrusion detection systems and how they 
can be made robust against adversarial attacks. 

This research work used the NSL-KDD dataset to develop a robust and explainable 
NIDS based on deep learning. We used three untargeted and white-box attacks to gener-
ate adversarial examples for the experiment. We demonstrated how adversarial attacks 
could undermine classical multi-class machine learning-based NIDS as well as deep learn-
ing-based NIDS, and this confirms the work of [7–10,20]. Hence, we find justification for 
creating an adversarial robust deep learning model that is less affected by adversarial at-
tacks. We proposed a measure of adversarial robustness, Equation (12), for robustness 
comparison. We implemented the SHAP technique to explain robust adversarial NIDS 
based on DL to extract important features used by the model to make classification deci-
sions. We strongly believe that this is the first paper to implement a combination of ex-
plainable AI techniques and adversarial learning into NIDS. 

The rest of the paper is structured as follows: The methods and materials used are 
outlined in Section 2. The experiment and its results are presented in Section 3. Section 4 
presents the discussion of the research results. Finally, the conclusion and suggestions for 
future works are presented in Section 5. 

2. Materials and Methods 
Proposed Method 

This paper builds deep learning-based NIDS to create a state-of-the-art adversarial 
robust and explainable deep learning-based NIDS. The focus was on white-box untar-
geted attacks: FGSM, PGD, and DeepFool attacks. Throughout the adversarial learning 
literature [14], it has been outlined that an efficient way to make deep learning models 
robust against adversarial attacks is to train them with a mixture of adversarial samples 
and clean training data. This process is known as adversarial training, as shown in Figure 
5. 



Appl. Sci. 2022, 12, 6451 8 of 29 
 

 
Figure 5. Proposed framework for adversarial robust and explainable DL-based NIDS. 

The first stage of the proposed framework is to collect the network security dataset 
that contains different attacks. NSL-KDD dataset was chosen for the purposed of carrying 
out the experiments. After collecting the dataset, it is then preprocessed, where feature 
modification is performed and redundancy is lowered. At this stage, separation of train 
and test set is then performed to set aside the dataset for model evaluation. 

After preprocessing, baseline model training then starts. In this study, we built four 
baseline models, three classical machine learning multi-class classifiers, and a multi-layer 
perceptron mode, representing a deep learning model. After model training, model eval-
uation is performed using AUC. 

The third stage is the generation of adversarial samples. Again, the baseline multi-
layer perception model generates adversarial examples using different types of adversar-
ial attacks. This study generated three different adversarial samples from three different 
adversarial attacks: FGSM, DeepFool, and PGD. The adversarial samples include pairs of 
the adversarial test samples and adversarial train set, which were generated using benign 
test seta and train set, respectively. An adversarial train set will be used for adversarial 
training, while an adversarial test set will be used for a robust adversarial test. 



Appl. Sci. 2022, 12, 6451 9 of 29 
 

Following adversarial sample generation, the next stage will be to evaluate the ad-
versarial robustness of baseline models using our proposed adversarial robust evaluation 
measure. 

After baseline model adversarial robust evaluation, the next stage is the adversarial 
training of the baseline multi-layer perceptron using the available adversarial attacks. We 
developed three distinct adversarial-trained models in this case: FGSM adversarial-
trained model, DeepFool adversarial-trained model, and PGD adversarial-trained model. 

After adversarial training, we apply our proposed adversarial robust evaluation 
measure to check which of the adversarial-trained model is more robust. The final stage 
is a robust model explanation using the SHAP method. 

All our models were implemented using TensorFlow 2.8.0 and Keras. The experi-
ments were performed on a Virtual machine with GPU acceleration with 32 GB memory 
and three Intel core processors at 3.00 GHz. For generating adversarial samples, we used 
the open-source IBM Robustness Toolbox (ART) framework [21]. 

3. Experiments and Results 
In this section, we first examined the detection capabilities of the baseline model; De-

cision Tree Classifier, Random Forest Classifier, Linear SVM Classifier, and the baseline 
MLP model under normal samples (without adversarial examples). These baseline models 
serve as experiment controls. Then, we examined the adversarial sample generation capa-
bilities of the adversarial attacks under review. Third, we evaluated the applicability of 
DeepFool, FGSM, and PGD adversarial attacks on baseline models. After adversarial sam-
ple generation, we retrained our baseline MLP model with an aggregated training set: a 
mixture of benign and adversarial samples. The process resulted in three new distinct 
MLP models: DeepFool-trained model, FGSM-trained model, and PGSM-trained model. 
After MPL adversarial training, the adversarial robustness stage followed; we used Equa-
tion (12) to evaluate adversarial robustness. The more robust model against all other at-
tacks was selected as an adversarial robust model. Finally, we applied the SHAP XAI tech-
nique to explain the predictions of adversarial robust NIDS based on the deep learning 
model. 

3.1. IDS Datasets Selection 
The performance of ML/DL-based NIDS has been evaluated on several security da-

tasets, although, out of the IDS research fraternity, these datasets include KDD-Cup’99, 
NSL-KDD, UNSW-N15, DARPA, DEFCON, CDX, Kyto, etc. [22]. This study was per-
formed using the NSL-KDD dataset, an updated version of the KDD Cup’99 dataset, with 
many replicated records. NSL-KDD was selected because its train and test set the number 
of records to be logical, making it comfortable to perform the experiments on the entire 
dataset without randomly splitting it into small segments. In addition, previous research-
ers have widely used it, and it is more robust than previous versions of the same data 
(KDD’99). 

The features in the NSL-KDD dataset have three data types: nominal, binary, and 
numeric. Binary data can be viewed as variables that contain numeric values since a nu-
meric value is enough to indicate the presence (1) or absence (0) of a specific status. Nom-
inal data are variables that contain categorical values rather than numeric values. The NSL-
KDD has 148,515 records divided into a training set with 125,972 records and a testing set 
with 22,543 records [9]. The dataset has 41 features. A clear description of these features 
is outlined in Table 1. The features are in three categories: basic features, traffic features, 
and content features [9]. Basic features (feature numbers 1 to 9 in Table 1) are related to 
connectivity information, such as protocols. Feature numbers 10 to 22 are content features, 
which are features within a connection suggested by domain knowledge. Finally, traffic 
features (feature numbers 23 to 41) are calculated as an aggregate during a window inter-
val [9]. 



Appl. Sci. 2022, 12, 6451 10 of 29 
 

Table 1. Total features in the NSL-KDD dataset. Data from [23,24]. 

Feature Number Feature Type Description 
1 Duration Numeric Duration of the connection 
2 Protocol_type Nominal Type of the protocol 
3 Service Nominal Network service on the destination 
4 Flag Nominal Normal or error status of the connection 
5 Src_bytes Numeric Number of bytes transferred from source to destination 
6 Dst_bytes Numeric number of bytes transferred from destination to source 
7 Land Binary 1 if the connection is from/to the same host/port; 0 otherwise 
8 Wrong_fragment Numeric number of “wrong” fragments 
9 Urgent Numeric number of urgent packets (with the urgent bit set) 

10 Hot Numeric number of “hot” indicators 
11 Num_failed_logins  Numeric number of failed login attempts 
12 Logged_in Binary 1 if successfully logged in; 0 otherwise 
13 Num_compromissed Numeric number of “compromised” conditions 
14 Root_shell Binary 1 if root shell is obtained; 0 otherwise 
15 Su_attempted Binary 1 if “su root” command attempted; 0 otherwise 
16 Num_root Numeric number of “root” accesses 
17 Num file cre ations Numeric number of file creation operations 
18 Num_shells Binary number of shell prompts 
19 Num_access_files Numeric number of operations on access control files 
20 Num_outbound_cmds Numeric number of outbound commands in an ftp session 
21 Is_hot_login Binary 1 if the login belongs to the “hot” list: 0 otherwise 
22 Is_guest_login Binary 1 if the login is a “guest” login; 0 otherwise 

23 Count Numeric number of connections to the same host as the current con-
nection (Note: 

24 Serror_rate Numeric number of connections that have “SYN” errors 
25 Rerror_rate Numeric % of connections that have “REJ” errors 
26 Same_srv_rate Numeric % of connections to the same service 
27 Diff_srv_rate Numeric % of connections to different services 

28 Srv_count Numeric 
% of connections to the same service as the current connec-

tion in 
29 Srv_serror_rate Numeric % of connections that have “SYN” errors 
30 Srv_rerror_rate Numeric % of connections that have “REJ” errors 
31 Srv_diff_host_rate Numeric % of connections to different hosts 
32 Dst host_count Numeric number of connections having the same destination host 
33 Dst_host_srv_count Numeric number of connections using the same service 
34 Dst_host_same_srv_ Numeric % of connections using the same service 
35 Dst_host_srv_diff_ Numeric % of different services on the current host 
36 Dst_host_same_src_ Numeric % of connections to the current host having the same src port 

37 Dst_host_srv_diff_ Numeric 
% of connections to the same service coming from different 

hosts 
38 Dst_host_serror_rate Numeric % of connections to the current host that have a so error 

39 Dst_host_srv_serror_rate Numeric % of connections to the current host and specified service 
that 



Appl. Sci. 2022, 12, 6451 11 of 29 
 

40 Dst_host_rerror_rate Numeric % of connections to the current host that have an RST error 

41 Dst_host_srv_rerror_rate Numeric 
% of connections to the current host and specified service 

that 

There are four classes in the dataset from 39 different attacks, the test set has a total 
of 37 attacks, and the train set has a total of 22 attacks, as shown in Tables 2 and 3, respec-
tively: denial of service (DoS), probe, remote to local (R2L and user to Root (U2R)) as pre-
sented in Tables 2 and 3. 

Table 2. Test set attack classification. Data from [23,24]. 

Attack Label Attack Type 

Denial of service (DOS) 
Back, Land, Naptune, Pod, Smurf, Teardrop, Apache2, Udpstorm, Processable, Worm 

Mailbomb 
Prob ipsweep ,saint, mscan, satan, nmap, portsweep 

Remote to local (R2L) 
Guess_Password, Ftp_write, Imap, Phf, Multihop,Warezmaster, Xlock, Xsnoop, 

Snmpguess, Snmpgetattack, Httptunnel, Sendmail, Named 
User To Root (U2R) Buffer_overflow, Rootkit, Perl, Sqlattack, Xterm, Ps, loadmodule 

Table 3. Train set attack classification. Data from [23,24]. 

Attack Label Attack Type 
Denial of service (DOS) Back, Land, Naptune, Pod, Smurf, Teardrop, 

Prob Buffer_overflow, ipsweep, portsweep, nmap, satan 
Remote to local (R2L) Guess_Password, Ftp_write, Imap, Phf, Multihop, Warezmaster, Warezclient, Spy, 
User To Root (U2R) Loadmodule, Rootkit, Perl, 

3.2. Data Preprocessing 
Data preprocessing is one of the essential stages in machine learning; deep learning 

models’ efficiency is highly affected by the general scale of the dataset. It is the work of 
data preprocessing that ensures that the data are suitable for data modeling. The problem 
was transformed to a five-class classification by changing the attack from 39 different at-
tacks to four categories, as presented in Tables 2 and 3, and a normal class. These attacks 
were also one-hot encoded for a multi-layer perceptron model and label encoded for clas-
sical machine learning models. 

One-hot encoding was also performed to convert all categorical variables to numeric. 
Protocol _type had three distinct categories through one-hot encoding; they were trans-
formed into three new features. Service had 70 distinct categories; these were transformed 
into 70 new features. Finally, the flag had 11 categories; these were transformed into 11 
new features. After preprocessing the 41 features, the NSL-KDD dataset was transformed 
into a new dataset with 122 numeric features. 

After one-hot encoding, Min-Max scaling was implemented on the dataset such that 
the features had the same scale, with values ranging from 0 to 1. 

3.3. Classical Machine Learning Multi-Class Classifiers 
This paper aimed to develop a multi-class network intrusion detection system based 

on deep learning, which is not the case with [19,25–28], whose focus was on binary classi-
fication. For baseline models, three classical machine learning multi-class classifiers were 
chosen based on their popularity in the literature. In addition, the OneVsRest classifier 
was implemented on the Decision Tree classifier, Support Vector Machine classifier, and 
Random Forest classifier to make them suitable for a multi-class classification task. 



Appl. Sci. 2022, 12, 6451 12 of 29 
 

The hyperparameters chosen for Decision Tree classifier were: criterion: ‘gini’, ran-
dom_state = 42, and max_depth = 12. For Random Forest, the hyperparameters were: 
max_depth = 70, max_featuires = ‘auto’, mini_sample_leaf = 4, min_sample_split = 10 and 
n-estimators = 400. For Support Vector Machin: C = 1, random_state = 42, loss = ‘hinge’ 
were the hyperparameters. 

3.4. Deep Learning-Based NID 
To detect intrusions, we used a Multi-Layer Perceptron (MLP) resembling a deep 

neural network with three hidden layers and 270 hidden units (120-90-60); we trained and 
tested it based on the NSL-KDD training and test sets in TensorFlow 2.8.0. The model 
structure is shown in Figure 6. The input layer is depicted with neurons in green color 
from 𝑥ଵ − 𝑥ଵଶଶ. The blue color depicts hidden layers, and m represents the total number 
of neurons per hidden layer (120 neurons in the first hidden layer, 90 in the second hidden layer, 
and 60 in the third hidden layer). The output layer depicted in red color has five neurons, 
representing the number of our classes. We adopted the information bottleneck principle 
[29] to ensure a robust classification MLP model; we adopted this principle to extract rel-
evant information from the input features about classes. This approach has also been 
adopted by [13,19,27,30]. Rectified linear unit (ReLU) was used as an activation function 
within each hidden unit to introduce non-linearity in these neurons’ output. Following 
each hidden layer, a dropout layer with a dropout rate of 0.5 was employed to prevent 
neural networks from overfitting. Finally, the SoftMax activation function was added to 
the output layer to normalize the probability distribution.While compiling the model, cat-
egorical _cross entropy was used as a loss function and ADAM as an optimization algo-
rithm. 



Appl. Sci. 2022, 12, 6451 13 of 29 
 

 
Figure 6. Model architecture. 

3.5. Evaluation Metrics 
To evaluate the performance of our baseline models, together with the adversarial-

trained models, we applied a different set of evaluation metrics: prediction accuracy, pre-
cision, recall, F1 score, and AUC (area under the ROC curve). All these metrics are based 
on the elements of the confusion matrix: True Positive (TP), True Negative (TN), False 
Positive (FP), and False Negative (FN). 

3.5.1. Precision 
These metrics indicate the percentage of accurately classified attack samples over all 

samples classified as attacks. It can be evaluated mathematically as (6) [31].  𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃 𝑇𝑃 +  𝐹𝑃  (8) 

3.5.2. Recall 
Recall that (7) represents the percentage of accurately classified attack samples over 

the total of attack records [31]. 𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒)  =  𝑇𝑃 𝑇𝑃 +  𝐹𝑁 (9) 



Appl. Sci. 2022, 12, 6451 14 of 29 
 

3.5.3. F1 Score 
It is the simultaneous measurement of precision and recall. It uses the harmonic mean 

technique to calculate the average of precision and recall [31]. 𝐹1 − 𝑆𝑐𝑜𝑟𝑒  =  2 · 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ·  𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙 (10) 

3.5.4. ROC Curve 
It is a graphical presentation of the classification model performance at all classifica-

tion thresholds. The curve plots True Positive Rate against False Positive Rate at different 
thresholds [32]. Where the true positive rate is also called recall, the false-positive rate can 
be defined as (9). 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  𝐹𝑃 𝐹𝑃 +  𝑇𝑁 (11) 

3.5.5. ROC-AUC: Area under the ROC Curve 
It is a measure of the area underneath the ROC curve. It provides a combined perfor-

mance measure across possible classification thresholds [32]. ROC-AUC was our primary 
evaluation metric because it utilizes probabilities of class prediction, thus helping us to 
evaluate and compare the models ideally [33]. Our focus was on ROC-AUC as a perfor-
mance measure of multi-class classification models rather than F1 score and accuracy be-
cause our dataset is unbalanced; hence, accuracy was deemed not the best evaluation met-
ric. Hyperparameter: average ‘micro’ was used to calculate the total ROC-AUC for five 
classes [34]. Our basis for using AUC as a preferable classifier evaluation measure follows 
the research of [33,35], who indicated that AUC is a better classifier evaluation measure for 
either balanced or unbalanced datasets. 

3.6. Generating Adversarial Samples 
The idea is to use Nicolae et al. (2018) [21] Adversarial Robustness Toolbox (ART) to 

implement adversarial attacks as well adversarial training. In this case, the adversarial 
attack can be considered the inverse gradient descent process. 

This paper uses the multi-layer perception model in Figure 6 to generate adversarial 
samples using FGSM, PGD, and DeepFool. The selection of adversarial attacks was based 
on the availability of their updated version on the ART library, their usability in the net-
work security dataset, and our assumed angle of the adversary. We assumed that the ad-
versary knew the underlying deep learning model’s mechanism and did not have specif-
ically targeted output values. Hence, we focused on white-box attacks as well as untar-
geted attacks. The baseline MLP, FGSM-trained MLP, PGD-trained MLP, and DeepFool-
trained MLP were all targets of the adversarial attacks. The three adversarial-trained mod-
els and baseline MLP were used as controls during the experiments. While FGSM-trained 
MLP, PGD-trained MLP, and DeepFool-trained MLP were the models under evaluation. 

Adversarial Robustness 
In this paper, we propose a different approach to developing an adversarial robust 

deep learning-based network intrusion detection system by retraining our model with 
FGSM, PGD, and DeepFool adversarial samples and then testing the models against the 
FGSM, PGD, and DeepFool attacks. The adversarial training and test set for adversarial 
training were generated through heuristic data augmentations [36,37], where the benign 
trainset was combined with the generated adversarial trainset. In contrast, the label train-
set for adversarial training was an augmentation of the original data trainset labels; the 
illustration is in Figure 7. The idea is to find the most resistant model against the attacks 
under review. The model that is more resistant to all the attacks is the solution to the ad-
versarial robustness of the network intrusion detection system based on deep learning. 



Appl. Sci. 2022, 12, 6451 15 of 29 
 

Percentage change of the adversarial-trained model’s ROC-AUC and adversarial-attacked 
model’s ROC-AUC was used for adversarial robust evaluation (12). The smaller the neg-
ative value, the more robust the model is. 𝐴𝑑𝑣𝑒𝑟𝑠𝑎𝑟𝑖𝑎𝑙 𝑅𝑜𝑏𝑢𝑠𝑡 𝐸𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛  = 𝐴𝑈𝐶௜௝  −  𝐴𝑈𝐶௝  𝐴𝑈𝐶௝  ൈ 1001  (12) 

where: 𝐴𝑈𝐶௜௝ is the area under the roc curve of adversarial-trained model 𝑗 under adversar-
ial attack 𝑖. 𝐴𝑈𝐶௝ is the area under the roc curve of adversarial-trained model 𝑗. 

 
Figure 7. Heuristic data augmentation. 

3.7. Baseline Models Performance Evaluation 
Table 4 presents the results of four baseline models used in this research as controls; 

these include three classical machine learning multi-class classifiers and one baseline MLP 
model. However, we followed [13] in building classical machine learning multi-class clas-
sifiers and built our specific multi-layer perceptron model. The average ROC-AUC for all 
the models was 0.81 and 0.78 for classical machine learning multi-class classifiers. The 
baseline MLP model had an outstanding performance based on ROC-AUC and accuracy, 
with an accuracy of 0.79 and an ROC-AUC of 0.87. These results are in line with what has 
been proposed by [30,34,38], that deep learning models exhibit excellent detection accu-
racy and a low false-positive rate in the detection of attacks. However, noting that this 



Appl. Sci. 2022, 12, 6451 16 of 29 
 

might be true, our focus is to develop an adversarial robust and explainable model such 
that users will have confidence in using these models. 

Table 4. Baseline models performance. 

Method Accuracy  F1 Score AUC (Class = Normal) 
Decision Tree Classifier 0.71 0.74 0.79 

Random Forest Classifier 0.71 0.72 0.78 
Linear SVM Classifier 0.68 0.72 0.78 
Baseline MLP model 0.79 - 0.87 

3.8. Adversarial Sample Generation 
Table 5 shows adversarial sample generation statistics. Three adversarial attacks, 

DeepFool, FGSM, and PGD, were employed to generate adversarial samples. Adversarial 
samples were generated from both train and test sets. An adversarial test set was used to 
test the resistance of baseline models to adversarial attacks. In contrast, a train set was 
used for adversarial training, a technique to develop an adversarial robust deep learning 
model. 

Table 5. Statistics of adversarial test sample generation. 

Method Number of Unique Features 
Changed 

Number of Average Features 
Changed Per Datapoint 

Average Perturba-
tions/Sample (KDDTest+) 

DeepFool 122 51.73 0.10 
FGSM 122 56.81 0.15 
PGD 122 80.58 0.21 

DeepFool parameters adopted in this research were: max iter: int = 100, epsilon: 
float = 1 × 10−6, nb grads: int = 10, batch size: int = 1, verbose: bool = True, FGSM 
parameters were: estimator = classifier, eps = 0.6, mix ite = 100, targeted = False, 
batch size = 32, verbose = True and PGD parameters: estimator = classifier, eps = 
0.6, max iter = 100, targeted = False, batch size = 32, verbose = True. On average, 
56.58 features were changed per datapoint under FGSM attack, which was 5.08 more than 
the features change by DeepFool attack on average per data point. We obtained our da-
taset from [23]. Our research made use of: the full NSL-KDD train set including attack-
type labels: (KDDTrain+.TXT), which has 123,973 entries. The full NSL-KDD test set in-
cludes attack-type labels: (KDDTest+.TXT), which has 22,544 entries. For our adversarial 
train set, KDDTrain+ was used. The average perturbation was 0.1, 0.18, and 0.1 for Deep-
Fool, PGD, and FGSM attacks, respectively. We used KDDTest+ to generate an adversarial 
test set. The average perturbations were 0.11, 0.21, and 0.15 for DeepFool, PGD, and FGSM 
attacks, respectively. 

Feature Participation in Adversarial Sample Generation 
Table 6 presents the top ten feature participations in adversarial sample generation. 

It can be noted that of the PGD top ten features, 40% (‘srv_count’, ‘count’ ‘ 
dst_host_srv_count’, ‘dst_host_diff_srv_rate’) also participated in the adversarial sample 
generation of DeepFool adversarial samples, while FGSM depicts a different pattern. Fig-
ure 8 presents a graphical representation of feature participation in PGD adversarial sam-
ples; srv_count’ and ‘count’ is shown to have had 100% participation in PGGadversarial 
sample generation. 

Table 6. Feature participation top ten in adversarial example generation. 



Appl. Sci. 2022, 12, 6451 17 of 29 
 

Method Features 

DeepFool 
‘srv_count’, ‘count’, ‘ dst_host_srv_count’, ‘ is_guest_login’, ’dst_host_same_src_port_rate’, 

‘root_shell’, ’dst_host_diff_srv_rate’, ‘ diff_srv_rate’, ’dst_host_same_srv_rate’, ‘service _eco_i’ 

FGSM 
‘land’, ‘dst_host_same_srv_rate’, ‘dst_host_count_ srv_rerror_rate’, ‘root_shell’, 

‘dst_host_same_src_port_rate’, ‘protocol _icmp’, ‘dst_host_srv_serror_rate’, ‘service _ecr_i’, 
‘num_outbound_cmds’ 

PGD ‘srv_count’, ‘count’, ‘dst_host_count’, ‘src_bytes’, ‘dst_bytes’, ’dst_host_srv_count’, 
‘dst_host_same_srv_rate’, ‘same_srv_rate’, ’service _ssh’, ‘service _domain’ 

 
Figure 8. Feature participation in PGD adversarial examples. 

3.9. Baseline Model Adversarial Resistant Evaluation 
The adversarial robustness of baseline models is presented in Table 7. Four baseline 

models have been tested against three adversarial attacks: DeepFool, PGD, and FGSM. In 
Table 7, column, Normal, indicates ROC-AUC classification results using unaffected data, 
while DeepFool, FGAM, and PGD columns are ROC-AUC classification results under re-
spective adversarial attacks. The general results indicate that our baseline models’ perfor-
mance is significantly affected by adversarial attacks, even for the baseline MPL model, 
which was used to generate the adversarial samples. There was a 31.03% reduction in the 
baseline MPL model’s ROC-AUC under FGSM attack, with 29.89% and 28.74% under 
PGD and DeepFool, respectively. These results confirm that although deep learning mod-
els increase classification performance, they are vulnerable to adversarial attacks, which 
can undermine their performance and adoption. The results also showed that the PGD 
attack performed better on classical machine learning multi-class classifiers. It managed 



Appl. Sci. 2022, 12, 6451 18 of 29 
 

to reduce the performance of the decision trees classifier by 65.82%, Random Forest by 
70.51%, and Linear SVM by 70.51%, while DeepFool only managed to reduce classical 
machine learning multi-class classifiers by 17.71%, 32.05%, and 34.62%, respectively. 
FGSM was also inferior in attacking classical machine learning multi-class classifiers; its 
percentage reduction of decision trees classifier’s ROC-AUC was 3.80% less than PGD and 
3.85% less for both Random Forest and Linear SVM to PGD. These results align with [25], 
who confirmed that the FGSM attack’s purpose is to be fast and to not have optimal at-
tacks. 

Table 7. Adversarial attacks evaluation on base models. 

Method 
ROC-AUC 

Normal DeepFool PGD FGSM  
Decision Tree 0.79 0.65 0.27 0.30 

Random Forest 0.78 0.53 0.23 0.26 
Linear SVM 0.78 0.51 0.23 0.26 
Base MLP 0.87 0.62 0.61 0.60 

3.9.1. Adversarial Robustness Evaluation 
Table 8 presents the major results of our research on the adversarial robustness of 

NIDS. We used our adversarial robust evaluation (10) to measure the robustness of ad-
versarial-trained models. 

Table 8. Adversarial attacks evaluation on adversarial-trained models. 

Method 
ROC-AUC Adversarial Robust Evaluation 

Normal DeepFool FGSM PGD Normal DeepFool_A FGSM_A PGD_A 
DeepFool_M 0.86 0.86 0.84 0.73 0 −0.20% −2.33% −15.12% 

FGSM_M 0.86 0.77 0.86 0.75 0 −10.47% 0.01% −12.79% 
PGD_M 0.87 0.79 0.87 0.76 0 −9.20% 0 −13.65% 

Baseline MPL  0.87 0.62 0.60 0.61 0 −28.74% −31.03% −29.89% 

From Table 8, the figures under the block of columns below the ROC-AUC label, 
Normal, indicate ROC-AUC results for benign test samples, and DeepFool represents 
ROC-AUC results for DeepFool adversarial test samples. Likewise, FGSM represents the 
AUC results for FGSM adversarial test samples, and PGD represents ROC-AUC results 
for PGD adversarial test samples. 

Columns that are below the Method label indicate the models under evaluation. For 
example, Normal indicates ROC-AUC adversarial-trained models, DeepFool_M indicates 
a DeepFool adversarial-trained model, FGSM_M indicates FGSM adversarial trained, and 
PGD_M indicates PGD adversarial-trained model. 

The block of columns under the Adversarial Robust Evaluation label indicates the 
adversarial robust measure. This evaluation follows Equation (12) in percentage terms. It 
measures the rate of change of a model’s ROC-AUC after the model has been attacked by 
an adversarial attack. The Normal column indicates no attack, meaning that the classifi-
cation or prediction process is being performed using benign samples. The DeepFool_A 
column indicates the rate of change of the respective model’s ROC-AUC after the Deep-
Fool attack. The FGSM_A column indicates the rate of change of the respective model’s 
ROC-AUC after the FGSM, and PGS_A indicates the rate of change of the respective 
model’s ROC-AUC after the PGD attack. 

The overall results indicate that the adversarial-trained models are more robust to 
new adversarial samples and outperform the baseline MPL. This confirms the work of 



Appl. Sci. 2022, 12, 6451 19 of 29 
 

[2,3,19,25,39]. From Table 8, it can be noted that all adversarial attacks greatly reduced 
baseline MPL’s ROC-AUC; under PGD attack, it was reduced by 29.89%, while under 
FGSM, it was reduced by 31.03%, and under DeepFool attack, it was reduced by 28.74%. 

PGD adversarial-trained model was a more robust mode than DeepFool- and FGSM-
trained models. FGSM attack did not impact the PGD-trained model; there was no change 
to the PGD-trained model’s ROC-AUC after the FGSM attack. The DeepFool attack caused 
minimal damage to a PGD adversarial-trained model with a −9.20% reduction to the PGD 
adversarial-trained model’s ROC-AUC compared to what the PGD adversarial attack 
caused to the DeepFool adversarial-trained model. PGD attack caused a 15.12% reduction 
in the DeepFool adversarial-trained model and a 12.79% reduction in the FGSM-trained 
model. PGD attack also caused a 13.65% reduction in the PGD adversarial-trained model’s 
ROC-AUC; this indicates that PGD adversarial attack has higher strength because it man-
aged to reduce PGD adversarial-trained model’s ROC-AUC more than DeepFool and 
FGSM. 

The Table 8 results can also be used to measure the strength of the adversarial attacks 
under review; it can be noted from Table 8 that FGSM attacks have the least strength when 
attacking adversarial-trained models. However, it was unable to affect the performance 
of the PGD adversarial-trained model, as there was no change in the ROC-AUC. FGSM 
also managed a mere 2.33% reduction in DeepFool adversarial-trained model’s ROC-
AUC. A further illustration of the adversarial-trained model’s adversarial robustness is 
presented in Appendix A, Figures A1–A5. The figures show AUC results for the adver-
sarial-trained models for all the classes (normal, DOS, R2L Probe, and U2R). The results 
indicate similar patterns as presented in Table 8, where ROC-AUC was calculated as a 
micro average of all five classes. These results infer that the PGD adversarial-trained 
model is more robust than the DeepFool and FGSM adversarial-trained model; hence, our 
final robust model is the PGD adversarial-trained model. 

3.9.2. Robust Model Local and Global Explanation Results 
After choosing the adversarial robust model, the final stage was to present explana-

tions about the model—local and global explanations. We used the SHapley Additive ex-
Planations (SHAP) framework to perform this task. 

Figure 9 presents the robust model local explanation results. We chose prob attacks 
as an example to detect how the model classified an attack as prob. Five hundred samples 
were randomly selected from our dataset, and each feature’s average Shapley values were 
calculated. The contribution results are presented in Figure 9. It is shown that when the 
model is 56% sure that the attack is prob, dst_byte, src_bytes, dst_host_srv_count, and count, 
it would have contributed immensely to the decision. 

 
Figure 9. Interpretation of the adversarial robust model on Prob attack. 

3.9.3. Robust Model Global Explanation Results 
This section details the global explanation results of our adversarial robust model, 

presented in Appendix B and Appendix C. The summary plots represent the Shapley 
value for a feature and an instance. Features determine the position on the y-axis, while 
the Shapley value determines the x-axis. Features in the y-axis are arranged according to 



Appl. Sci. 2022, 12, 6451 20 of 29 
 

their importance [30]. The most important feature is found at the top of the summary plot, 
while the least important one is found at the bottom. The colors represent the magnitude 
of the feature value. The red color indicates a higher value; as the red color intensifies, the 
value of the feature also increases, whereas the blue color signifies the least valued fea-
tures, as the intensity of the blue color increases, the value of the feature also decreases. 

In Appendix B, Figure A6a shows a summary plot of the top 20 features extracted for 
DOS, and Figure A6b shows a summary of the top 20 features extracted for R2L. While in 
Appendix C, Figure A7a shows a summary of the top 20 features extracted for prob, and 
Figure A7b shows the top 20 features extracted for U2R. The summary is presented in 
Table 9. 

Table 9. A summary of the four attack types extracted by the adversarial robust NIDS. 

Attack Label Important Features Extracted by the Adversarial Robust NIDS 

Denial of service (DOS) 

dst-bytes, src_byte, count, dst_hiost_srv_count, dst_host_count, duration, srv_count, flag 
= 5, diff_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_src_ser-

ror_rate, dst_host_serror_rate, srv_serror_rate, flag = 9, serror_rate, wrong_fragment, 
same_srv_rate, service = 49, flag = 9 

Prob 

dst_bytes, src_bytes, count, dst_host_srv_count, dst_host_count, duration, 
dst_host_same_src_port_rate, dst_host_diff_srv_rate, srv_count, diff_srv_rate, flag = 5, 

flag = 9, dst_host_srv_seror_rate, protocol_type = 0, dst_host_serror_rate, service = 49, ser-
ror_rate, srv_serro_rate, service = 14, same_srv_rate 

Remote to local (R2L) 

src_bytes, dst_bytes, dst_host_srv_count., dst_host_count, duration, count, srv_count, 
flag = 5, num_compromised, dst_host_srv_diff_host_rate, service = 66, 

dst_host_same_rv_rate, service = 44, flag = 1, service = 20, service = 24, service- = 65, ser-
vice- = 51, dst_host_rerror_rate 

User To Root (U2R) 

src_bytes,dst_bytes, dst_host_srv_count, dst_host_count, count, duration, srv_count,flag 
= 5, dst_host_srv_diff_host_rate, service = 44, service = 18, service = 24, flag = 9, 

dst_host_same_srv_rate, diff_srv_rate, service = 51, logged_in, wrong_fragment, srv_ser-
ror_rate, protocol_type = 0 

4. Discussion 
This research work used the NSL-KDD dataset to develop a robust and explainable 

NIDS based on deep learning. Three untargeted and white-box attacks were used to gen-
erate adversarial examples for the experiment. We demonstrated how adversarial attacks 
could undermine classical multi-class machine learning-based NIDS as well as deep learn-
ing-based NIDS, and this confirms the works of [7–10,20]. Hence, we find justification for 
creating an adversarial robust deep learning model that is less affected by adversarial at-
tacks. 

Our adversarial robust and explainable NIDS based on deep learning was developed 
under the white-box scenario with only three adversarial attacks (FGSM, PGD, and Deep-
Fool). In addition, we used the NSL-KDD dataset because of its size and considerable num-
ber of attacks; however, it does not contain modern attack types. Hence, our current model 
suffers from generalizability. However, this can be solved by retaining the model with 
modern network security datasets under a large pool of adversarial attacks. Furthermore, 
we used an epsilon of 0.6 as one of the adversarial attacks hyperparameters; we adopted 
Debicha et al. (2021) [19], who indicated that increasing epsilon tends to be insignificant 
in terms of reducing the classifier’s accuracy. However, this might not guarantee the sta-
bility of adversarial attacks; we propose further research to focus on hyperparameter tun-
ing on all the adversarial attacks to investigate the stability of an adversarial robust model. 

While the results of previous experiments have shown that adversarial training in-
creases the robustness of network intrusion detection systems [19,28], we observed that 
few researchers have focused on robust adversarial training, that is, testing the resistance 



Appl. Sci. 2022, 12, 6451 21 of 29 
 

of adversarial-trained models with adversarial samples from different adversarial attacks. 
This paper proposes a method to measure adversarial robustness; Equation (12). Our main 
metric is the ROC-AUC. We also followed standard classification metrics proposed by 
[31]. We acknowledge that there should be robust classification measures for cybersecu-
rity models to substantiate the reliability of the classification results. Using method (12), 
we tested the adversarial robustness of the FGSM adversarial-trained model, DeepFool 
adversarial-trained model, and PGD adversarial-trained model. We observed that the 
PGD adversarial-trained model is more robust than the DeepFool adversarial-trained 
model and FGSM adversarial-trained model. These results confirm [3], who indicated that 
a model trained to be robust against PGD adversaries will be robust against a wide range 
of attacks. Furthermore, our results also confirmed [40], who developed a state-of-the-art 
defense model based on a PGD adversarial-trained model as the backbone model. 

5. Conclusions 
Creating adversarial, robust, and explainable DNN-based NIDS is a major step in 

ensuring a safe digital environment. The research work proposes a novel measure of ad-
versarial robustness, Equation (12), for DNN adversarial robustness comparison. We also 
propose an adversarial robust and explainable network intrusion detection system based 
on deep neural networks by implementing explainable AI techniques and adversarial ma-
chine learning into NIDS. The overall results indicate that the adversarial-trained models 
are more robust to new adversarial samples and outperform the baseline MPL; this con-
firms the work of [2,3,19,25,39]. PGD adversarial-trained model was a more robust model 
than DeepFool- and FGSM-trained models. We implemented the SHAP technique to ex-
plain adversarial robust NIDS based on DL to extract important features used by the 
model to make classification decisions. We strongly believe that this is the first paper to 
implement a combination of explainable AI techniques and adversarial learning into IDS. 
Our adversarial robust and explainable NIDS based on deep learning was developed with 
a minimum number of adversarial attacks. Under the white-box scenario, we also used 
the NSL-KDD dataset because of its size and considerable number of attacks; however, it 
does not contain modern attacks. Hence, our current model suffers from generalizability. 
This predicament can be solved by retaining the model with modern network security 
datasets under a large pool of adversarial attacks. Future works should incorporate more 
novel network traffic datasets with more attacks to obtain a good measure of the impact 
of adversarial sample generation, thereby working toward a model that can be general-
ized. 

Author Contributions: Conceptualization, K.S.; methodology, K.S.; software, K.S.; validation, G.-
Y.S., D.-W.K. and M.-M.H.; formal analysis, K.S.; investigation, K.S.; resources, G.-Y.S. and M.-M.H.; 
data curation, K.S.; writing—original draft preparation, K.S.; writing—review and editing, K.S., G.-
Y.S.., D.-W.K., and M.-M.H.; visualization, K.S.; supervision, M.-M.H.; project administration, G.-
Y.S. and M.-M.H.; funding acquisition, G.-Y.S., D.-W.K. and M.-M.H. All authors have read and 
agreed to the published version of the manuscript. 

Funding: This research was supported by National Research Foundation of Korea (NRF) grant 
funded by the Korea government (MSIT) (No. 2022R1F1A1073375). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: The data presented in this study are openly available in Canadian 
Institute for Cybersecurity. This dataset cabn be found here https://www.unb.ca/cic/da-
tasets/nsl.html (accessed on 28 April 2022). 

Acknowledgments: We would like to appreciate UCI Knowledge Discovery in Databases Archive 
(https://kdd.ics.uci.edu/) for their effors for providing clear explanation of KDD99 dataset.  

Conflicts of Interest: The authors declare no conflict of interest. 



Appl. Sci. 2022, 12, 6451 22 of 29 
 

Appendix A 

 

(a) 

  
(b) 

Figure A1. DeepFool adversarial-trained model ROC-AUC (a). DeepFool robustness test against 
FGSM (b). 



Appl. Sci. 2022, 12, 6451 23 of 29 
 

 

(a) 

  
(b) 

Figure A2. DeepFool robustness test against PGD attacks (a). FGSM adversarial-trained model 
ROC-AUC (b). 



Appl. Sci. 2022, 12, 6451 24 of 29 
 

 

(a) 

  
(b) 

Figure A3. FGSM robustness test against DeepFool (a) and PGD attacks (b). 



Appl. Sci. 2022, 12, 6451 25 of 29 
 

 
(a) 

 
(b) 

Figure A4. PGD adversarial-trained model ROC-AUC (a). PGD robustness test against DeepFool 
attacks (b). 



Appl. Sci. 2022, 12, 6451 26 of 29 
 

 
Figure A5. PGD robustness test against FGSM attacks. 

Appendix B 

 

(a) DOS 



Appl. Sci. 2022, 12, 6451 27 of 29 
 

 
(b) R2L 

Figure A6. Top 20 important features of (a) DOS and (b) R2L. 

Appendix C 

 

(a) prob. 



Appl. Sci. 2022, 12, 6451 28 of 29 
 

 
(b) U2R. 

Figure A7. Top 20 important features of (a) prob and (b) U2R. 

References 
1. Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. 

arXiv 2013, arXiv:1312.6199. 
2. Goodfellow, I.J.; Shlens, J.; Szegedy, C. Explaining and harnessing adversarial examples. arXiv 2014, arXiv:1412.6572. 
3. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. 

arXiv 2018, arXiv:1706.06083. 
4. Papernot, N.; McDaniel, P.D.; Jha, S.; Fredrikson, M.; Celik, Z.B.; Swami, A. The limitations of deep learning in adversarial 

settings. In Proceedings of the IEEE European Symposium on Security and Privacy (EuroS&P’16), Saarbrücken, Germany, 21–
24 March 2016; pp. 372–387. 

5. Moosavi-Dezfooli, S.-M.; Fawzi, A.; Frossard, P. DeepFool: A simple and accurate method to fool deep neural networks. arXiv 
2015, arXiv:1511.04599. 

6. Carlini, N.; Wagner, D. Towards Evaluating the Robustness of Neural Networks. In Proceedings of the 2017 IEEE Symposium 
on Security and Privacy (SP), San Jose, CA, USA, 22–26 May 2017; pp. 39–57. https://doi.org/10.1109/SP.2017.49. 

7. Han, D.; Wang, Z.; Zhong, Y.; Chen, W.; Yang, J.; Lu, S.; Shi, X.; Yin, X. Evaluating and Improving Adversarial Robustness of 
Machine Learning-Based Network Intrusion Detectors. IEEE J. Sel. Areas Commun. 2021, 39, 2632–2647. 

8. Rigaki, M. Adversarial Deep Learning against Intrusion Detection Classifiers. Master’s Thesis, Lulea University of Technology, 
Luleå, Sweden, 2017. 

9. Wang, Z. Deep Learning-Based Intrusion Detection with Adversaries. IEEE Access 2018, 6, 38367–38384. 
https://doi.org/10.1109/ACCESS.2018.2854599. 

10. Hashemi, M.; Keller, E. Enhancing Robustness against Adversarial Examples in Network Intrusion Detection Systems. In Pro-
ceedings of the 2020 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Le-
ganes, Spain, 10–12 November 2020; pp. 37–43. 

11. Sarhan, M.; Layeghy, S.; Portmann, M. An Explainable Machine Learning-based Network Intrusion Detection System for Ena-
bling Generalisability in Securing IoT Networks. arXiv 2021, arXiv:2104.07183. 

12. Du, M.; Liu, N.; Hu, X. Techniques for interpretable machine learning. arXiv 2018, arXiv:1808.00033. 
13. Rigaki, M. Adversarial deep learning against intrusion detection classifiers. In Proceedings of the NATO IST-152 Workshop on 

Intelligent Autonomous Agents for Cyber Defence and Resilience, IST-152 2017, Prague, Czech Republic, 18–20 October 2017. 
14. Xu, H.; Ma, Y.; Liu, H.; Deb, D.; Liu, H.S.; Tang, J.; Jain, A.K. Adversarial Attacks and Defenses in Images, Graphs and Text: A 

Review. Int. J. Autom. Comput. 2020, 17, 151–178. 



Appl. Sci. 2022, 12, 6451 29 of 29 
 

15. Ren, K.; Zheng, T.; Qin, Z.; Liu, X. Adversarial Attacks and Defenses in Deep Learning. Engineering 2020, 6, 346–360. 
https://doi.org/10.1016/j.eng.2019.12.012. 

16. Hinton, G.E.; Vinyals, O.; Dean, J. Distilling the Knowledge in a Neural Network. arXiv 2015, arXiv:1503.02531. 
17. Buckman, J.; Roy, A.; Raffel, C.; Goodfellow, I. Thermometer encoding: One hot way to resist adversarial examples. In Proceed-

ings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018. Available 
online: https://openreview.net/forum?id=S18Su--C&W (accessed on 28 April 2022).  

18. Dhillon, G.S.; Azizzadenesheli, K.; Lipton, Z.C.; Bernstein, J.; Kossaifi, J.; Khanna, A.; Anandkumar, A. Stochastic Activation 
Pruning for Robust Adversarial Defense. arXiv 2018, arXiv:1803.01442. 

19. 20Debicha, I.; Debatty, T.; Dricot, J.; Mees, W. Adversarial Training for Deep Learning-based Intrusion Detection Systems. arXiv 
2021, arXiv:2104.09852. 

20. Aiken, J.; Scott-Hayward, S. Investigating Adversarial Attacks against Network Intrusion Detection Systems in SDNs. In Pro-
ceedings of the 2019 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), Dallas, 
TX, USA, 12–14 November 2019; pp. 1–7. 

21. Nicolae, M.; Sinn, M.; Tran, M.; Buesser, B.; Rawat, A.; Wistuba, M.; Zantedeschi, V.; Baracaldo, N.; Chen, B.; Ludwig, H.; et al. 
Adversarial Robustness Toolbox v1.0.0. arXiv 2018, arXiv:1807.01069.  

22. Thakkar, A.; Lohiya, R. A Review of the Advancement in Intrusion Detection Datasets. Procedia Comput. Sci. 2020, 167, 636–645. 
https://doi.org/10.1016/j.procs.2020.03.33. 

23. Canadian Institute for Cybersecurity. (n.d.-b). NSL-KDD. UNB. Available online: https://www.unb.ca/cic/datasets/nsl.html (ac-
cessed on 13 September 2021). 

24. Hettich, S.; Bay, S.D. The UCI KDD Archive; University of California, Department of Information and Computer Science: Irvine, 
CA, USA, 1999. Available online: http://kdd.ics.uci.edu (accessed on 28 April 2022).  

25. Khamis, R.A.; Matrawy, A. Evaluation of Adversarial Training on Different Types of Neural Networks in Deep Learning-based 
IDSs. In Proceedings of the 2020 International Symposium on Networks, Computers and Communications (ISNCC), Montreal, 
QC, Canada, 20–22 October 2020; pp. 1–6. 

26. Fenanir, S.; Semchedine, F.; Harous, S.; Baadache, A. A semi-supervised deep auto-encoder based intrusion detection for IoT. 
Ingénierie Des Systèmes D’information 2020, 25, 569–577. https://doi.org/10.18280/isi.250503. 

27. Mane, S.; Rao, D. Explaining Network Intrusion Detection System Using Explainable AI Framework. arXiv 2021, 
arXiv:2103.07110. 

28. Yang, K.; Liu, J.; Zhang, C.; Fang, Y. Adversarial Examples against the Deep Learning Based Network Intrusion Detection Sys-
tems. In Proceedings of the MILCOM 2018—2018 IEEE Military Communications Conference (MILCOM), Los Angeles, CA, 
USA, 29–31 October 2018; pp. 559–564. https://doi.org/10.1109/MILCOM.2018.8599759. 

29. Tishby, N.; Zaslavsky, N. Deep learning and the information bottleneck principle. In Proceedings of the 2015 IEEE Information 
Theory Workshop (ITW), Jerusalem, Israel, 26 April–1 May 2015; pp. 1–5. 

30. Wang, M.; Zheng, K.; Yang, Y.; Wang, X. An Explainable Machine Learning Framework for Intrusion Detection Systems. IEEE 
Access 2020, 8, 73127–73141. https://doi.org/10.1109/ACCESS.2020.2988359. 

31. Liu, H.; Lang, B. Machine Learning and Deep Learning Methods for Intrusion Detection Systems: A Survey. Appl. Sci. 2019, 9, 
4396. https://doi.org/10.3390/app9204396. 

32. Classification: ROC Curve and AUC|Machine Learning Crash Course|. 10 February 2020. Google Developers. Available online: 
https://developers.google.com/machine-learning/crash-course/classification/roc-and-
auc#:%7E:text=An%20ROC%20curve%20(receiver%20operating,False%20Positive%20Rate (accessed on 15 January 2022). 

33. Brzezinski, D.; Stefanowski, J. Prequential AUC: Properties of the area under the ROC curve for data streams with concept drift. 
Knowl. Inf. Syst. 2017, 52, 531–562. https://doi.org/10.1007/s10115-017-1022-8. 

34. Reddy, S.K. AUC ROC Score and Curve in Multi-Class Classification Problems: InBlog. Ineuron. 1 November 2020. Available 
online: https://blog.ineuron.ai/AUC-ROC-score-and-curve-in-multiclass-classification-problems-2ja4jOHb2X (accessed on 24 
March 2022). 

35. Huang, J.; Ling, C.X. Using AUC and accuracy in evaluating learning algorithms. IEEE Trans. Knowl. Data Eng. 2005, 17, 299–
310. https://doi.org/10.1109/TKDE.2005.50. 

36. Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adver-
sarial Networks. arXiv 2014, arXiv:1406.2661. 

37. Ratner, A.J.; Ehrenberg, H.R.; Hussain, Z.; Dunnmon, J.A.; Ré, C. Learning to Compose Domain-Specific Transformations for 
Data Augmentation. Adv. Neural Inf. Process. Syst. 2017, 30, 3239–3249. 

38. Nisioti, A.; Mylonas, A.; Yoo, P.D.; Katos, V. From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of 
Unsupervised Methods. IEEE Commun. Surv. Tutor. 2018, 20, 3369–3388. https://doi.org/10.1109/COMST.2018.2854724. 

39. Kurakin, A.; Goodfellow, I.J.; Bengio, S. Adversarial Machine Learning at Scale. arXiv 2017, arXiv:1611.01236. 
40. Athalye, A.; Carlini, N.; Wagner, D.A. Obfuscated Gradients Give a False Sense of Security: Circumventing Defenses to Adver-

sarial Examples. arXiv 2018, arXiv:1802.00420. 


