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Abstract 
With the rapid increase of large-scale problems, the distribution of real-world 
datasets tends to be long-tailed. Existing solutions typically involve re-balancing 
strategies (i.e., re-sampling and re-weighting). Although they can significantly 
promote the classifier learning of deep networks, they will unexpectedly im-
pair the representative ability of the learned deep features to a certain extent. 
Therefore, this paper proposes a dual-channel learning algorithm with invo-
lution neural networks (DC-Invo) to take care of representation learning and 
classifier learning concurrently. In this work, the most important thing is to 
combine ResNet and involution to obtain higher classification accuracy be-
cause of involution’s wider coverage in the spatial dimension. The paper 
conducted extensive experiments on several benchmark vision tasks includ-
ing Cifar-LT, Imagenet-LT, and Places-LT, showing that DC-Invo is able to 
achieve significant performance gained on long-tailed datasets. 
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1. Introduction 

Visual recognition research has developed rapidly during the past few years, 
mainly driven by large image datasets [1] [2], deep convolutional neural net-
works (CNNs) and high-performance computing resources. In the traditional 
classification and recognition tasks, the distribution of training data is often arti-
ficially balanced. Visual phenomena, however, are more data biased. In the form 
of long-tailed distribution [3] [4], many standard methods fail to model correct-
ly, resulting in a significant decrease in accuracy. Motivated by this, there have 
been some recent attempts to study long-tailed recognition, i.e., recognition in 
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environments where the number of instances in each class is highly variable and 
follows a long-tailed distribution.  

When learning with long-tailed datasets, a common challenge is that in-
stance-rich (or heads) classes dominate the training process. The learned classi-
fication model performs better on these classes, however, it performs signifi-
cantly worse for instance-scare (or tail) classes. To solve this problem and to 
improve the performance of all classes, prominent and effective approach is the 
class re-balancing strategy, which is proposed to mitigate the extreme imbalance 
of training data. In general, class re-balancing methods can be roughly divided 
into two groups, i.e., re-sampling [5] [6] and re-weighting [7] [8]. These me-
thods can adjust network training by re-sampling instances or re-weighting the 
losses of samples within the SGD mini-batches, which are expected to be closer 
to the test distribution. Therefore, class re-balancing can effectively directly af-
fect the classifier weights’ update of the deep network, i.e., promoting classifier 
learning. 

However, although re-balancing methods have good ultimate predictions, 
these methods still have adverse effects, i.e., they can also unexpectedly impair 
the representativeness of the learned deep features (i.e., representation learning) 
to some extent. Specifically, when the data imbalance is extreme, there are risks 
of over-fitting the tail data (by over-sampling) and under-fitting the whole data 
distribution (by under-sampling). For re-weighting, it distorts the original dis-
tribution by directly changing or even reversing the frequency of data presenta-
tion. To solve these problems, the BBN model [9] proposed a unified bilateral 
branch network to carry out feature learning and classifier learning of deep net-
work simultaneously and a cumulative learning strategy to adjust bilateral 
learning for exhaustively improving the recognition performance of long-tailed 
tasks.  

Moreover, convolution has been a central component of modern neural net-
works, triggering the explosion of deep learning in vision. In 2021, Li et al. [10] 
reconsidered the inherent principles of standard convolution for visual tasks, 
especially spatial-agnostic and channel-specific. Instead, they proposed a new 
neural network operator by inverting the above design principles of convolution, 
named involution. More specifically, involution kernels are distinct in the spatial 
extent but shared across channels. Involution can summarize context in a 
broader spatial arrangement, thus overcoming the difficulties of modeling 
long-range interactions well, and can adaptively assign weights in different loca-
tions to prioritize visual elements with the most information in the spatial domain.  

Based on the above, this paper proposes a dual-channel structure with involu-
tion neural networks (DC-Invo) for both representation learning and classifier 
learning. At the same time, combined with DC-Invo model training, the cumu-
lative learning strategy is used to adjust bilateral learning. As shown in Figure 1, 
the DC-Invo model consists of two channels, called the “traditional learning 
channel” and the “re-balancing learning channel”. As the name implies, the tra-
ditional learning channel adopts uniform sampling to maintain the original data  
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Figure 1. Framework of our DC-Invo. 

 
distribution structure for representation learning. While, the re-balancing 
learning channel used a reversed sampler (i.e., small sampling weights for high 
frequency samples) to model the tail data. The predicted outputs of these dual 
channels are then aggregated in the cumulative learning part by an adaptive 
trade-off parameter α. α is automatically generated by the “Adapter” based on 
the number of training epochs, which adjusts the entire DC-Invo model to firstly 
learn general features from the original distribution and then gradually focus on 
tail data. More importantly, in the backbone network model, the involution 
neural network is combined with ResNet residual network to obtain higher clas-
sification accuracy on the long-tailed datasets because of the involution kernel’s 
wider coverage in the spatial dimension (wider receptive field).  

To demonstrate the effectiveness of the proposed DC-Invo, the paper conducts 
extensive experiments on four benchmark long-tailed datasets: CIFAR-10-LT, 
CIFAR-100-LT, Imagenet-LT, Places-LT. Empirical results on these datasets 
show that the model obviously outperforms existing state-of-the-art methods.  

Summarily, the primary contributions of this paper are as follows: 1) The pa-
per proposed a dual-channel learning algorithm with involution neural networks 
(DC-Invo) to deal with representation learning and classifier learning for ex-
haustively enhancing long-tailed recognition. In addition, a cumulative learning 
strategy is used to adjust bilateral learning. 2) The paper evaluated the DC-Invo 
model on four benchmark long-tailed visual recognition datasets, achieving 
higher accuracy than established state-of-the-art methods (different sampling 
strategies and new loss designs).  

2. Relaxed Work 
2.1. Re-Sampling 

Re-sampling is a preprocessing technique to solve the problem of imbalanced 
data classification. In the past, a large number of sampling techniques have been 
proposed from different perspectives, mainly oversampling by simply repeating 
data for minority classes [11] [12] [13] and under-sampling by abandoning data 
for dominant classes [14] [15] However, re-sampling is not a really perfect solu-
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tion because the tail data are often learned repeatedly, which lacks enough sam-
ple differences and is not robust enough, and the head data is often not fully 
learned [16] [17]. 

2.2. Cost-Sensitive Learning 

The cost-sensitive function is an effective method to deal with unbalanced classi-
fication, which is mainly to make the model pay more attention to the few sam-
ples in the learning process, so as to alleviate the phenomenon that the model is 
too biased towards the majority of samples. Cost-sensitive function methods 
mainly include the adjustment of sample weights, the design of various types of 
loss functions, and techniques that are beneficial to the learning of a few types of 
samples. Ren et al. [18] proposed an approach based on primary learning, which 
automatically assigned weights to the training set samples according to the loss 
of validation set. In terms of the loss function, various novel loss functions have 
emerged in recent years. In 2017, Lin et al. [19] designed Focal Loss, a Loss func-
tion for online mining of difficult samples. In 2018, Dong et al. [20] added a 
kind of corrected loss on the basis of the Softmax loss function. Cui et al. [21] 
designed a weight adjustment scheme, which used the effective sample number 
of each class to adjust the weight of class loss, so as to generate a class balanced 
loss function. Cao et al. [22] proposed the LDAM (Label-Distor-Aare Margins) 
loss function, which encourages the decision boundary of model learning to be 
as far away from a few classes as possible, and theoretically and rigorously 
proved the rationality of the loss function.  

3. Methodology 

As shown in Figure 1, our DC-Invo mainly adds a new neural network operator 
to the backbone network structure of the BBN model [9], including three main 
components: traditional learning channel, re-balancing learning channel and 
cumulative learning strategy. The traditional learning channel obtains the input 
data from a uniform sampler, which is responsible for learning the general pat-
terns of the original distribution. While the re-balancing channel receives input 
data from a reversed sampler and is designed to model tail data. The cumulative 
learning strategy aggregates output feature vectors tϕ  and rϕ  of the two 
channels to calculate the training loss. 

3.1. Involution 

Involution is a new neural network operator proposed by Li et al. in 2021 [11], 
which inverted the two inherent principles of convolution: spatial-agnostic into 
spatial-specific, and channel-specific into channel-agnostic. Finally, based on the 
two design principles (i.e., spatial-specific and channel-agnostic), a new type of 
operator was proposed, called involution. Compared with convolution, involu-
tion can aggregate the context in a wider space so as to overcome the difficulty of 
modeling remote interactions well and can adaptively allocate the weights of 

https://doi.org/10.4236/ojapps.2022.124029


M. X. Li 
 

 

DOI: 10.4236/ojapps.2022.124029 425 Open Journal of Applied Sciences 
 

different positions so as to prioritize the visual elements with the most abundant 
information in the spatial domain.  

Let H W CX R × ×∈  denote the input feature map, where H, W represent its 
height, width and C enumerates the channels. The kernel of involution is 
H W K K G× × × × , where G C , indicates that all channels share G kernels. 
So the involution can be formulated as: 

[ ] [ ] [ ], , , ,, , 2 , 2 ,, ki j k i u j v ki j u K v K kG Cu vY H X + ++ +∈∆
= ∑               (1) 

where H W K K GH R × × × ×∈  is involution kernel. 
The general form of involution kernel generation is as follows: 

( ),, i ji jH Xφ Ψ=                          (2) 

where ,i jΨ  is an index set of the neighborhood of (i, j), therefore, 
,i j

XΨ

represents a patch containing ,i jX  in the feature map.  
The paper [11] proposed a simple and effective instantiation of the kernel ge-

nerating function φ . ,i jΨ  is the set of points {(i, j)}, i.e., 
,i j

XΨ  is taken as a 
single pixel with (i, j) in the feature map, then the instance of the generation of 
the involution kernel is obtained:  

( ) ( ), , 1 0 ,i j i j i jH X W W Xϕ σ= =                    (3) 

where 0

C C
rW R
×

∈  and 
( )

1

CK K G
rW R

× × ×
∈  represent linear transformation matrix,  

γ represents reduction ratio and σ implies Batch Normalization and non-linear 
activation functions that interleave two linear projections.  

As shown in Figure 2, under the above simple instantiation of involution 
kernel, a complete schematic diagram of involution can be obtained.  

The schematic is from the literature [11]. For the feature vector on a point of 
the input feature map, it is first expanded into the shape of the kernel through 
φ  (FC-BN-ReLU-FC) and reshape (channel-to-space) transformation to obtain 
the corresponding involvement kernel on this coordinate point, and then  
 

 

Figure 2. Simple instance generation diagram of involution. 
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multiply-add with the feature vector in the neighborhood of this coordinate 
point on the input feature map to obtain the final output feature map. 

3.2. Modeling Process 

Let ( ) ( ) ( ){ }1 1 2 2, , , , , ,N ND x y x y x y=   denote a long-tailed distribution dataset 
containing C categories, where N is the number of samples. Assuming that in  
represents the number of samples of the ith category, then 1 ii

NN n
+

= ∑ . In gen-
eral, the subscripts of categories are sorted in descending order by the number of 
samples. If i j< , then i jn n>  and 1 Cn n . 

In the data input stage, the traditional learning channel adopts uniform sam-
plers to maintain the original data distribution and obtain input data ( ),t tx y . 
And the re-balancing learning channel adopts an inverted sampler to model tail 
data (the sample is sampled inversely according to the frequency of the sample, 
i.e., the high frequency sample has a smaller weight) to acquire input data 
( ),r rx y . Then, two samples are fed into their corresponding channels to obtain 
the feature vectors tϕ  and rϕ . Next, the weights of tϕ  and rϕ  are controlled 
by adaptive trade-off parameters α, and the weighted feature vectors tαϕ  and 
( )1 rα ϕ−  are sent to classifier th  and rh  respectively. The output will be in-
tegrated by element-wise addition, and the results are as follows: 

( )T T1t t r rZ h hα ϕ α ϕ= + −                        (4) 

At this point, Z is the predicted output, and then the softmax function is used 
to normalize Z to get the probability of each class: 

1

eˆ
e

i

j

z

i z
j
Cp
=

=
∑

                           (5) 

The weighted distribution cross-entropy classification loss of our DC-Invo 
model is illustrated as: 

( )1t rL L Lα α= + −                         (6) 

where ( )1 log ˆtn t
t i ii pL y

=
= −∑  and ( )1 log ˆrn r

r i ii pL y
=

= −∑  are cross-emtropy 
loss function of each channel. 

3.3. Proposed Cumulative Learning Strategy 

A cumulative learning strategy is proposed to dynamically adjust the learning 
focus between dual channels by controlling the feature weight generated by two 
channels and classification loss L. It is designed to learn the general patterns 
firstly, and then pay attention to the tail data gradually. In the training phase, the 
feature tϕ  of the traditional learning channel will be multiplied by α and the 
feature rϕ  of the re-balancing learning channel will be multiplied by 1 − α, 
where α is automatically generated according to the training epoch. Assuming 
that the total number of training epochs of the model is expressed as maxT , and 
the current epoch is expressed as T, the trade-off parameter α can be calculated 
as: 
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2

max

1 T
T

α
 
 
 

= −                          (7) 

With the increase of training epochs, α will be gradually decreased. The moti-
vation is to make the learning focus of our DC-Invo should gradually change 
from feature representation to classifiers, which can significantly improve the 
accuracy of long-tailed recognition.  

In the experiment, we also provide this intuitive result by comparing different 
types of adapters, cf. Section 4.4.3. 

4. Experiments 
4.1. Datasets and Empirical Settings 

Long-tailed CIFAR-10 and CIFAR-100. According to the number of catego-
ries, CIFAR can be divided into CIFAR10 and CIFAR100 that contain 10 catego-
ries and 100 categories respectively. The two datasets respectively contain 60,000 
images, 50,000 for training and 10,000 for validation. The paper generated the 
long-tailed version of CIFAR-10 and CIFAR-100 following those used in [22] with 
controllable degrees of data imbalance. The test dataset remains unchanged, and 
the number of samples of each category in the training dataset is set  

according to 100
i

in n µ⋅= , where in  is the original number of the class i, and µ 
is a long-tailed factor to describe the severity of the long-tail problem, e.g., 

max

min

N
N

µ = , Long-tailed factors the paper used in experiments are 20, 50 and 100. 

Long-tailed Imagenet. The paper constructed the long-tailed version of Im-
agenet following those used in [23]. The validation set and test set remain un-
changed, and each type of sample in the training set is sampled following the 
Pareto distribution, where the power value α = 6. A total of 115,846 images were 
collected from the training dataset, with each category containing 1280 images at 
most and 5 images at least.  

Long-tailed Places. The structure of the long-tailed version of Places is simi-
lar to that of Imagenet-LT. Following the settings in [23], 20 images are sampled 
from each category of the validation set, 50 images from each category of the test 
set, and samples from each category of the training set are sampled following the 
Pareto distribution with the power value α = 6. The training data set obtained by 
sampled has a total of 62,500 images, with each category containing 4980 images 
at most and 5 images at least. 

4.2. Implementation Details 

Implementation details on CIFAR. For long-tailed CIFAR-10 and CIFAR-100, 
the paper followed the simple data augmentation proposed in [24] for training: a 
32 × 32 crop is sampled randomly from the original image or its horizontal flip 
with 4 pixels which are padded on each size. The paper trained the combination 
of ResNet-32 [24] and involution as our backbone network and used the stan-
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dard mini-batch stochastic gradient descent (SGD) with a momentum of 0.9, 
weight decay of 2 × 10−4 for all experiments. The paper trained all the models on 
a GeForce RTX 2080Ti GPU with a batch size of 128 for epochs. For a fair com-
parison, the initial learning rate is set to 0.1 and decayed by 0.01 at the 120th 
epoch and again at the 160th epoch for our DC-Invo. A linear warm-up learning 
rate schedule [25] is used for the first 5 epochs.  

Implementation details on Imagenet-LT and Places-LT. For Imagenet-LT 
and Places-LT, all images are first adjusted to 256 × 256. During training, images 
are randomly cropped to 224 × 224, and then flip horizontally with a 50% prob-
ability. The paper used the standard mini-batch stochastic gradient descent 
(SGD) with a momentum of 0.9 to train 60 epochs, and the learning rate is in-
itialized to 0.1, which decayed to 10% of the original at the 20th and 40th epochs, 
respectively.  

4.3. Comparison Methods 

In experiments, this paper compared DC-Invo model with several methods:  
Focal Loss: A loss function, based on the Softmax cross-entropy loss function, 

increases the weight of difficult samples while reducing the weight of easy sam-
ples.  

CB Loss: A weight adjustment scheme is designed to re-balance the losses us-
ing valid samples from each class.  

LDAM Loss: By encouraging model learning, the decision boundaries are as 
far away from a few classes as possible.  

OLTR: A knowledge transfer method, which solves the problem of insuffi-
cient feature representation due to the small number of tail category samples by 
maintaining a feature representation that enhances neural network learning in a 
visual memory bank.  

BBN: A bilateral-branch network structure, which uses the original dataset for 
training on one side and the resampled balanced dataset for training on the oth-
er side. The learning of long-tailed data is improved by decoupling the feature 
learning and classifier learning. 

4.4. Main Results 
4.4.1. Experiment Result on Long-Tailed CIFAR  
Table 1 reports the classification accuracy results of various long-tailed CIFAR-10 
and CIFAR-100 datasets with three long-tailed factors: 20, 50, 100. This paper 
consistently demonstrates that DC-Invo achieves the best results on all datasets 
when compared with other methods, including Focal Loss, CB Loss, LDAM Loss 
and BBN. Additionally, it can be found from the table, when the long-tail factor 
is larger, the accuracy difference between DC-invo and other algorithms is larg-
er. Especially, compared with BBN, DC-Invo has better classification accuracy 
improve that combination with ResNet and involution can improve the classifi-
cation accuracy. 
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4.4.2. Experiment Result on Imagenet-LT and Places-LT  
Table 2 shows the experimental results of different algorithms on Imagenet-LT 
and Places-LT datasets. Similar to the results on the CIFAR-LT dataset, the 
DC-Invo model outperformed other algorithms, for example, the Classification 
accuracy of Imagenet-LT and Places-LT is 2.1% and 1.3% higher than the second 
place algorithm, respectively.  

In conclusion, the comprehensive comparison of different algorithms on sev-
eral datasets shows that DC-Invo model can well model long-tail distributed da-
tasets. 

4.4.3. Different Cumulative Learning Strategies 
To verify the effectiveness of the proposed cumulative learning strategy, we ex-
plore a number of different strategies to generate the adaptive trade-off parame-
ter α on CIFAR-10-IR50. The abscissa represents the completion degree of mod-
el training, the ordinate represents the value of α used in the training period, and 
each curve presents how α varies with the training process of the model, cf. Fig-
ure 3. The paper tested with both progress relevant strategies which adjust α 
with the number of training epochs (i.e., parabolic increment, cosine decay and 
linear decay, etc) and irrelevant strategies (i.e., equal weight, single weight, and 
β-distribution), cf. Table 3. 
 
Table 1. Top 1 accuracy for long-tailed CIFAR-10/100. 

Dataset Long-tailed CIFAR-10 Long-tailed CIFAR-100 

Imbalanced ratio 100 50 20 100 50 20 

CE 66.3 71.4 80.2 36.3 38.9 52.0 

Focal Loss 66.4 73.3 80.4 36.4 39.4 51.9 

CB Loss 71.1 74.8 80.6 37.6 41.4 52.6 

LDAM loss 69.8 76.5 82.9 39.4 43.6 53.1 

OTLR 71.4 77.5 83.6 38.3 43.8 53.4 

BBN 73.2 79.0 84.2 40.3 44.1 53.6 

DC-Invo 77.7 80.6 84.9 43.6 46.1 53.9 

 
Table 2. Top 1 accuracy for long-tailed imagenet and places. 

Dataset Long-tailed Imagenet Long-tailed Places 

CE 29.7 22.9 

Focal Loss 30.5 23.5 

CB Loss 35.8 26.4 

LDAM loss 36.3 24.7 

OTLR 35.6 25.4 

BBN 37.7 26.1 

DC-Invo 39.8 27.4 
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Figure 3. Schematic diagram of α generated by different course learning strategies. 
 
Table 3. Ablation studies of different adaptor strategies of DC-Invo on Long-tailed 
CIFAR-10-IR-50. 

Adaptor α Accuracy 

Parabolic increment 
2

max

T
T
 
 
 

 70.52 

β-distribution Beta (0.2, 0.2) 77.13 

Equal weight 0.5 77.93 

Single weight 1 78.62 

Segment weight 
max

1 1: 0T
T

< →  79.46 

Linear decay 
max

1 T
T

−  79.29 

Cosine decay 
max

cos
2

T
T
 π

⋅ 
 

 79.09 

Parabolic decay 
2

max

1 T
T
 
 
 

−  80.68 
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As shown in Table 3, the parabolic decay adapter is the best among these 
adapters. The results of the three decay strategies are all better than the sin-
gle-weight strategy using a traditional learning channel. The results of the two 
channels using equal weight all the time are slightly lower than the single-weight 
strategy, and the parabolic increment strategy and the randomly generated 
β-distribution strategy have the worst results. These phenomena indicate that 
the model should emphasize representation learning first and then classifier 
learning. At the same time, compared with segment weight, the parabolic decay 
does not directly step from 1 to 0, but gradually decreases, so that the two chan-
nels can maintain the learning state simultaneously during the whole training 
process and the model pays attention to the tail data at the end of the iteration 
without damaging the learned features. 

5. Conclusion 

For long-tailed problems, some literature reveals class re-balancing strategies 
can not only promote classifier learning significantly but also damage represen-
tation learning to some extent. Motivated by this, this paper proposed a 
dual-channel structure with involution neural networks (DC-Invo) for both re-
presentation learning and classifier learning to effectively improve the recogni-
tion performance of long-tailed classification tasks. Through comparison with 
state-of-the-art methods and extensive ablation studies, this paper verified that 
our DC-Invo could achieve the best results on long-tailed benchmarks. 
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