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Abstract: Biometric technology has received a lot of attention in recent years. One of the most
prevalent biometric traits is the finger-knuckle print (FKP). Because the dorsal region of the finger is
not exposed to surfaces, FKP would be a dependable and trustworthy biometric. We provide an FKP
framework that uses the VGG-19 deep learning model to extract deep features from FKP images in
this paper. The deep features are collected from the VGG-19 model’s fully connected layer 6 (F6) and
fully connected layer 7 (F7). After applying multiple preprocessing steps, such as combining features
from different layers and performing dimensionality reduction using principal component analysis
(PCA), the extracted deep features are put to the test. The proposed system’s performance is assessed
using experiments on the Delhi Finger Knuckle Dataset employing a variety of common classifiers.
The best identification result was obtained when the Artificial neural network (ANN) classifier was
applied to the principal components of the averaged feature vector of F6 and F7 deep features, with
95% of the data variance preserved. The findings also demonstrate the feasibility of employing these
deep features in an FKP recognition system.

Keywords: biometrics; transfer learning; finger-knuckle print recognition; deep learning; VGG-19;
PCA

1. Introduction

Automated identification solutions have become critical for security and privacy in
today’s digitally linked world [1]. Biometrics is a type of person recognition method; it is a
security solution that differs from typical authentication and identification techniques such
as passwords, ID cards, and PIN codes [2].

Biometrics are techniques that use automated ways to objectively validate a system uti-
lizing biological features. It uses physiological or behavioral aspects of humans as a means
of authenticating personal identity [3]. Physiological characteristics include those retrieved
from the human body, such as iris [4], faces [5,6], retinas, veins [7], fingerprints [8–11],
palm prints, finger knuckle print, and DNA, ECG [12–15], while behavioral characteristics
include voice, stride, signature, and keystroke [16–20]. Biometrics traits are commonly em-
ployed in systems such as Security in IoT [21–25], e-banking [26–29], cloud security [30–33],
access control [34–37], network security systems [38–42], and ID cards [43–47], and other
applications related to IoT [48–52].

Hand-based authentication systems are models that recognize fingerprints [53–57],
palm prints, hand geometry, hand form, and hand veins [58,59]. For a long time, hand-
based systems have been in the limelight [60]. The success of the systems is due to the
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trustworthy qualities that give stability, acceptance, simplicity, and robustness [61]. Many
corporations, industries, and government agencies now rely on hand-based technology for
a variety of purposes, including security [62].

Recently, it was discovered that the finger-knuckle (FKP) [63] is also a biometric
element that may be employed in a safe authentication system [64]. It is a hand-based
characteristic in which images include information about an individual’s finger knuckle
lines and textures, which may become a unique anatomical feature and be used to identify
a person. These characteristics were proposed and examined in order to overcome some
of the limits and shortcomings of earlier hand-based technologies [65], as well as the
inconsistencies of the low-cost [2] and small-size imaging equipment used to capture
the structure [66]. Local feature extraction is performed on the FKP system, followed
by a mixture of local and global feature extractions, geometric feature extraction, and
ultimately an enhanced acquisition device that includes both major and minor intrinsic
features [11,67–70].

Fingerprint, palm print, hand geometry, and hand vein are examples of biometrics
that have been thoroughly investigated [71]. FKP can be regarded as a different biometric
identifying technology because of its uniqueness [72]. The following are the FKP’s distinct
benefits over other biometrics: the surface of FKP is difficult to abrade since individuals
normally grasp objects with the inner side of their hands. Because of the non-contact
nature of the FKP collection [73], users are more likely to accept it [74]. As such, FKP is
regarded as one of the most feasible and effective personal identification technologies in
the future [75–79].

The finger knuckle print is a global, one-of-a-kind, and persistent biometric pattern that
is utilized for extremely exact personal identification. Recent FKP research has focused on
robust feature extraction, contactless/unconstrained acquisition, and fusion techniques [80].
However, the literature includes limited work [81–85].

In order to support corporate, industrial, economic, and social change for competitive
advantage of firms and nations, and to improve overall human progress, technological
innovation plays an important role in society for satisfying needs, achieving goals, and
solving problems of adopters directed to supporting corporate, industrial, economic, and
social change [86–90]. Awareness technological and social change requires a thorough
understanding of scientific developments and new technological trajectories [91–95].

Biometrics technology as being part of technological innovation [96,97], have received
a lot of attention in recent years, especially to current techniques like machine learning and
artificial intelligence. As a result of the continual search, contemporary methods known as
deep learning were developed [98–100]. These approaches received a lot of interest since
they can be used to classify image textures [101–105]. Deep learning is a branch of machine
learning research that uses learning algorithms to scan many layers of representation to
model complicated relationships in data [106,107]. As a result, high-level traits and ideas
have been identified based on the lowest of them. Deep structure refers to the hierarchical
structure of features, and most of these models are built on the approach of supervised
or unsupervised representation learning. Convolutional architectures are one of the most
important tools for deep learning success in image classification. Principal component anal-
ysis has recently become one of the most popular deep learning methodologies (PCA) [108].
Deep network training is computationally intensive from the outset and necessitates a large
volume of tagged data [109–113].

Feature extraction uses deep learning models (convolution neural networks (CNNs))
strategy, which is employed when there is a lack of training data or resources [54]. It
can be done by using a pre-trained model, such as VGG, Inception, SqueezeNet, and
ResNet, which have been trained on a large dataset project [114] like ImagNet. VGG CNN
is made up of various primary structures, each of which is made up of several linked
convolutional layers and full-connected layers. The convolutional kernel has a size of
3 × 3, while the input has a size of 224 × 224 × 3. In general, the number of layers is
centered at 16~19 [115]. VGGs have lately demonstrated outstanding performance in many
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computer vision applications. Many firms, including Adobe, Apple, Facebook, Baidu,
Google, IBM, Microsoft, NEC, Netflix, and NVIDIA, have lately employed VGG as one
of their deep learning methodologies [80]. As a pre-processing model, (VGG-19 CNN)
is utilized. The network depth has been increased as compared to typical convolutional
neural networks. It employs an alternating structure of numerous convolutional layers
and non-linear activation layers, which outperforms a single convolutional layer. The
layer structure may extract image features more effectively, apply Max pooling for down
sampling, and alter the linear unit (ReLU) as the activation function, that is, choose the
greatest value in the image area as the pooled value of the area. The down sampling layer
is primarily used to increase the network’s anti-distortion capabilities to the image while
keeping the sample’s key characteristics and minimizing the number of parameters [116].

This study aims at providing an investigation structure for the use of deep learning in
supporting FKP recognition using VGG-19 (f6 and f7); thereof, our study intends to achieve
the following objectives:

1. Determine the extent to which deep learning can support FKP recognition using the
deep VGG-19 method.

2. Examine the impact of dimensionality reduction on the discriminative power of deep
features.

3. Identify the best performing classifier on FKP deep features.
4. Determine the authentication performance when using FKP deep features.

The remainder of the paper is broken into the following sections: The literature
review on FKP recognition is presented in Section 2. The methodology used to implement
the proposed approach, the dataset used, the performance evaluation measures, and the
structure of our experimental model are all shown in Section 3. The experimental model’s
results are presented and discussed in Section 4. Finally, part 5 depicts the study’s findings
as well as its future endeavors.

2. Related Work

There has been a lot of study done on FKP recognition for both identification and
authentication security, whether for IoT or more general security [116–121]. These are only
a few instances.

Lalithamani et al. presented new work in the field of biometric authentication system
based on the master finger joint pattern—compared to current systems with simple classi-
fiers such as SVM, PCA, and LDA. Given its accuracy, the deep learning method is best
suited for this authentication. The Convolution Neural Network (CNN) extracts features
and compares them optimally with trained images. CNN is trained by backpropagation
algorithm with random gradient descent and minibatch learning with the help of neural
network [7].

Hammouche et al. suggested a novel technique for FKP authentication based on phase
congruency with a Gabor Filter bank [122]. Furthermore, Zhang et al. proposed a novel
computing framework with the goal of implementing a new efficient feature extraction
approach for FKP recognition. The authors conducted a thorough examination of three
often utilized local features: local orientation, local phase, and phase congruency. In
addition, they developed a method for effectively calculating all characteristics utilizing
phase congruency [123]. For an FKP identification system, Muthukumar and Kavipriya
used the Gabor feature with an SVM classifier [124].

Heidari and Chalechale presented a unique FKP biometric system in which the feature
extraction is a mix of the entropy-based pattern histogram (EPH) and a set of statisti-
cal texture characteristics (SSTF). The genetic algorithm (GA) was used to find the best
characteristics among the retrieved features. This has been tested on PolyU dataset [73].
While, Singh and Kant developed a multimodal biometric system for person authentication
based on FKP and iris characteristics, in which the PCA approach was utilized for feature
extraction and the Neuro fuzzy neural network (NFNN) classifier was employed in the
identification stage [125].
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Chlaoua et al. have developed a simple deep learning method known as principal
component analysis. In their proposed approach, PCA has been involved to learn two-
stages of filter banks then a simple binary hashing and block histograms for clustering of
feature vectors are used. The resultant features are finally fed to the classification step, i.e.,
linear multiclass Support Vector Machine (SVM). The authors also studied a multimodal
biometric system based on matching score level fusion [114].

In Reference [126], a simple CNN end-to-end model is introduced for FKP recognition.
The dataset Poly-U FKP is used to evaluate the proposed model and the results gives
99.83% (0.76 and 99.18%, respectively) as the best (standard deviation, mean, respectively)
accuracy of recognition. Despite this model being based on a straightforward method for
data augmentation with a reduced number of trainable parameters, the latter is composed
of a few sets of layers: two connected layers and three convolutional ones. Chalabi et al.
also used the PCANet-SVM approach to create a system based on score level fusion of
minor and major finger knuckles [62].

Hamidi et al. used two types of pre-trained models, VGG–16 and VGG19, with deep
convolutional neural networks to extract features from Finger-Knuckle-Print images in
order to construct an efficient multimodal identification system. The results presented in
this work reveal that unimodal and multimodal identification systems based on matching
score level fusion function extremely well [80].

Fei et al. introduced a new direction convolution difference vector to effectively
depict the direction details of finger knuckle images. They then presented a feature learning
approach for encoded discriminative direction features for finger knuckle image recognition.
The final experimental findings indicate that the proposed method outperforms other
Finger knuckle image identification algorithms, demonstrating the usefulness of hash
learning-based methods [127].

Many deep learning models have been used for different computer vision tasks. For
example, ResNet [128] is a robust model that used an interesting idea of adding the identity
block to the CNN architecture in order to make the CNN deeper and reduce the problem of
learning degradation in deep CNNs.

Likewise, MobileNet [129] is another interesting CNN which used inverted residual
in which the residual connections are created between the bottleneck layers. The small size
of this model makes it suitable to be used on mobile devices.

Moreover, ShuffleNet [130] is another CNN model which is suitable for mobile devices.
The low computational power of this architecture makes it the right option for many
applications. The main reason of this low computational cost is due to two operations used
in this CNN, which are channel shuffle and pointwise group convolution.

EfficientNet [131] is a state-of-the-art CNN which introduced exciting ideas to improve
the performance of CNNs. EfficientNet suggests that the performance of a CNN can be
improved by increasing the depth, number of layers, and the width, number of filters, as
well as the resolution of the input image. This architecture has many versions, varying
from b0 to b7, each of which has its own depth, width, and resolution scales.

FKP is generally fused with other biometrics to reinforce the intended security system
in order to increase the performance of a biometric security system; these approaches
include, but are not limited to, the work of [73,132–135].

Despite the large number of FKP recognition methods in the literature [136,137], none
are perfect, and each has its own limitations, which are primarily caused by issues inherited
from computer vision and machine learning. As a result, there is still room for improvement,
especially when using deep learning techniques on FKP images.

3. The Proposed Method

The proposed study aims at investigating the ability of deep features extracted from
VGG-19 to improving the performance of FKP biometric recognition.
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3.1. Dataset Description

To achieve the objectives of the study, especially as it employs deep learning, we adopt
a standard FKP image dataset called IIT Delhi Finger Knuckle Dataset version1.0.20 [138].
The size of this dataset and its diverse FKP images alignment with VGG-19 layered network
for deep architecture design. This helps to overcome the limitations associated with
acquiescing real-time as this dataset is publicly available for research community. Therefore,
our experiment was carried out on IIT Delhi Finger Knuckle Dataset version1.0.20. IIT
Delhi Finger Knuckle Dataset contains 790 images for 158 subjects, 5 images each. The size
of each image is 80 × 100 pixels. Figure 1 shows sample images of the used dataset.

Electronics 2022, 11, x FOR PEER REVIEW 5 of 23 
 

 

3. The Proposed Method 
The proposed study aims at investigating the ability of deep features extracted from 

VGG-19 to improving the performance of FKP biometric recognition. 

3.1. Dataset Description 
To achieve the objectives of the study, especially as it employs deep learning, we 

adopt a standard FKP image dataset called IIT Delhi Finger Knuckle Dataset version1.0.20 
[138]. The size of this dataset and its diverse FKP images alignment with VGG-19 layered 
network for deep architecture design. This helps to overcome the limitations associated 
with acquiescing real-time as this dataset is publicly available for research community. 
Therefore, our experiment was carried out on IIT Delhi Finger Knuckle Dataset ver-
sion1.0.20. IIT Delhi Finger Knuckle Dataset contains 790 images for 158 subjects, 5 images 
each. The size of each image is 80 × 100 pixels. Figure 1 shows sample images of the used 
dataset. 

     

     

     

     
Figure 1. Sample from the IIT Delhi Finger Knuckle Dataset [138]. 

3.2. The Proposed FKP Recognition 
This section presents the proposed framework and procedures for applying the cur-

rent investigation to obtain the results of using the VGG-19 deep learning-based method 
for FKP identification or authentication. Figure 2 shows the proposed framework. 

Figure 1. Sample from the IIT Delhi Finger Knuckle Dataset [138].

3.2. The Proposed FKP Recognition

This section presents the proposed framework and procedures for applying the current
investigation to obtain the results of using the VGG-19 deep learning-based method for
FKP identification or authentication. Figure 2 shows the proposed framework.
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In order to extract features, we used the Pre-trained VGG-19 [139] which was pre-
trained on the ImageNet dataset [140]. For feature extraction and training, we used MAT-
LAB 2017a and WEKA tool. We used the Weka tool version (3.6.9) to train and test using the
extracted features, and to classify the obtained deep features using some of its supported
classification methods, such as ANN, RF, NB, and KNN. All the WEKA methods are used
with their default parameters.

MATLAB relies on data format in matrices; so, we use it to run VGG-19 (layers F6 and
F7) for feature extraction, and the dimensionality reduction using PCA, in addition to the
computation of average, max and min of the deep features merging (discussed later). The
output of this phase is two sets of features vectors:

• F6, which is collected from layer 6.
• F7, which is collected from layer 7.

Each set has 790 rows, which are the number of images and examples in the FKP
dataset, and 4096 columns, which are the number of features obtained by the pre-trained
VGG-19 for each layer. The resultant feature vectors are used for training and testing
purposes. F8, on the other hand is a 1000-node classification layer that represents the
likelihood of one class in the ImageNet dataset. It is not a common practice to use it here
because it does not contain deep features.

After getting the feature vectors, we converted them to an arff file to be compatible
with the WEKA tool [48].

The vectors obtained using the pre-trained VGG-19 are very large, 4096 dimensions,
therefore, we used WEKA to reduce the number of features. In PCA, the more principal
components (PCs) we keep the more dimensionality we get, and vice versa. Therefore, we
opt for including all PCs in a manner that retains 95%, 97%, or 99% variance of the data (the
4096 features). Accordingly, we extracted new features sets: PCA99, PCA97, and PCA95,
which are reduced versions of the original features. Following this, we used the following
classifiers on the new PCA99, PCA97, and PCA95 datasets:

• ANN (Multilayer Perceptron: Weka default parameters: number of hidden
layers = (features + classes)/2, learning rate = 0.3).

• RF (Weka default parameters: number of trees in the random forest = 100).
• NB (Weka default parameters: batch size = 100).
• KNN (Weka default parameters: K = 1, linear search with Euclidean distance).

Table 1 shows the number of features after applying the three variance percentages
(99%, 97%, and 95%) of PCA to the feature vector of the FKPS datasets (F6 and F7).

Table 1. Number of the features of the training set after the PCA applied.

PCA Feature Vector Number of Features

Raw features vector
VGG19F6 4096
VGG19F7 4096

PCA 99%
VGG19F6 450
VGG19F7 184

PCA 97%
VGG19F6 271
VGG19F7 95

PCA 95%
VGG19F6 190
VGG19F7 68

3.3. Merging F6 and F7

Due to the varying performance of the F6 and F7 features, as will be presented soon,
we opt for creating new feature sets by merging both F6 and F7, wishing to obtain deep
feature vectors with an improved performance, the merging is done here using any of three
methods:

• Minimum:



Electronics 2022, 11, 513 7 of 22

The minimum merging work by taking the minimum value from each pair of values
from F6 and F7. Algorithm 1 explains the minimum merging procedure.

Algorithm 1 Merging of F6 and F7 using minimum method

Input: Feature vector F6 and Feature vector F7
Output: Merged feature vector

1: Merged feature vector = zeros(length(F6))
2: for i = 0 to length(F6))
3: Merged feature vectori = min(F6i,F7i)
4: end for
5: return Merged feature vector

• Maximum

The maximum merging works by taking the maximum value from each pair of values
from F6 and F7. Algorithm 2 explains the maximum merging procedure.

Algorithm 2 Merging of F6 and F7 using maximum method

Input: Feature vector F6 and Feature vector F7
Output: Merged feature vector

1: Merged feature vector = zeros(length(F6))
2: for i = 0 to length(F6))
3: Merged feature vectori = max(F6i,F7i)
4: end for
5: return Merged feature vector

• Average of both F6 and F7:

The average merging works by taking the average value from each pair of values from
F6 and F7. Algorithm 3 explains the average merging procedure.

Algorithm 3 Merging of F6 and F7 using average method

Input: Feature vector F6 and Feature vector F7
Output: Merged feature vector

1: Merged feature vector = zeros(length(F6))
2: for i = 0 to length(F6))
3: Merged feature vectori = mean(F6i,F7i)
4: end for
5: return Merged feature vector

The three previously mentioned algorithms loop through two feature vectors, F6
and F7. Then each value in the new merged vector is obtained by taking the minimum,
maximum, or average of each pair of values. By applying Algorithms 1–3, we get three new
deep feature sets; again, we used the dimensionality reduction on these datasets using both
PCA. Table 2 shows the number of features after applying PCA with the three variances of
data percentages (99%, 97%, and 95%) on the merged feature vectors (F6 and F7), according
to average, minimum, and maximum. We call these new deep feature sets MPCA99%,
MPCA97%, and MPCA95%.

3.4. Identification and Authentication

The evaluation process of this type of model is done through many different per-
formance measures such as Accuracy, Precision, Recall, and F-score, the values of these
measures ranging from 0 to 1, 0 represents the worst performance and 1 represents the best
performance. We used 10-Fold cross-validation to verify the reliability of the entered data
and validate each method and its recognition ability. In each fold, 79 out of 790 images
were tested and 711 images used for training, we mean by “image”, the resultant deep
feature vector that represents each image.
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Table 2. Number of features before and after applying PCA on the merged F6⊕F7.

Merge Rule Number of Features

Raw features
Min 4096
Max 4096

Average 4096

MPCA 99%
Min 557
Max 583

Average 431

MPCA 97%
Min 370
Max 402

Average 250

MPCA 95%
Min 269
Max 299

Average 173

For authentication, five random profiles were chosen, each with five FKP images and
a class 1 label. The remaining cases were labeled as class 0. We compared the first profile to
all instances in class 0, then profile 2, and so on for all five profiles, using WEKA software.
Here we used 5-fold cross validation because we had only 5 images for each subject [141].

4. Results and Discussion

In this section, we present and discuss the experimental results of the proposed framework.

4.1. Experiments Settings

The presented results show the performance of machine learning classifiers on 20 different
feature datasets created from the obtained different deep features of the IIT DELHI image
dataset. The feature datasets created are listed as follows:

1. The pure F6 feature vector with 4096 dimensions.
2. The pure F7 feature vector with 4096 dimensions.
3. F6 after applying PCA 95%.
4. F6 after applying PCA 97%.
5. F6 after applying PCA 99%.
6. F7 after applying 95%.
7. F7 after applying PCA 97%.
8. F7 after applying PCA 99%.
9. Average feature vector (F6⊕F7).
10. Minimum feature vector (F6⊕F7).
11. Maximum feature vector (F6⊕F7).
12. Average feature vector (F6⊕F7) after applying PCA 95%.
13. Average feature vector (F6⊕F7) after applying PCA 97%.
14. Average feature vector (F6⊕F7) after applying PCA 99%.
15. Minimum feature vector (F6⊕F7) after applying PCA 95%.
16. Minimum feature vector (F6⊕F7) after applying PCA 97%.
17. Minimum feature vector (F6⊕F7) after applying PCA 99%.
18. Maximum feature vector (F6⊕F7) after applying PCA 95%.
19. Maximum feature vector (F6⊕F7) after applying PCA 97%.
20. Maximum feature vector (F6⊕F7) after applying PCA 99%.

The following tables demonstrate the performance metrics for different classifiers
while using the above-designed feature vectors.

As shown in Table 3, the identification results of applying VGG-19(F6) on the IIT
DELHI dataset show that the KNN achieves the highest accuracy with (81.5%); followed
by the RF with (73.4%). While the lowest accuracy was achieved by NB with (68.6%). As
for time, KNN spends less time to conduct the training and testing phases with (0.02 s);
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while RF spends the maximum time to accomplish the task of predicting with (1.8 s), the
training time of the KNN classifier is always zero because it has no training model, each test
example is compared directly to the other examples in the training set, this is one reason
why KNN is slow in testing, particularly when we have a large number of examples in the
training set [142–145].

Table 3. Identification results of VGG-19-F6 deep features. Bold values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

KNN 0.815 0.815 0.814 0.814 0
RF 0.734 0.725 0.735 0.730 1.8
NB 0.686 0.686 0.717 0.701 1.2

As shown in Table 4, the identification results of applying VGG-19(F7) on the IIT
DELHI dataset show that the KNN achieves the highest accuracy with (72.8%); followed
by the RF with (69.2%). While the lowest accuracy was achieved by NB with (60.08%).
For both F6 and F7, the KNN with acceptable accuracy outperformed all other classifiers.
Figure 3 illustrates the accuracy of identification using VGG-19-F6 and VGG-19-F7 deep
features, showing that F6 is better for identification regardless of the classifier employed.

Table 4. Identification results of VGG-19-F7 deep features. Bold values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

KNN 0.728 0.727 0.736 0.731 0
RF 0.692 0.692 0.679 0.685 1.52
NB 0.608 0.646 0.666 0.656 1.16
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Figure 3. Classifier identification accuracy on each of F6 and F7 deep features. Accuracy results
obtained from Tables 3 and 4.

4.2. Results of PCA Features

When PCA is applied to the F6 feature vectors, we get a new set of feature vectors
with fewer dimensions. The number of features is determined by the proportion of data
variance maintained, the higher the data variance, the more features we use. The new
dataset is used then as an input to the classification process.

Table 5 shows the results of the PCA on F6 in terms of identification. We utilize PCA to
minimize the feature vector while preserving the highest data variance (95%, 97%, and 99%).
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The results of different principal components in Table 5 demonstrate that all classifiers
performance have significantly improved in terms of time.

Table 5. Identification results of VGG-19-F6 deep features with PCA (95%, 97%, and 99%). Bold
values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

PCA 95%

ANN 0.900 0.900 0.900 0.900 474.07
KNN 0.686 0.741 0.766 0.753 0
NB 0.262 0.382 0.443 0.410 0.09
RF 0.425 0.475 0.490 0.483 1.45

PCA 97%

ANN 0.886 0.886 0.885 0.885 410.14
KNN 0.530 0.671 0.708 0.689 0
NB 0.276 0.404 0.460 0.431 0.05
RF 0.624 0.631 0.647 0.639 1.72

PCA 99%

ANN 0.781 0.786 0.794 0.790 422.58
KNN 0.512 0.529 0.587 0.557 0
NB 0.013 0.026 0.080 0.039 0.03
RF 0.495 0.485 0.499 0.492 0.99

Table 5 shows that all classifiers achieve low training time, especially for RF and NB;
this is due to the dimensionality reduction achieved by the PCA. The highest accuracy
resultant from applying PCA of all percentage of data variance used (95%, 97%, and 99%)
is in favor of ANN with (90%, 88.6%, and 78.1%) respectively, which can be attributed to
the reduced feature vector by the PCA, which removed redundant features since keeping
at least 95% of data variance. However, ANN consumed the highest training time in this
experiment, it is worth mentioning that we could not use the ANN classifier with raw
features because of its unacceptable training time (days), this is another advantage of
dimensionality reduction since it allows for faster training and hence more classifiers to
be used.

Similarly, we applied PCA of 95%, 97%, 99% on F7 as well, Table 6 shows the identifi-
cation results.

Table 6. Identification results of VGG-19-F7 deep features with PCA (95%, 97%, and 99%). Bold
values signify the best performance.

Classifier Accuracy Precision Recall F
Measures

Training Time
(seconds)

PCA 95%

ANN 0.849 0.848 0.853 0.850 205.33
KNN 0.690 0.608 0.613 0.611 0
NB 0.442 0.552 0.575 0.564 0.03
RF 0.633 0.629 0.638 0.634 0.92

PCA 97%

ANN 0.873 0.873 0.872 0.872 200.39
KNN 0.714 0.714 0.768 0.740 0
NB 0.410 0.499 0.536 0.517 0.02
RF 0.629 0.619 0.628 0.623 0.84

PCA99%

ANN 0.894 0.894 0.892 0.893 193.26
KNN 0.677 0.677 0.759 0.716 0
NB 0.275 0.275 0.437 0.337 0.02
RF 0.559 0.542 0.553 0.548 0.84

Table 6 shows that all classifiers improved in terms of training time, if compared to
the F6, which is due to the reduced number of features acquired after applying PCA on
layer F7 compared to layer F6 (see Table 1), which may be justified by the nature of the
deep features collected at layer F7 of the VGG-19. Moreover, the performance of some
classifiers, namely NB and RF have improved in terms of accuracy in most cases. Again,
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the highest accuracy resultant from applying PCA of (95%, 97%, and 99%) are in favor of
ANN with (84.9%, 87.3%, and 89.4%) respectively. However, ANN consumes more training
time compared to the other classifiers.

In summary, it can be said that KNN achieves the best results given all performances
measures except these of ANN. ANN significantly outperforms all the other classifiers in
terms of Accuracy, Precision, Recall, and F-measures.

4.3. Results after Merging F6 and F7

Both deep features (F6, F7) are merged by setting the average, maximum, and mini-
mum as merging rules to evaluate the identification of the FKP using KNN, NB, and RF
classifiers. Table 7 shows the identification results.

Table 7. Identification results of VGG-19-deep features obtained by averaging (F6 and F7). Bold
values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

KNN 0.806 0.806 0.803 0.805 0
NB 0.690 0.690 0.720 0.705 0.95
RF 0.729 0.729 0.717 0.723 1.44

Table 7 shows the identification results of the merged dataset based on averaging F6
and F7, in which KNN has the highest accuracy (80.6%), followed by RF and then by the
NB with the lowest accuracy.

Table 8 shows the identification result based on maximizing F6 and F7, where KNN
has achieved the highest accuracy of (80.3%). On the other hand, the NB has obtained a
low accuracy of (67.7%), and the highest training running time is recorded by the RF (1.4 s).

Table 8. Identification results of VGG-19-deep features obtained by maximizing (F6 and F7). Bold
values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

KNN 0.803 0.803 0.800 0.801 0.0
NB 0.677 0.677 0.716 0.696 1.14
RF 0.709 0.718 0.725 0.721 1.4

In Table 9, we can see the identification results based on minimizing F6 and F7, where
KNN obtained the highest accuracy (77.8%). On the other hand, the NB obtained the lowest
accuracy with (64.7%), and the RF performance was in between.

Table 9. Identification results of VGG-19-deep features obtained by minimizing (F6 and F7). Bold
values signify the best performance.

Classifier Accuracy Precision Recall F-Measure Training Time
(seconds)

KNN 0.778 0.778 0.773 0.775 0.0
NB 0.647 0.691 0.710 0.700 0.94
RF 0.697 0.691 0.699 0.695 1.4

Afterwards, we applied the PCA with (95%, 97%, and 99%) on the merged dataset for
each resultant feature vectors, Maximum, Minimum, and Average. The results are shown
in Tables 10–12.

As can be seen in Table 10, the ANN classifier achieved the highest accuracy compared
to the other classifiers; however, it takes a longer training time.

Similar to the maximum deep features, the minimum deep features show that the
ANN achieved the highest accuracy compared to the other classifiers; however, it takes a
longer training time as shown in Table 11.
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Table 10. Identification results of VGG-19-deep features obtained by maximizing (F6 and F7) after
applying PCA. Bold values signify the best performance.

Classifier Accuracy Precision Recall F Measure Training Time
(seconds)

(PCA 95%)

ANN 0.894 0.894 0.892 0.893 781.2
KNN 0.624 0.715 0.746 0.730 0
NB 0.287 0.410 0.466 0.436 1.14
RF 0.657 0.645 0.660 0.652 0.14

(PCA 97%)

ANN 0.846 0.846 0.839 0.842 1598.19
KNN 0.457 0.648 0.690 0.669 0
NB 0.216 0.343 0.400 0.369 0.17
RF 0.567 0.590 0.602 0.596 1.31

(PCA 99%)

ANN 0.592 0.565 0.579 0.572 2249.24
KNN 0.176 0.505 0.565 0.533 0
NB 0.109 0.209 0.247 0.226 0.14
RF 0.466 0.439 0.450 0.444 1.63

Table 11. Identification results of VGG-19-deep features obtained by minimizing (F6 and F7) after
applying PCA. Bold values signify the best performance.

Classifier Accuracy Precision Recall F Measure Training Time
(seconds)

(PCA 95%)

ANN 0.889 0.889 0.885 0.887 695.57
KNN 0.653 0.727 0.754 0.740 0
NB 0.301 0.423 0.480 0.450 0.05
RF 0.651 0.656 0.666 0.661 1.08

(PCA 97%)

ANN 0.819 0.840 0.851 0.846 1054.17
KNN 0.480 0.664 0.701 0.682 0
NB 0.220 0.346 0.405 0.373 0.08
RF 0.586 0.586 0.570 0.578 1.09

(PCA 99%)

ANN 0.547 0.508 0.516 0.512 2118.81
KNN 0.196 0.546 0.604 0.574 0
NB 0.157 0.253 0.299 0.274 0.14
RF 0.481 0.462 0.475 0.469 1.4

Table 12. Identification results of VGG-19-deep features obtained by averaging (F6 and F7) after
applying PCA. Bold values signify the best performance.

Classifier Accuracy Precision Recall F Measure Training Time
(seconds)

(PCA 95%)

ANN 0.918 0.918 0.917 0.917 772.1
KNN 0.722 0.786 0.805 0.795 0
NB 0.384 0.485 0.527 0.505 0.12
RF 0.701 0.683 0.695 0.689 1.22

(PCA 97%)

ANN 0.908 0.908 0.907 0.907 622.02
KNN 0.594 0.686 0.721 0.703 0
NB 0.277 0.396 0.449 0.421 0.06
RF 0.622 0.603 0.616 0.609 1.04

(PCA 99%)

ANN 0.822 0.838 0.847 0.842 1368.06
KNN 0.296 0.568 0.622 0.594 0
NB 0.128 0.233 0.276 0.252 0.4
RF 0.463 0.451 0.464 0.458 1.85

Again, as stated in Table 12, ANN achieved the highest accuracy level among other
classifiers; however, it takes longer training time. However, it is worth noting that the ANN
and all the classifiers used are in favor of lower data variance (PCA 95%), particularly when
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using F6 or merging with F6, perhaps this is due to losing more redundant features. One
exception is when using the PCA on F7, where we notice improvement in the classifiers’
performance, less redundant data on F7 is perhaps the reason. Table 13 summarizes all of
the identification accuracy results.

Table 13. Identification accuracy results summery. Bold values signify the best performance.

Feature Vector Nuber of
Features ANN KNN RF NB Reduction

Percentage

F6 feature vector with 4096 dimensions. 4096 - 0.815 0.734 0.686 0%
F7 with F6 feature vector with 4096 dimensions 4096 - 0.728 0.692 0.608 0%

F6 after applying PCA 95%. 190 0.900 0.686 0.425 0.262 95%
F6 after applying PCA 97%. 271 0.886 0.530 0.624 0.276 93%
F6 after applying PCA 99%. 450 0.781 0.512 0.495 0.013 89%
F7 after applying PCA 95%. 68 0.849 0.690 0.633 0.442 98%
F7after applying PCA 97%. 95 0.873 0.714 0.619 0.499 98%
F7 after applying PCA 99%. 184 0.894 0.677 0.559 0.275 96%

Average feature vector (F6 + F7). 4096 - 0.806 0.729 0.690 0%
Minimum feature vector (F6 + F7) 4096 - 0.778 0.697 0.647 0%
Maximum feature vector (F6 + F7). 4096 - 0.803 0.709 0.677 0%

Average (F6 + F7) PCA 95%. 173 0.918 0.722 0.701 0.384 96%
Average (F6 + F7) PCA 97%. 250 0.908 0.594 0.622 0.277 94%

Average feature (F6 + F7) PCA 99%. 431 0.822 0.296 0.463 0.128 89%
Minimum (F6 + F7) PCA 95%. 269 0.889 0.727 0.656 0.423 93%
Minimum (F6 + F7) PCA 97%. 370 0.819 0.480 0.586 0.220 91%
Minimum (F6 + F7) PCA 99%. 557 0.547 0.196 0.481 0.157 86%
Maximum (F6 + F7) PCA 95%. 299 0.894 0.624 0.657 0.287 93%
Maximum (F6 + F7) PCA 97%. 402 0.846 0.457 0.567 0.216 90%
Maximum (F6 + F7) PCA 99%. 583 0.592 0.176 0.466 0.109 86%

Table 14 shows a direct comparison of the proposed method to some of the other meth-
ods that used the same database, which include Surrounded Patterns Code (SPC) [146],
Enhanced Local Line Binary Pattern (ELLBP) [147], Local Binary Patterns (LBP) [148], Cen-
tralized Binary Patterns (CBP) [149], Center-Symmetric Local Binary Pattern (CSLBP) [150],
and Local Binary Patterns for Finger Outer Knuckle (LBP-FOK) [151]. Moreover, we
compared our method to some of the-state-of-the-art deep learning-based feature extrac-
tion methods such as ResNet18 [128], MobileNetV2 [129], ShuffleNet [111], and Efficient-
Netb0 [131]. To extract the deep features using these deep learning-based methods, we
employed their pre-trained versions. The features are retrieved from the layer immediately
preceding the classification layer. The features are then classified using the ANN after PCA
95% is applied.

Table 14. Direct comparison of the proposed method to other methods. Bold values signify the best
performance.

Method Accuracy (%)

Proposed 91.8
SPC 54.1

ELLBP 70.47
LBP 71.63
CBP 76.67

CSLBP 76.74
LBP-FOK 85.97
Resnet18 88.48

MobileNetV2 44.85
ShuffleNet 52.28

EfficientNetb0 92.91
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As presented in Table 14, the proposed method achieves superior results to six hand-
crafted methods which are SPC, ELLBP, LBP, CBP, CSLBP, and LBP-FOK. In addition,
other deep learning approaches outperformed all hand-crafted methods. Furthermore, the
proposed method outperforms MobileNet, ShuffleNet, and Resnet18 when compared to
other deep learning methods. EfficientNet, on the other hand, achieved slightly better 1%
results than our proposed method.

4.4. Authentication

Knowing that Authentication is different from Identification in biometric systems, in
this study, to conduct an authentication experiment, five profiles were randomly chosen,
each of which has five FKP images labelled as class 1, belonging to one of the subjects. The
rest of the images belonging to the rest of the subjects are labelled as class 0. The resultant
image dataset is called profile 1, which is used to authenticate subject 1 using the same
approach, for the sake of simplicity, we created five profiles only, each authenticate a specific
subject. We then obtained the deep features using the same aforementioned methodology,
that is we used F6 and F7 features after applying PCA 95%. For the performance assessment,
the 5-fold cross-validation was applied with KNN to obtain the averaged authentication
results. Note that the main aim here is to find out the ability of these features to give a
unique representation of each subject in the FKP images dataset, and therefore, it can be
reliably employed for authentication purposes.

For evaluation purpose, the Equal Error Rate (EER) is considered as a measure for
typical biometric systems, it is normally used to predetermine the threshold values based
on the false acceptance rate and the false rejection rate in a particular biometric system [152].
Tables 15 and 16 present the Authentication EER based on the data profiles created for the
purpose of authentication in this study.

Table 15. Authentication ERR of VGG-19-F6 deep features after applying PCA (95%).

Dataset EER %

Profile 1 0.5
Profile 2 0.12
Profile 3 0.12
Profile 4 0.12
Profile 5 0.37

Avg. 0.24

Table 16. Authentication ERR of VGG-19-F7 deep features after applying PCA (95%).

Experiments EER %

Profile 1 0.1
Profile 2 0.12
Profile 3 0.12
Profile 4 0.63
Profile 5 0.2

Avg. 0.23

As can be seen from Tables 15 and 16, the average authentication for EER is very small
(0.24% when using F6-PCA, and 0.23% when using F7-PCA), having such a small error rate
means that the accuracy of the authentication system is very high, this is expected since
the number of classes in authentication systems is typically two, while in the identification
problem it is equal to the number of subjects in the dataset.

Based on the results in Table 17, our proposed approach, which investigates the use of
deep learning for FKP authentication, has a low error rate and a high false rejection rate
when compared to the other methods such as the work of [153]. However, to the best of
our knowledge, very few previous studies tackled the feasibility of deep learning (VGG-19)
in the improvement of FKP recognition using ANN, KNN, NB, or RF. However, several
studies discussed the feasibility of FKP recognition using machine learning classifiers.
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However, as a matter of fact, the lower EER, the more accurate the process is. Therefore,
compared to [153]; our proposed approach maintains a lower EER rate in both cases of F6
and F7 using PCA. Similarly, lower EER when compared with EER by [154].

Table 17. Authentication EER of [153] compared to ours. Bold values signify the best performance.

Methodology EER %

VGG19 F6 + PCA 0.24
VGG19 F7 + PCA 0.23

[153] 1.02

4.5. Discussion

For the identification/authentication of FKP, our Investigation, which is based on the
evidence in hand (the dataset used, and the method used) concludes the following:

• The ANN is the best classifier to be used for deep features extracted using VGG-19, if
it is provided with the reduced version of the features, otherwise, i.e., if it is applied
on the original pure deep features, which obtained from the VGG-19 layer 6 or 7 or
any merging of them both, the training time would be unacceptably long.

• Using the PCA does not only reduce the dimensionality, and therefore, the training
time significantly, but also allows for increasing the identification accuracy, particularly
when using the ANN classifier.

• In general, the original pure F6 provides more distinctive features compared to F7,
this is evident from the first 8 rows in Table 13.

• Merging the deep features from layers 6 and 7 allows for more distinctive features,
particularly, when using the averaging rule.

• The dimensionality reduction using PCA on the averaged deep features is the best
combination to provide the most distinctive features compared to the other approaches
investigated.

• The extracted features from the deep features using PCA with 95% of data variance
are more distinctive and smaller in number if compared to the other two percentages
(97% and 99%) used, this is evident from the highest accuracy achieved by the ANN
classifier on the deep features obtained by averaging (F6+F7) after applying PCA 95%,
see Table 13, row 14.

• As for the authentication of FKP our investigation concludes that using deep features
obtained from either layer 6 or layer 7 leads to a reasonable FKP authentication system,
particularly when applying PCA on these deep features.

5. Conclusions

In this paper, deep learning network VGG-19 is investigated to be used for FKP
identification or authentication system, using the deep features collected at layers 6 and 7,
with and without dimensionality reduction tools such as the PCA, merging both deep
features (F6 and F7) is also investigated using different rules such as average, maximum,
and minimum.

For the identification system, several machine learning classifiers were applied (such
as ANN, KNN, NB, and RF) on deep features obtained from the open-access dataset IIT
Delhi Finger Knuckle Dataset. The experimental results show that the best identifica-
tion result was obtained when applying the ANN classifier on the principal components
of the averaged feature vector of F6 and F7 deep features preserving 95% of the data
variance. The results also show the potential of using these deep features for an FKP
authentication system.

Furthermore, comparisons to state-of-the-art deep learning-based methods demon-
strate the superiority of the proposed solution; however, we discovered that another deep
learning feature extraction method, EfficientNet, slightly outperforms ours, hence we
recommend more research to be conducted on our method and the other deep features
method, perhaps incorporating more than one deep features method for FKP recognition.
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Aside from the recognition accuracy, the study’s limitations include the use of only
one FKP dataset, one Deep learning method (VGG), and one dimensionality reduction
method (PCA), which we believe is insufficient to make substantial conclusions. As a result,
future research will involve using a more standard FKP dataset with a larger number of
images and subjects. Moreover, more deep learning networks will be investigated such as
AlexNet [155], GoogleNet [156], etc. Besides, other dimensionality reduction techniques
can be used for reducing the dimensionality of the deep features such as DCT, wavelet
transform, etc., which need to be examined when applied into the deep neural network
itself. Moreover, our future work will focus on merging other biometrics with the FKP such
as face, fingerprint, and hand shape altogether, to obtain their deep features in order to
provide a more accurate biometric system.
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