
Citation: Ibrahim, M.; Elhafiz, R.

Integrated Clinical Environment

Security Analysis Using

Reinforcement Learning.

Bioengineering 2022, 9, 253.

https://doi.org/10.3390/

bioengineering9060253

Academic Editor: Lorenzo Farina

Received: 9 May 2022

Accepted: 7 June 2022

Published: 13 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

bioengineering

Article

Integrated Clinical Environment Security Analysis Using
Reinforcement Learning
Mariam Ibrahim * and Ruba Elhafiz

Department of Mechatronics Engineering, German Jordanian University, Amman 11180, Jordan;
r.elhafiz@gju.edu.jo
* Correspondence: mariam.wajdi@gju.edu.jo

Abstract: Many communication standards have been proposed recently and more are being devel-
oped as a vision for dynamically composable and interoperable medical equipment. However, few
have security systems that are sufficiently extensive or flexible to meet current and future safety
requirements. This paper aims to analyze the cybersecurity of the Integrated Clinical Environment
(ICE) through the investigation of its attack graph and the application of artificial intelligence tech-
niques that can efficiently demonstrate the subsystems’ vulnerabilities. Attack graphs are widely
used for assessing network security. On the other hand, they are typically too huge and sophisticated
for security administrators to comprehend and evaluate. Therefore, this paper presents a Q-learning-
based attack graph analysis approach in which an attack graph that is generated for the Integrated
Clinical Environment system resembles the environment, and the agent is assumed to be the attacker.
Q-learning can aid in determining the best route that the attacker can take in order to damage the
system as much as possible with the least number of actions. Numeric values will be assigned to the
attack graph to better determine the most vulnerable part of the system and suggest this analysis to
be further utilized for bigger graphs.

Keywords: attack graph; reinforcement learning; artificial intelligence; Integrated Clinical Environment

1. Introduction

The complexity of networks and security systems, along with the existing vulnerabil-
ities and potential operational faults, necessitates the development and implementation
of powerful automated security analysis techniques. These techniques should enable the
detection of potential attacks, identification of vulnerabilities, essential network resources,
security policies, security bottlenecks, and detecting and correcting faults in network
configurations [1].

Different approaches for security analysis, such as qualitative and quantitative risk
analysis, can be employed at the design stage. The perspective directions in evaluating the
security level of large-scale networks approaches are based on building a representation
of the malefactor’s actions in the form of attack trees or attack graphs, checking various
properties of these trees or graphs using various methods (for example, model checking),
and determining various security metrics [2].

The attack graph technique is a useful method for simulating various attack paths in a
network [3]. A quantitative study of attack graph scans reveals crucial information that can
assist security practitioners in proactively defending their networks.

In recent years, Artificial Intelligence (AI) has been rapidly applied in various fields,
including medical field diagnosis and treatment. In this work, AI will be used to demon-
strate the cybersecurity of interoperable medical equipment. An attack graph can be too
huge and sophisticated for security administrators to analyze. Thus, Q-learning, a type
of model-free reinforcement learning (RL), can be employed to analyze it [4]. In such a
scenario, an agent tries one of the many possible actions in a given state and evaluates the

Bioengineering 2022, 9, 253. https://doi.org/10.3390/bioengineering9060253 https://www.mdpi.com/journal/bioengineering

https://doi.org/10.3390/bioengineering9060253
https://doi.org/10.3390/bioengineering9060253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com
https://orcid.org/0000-0001-5683-3317
https://doi.org/10.3390/bioengineering9060253
https://www.mdpi.com/journal/bioengineering
https://www.mdpi.com/article/10.3390/bioengineering9060253?type=check_update&version=1

Bioengineering 2022, 9, 253 2 of 14

results based on the reward he/she receives. The agent repeatedly attempts all potential
actions in all states, learning which is the best and making decisions based on a long-term
discounted reward [4]. The novelty of this work lies in employing Q-learning techniques
to determine the optimal pathway/attack scenario in the attack graph for the Integrated
Clinical Environment (ICE) system, depending on the attacker’s reward (for example, the
amount of damage an action can cause to the network, and the minimum number of actions
that attacker has to make in order to compromise the system). Additionally, this method
can be beneficial in determining the most vulnerable part of the system, which can help in
building a more secure system. Additionally, our aim is to demonstrate the RL capability
in studying the cybersecurity of a physical cyber system. An attacker is assumed to be the
agent, and the attack graph developed in our prior work through a case study of ICE [5] is
utilized to simulate the environment for Q-learning. Furthermore, the reward system for
the attacker’s possible actions is then modelled using the Common Vulnerability Scoring
System (CVSS). The Q-learning technique is applied to select the attacker’s possible actions
and the optimal path/sequence that the attacker can take to undermine the security of
ICE’s network. The remainder of the paper is laid out as follows: In Section 1.1, we look at
some of the work that has been conducted in this area. The details of our approach are in
Section 2. While in Section 3, we provide the results and analyze them. Finally, in Section 4,
our contribution and future work are clarified.

1.1. Related Work
1.1.1. RL in the Medical Field

The potential uses of RL in the medical field will be the focus of this section. RL has
arisen as a sub-field of AI that studies an agent’s best sequential decision-making process
in non-deterministic situations. Given its increasing application to real-world issues such
as self-driving vehicles, robotics control, computer vision, bioinformatics, and natural
language processing, RL has undergone significant progress in recent years [6].

The authors of [7] suggested that RL has the potential to aid surgical decision making
by advising actions at predetermined intervals and its capacity to use complex input data
such as text, image, and temporal data in the decision-making process. The algorithm
calculates the best recommendation policies by simulating a human trial-and-error learning
process. The author discussed the difficulties in the development and application of RL in
surgical decision making. Nonetheless, the suggested method overlooks components of
medicine that are currently intangible to machines, such as a physician’s perception of a
patient and the practice of medicine itself. Patients are highly unique in terms of personality
and physiology; thus, there is no such thing as a one-size-fits-all strategy for therapeutic
decision making. Instead, a dynamic approach tailored to each patient is required.

Using the RL approach, [8] proposed a new method for medical image segmentation.
This unique concept was used to discover the best local thresholding and structuring
element values to segment the prostate in ultrasound images. This method can be enhanced
in certain ways. For example, states are now defined based on gray-scale values; this should
be expanded to include more image properties such as texture and shape. Furthermore,
the reward function can be altered to attain complete autonomy. The researchers of [9]
constructed a deep reinforcement learning network to predict the location of brain tumors.
To demonstrate that RL may assist radiology AI goes past its infancy and into practical
use. The researchers trained a deep Q-network (DQN) on 70 post-contrast T1-weighted 2D
image slices using the BraTS brain tumor imaging database. They did so in conjunction with
picture exploration, using rewards and punishments to pinpoint lesions. As a consequence,
RL correctly predicted lesion locations with an accuracy of 85%. The approach can be
improved by making its image without the use of an eye tracking point, resulting in a
transition from a one-dimensional state and action space to two dimensions and then three
dimensions for complete volumetric image stacking.

The authors in [10] developed a robust semantic segmentation technique based on a
deep reinforcement learning model. The working idea has been put to the test in a variety

Bioengineering 2022, 9, 253 3 of 14

of medical photographs. The goal was to address one of the conundrums that are now
grabbing the scientific community’s attention. They developed a unique technique to
decrease human effort in the extraction of medical picture masks using deep reinforcement
learning. A more advanced version of the deep q-learning architecture was introduced. As
a result, the method improves deep reinforcement learning for selecting optimal masks
during medical image segmentation. Nonetheless, the authors see that the mask extraction
stage could be improved in future research.

A reinforcement learning-based antihypertensive medication recommendation system
for hypertension patients with type 2 diabetes (T2DM) was proposed in [11]. This study
tries to tackle the problem of precision medicine by combining massive amounts of elec-
tronic health data with machine learning, which led to the development of Q-learning, a
reinforcement learning model. The authors built the model to be as realistic as feasible
by integrating hypertension risk factors as a state and antihypertensive medicine as an
action. The findings show that the Q-learning model’s hypertension treatment is significant
as it correctly predicts the trend of a shift from monotherapy to dual and triple therapy
as the patient’s condition worsens. The authors also demonstrated the effectiveness of
the proposed methodology by lowering patients’ blood pressure levels. However, they
only deal with one type of medical record, which is provided by the Korean national
health institution.

1.1.2. RL for Cybersecurity

Cyber vulnerability analysis is defined as “the process of detecting and prioritizing
vulnerabilities in a system based on their severity”. It aids in the detection of flaws in a
system and the application of appropriate patches [12].

Many pieces of research were conducted to explore RL algorithms to determine the
cyber vulnerabilities of different systems and networks. For instance, in [13], an AI-based
penetration testing system was suggested and assessed; it employs machine learning tech-
niques, specifically RL, to learn and replicate average and complex penetration testing
operations. The suggested system is called the Intelligent Automated Penetration Testing
System (IAPTS), and it consists of a module that connects with industrial penetration
testing frameworks to allow them to record data, learn from experience, and replicate tests
in the future similar testing scenarios. This method attempts to reduce human resources
while delivering significantly improved outcomes in terms of testing time, reliability, and
frequency. The IAPTS’s main drawback is that it requires high-quality human expert
supervision during the early learning phases when a human trainer will perform penetra-
tion testing alongside IAPTS, adjust the learning, and veto the system’s output to ensure
high-quality training.

An analytical framework is presented by [14] that is made up of five security fields
and eight industrial areas in the source. This methodology enables a systematic review of
artificial intelligence research that contributes to cybersecurity. The framework is utilized
to analyze the patterns and future fields of interest for RL-based research in information
system security. However, the proposed framework needs to be refined and validated.

In our previous work [15], we assessed the robustness of power systems in the face
of unusual operating conditions, which is critical for adapting successful planning and
operation measures. Under sequential topological attacks, the level-of-resilience (LoR)
metric was created to assess power system resiliency in terms of the minimal number
of faults required to cause a system outage (blackout). The LoR is calculated using four
deep reinforcement learning (DRL)-based agents: deep Q-network (DQN), double DQN,
REINFORCE (Monte-Carlo policy gradient), and REINFORCE with baseline. Three case
studies based on the IEEE 6-bus test system were investigated. The double DQN network
agent had the highest success rate and was the fastest among the other agents; accordingly,
it can be a useful tool for assessing resiliency. Nonetheless, in this work, we analyze the
cybersecurity of the ICE system by utilizing the Q-learning technique to observe the great
impact that an attacker may inflict on the system.

Bioengineering 2022, 9, 253 4 of 14

A Deep Q-learning-based (DQL) reinforcement learning model to detect and categorize
multiple network intrusion attack classes is presented in [16]. A labeled dataset is fed into
the proposed DQL model, which subsequently employs a deep reinforcement learning
technique based on deep Q networks. The experimental findings showed that the proposed
DQL model could learn effectively from the environment on its own and is capable of
accurately categorizing different forms of network intrusion attacks. However, the method
is not put on a true cloud-based environment to enable the DQL agent to develop its
self-learning skills and identify threats with high accuracy in real-time.

2. Preliminaries
2.1. Attack Graph

Multiple vulnerabilities can be coupled to advance an infiltration using attack graphs.
An exploit of vulnerabilities between connected hosts is characterized as a transition
between system states in an attack graph, and security-related conditions reflect the system
state [17]. There has been already a lot of progress in the generation of attack graphs, with
more efficient approaches for doing so [18]. To automatically generate an attack graph, a
network attack model is developed first with security conditions and rules (exploits) for
modifying the attack state based on the security requirements. The analysis is then carried
out to develop exploit sequences that lead to an unsafe network state, which may then be
structured in a graph. For this type of network attack analysis, various methods have been
proposed, including logic-based (symbolic model checker) approaches [19–21] and explicit
graph-based approaches [22–24].

However, due to their complexity, attack graphs are difficult for humans to use
successfully [25]. Even a medium-sized network can contain dozens of possible attack
vectors, which can overwhelm a human user with the volume of data given. It’s difficult
for a person to figure out which configuration settings should be modified based on the
information in the attack graph to effectively address the detected security issues. More
effort is also needed to evaluate alternative configuration modifications and verify that
optimal changes that are implemented without a good awareness of the existing security
problems [26].

Improvements in the visualization of attack paths and the overall presentation of attack
graph data have been made in previous work. For example, the researchers in [27] proposed
that the usage of protection domains to represent groups of systems with unrestricted
interconnectivity can reduce complexity. Visualization approaches were developed in [28]
to emphasize essential attack processes while clearly illustrating host-to-host reachability.

In this work, the cybersecurity for the ICE system shown in Figure 1 is investigated
through the inspection of its generated attack graph from our earlier work [5], as shown in
Figure 2.

Bioengineering 2022, 9, x FOR PEER REVIEW 5 of 14

(h) of the ICE system components. The components’ inherited vulnerabilities and connec-
tivity (static variables) are necessary as part of the preconditions for attacks to occur.

Figure 1. Integrated Clinical Environment (ICE).

Figure 2. Integrated Clinical Environment’s attack graph.

Figure 1. Integrated Clinical Environment (ICE).

Bioengineering 2022, 9, 253 5 of 14

Bioengineering 2022, 9, x FOR PEER REVIEW 5 of 14

(h) of the ICE system components. The components’ inherited vulnerabilities and connec-
tivity (static variables) are necessary as part of the preconditions for attacks to occur.

Figure 1. Integrated Clinical Environment (ICE).

Figure 2. Integrated Clinical Environment’s attack graph.

Figure 2. Integrated Clinical Environment’s attack graph.

The ICE system consists of 6 sub-systems: Caregiver (C), Supervisor (S), Hospital
Information System (HIS), Data logger (DL), Network Controller (NC) and Medical Devices
(MD). The system vulnerabilities that were determined through the network are firmware
update vulnerability and Electromagnetic vulnerability (EMV). These vulnerabilities can be
exploited producing 5 cyber-attacks: Spoofing (SP), Denial of Service (DoS), Buffer overflow
(BOF), Trojan Horse (TH) and Intelligent Gathering (IG). The attack graph that represents
how the agent uses the previously mentioned attacks to penetrate the ICE’s network
contains 10 different paths and 7 nodes. Each node specifies the evolution of the system’s
state whose variables change as a result of attacks (dynamic variables). These variables are:
attacker’s authority (y), system information (k), and hardware manipulation (h) of the ICE
system components. The components’ inherited vulnerabilities and connectivity (static
variables) are necessary as part of the preconditions for attacks to occur.

At the beginning, the attacker is assumed to be at node number 1 and has authority
over his/her device, but all the other dynamic variables are assumed to be 0, and the goal is
to violate the security property which is presented in the terminating node number 7. The
violation of the security property for this system occurs when the attacker has no authority

Bioengineering 2022, 9, 253 6 of 14

over the MD system and cannot manipulate its hardware. In light of the security property,
the attacker’s goal is to gain control and disrupt the medical device’s functionality. He/She
can accomplish this by pursuing one of the attack graph’s routes. For example, suppose
the attacker has root access to AP at the outset, the attack SP_APS is used to spoof the
S’s device. The attacker takes control of the S’s device as well as the S’s authentication
credentials. The attacker then does a Buffer overflow attack (BOF_SNC) to seize control
of the target NC. Using this permission, a Denial-of-Service attack (DOS_NCMD) attack
exploiting EMV in the MD is carried out in order to harm medical devices or drain their
batteries, putting the patient’s health at risk.

2.2. Common Vulnerability Scoring System

CVSS is an open framework for conveying IT vulnerability characteristics and im-
plications. Adopting this uniform vocabulary will be beneficial for the evaluation of IT
vulnerabilities, IT administrators, vulnerability bulletin providers, security companies,
application vendors, and researchers [29]. For instance, a graph theory-based security
threat model is presented by [30]. They used a Markov chain to discover attack vectors
through several security threats in a model with three states for this purpose. To support
the demonstration of the security threat model to compute the probability distribution of
security threats, twelve security threats were reported by Cloud Security Alliance (CSA),
and seven security vulnerabilities rated by CVSS were explored.

The National Vulnerability Database (NVD) and the Exploit Database were utilized by
the researchers in [31] to demonstrate how CVSS measures combined with each other can
provide better insight into exploit latency. When conditioned on more than two measures,
they discovered that there are classes of vulnerabilities with a very short median time to
attack (as low as three days). These vulnerability classes give valuable information for
prioritizing patching and exploit mitigation.

Nonetheless, the CVSS metric is divided into three categories: Base, Temporal, and
Environmental. The Base metric category represents a vulnerability’s inherited properties
that remain consistent over time and across user environments. It comprises two types of
metrics: those that assess exploitability and those that assess impact. The exploitability
metrics represent the ease with which a vulnerability can be abused as well as the technical
means by which it can be exploited. That is, they represent characteristics of the vulnerable
entity, which is formally referred to as the vulnerable component. The Impact metrics
describe the immediate consequence of a successful exploit, and they represent the impact
on the thing that is affected, which is formally designated as the impacted component [32].

The Temporal metric category highlights a vulnerability’s features that change over
time but not across user environments. The inclusion of a basic exploit kit, for example,
would raise the CVSS score, but the creation of an official fix would lower it [33].

The Environmental metric group represents susceptibility characteristics that are
specific to a given user’s environment. The presence of security mechanisms that may
minimize part or all of the repercussions of a successful attack, as well as the relative
importance of a susceptible system within a technology infrastructure, are all factors to
consider [34].

In this paper, we used an online CVSS calculator [35] to calculate the CVSS score for
each attack in the ICE system, as shown in Table 1.

Bioengineering 2022, 9, 253 7 of 14

Table 1. Attacks’ CVSS Scores.

Attack Name Base Score Temporal Score Environmental Score Overall Score

SP_APC 4.4 4.2 3.6 3.6

IG_APS 3.5 3.1 3.1 3.1

SP_APS 4.4 4.2 3.6 3.6

IG_CS 3.5 3 4 4

TH_CS 8 7.5 7.6 7.6

TH_APS 7.6 7.1 7.2 7.2

BOF_SNC 8 8.1 8.1 8.1

DoS_SNC 8 8 8.1 8.1

DoS_NCMD 7.5 7.5 10 10

For instance, for the spoofing attack that was executed by the host AP against subsys-
tem C (SP_APC), the inputs that were fed into the calculator were as follows:

- For the (Attack Vector), our input was Local, which means that the vulnerable part
is not linked to the network stack, and the attacker’s direction is via read/write/
execute capabilities.

- For the (Attack Complexity), the Low input was fed to the calculator, indicating that
there are no special access requirements or mitigating circumstances. When attacking
the vulnerable component, an attacker might expect to have consistent success.

- The input for the (Privileges Required) is None, which means that the attacker is
unauthorized before preceding the attack, he or she does not need access to the
vulnerable system’s settings or data to carry it out.

- Required was the input for the (User Interaction field), meaning that the user must
take some action before the vulnerability to be successfully exploited.

- The (Scope) field was answered as Unchanged, indicating that only resources managed
by the same security authority can be impacted by an exploited vulnerability.

- The Low answer was fed to the two fields (Confidentiality) and (Integrity), indicating
the following: Confidentiality has been compromised, and the attacker has access
to some protected information, but he or she has no control over what information
is gained or how much of it is obtained. Additionally, for Integrity, it means that
the modification of data is possible, but the attacker does not have control over the
consequence of a modification, or the amount of modification is limited.

- The (Availability) is None because, within the damaged component, there is no impact
on availability.

- (Exploit Code Maturity) input is a Proof-of-Concept, which means for most systems, a
proof-of-concept exploit code is available, or an attack demonstration is impractical.
The code or technique may not work in all circumstances, and a competent attacker
may need to make significant changes.

- Not Defined was the answer for both (Remediation Level) and (Report Confidence);
this input shows that there is insufficient information to choose one of the other values
and has no effect on the overall Temporal Score.

- For the (Confidentiality Requirement), our input was Medium because the loss of (Con-
fidentiality, Integrity, Availability) will almost certainly have serious consequences on
the organization.

These inputs resulted in an overall score of 3.6.

2.3. Reinforcement Learning

Quantitative security assessments of large-scale enterprise networks can be performed
using Reinforcement Learning (RL) techniques. RL is identified as a type of online learning
that takes place in real-time. When interacting with the environment, agents choose and

Bioengineering 2022, 9, 253 8 of 14

carry out activities that have an impact on the environment. At the same time, agents
constantly alter their activities in response to the reinforcement signal provided by the
environment by using the trial-and-error approach, and the system behavior obtains the
greatest value of the cumulative reward from the environment [36].

Q-learning [4] is one of the RL strategies. It is a simple method for agents to carry
out actions optimally in controlled Markovian domains [37]. Its model consists of an
agent, states, and a set of actions for each state for the agent. An action refers to the
agent’s transition between states. The agent receives a quantitative value reward for
taking an action in a certain state. The agent’s goal is to maximize his/her entire reward.
The associated reward, which is environmental feedback, determines the quality of each
action [38].

A novel Q-learning-based vulnerability study of the electrical power grid in sequential
topological attacks was described in [39]. The Q-learning-based sequential method was able
to identify vulnerable sequences that led to severe blackouts in the system by monitoring
the change in the system’s topology. This technique not only increased the number of line
outages through the learning process but also reduced the number of attacks initiated by
removing failed attack sequences that did not exploit the cascading outage vulnerability.

The authors of [40] provided a game-theoretic approach for describing the decision-
making process of cybersecurity monitoring. They examined versions of Q-learning algo-
rithms to reflect the genuine conditions of decision making in a security game (e.g., Minmax
and Naive Q-learning and Markov games).

Q-learning is a straightforward method for agents to take optimal actions in controlled
Markovian domains [41]. Since this model seeks to find an optimal action selection pol-
icy through agent learning that maximizes the sum of reinforcement functions, rational
allocation aids in learning efficiency. The most common type of reinforcement signal is a
scalar, which is commonly stated as a positive encouragement or a negative punishment.
The agent’s living environment is described as a set of possible states S, in which the agent
may perform a likely action a within a set of possible actions A, then the agent earns a real
return r. The aim of the agent is to learn a control strategy (Optimal policy π) π : S→ A to
maximize the expected value of these returns, with the subsequent return value lowered as
the index delay increases [42]. To learn Q-value, Equation (1) describes a reliable way to
estimate the training value on the basis of immediate return sequences expanded in the
timeline only [43].

Q(s, a) = r(s, a) + γmaxQ(δ(s, a), á)
á

(1)

where γ represents a discount factor that is set between 0 and 1, which models the fact that
future rewards are worth less than immediate rewards; in this work, the value of γ is 1.
δ(s, a) is the new state resulting from applying action a to s.

The learning machine represents assumptions via a Q-table in the training algorithm,
with each state–action pair having an entry that stores the current assumptions of Q(s, a).
The agent observes the current state s, selects and performs a specific action a, and then
observes the returned result r = r(s, a) and the new state s′ = δ(s, a). The agent then
updates each of these entries. Equation (2) represents the rules [44]:

Q̂(s, a)← r + γmaxQ̂(ś, á)
á

(2)

The agent was utilized in this training process to refine the previous state estimate
using the current Q value of the new state. The agent travels through states till he/she
reaches the aimed destination (termination state). An episode is a journey that begins with
the initial state and finishes with the goal state. When the agent reaches the objective state,
he/she begins the next episode [44].

The calculation of the Q table is based on a single goal, and in our work, the goal
is to reach a state where the security property is violated, which is presented only in the
termination node number 7.

Bioengineering 2022, 9, 253 9 of 14

Our used approach is provided in Algorithms 1 and 2, respectively. Initially, the attack
graph is generated for the ICE system using our earlier work [5] based on Architecture
Analysis and Design Language (AADL) and JKind model checker with Graphviz visual-
ization tool. Next, the attack graph is refined using the CVSS overall scores to assign the
rewards values with the RL environment constituting a refinement graph. The Q-learning
technique is applied to select the attacker’s possible actions and the optimal path/sequence
that the attacker (agent) can take to undermine the security of ICE’s network.

Markov Decision Process (MDP) is a stochastic control mechanism that operates in
discrete time. It is a collection of alternative states that a system can be in. The Reset
function is used to return the agent to its initial state, which is specified as state number 1.
This function is called at the start of each training episode and simulation. The terminal
state is used to describe the goal state (node number 7). The Sim function is a function that
is used to simulate a reinforcement learning environment with an agent configured for that
environment. The transition matrix is the likelihood that an action taken in stat s will result
in a transition to state s′. A transition matrix describes the probability of a successful attack
in an attack scenario.

Algorithm 1. Used Approach

Result: Best Solution (Route) and Cumulative Reward Initialization;
1. Generate Attack Graph Using Architecture Analysis and Design Language, JKind checker tool
and Graphviz
2. Convert Attack Graph to Refinement Graph;
3. Formulate the RL problem. Define environment, agent, states, actions, and rewards;
4. Train RL Agent in MDP Environment;

Algorithm 2. Train RL Agent in MDP Environment

Result: The Agent Successfully Finds The Optimal Path Which Results In Cumulative Reward
Initialization;
Create MDP Environment;
1. Create MDP Model With Identified States And Actions;
2. Specify The State Transition And Reward Matrices For The MDP;
3. Specify The Terminal States Of The MDP;
4. Create The RL MDP Environment For This Process Model;
5. Specify The Initial State Of The Agent By Specifying A Reset Function;
Create Q-Learning Agent;
1. Create A Q Table Using The Observation And Action Specifications From The MDP
Environment;
2. Set The Learning Rate Of The Representation;
3. Create A Q-learning Agent;
Train Q-Learning Agent;
1. Specify The Training Options (Episode, Stop Training Criteria);
2. Train The Agent Using The ‘train’ Function;
Validate Q-Learning Results;
1. Simulate The Agent In The Training Environment Using The ‘sim’ Function.

Figure 3 demonstrates a refined graph that presents the Q-learning environment along
with the reward values. These values are assigned to each action that the agent may select.
Vertices (states) represent the system evaluation of dynamic parameters.

At the beginning, the agent location is assumed to be at node number1 (green node),
and he/she can move between the nodes in any path until he/she arrives at the goal state
(node number 7 (red node)). Furthermore, the CVSS overall scores are used to assign the
rewards values. When the attacker reaches the goal state, he/she will stay there forever,
and the cumulative reward will be the sum of each action’s reward. If the agent takes a
backward move or action, the reward for it will be 0. If the agent does not move (stays in
the same node) or moves to a node that is not connected to the node that he/she is in, the
reward will be −1.

Bioengineering 2022, 9, 253 10 of 14

Bioengineering 2022, 9, x FOR PEER REVIEW 10 of 14

and the cumulative reward will be the sum of each action’s reward. If the agent takes a
backward move or action, the reward for it will be 0. If the agent does not move (stays in
the same node) or moves to a node that is not connected to the node that he/she is in, the
reward will be −1.

Figure 3. Refinement graph with nodes from 1–7 representing systems’ states as given in attack
graph.

Table 2 summarizes the possible rewards the agent obtains when moving among the
seven nodes. For example: if the attacker moved from node number 2 to node number 3,
the reward will be 4.

Figure 3. Refinement graph with nodes from 1–7 representing systems’ states as given in attack graph.

Table 2 summarizes the possible rewards the agent obtains when moving among the
seven nodes. For example: if the attacker moved from node number 2 to node number 3,
the reward will be 4.

Table 2. Reward matrix.

R 1 2 3 4 5 6 7

1 −1 3.6 3.1 3.6 −1 −1 −1

2 0 −1 4 −1 −1 −1 −1

3 0 0 −1 7.6 −1 −1 −1

3 0 0 −1 7.2 −1 −1 −1

4 0 −1 0 −1 8.1 8.1 −1

5 −1 −1 −1 0 −1 −1 10

6 −1 −1 −1 0 −1 −1 10

7 −1 −1 −1 −1 0 0 −1

3. Results and Discussion

In this section, we used Python language to apply our Q-learning technique to de-
termine the worst-case attack scenario an attacker can execute against the ICE system,
as determined by the maximum cumulative reward with the least number of actions to
damage the system. The execution time for the used technique is less than an hour on a

Bioengineering 2022, 9, 253 11 of 14

standard computer processor: 2.3 GHz 8-Core Intel Core i9; memory: 16 GB, 2667 MHz
DDR4, running macOS Big Sur.

Figure 4 demonstrates the agent’s training progress when finding the attacker’s/agent’s
best route. The x-axis illustrates the number of episodes, and the y-axis illustrates the cu-
mulative reword for every episode. It took around 10 episodes for the model to converge.
The blue line illustrates the cumulative reward for each episode, while the red one shows
the change in the average reward after each episode, indicating the change in the agent
training after each episode. In other words, we can see in the figure that the average reward
is increasing, which means that the agent’s training is improving throughout the episodes.

Bioengineering 2022, 9, x FOR PEER REVIEW 11 of 14

Table 2. Reward matrix.

R 1 2 3 4 5 6 7
1 −1 3.6 3.1 3.6 −1 −1 −1
2 0 −1 4 −1 −1 −1 −1
3 0 0 −1 7.6 −1 −1 −1
3 0 0 −1 7.2 −1 −1 −1
4 0 −1 0 −1 8.1 8.1 −1
5 −1 −1 −1 0 −1 −1 10
6 −1 −1 −1 0 −1 −1 10
7 −1 −1 −1 −1 0 0 −1

3. Results and Discussion
In this section, we used Python language to apply our Q-learning technique to deter-

mine the worst-case attack scenario an attacker can execute against the ICE system, as
determined by the maximum cumulative reward with the least number of actions to dam-
age the system. The execution time for the used technique is less than an hour on a stand-
ard computer processor: 2.3 GHz 8-Core Intel Core i9; memory: 16 GB, 2667 MHz DDR4,
running macOS Big Sur.

Figure 4 demonstrates the agent’s training progress when finding the at-
tacker’s/agent’s best route. The x-axis illustrates the number of episodes, and the y-axis
illustrates the cumulative reword for every episode. It took around 10 episodes for the
model to converge. The blue line illustrates the cumulative reward for each episode, while
the red one shows the change in the average reward after each episode, indicating the
change in the agent training after each episode. In other words, we can see in the figure
that the average reward is increasing, which means that the agent’s training is improving
throughout the episodes.

Figure 4. Results of Q-learning agent.

The results shows that the worst attack scenario route is through nodes: 1 ⟶ 4 ⟶
6 ⟶ 7, with a cumulative reward of 21. Using this information, we can observe the max-
imum damage the attacker can cause, and we can rank the vulnerable subsystems

Figure 4. Results of Q-learning agent.

The results shows that the worst attack scenario route is through nodes: 1 −→ 4 −→ 6 −→ 7,
with a cumulative reward of 21. Using this information, we can observe the maximum
damage the attacker can cause, and we can rank the vulnerable subsystems accordingly.
Noticing that the first attack was from node number 1 to node number 4. From the
attack graph, we can determine the attack destination is the Supervisor. Then, the agent
moved from node number 4 to node number 6, which means that the agent attacked the
Network Controller. Finally, he/she attacked the Medical Devices by moving from node
number 6 to node number 7. Thus, the most vulnerable subsystems are the Supervisor,
Network Controller, and Medical Devices. We can also rank the most to the least vulnerable
subsystem using the CVSS metric. The most vulnerable subsystems are Medical Devices,
then the Network Controller, and finally, the Supervisor, and this can be concluded by
comparing the CVSS value for each attack that was executed against each subsystem and
observing the diversity of the values. For instance, the CVSS value for the attack that was
executed against the Medical Devices is 10, which is the largest number on the CVSS scale,
while the CVSS values for the attacks that were executed against the Supervisor differ from
3.1 to 7.6, which are less than 10, and this indicates that the Supervisor is not as vulnerable
as Medical Devices.

The authors of [45] used multi-host multi-stage vulnerability analysis (MulVAL) hypo-
thetical analysis to determine all attack scenarios (attack graph) of a network as opposed
to our earlier work based on AADL and JKind model checker [5]. The MulVAL cannot
examine confidentiality or integrity losses vulnerabilities (privilege escalation and denial of
service) as opposed to our attack modeling tool that can examine confidentiality, integrity,

Bioengineering 2022, 9, 253 12 of 14

and availability attacks. They refined the attack graph to generate a transition graph to
model the environment for Q-learning along with CVSS scores for the attacker’s actions.
The generation of the transition graph requires four processes: Process 1 generates all the
paths between attack goals and leaves, which have vulnerabilities. Process 2 generates
edges between leaf nodes that have a vulnerability, and it also gives paths that contain
nodes with an edge to the attack goals. Process 3 finds edges to the attack goals. Process
4 determines the attacker’s initial potential actions and related edges for the transition
graph. However, in our work, the refined graph is just based on assigning reward values
(CVSS scores) immediately to the attack graph transitions among nodes representing the
Q-learning environment.

Different applications of RL that would assist in supplying efficient decisions for
enhancing patient health treatment, prognosis, diagnosis, and condition are discussed
in [46]. RL concentrates on long-term rewards, and it is also capable of managing long and
complicated consecutive decision-making duties with sampled, delayed, and exhaustive
feedback. Our proposed Q-learning approach can be also applied in many real cyber physi-
cal systems applications for security analysis, such as smart grids, wastewater treatment,
nuclear power plants, communication networks, and smart homes.

4. Conclusions

This work represents an attempt to address the most critical aspect of designing secure
ICE systems, which is their cyber-vulnerability through a unique approach based on the
application of Q-learning to the attack graph, which was generated to sum the possible
attack scenarios performed against the ICE. Firstly, a refinement graph was employed to
model the environment, which is a simplified attack graph. Then, the CVSS metric was
used to assign rewards to each state transition. Afterward, the RL problem was formulated,
and finally, the agent was trained in an MDP environment, where the agent successfully
found the optimal path. In our findings, the most vulnerable subsystem was identified
along the optimal path that an attacker could take in order to harm the system with the
least number of steps. These findings can aid with the creation of the optimal action
selection rules to patch the vulnerabilities. In the future, this approach can be enhanced
by introducing the defender that makes appropriate preemptive responses based on a
limited view of the system condition, which is achieved through the use of monitors.
Additionally, it can be further experienced on bigger-sized attack graphs. Additionally,
other techniques can be used to study ICE’s cybersecurity, such as deep reinforcement
learning and SARSA learning.

Author Contributions: Conceptualization, M.I. and R.E.; Methodology, M.I.; Software, M.I. and R.E.;
Validation, M.I. and R.E.; Formal Analysis M.I. and R.E.; Investigation, M.I.; Resources, M.I. and R.E.;
Data Curation, M.I. and R.E.; Writing—Original Draft Preparation, M.I. and R.E.; Writing—Review
and Editing, M.I., and R.E.; Visualization, R.E.; Supervision, M.I.; Project Administration, M.I.; Fund-
ing Acquisition, M.I. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Deanship of Graduate Studies and Scientific Research at
the German Jordanian University, Seed fund SATS 03/2020.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article.

Acknowledgments: The authors would like to acknowledge the Deanship of Graduation Studies
and Scientific Research at the German Jordanian University for the Seed fund SATS 03/2020.

Conflicts of Interest: The authors declare no conflict of interest.

Bioengineering 2022, 9, 253 13 of 14

References
1. Kotenko, I.; Stepashkin, M. Attack graph based evaluation of network security. In IFIP International Conference on Communications

and Multimedia Security; Springer: Berlin/Heidelberg, Germany, 2006; pp. 216–227.
2. Kotenko, I.; Chechulin, A. Attack modeling and security evaluation in SIEM systems. Int. Trans. Syst. Sci. Appl. 2012, 8, 129–147.
3. Ou, X.; Singhal, A. Quantitative Security Risk Assessment of Enterprise Networks; Springer: Berlin/Heidelberg, Germany, 2011.
4. Watkins, C.J.C.H. Learning from Delayed Rewards. Ph.D. Thesis, University of Cambridge, Cambridge, UK, 1989.
5. Ibrahim, M.; Okasha, H.; Elhafiz, R. Security analysis of integrated clinical environment using attack graph. In Intelligent

Sustainable Systems; Springer: Singapore, 2022; pp. 75–83.
6. Yu, C.; Liu, J.; Nemati, S.; Yin, G. Reinforcement learning in healthcare: A survey. ACM Comput. Surv. CSUR 2021, 55, 5. [CrossRef]
7. Datta, S.; Li, Y.; Ruppert, M.M.; Ren, Y.; Shickel, B.; Ozrazgat-Baslanti, T.; Rashidi, P.; Bihorac, A. Reinforcement learning in

surgery. Surgery 2021, 170, 329–332. [CrossRef] [PubMed]
8. Sahba, F.; Tizhoosh, H.R.; Salama, M.M. A reinforcement learning framework for medical image segmentation. In Proceedings of

the 2006 IEEE International Joint Conference on Neural Network, Vancouver, BC, Canada, 16–21 July 2006; pp. 511–517.
9. Stember, J.; Shalu, H. Deep reinforcement learning to detect brain lesions on MRI: A proof-of-concept application of reinforcement

learning to medical images. arXiv 2008, arXiv:2008.02708.
10. Allioui, H.; Mohammed, M.A.; Benameur, N.; Al-Khateeb, B.; Abdulkareem, K.H.; Garcia-Zapirain, B.; Damaševičius, R.;

Maskeliūnas, R. A multi-agent deep reinforcement learning approach for enhancement of COVID-19 CT image segmentation.
J. Pers. Med. 2022, 12, 309. [CrossRef] [PubMed]

11. Oh, S.H.; Lee, S.J.; Park, J. Precision medicine for hypertension patients with type 2 diabetes via reinforcement learning. J. Pers.
Med. 2022, 12, 87. [CrossRef] [PubMed]

12. Kissel, R. (Ed.) Glossary of Key Information Security Terms; Diane Publishing: Collingdale, PA, USA, 2011.
13. Ghanem, M.C.; Chen, T.M. Reinforcement learning for efficient network penetration testing. Information 2019, 11, 6. [CrossRef]
14. Feltus, C. Reinforcement learning’s contribution to the cyber security of distributed systems: Systematization of knowledge. Int.

J. Distrib. Artif. Intell. IJDAI 2020, 12, 35–55. [CrossRef]
15. Ibrahim, M.; Alsheikh, A.; Elhafiz, R. Resiliency assessment of power systems using deep reinforcement learning. Comput. Intell.

Neurosci. 2022, 2022, 2017366. [CrossRef] [PubMed]
16. Alavizadeh, H.; Alavizadeh, H.; Jang-Jaccard, J. Deep Q-learning based reinforcement learning approach for network intrusion

detection. Computers 2022, 11, 41. [CrossRef]
17. Wang, L.; Islam, T.; Long, T.; Singhal, A.; Jajodia, S. An attack graph-based probabilistic security metric. In Proceedings of the IFIP

Annual Conference on Data and Applications Security and Privacy, London, UK, 13–16 July 2008; pp. 283–296.
18. Ingols, K.; Lippmann, R.; Piwowarski, K. 2006, December. Practical attack graph generation for network defense. In Proceedings

of the 22nd Annual Computer Security Applications Conference (ACSAC’06), Washington, DC, USA, 11–15 December 2006;
pp. 121–130.

19. Ramakrishnan, C.R.; Sekar, R. Model-based analysis of configuration vulnerabilities 1. J. Comput. Secur. 2002, 10, 189–209.
[CrossRef]

20. Ritchey, R.W.; Ammann, P. Using model checking to analyze network vulnerabilities. In Proceedings of the 2000 IEEE Symposium
on Security and Privacy, Berkeley, CA, USA, 14–17 May 2000; pp. 156–165.

21. Sheyner, O.; Haines, J.; Jha, S.; Lippmann, R.; Wing, J.M. Automated generation and analysis of attack graphs. In Proceedings of
the 2002 IEEE Symposium on Security and Privacy, Berkeley, CA, USA, 12–15 May 2002; pp. 273–284.

22. Zerkle, D.; Levitt, K.N. NetKuang—A multi-host configuration vulnerability checker. In Proceedings of the USENIX Security
Symposium, San Jose, CA, USA, 22–25 July 1996.

23. Phillips, C.; Swiler, L.P. A graph-based system for network-vulnerability analysis. In Proceedings of the 1998 Workshop on New
Security Paradigms, Charlottesville, VA, USA, 22–25 September 1998; pp. 71–79.

24. Swiler, L.P.; Phillips, C.; Ellis, D.; Chakerian, S. Computer-attack graph generation tool. In Proceedings of the DARPA Information
Survivability Conference and Exposition II, DISCEX’01, Anaheim, CA, USA, 12–14 June 2001; Volume 2, pp. 307–321.

25. Noel, S.; Jajodia, S. Managing attack graph complexity through visual hierarchical aggregation. In Proceedings of the 2004 ACM
Workshop on Visualization and Data Mining for Computer Security, Washington, DC, USA, 29 October 2004; pp. 109–118.

26. Homer, J.; Varikuti, A.; Ou, X.; McQueen, M.A. Improving attack graph visualization through data reduction and attack grouping.
In Proceedings of the International Workshop on Visualization for Computer Security, Cambridge, MA, USA, 15 September 2008;
pp. 68–79.

27. Noel, S.; Jacobs, M.; Kalapa, P.; Jajodia, S. Multiple coordinated views for network attack graphs. In Proceedings of the IEEE
Workshop on Visualization for Computer Security, VizSEC 05, Minneapolis, MN, USA, 26 October 2005; pp. 99–106.

28. Williams, L.; Lippmann, R.; Ingols, K. An interactive attack graph cascade and reachability display. In Proceedings of the VizSEC
2007, Sacramento, CA, USA, 29 October 2007; pp. 221–236.

29. Mell, P.; Scarfone, K.; Romanosky, S. A complete guide to the common vulnerability scoring system version 2.0. In Proceedings of
the 19th Annual FIRST Conference “Private Lives and Corporate Risk”, Seville, Spain, 17–22 June 2007; Volume 1, p. 23.

30. Le, N.T.; Hoang, D.B. Security threat probability computation using Markov chain and common vulnerability scoring system.
In Proceedings of the 28th International Telecommunication Networks and Applications Conference, Sydney, Australia, 21–23
November 2018; pp. 1–6.

http://doi.org/10.1145/3477600
http://doi.org/10.1016/j.surg.2020.11.040
http://www.ncbi.nlm.nih.gov/pubmed/33436272
http://doi.org/10.3390/jpm12020309
http://www.ncbi.nlm.nih.gov/pubmed/35207796
http://doi.org/10.3390/jpm12010087
http://www.ncbi.nlm.nih.gov/pubmed/35055402
http://doi.org/10.3390/info11010006
http://doi.org/10.4018/IJDAI.2020070103
http://doi.org/10.1155/2022/2017366
http://www.ncbi.nlm.nih.gov/pubmed/35432512
http://doi.org/10.3390/computers11030041
http://doi.org/10.3233/JCS-2002-101-209

Bioengineering 2022, 9, 253 14 of 14

31. Feutrill, A.; Ranathunga, D.; Yarom, Y.; Roughan, M. The effect of common vulnerability scoring system metrics on vulnerability
exploit delay. In Proceedings of the 6th International Symposium on Computing and Networking (CANDAR), Takayama, Japan,
27–30 November 2018; pp. 1–10.

32. Singh, U.K.; Joshi, C. Quantitative security risk evaluation using CVSS metrics by estimation of frequency and maturity of exploit.
In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 19–21 October 2016;
Volume 1, pp. 19–21.

33. Mell, P.; Scarfone, K.; Romanosky, S. Common vulnerability scoring system. IEEE Secur. Priv. 2006, 4, 85–89. [CrossRef]
34. Cheng, Y.; Deng, J.; Li, J.; DeLoach, S.A.; Singhal, A.; Ou, X. Metrics of security. In Cyber Defense and Situational Awareness; Springer:

Cham, Switzerland, 2014; pp. 263–295.
35. National Vulnerability Database. Common Vulnerability Scoring System Calculator. Available online: https://nvd.nist.gov/

vuln-metrics/cvss/v3-calculator (accessed on 30 April 2022).
36. El-Tantawy, S.; Abdulhai, B.; Abdelgawad, H. Multiagent reinforcement learning for integrated network of adaptive traffic signal

controllers (MARLIN-ATSC): Methodology and large-scale application on downtown Toronto. IEEE Trans. Intell. Transp. Syst.
2013, 14, 1140–1150. [CrossRef]

37. Fu, J.; Kumar, A.; Soh, M.; Levine, S. Diagnosing bottlenecks in deep q-learning algorithms. In Proceedings of the International
Conference on Machine Learning, Long Beach, CA, USA, 9–15 June 2019; pp. 2021–2030.

38. Kaelbling, L.P.; Littman, M.L.; Moore, A.W. Reinforcement learning: A survey. J. Artif. Intell. Res. 1996, 4, 237–285. [CrossRef]
39. Yan, J.; He, H.; Zhong, X.; Tang, Y. Q-learning-based vulnerability analysis of smart grid against sequential topology attacks. IEEE

Trans. Inf. Forensics Secur. 2016, 12, 200–210. [CrossRef]
40. Chung, K.; Kamhoua, C.A.; Kwiat, K.A.; Kalbarczyk, Z.T.; Iyer, R.K. Game theory with learning for cyber security monitoring. In

Proceedings of the 2016 IEEE 17th International Symposium on High Assurance Systems Engineering (HASE), Orlando, FL, USA,
7–9 January 2016; pp. 1–8.

41. Baird, L.C. Reinforcement learning in continuous time: Advantage updating. In Proceedings of the 1994 IEEE International
Conference on Neural Networks (ICNN’94), Orlando, FL, USA, 28 June–2 July 1994; Volume 4, pp. 2448–2453.

42. Fu, W.T.; Anderson, J.R. From recurrent choice to skill learning: A reinforcement-learning model. J. Exp. Psychol. Gen. 2006,
135, 184. [CrossRef] [PubMed]

43. Zhang, Q.; Li, M.; Wang, X.; Zhang, Y. Reinforcement learning in robot path optimization. J. Softw. 2012, 7, 657–662. [CrossRef]
44. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
45. Yousefi, M.; Mtetwa, N.; Zhang, Y.; Tianfield, H. A reinforcement learning approach for attack graph analysis. In Proceedings

of the 2018 17th IEEE International Conference on Trust, Security and Privacy in Computing and Communications/12th IEEE
International Conference on Big Data Science and Engineering (TrustCom/BigDataSE), New York, NY, USA, 1–3 August 2018; pp.
212–217.

46. Gandhia, N.; Mishraa, S. Applications of reinforcement learning for medical decision making. In Proceedings of the RTA-CSIT
2021, Tirana, Albania, 21–22 May 2021.

http://doi.org/10.1109/MSP.2006.145
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
https://nvd.nist.gov/vuln-metrics/cvss/v3-calculator
http://doi.org/10.1109/TITS.2013.2255286
http://doi.org/10.1613/jair.301
http://doi.org/10.1109/TIFS.2016.2607701
http://doi.org/10.1037/0096-3445.135.2.184
http://www.ncbi.nlm.nih.gov/pubmed/16719650
http://doi.org/10.4304/jsw.7.3.657-662

	Introduction
	Related Work
	RL in the Medical Field
	RL for Cybersecurity

	Preliminaries
	Attack Graph
	Common Vulnerability Scoring System
	Reinforcement Learning

	Results and Discussion
	Conclusions
	References

