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Featured Application: Brain–computer interfaces as assistive technology to restore communica-
tion capabilities for disabled patients.

Abstract: The usability of EEG-based visual brain–computer interfaces (BCIs) based on event-related
potentials (ERPs) benefits from reducing the calibration time before BCI operation. Linear decoding
models, such as the spatiotemporal beamformer model, yield state-of-the-art accuracy. Although
the training time of this model is generally low, it can require a substantial amount of training data
to reach functional performance. Hence, BCI calibration sessions should be sufficiently long to provide
enough training data. This work introduces two regularized estimators for the beamformer weights.
The first estimator uses cross-validated L2-regularization. The second estimator exploits prior
information about the structure of the EEG by assuming Kronecker–Toeplitz-structured covariance.
The performances of these estimators are validated and compared with the original spatiotemporal
beamformer and a Riemannian-geometry-based decoder using a BCI dataset with P300-paradigm
recordings for 21 subjects. Our results show that the introduced estimators are well-conditioned
in the presence of limited training data and improve ERP classification accuracy for unseen data.
Additionally, we show that structured regularization results in lower training times and memory
usage, and a more interpretable classification model.

Keywords: brain–computer interface; event-related potential; beamforming; regularization

1. Introduction

Brain–computer interfaces (BCIs) establish a direct communication pathway between
the brain and an external device [1]. Severely disabled patients with impaired or ab-
sent communication capabilities can benefit from BCIs to restore normal functioning [2,3].
BCIs can be implemented in multiple ways, using non-invasive recording techniques such
as electroencephalography (EEG) [4], magnetoencephalography (MEG) [5], functional near-
infrared spectroscopy (fNIRS) [6], and optically pumped magnetometers (OPM MEG) [7],
or semi-invasive and invasive methods such as electrocorticography (ECoG) [8] or mi-
croelectrode arrays [9], which require surgery to implant a recording device. Although
invasive BCIs yield the highest information transfer rate [10], non-invasive BCIs are prefer-
able for short-term use since they are not susceptible to the risks that come with surgery.
Among the non-invasive options, EEG is the most cost-effective and practical as it is not
limited to the same controlled settings as MEG and OPM MEG.

In addition to the recording method, BCIs differ in the communication paradigms
used for communication [4]. A popular class of BCI paradigms relies on the evocation
of event-related potentials (ERPs) in the brain in response to visual, auditory, or tactile
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stimulation, given their low decoding cost and generally short calibration time before
usage [11,12]. In this study we focused on the visual P300 oddball ERP in response to a rare
but attended visual stimulus. The decoder detects whether this ERP is present to determine
which stimulus the user attended. The P300 paradigm has been used extensively in BCI
development and is easy to set up [13–16].

There are multiple state-of-the-art P300 classification methods, such as support vector
machines (SVMs) [17], deep learning models [18,19], and Riemannian geometry classi-
fiers [15]. Although these models often return a high classification accuracy, there is a need
for lightweight models, as lightweight models lead to fast off-line analyses and can be
transferred to consumer-grade hardware. When moving towards plug-and-play solutions,
BCI calibration sessions should be short and model training times should be low. The spa-
tiotemporal beamformer [20,21] belongs to this class of ERP-decoding models as it achieves
state-of-the-art performance and is fast to train. Earlier work has shown that it is possible
to apply the spatiotemporal beamformer to multiple time-locked visual BCI paradigms,
including the P300 oddball paradigm, steady-state visually evoked potentials (SSVEPs),
code-modulated visually evoked potentials (cVEPs) [22], and motion-onset visually evoked
potentials (mVEPs) [23].

This work shows that the original spatiotemporal beamformer [21] can fall short in its
performance when BCI calibration data are restricted. We also show that the spatiotem-
poral beamformer does not scale well for higher spatial and temporal resolution cases.
As a response to these issues, we introduce a regularization method that exploits prior
knowledge about the spatiotemporal nature of the EEG signal to improve the accuracy
for settings with low data availability and to speed up the classifier training time, thereby
considerably reducing memory usage. Similar structured regularization approaches have
been applied to other linear ERP classifiers [24,25] and have shown significant increases
in performance. Additionally, we show that regularization results in an interpretable classi-
fication model, which can aid in analyzing and developing spatiotemporal beamformer-
based classifiers.

2. Materials and Methods
2.1. Notation

We represent matrices with cursive capital letters, vectors with bold lowercase letters,
and scalars with cursive lowercase letters. The epoched EEG data with n epochs, c channels,
and s samples are represented in epoch format as {Xi ∈ Rc×s}n

i=1 or in flattened vector
format by concatenating all channels for each epoch. Flattening results in {xi ∈ Rcs}n

i=1
such that xi = vec(Xi). The real covariance matrix of the epochs in vector format is denoted
by C, and estimators thereof as Ĉ.

2.2. Spatiotemporal Beamforming

LCMV-beamforming was initially introduced to EEG analysis as a filter for source
localization [26] to enhance the signal-to-noise ratio (SNR). Van Vliet et al. [20] first applied
the spatiotemporal LCMV-beamformer as a method for the analysis of ERPs. The extension
of this method to the combined spatiotemporal domain [20] and the data-driven approaches
proposed by Treder et al. [27] and Wittevrongel et al. [21] allow for its application to
classification problems.

For the following analyses, we assume that all EEG channels are normalized with zero
mean and unit variance without loss of generality. Solving Equation (1) under the linear
constraint given by Equation (2) returns the filter weights w defining the spatiotemporal
LCMV-beamformer.

arg min
w

wᵀCwᵀ (1)

aᵀw = 1 (2)

These weights minimize the variance of the output of the filter while enhancing
the signal characterized by the constraint. a = vec(A) is the data-driven activation pattern,
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a template of the signal of interest maximizing the difference between two classes of epochs,
determined as follows:

a =
1

|class 1| ∑
class 1

xi −
1

|class 2| ∑
class 2

xi (3)

The method of Lagrange multipliers then gives the closed-form solution to the mini-
mization problem posed by Equations (1) and (2) as:

w =
C−1aᵀ

aC−1aᵀ
(4)

The beamformer can be applied to epochs (unseen or not) as:

yi = wxi (5)

resulting in a scalar output yi per epoch. The linear constraint in Equation (2) ensures
that the beamformer maps epochs containing a target response to a score close to one and,
conversely, epochs not containing a target response to a score close to zero.

2.3. Covariance Matrix Regularization

Although the spatiotemporal beamformer, in theory, achieves optimal separation
between target and non-target classes, in analogy to linear discriminant analysis [27], it
does not always perform well on unseen data. The main challenge is to find a good
estimator for the inverse covariance matrix C−1 since the real underlying covariance matrix
generating the data is, in principle, unknown.

2.3.1. Empirical Covariance Estimation

Earlier spatiotemporal beamformer studies [21,22,28,29] use the empirical covariance
and inverse covariance, calculated as follows:

Ĉemp =
1

n− 1

n

∑
i=1

xix
ᵀ
i (6)

Ĉ−1emp = Ĉ+
emp (7)

The Moore–Penrose pseudoinverse + ensures that a solution exists when Ĉemp is
singular. Figure 1a,b show examples of the empirical estimators of the covariance and
the inverse covariance matrices, respectively. The empirical estimator suffers from perfor-
mance and stability issues if the number of epochs n used for estimation is not much larger
than the number of features cs [30,31].

2.3.2. Shrunk Covariance Estimation

The shrinkage covariance estimator creates a better-conditioned inversion matrix
problem and generally performs better when applied to unseen data. The estimators
for the covariance and inverse covariance are given by:

Ĉα = (1− α)Ĉemp + α
Tr(Ĉemp)

cs
I (8)

Ĉ−1
α = Ĉ+

α (9)

with 0 < α < 1. Analogous to L2 regularization of the beamforming problem, shrinkage
reduces the ratio between the smallest and largest eigenvalues of the covariance matrix by
strengthening the diagonal. Figure 1c,d show examples of the shrunk estimator of the co-
variance and the inverse covariance matrices, respectively.
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Figure 1. Different estimators of the covariance and inverse covariance of 100 epochs of data
from Subject 01 for channels Fz, Cz, Pz, and Oz and time samples between 0.1 s and 0.6 s.
Regularized estimators of the inverse covariance exhibit less extreme values and have a sparser
structure. (A,B) Empirical covariance and inverse covariance matrices. (C,D) Shrunk covariance and
inverse covariance matrices with α = 0.14 as determined by the closed-form leave-one-out cross-
validation (LOOCV) method. (E,F) Kronecker–Toeplitz-structured covariance and inverse covariance
matrices. (G,H) Spatial Kronecker factor of the Kronecker–Toeplitz-structured shrunk estimator and
its inverse. (I,J) Temporal Kronecker factor of the Kronecker–Toeplitz-structured shrunk estimator
and its inverse.

Earlier work [23] applied shrinkage regularization to ERP decoding with the spatiotem-
poral beamformer and showed competitive performance compared to other state-of-the-art
decoding techniques such as stepwise LDA or SVM. The abovementioned researchers
chose the shrinkage coefficient α as a fixed hyperparameter. However, its optimal value
depends on the number of training epochs, the covariance matrix’s dimensionality, and
the independence and variance of the data, which can vary across evaluation settings
and per session. The optimal value for α can be found with a line search using cross-
validation method, but this can be a costly procedure. Methods exist to estimate an optimal
shrinkage value directly from the data. Most notable among these are the Ledoit–Wolf
procedure [32], the Rao–Blackwell Ledoit–Wolf method [33], and the oracle approximating
shrinkage method [33]. A more recent estimation method [34] emulates a leave-one-out
cross-validation (LOOCV) scheme expressed by the data-driven closed-form estimate:

α = 1−
n

n−1 Tr(Ĉ2
emp)− 2

cs
[
Tr(Ĉemp)

]2
+ 1

cs Tr(Ĉ2
emp)− 1

n(n−1) ∑n
i=1 ||xi||42

n2−2n
(n−1)2 Tr(Ĉ2

emp)− 2
cs
[
Tr(Ĉemp)

]2
+ 1

cs Tr(Ĉ2
emp) +

1
n(n−1)2 ∑n

i=1 ||xi||42
(10)

Herein, we opt for the LOOCV shrinkage estimator because it avoids some of the as-
sumptions made by [32,33] and because it generalizes to structured covariance estimations,
as described in Section 2.3.3.

2.3.3. Spatiotemporal Beamforming with Kronecker–Toeplitz-Structured Covariance

Exploiting prior knowledge about the spatiotemporal structure of the EEG signal leads
to a more regularized estimator of the covariance. When viewing the example of empirical
spatiotemporal EEG covariance in Figure 1a, it becomes clear that this matrix consists
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of a block pattern of repeated, similar matrices. Due to the multi-channel nature of the sig-
nal, we assume that the covariance of spatiotemporal EEG epochs is a Kronecker product
of two smaller matrices [35–37], as expressed by:

Ĉstruct = Ŝ⊗ T̂ (11)

with ⊗ denoting the Kronecker product operator. Ŝ ∈ Rc×c and T̂ ∈ Rs×s correspond
to estimators of the spatial and temporal covariance of the data, respectively. Furthermore,
because the temporal covariance of the EEG-signal is stationary (i.e., it is only dependent
on interval length between covarying time samples) [38], it is assumed to have a Toeplitz-
matrix structure:

t̂i,j = t̂i+1,j+1 (12)

Property 1 then leads to Equation (13) to estimate the inverse covariance.

Property 1. (U ⊗V)+ = U+ ⊗V+ for any non-singular matrices U and V [39].

Ĉ−1struct = Ŝ+ ⊗ T̂+ (13)

Finally, based on Property 2, Equation (4) can be reformulated more efficiently
as Equation (14).

Property 2. (U ⊗ V) · vec(W) = vec(VWUᵀ) for any matrices U ∈ Rp×p, V ∈ Rq×q, and
W ∈ Rp×q [40].

ŵstruct =
Ŝ+AT T̂+

a · vec(Ŝ+AT T̂+)
(14)

Using Equation (14) removes the need to calculate the full, high-dimensional Kronecker
product Ŝ+ ⊗ T̂+. Figure 1e,f show examples of the structured covariance and inverse
covariance estimators, respectively, consisting of a spatial Kronecker factor (Figure 1g,h)
and a temporal component (Figure 1i,j).

The Kronecker approach has shown significant performance yields in different linear
spatiotemporal EEG and MEG applications [24,37,41–43]. Van Vliet and Salmelin [25]
applied a Kronecker-structured covariance estimator to ERP classification with linear
models in a post hoc fashion. Our work goes further by embedding the Kronecker struc-
ture in the spatiotemporal beamformer training process, using a data-adaptive shrinkage
method, and regularizing the covariance further by imposing a Toeplitz structure on the
temporal covariance.

2.3.4. Kronecker–Toeplitz-Structured Covariance Estimation

The question remains how to estimate Ŝ and T̂. Although the flip-flop and non-iterative
flip-flop algorithms [44–46] can estimate Kronecker or Kronecker–Toeplitz-structured co-
variances, new results show that a fixed point iteration is more efficient [47,48]. After
each iteration, the spatial and temporal covariance matrices are scaled to unit variance
to ensure that the fixed-point iteration converges. Finally, shrinkage can also be intro-
duced in the fixed-point iteration to improve stability and achieve more robust regulariza-
tion [42,48–50].

The spatial and temporal covariance matrices are shrunk at every fixed-point iteration
with shrinkage factors βk and γk before matrix inversion in the next iteration. Combined,
this leads to the iterative estimation algorithm described by the following equations:

S̃k+1 =
1
n

n

∑
i=1

Xᵀ
i T̂+

k Xi (15a)
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T̃k+1 =
1
n

n

∑
i=1

XiŜ+
k Xᵀ

i (15b)

S̃(β)
k+1 = (1− βk+1)S̃k+1 + βk+1

Tr(S̃k+1)

c
I (16a)

T̃(γ)
k+1 = (1− γk+1)T̃k+1 + γk+1

Tr(T̃k+1)

s
I (16b)

Ŝk+1 =
c

Tr
[
S̃(β)

k+1

] S̃(β)
k+1 (17a)

T̂k+1 =
s

Tr
[

T̃(γ)
k+1

] T̃(γ)
k+1 (17b)

Ŝ0 and T̂0 can be initialized to any positive definite matrix. We choose to use the identity
matrices Ic×c and Is×s. After each iteration, all diagonals of R̂k+1 are set to their mean
values to ensure that R̂k+1 and T̂k+1 are Toeplitz-structured.

Xie et al. [51] show that the LOOCV estimates for the optimal values of βk+1 and γk+1
also yield a closed-form solution for the Kronecker fixed-point-iteration algorithm:

βk+1 = 1−
n

n−1 Tr(S̃2
k+1)−

2
c
[
Tr(S̃k+1)

]2
+ 1

c Tr(S̃2
k+1)−

1
n(n−1) ∑n

i=1
[
Tr(XiT̂+

k Xᵀ
i )

2]
n2−2n
(n−1)2 Tr(S̃2

k+1)−
2
c
[
Tr(S̃k+1)

]2
+ 1

c Tr(S̃2
k+1) +

1
n(n−1)2 ∑n

i=1
[
Tr(XiT̂+

k Xᵀ
i )

2
] (18a)

γk+1 = 1−
n

n−1 Tr(T̃2
k+1)−

2
s
[
Tr(T̃k+1)

]2
+ 1

s Tr(T̃2
k+1)−

1
n(n−1) ∑n

i=1
[
Tr(Xᵀ

i Ŝ+
k Xi)

2]
n2−2n
(n−1)2 Tr(T̃2

k+1)−
2
s
[
Tr(T̃k+1)

]2
+ 1

s Tr(T̃2
k+1) +

1
n(n−1)2 ∑n

i=1
[
Tr(Xᵀ

i Ŝ+
k Xi)2

] (18b)

The shrinkage parameters 0 < βk+1 < 1 and 0 < γk+1 < 1 should be re-determined
after each iteration. The oracle approximation shrinkage method can also be used to deter-
mine βk+1 and γk+1 [51,52] but performs worse for spatiotemporal EEG data since not all
assumptions are met.

2.4. Dataset

We use the dataset from [21], containing P300 oddball EEG recordings of 21 healthy
subjects since it is a high-quality dataset with a high number (32) of electrodes and con-
currently recorded EOG responses for ocular artifact rejection. Nine targets were arranged
on a monitor in front of the subject during an experimental session. The subject was
asked to pay attention to a cued target for a block of stimulations. Within each block, the
stimulations were organized in in 15 separate subsequent trials. A trial was defined as
9 stimulations in which each target is flashed precisely once per trial. Each target was cued
four times, resulting in a dataset consisting of 36 blocks (4860 stimulations) per subject.
Each stimulation corresponded to a single epoch in the preprocessed dataset. See [21] for a
complete description of the dataset and the recording procedure.

2.5. Software and Preprocessing

Data processing and classifier analysis were performed in Python using Scikit-Learn
(version 1.0.1) [53] and SciPy (version 1.7.1) [54]. The preprocessing pipeline was imple-
mented using the MNE-Python toolbox (version 0.24.0) [55]. The dataset was converted
to BIDS-EEG format [56] and managed and loaded with MNE-BIDS (version 0.9) [57].
The Riemannian classifier from Section 2.6.3 was implemented using pyRiemann
(version 0.2.7). Statistical tests were performed in R (version 4.1.2).

The EEG recorded at 2048 Hz was re-referenced off-line to the average of the mastoids.
The reference electrodes were dropped from the analysis. Data were subsequently filtered
between 0.5Hz and 16Hz using forward-backward filtering with a fourth-order Butterworth
IIR filter. The EEG signal was corrected for ocular artifacts using independent component
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analysis (ICA) by rejecting components that correlated with the bipolar EOG channels
vEOG and hEOG, according to adaptive Z-score thresholding. Finally, epochs were cut
from 0.1 s to 0.6 s after stimulus onset. No baseline correction was performed since this
affects the temporal covariance of the data, violating the Toeplitz structure assumption [38].

2.6. Classification
2.6.1. Cross-Validation Scheme per Subject

We use a variation of grouped k-fold cross-validation per subject to evaluate the classi-
fiers. We applied four-fold cross-validation by splitting the blocks of each subject into four
continuous folds. Unlike regular cross-validation, we only used a single fold to train the
classifiers while using the other three folds for validation. This scheme resulted in a training
set of 9 blocks of 135 epochs each. We chose this approach since we are primarily interested
in the performance of the classifiers in the case of low data availability. The classification
task was to determine the cued target for each block. The fraction of correctly predicted
cues provided the accuracy of a classifier. Data from all trials were used in the training
stage, whereas classifier validation was performed multiple times per fold, each time using
an increasing amount of trials (i.e., using the first trial, using the first two trials, etc., until
all 15 trials have been used). For each of the 9 stimulated targets, the averages over the cor-
responding epochs across the utilized trials were used to predict the cued target in that
block. The target with the maximum classifier score was then chosen as the predicted cued
target. Before training the classifiers, a Z-score normalization transformation was devel-
oped on the training data to scale all EEG channels to unit variance. This transformation
was then applied to the validation data.

2.6.2. Spatiotemporal Beamformer Classifier

Before calculating the spatiotemporal beamformer (STBF), the signal was downsam-
pled to 32 Hz or twice the low-pass frequency 16 Hz, resulting in 17 time samples between
0.1 s and 0.6 s. According to the Nyquist theorem, more samples would not contain more in-
formation; hence, the minimum temporal resolution was chosen to reduce the dimensional-
ity of the covariance. The activation pattern is the difference between the averages of epochs
in response to cued targets and the averages of those in response to non-cued targets. We
constructed three variations of the spatiotemporal beamformer: STBF with empirical co-
variance estimation (STBF-EMP) as in Section 2.3.1, STBF with LOOCV-shrunk covariance
estimation (STBF-SHRUNK) as in Section 2.3.2, and STBF with Kronecker–Toeplitz-structured
covariance estimation (STBF-STRUCT) with LOOCV shrinkage for the Kronecker factors as
in Section 2.3.4.

2.6.3. Riemannian Geometry Classifier

We opted for a Riemannian geometry-based classifier to compare our results. The
Riemannian model (xDAWN+RG) uses the xDAWN spatial filter combined with Riemannian
geometry in tangent space as implemented by Barachant et al. [58]. This classifier uses four
xDAWN spatial filters and each epoch’s empirical spatial covariance matrix. The target
with the maximum score is the prediction of the cued target. xDAWN+RG was trained and
validated without downsampling using epochs at the original sample rate of 2048 Hz.

3. Results
3.1. Minimum Required Fixed-Point Iterations

The fixed point iteration algorithm described in Equations (15a)–(16b) is used to
estimate the Kronecker–Toeplitz-structured covariance for the STBF-STRUCT classifier. Fixed-
point iteration is an iterative procedure starting from (in our case) non-informed initial
guesses for the spatial and temporal covariance matrices. As a stopping criterion, one
could impose a threshold on the difference in outcome of successive steps, e.g., based
on the covariance norm or the classifier accuracy. However, few iterations or even just
one [59] suffice to achieve satisfactory performance in practice.
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Figure 2 confirms these results for the STBF-STRUCT classifier. Using more than
one fixed-point iteration does not significantly improve the accuracy across the amounts
of training data and the number of trials used for evaluation. Hence, only one iteration is
used for the STBF-STRUCT classifier, leading to a drastic speed-up of the training process.
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Figure 2. Average cross-validated STBF-STRUCT accuracy using one trial per block for validation over
all 21 subjects relative to the number of iterations used to estimate the Kronecker–Toeplitz-structured
shrunk covariance. Error bars represent the first and third quartiles. The accuracy does not improve
when using more than one iteration. (A) Results for 1, 2, and 5 trials using only the first block
in each training fold for training. (B) Results for 1, 2, and 5 trials using all nine training blocks in the
training folds.

3.2. Classifier Accuracy for Limited Training Data

It is of interest to keep the calibration time before BCI operation as short as possible.
We mimic this problem by training the classifier with as few training epochs as possible.
We evaluate the performance of all classifiers for different levels of available training data
and apply the cross-validation procedure nine times (the number of blocks in the training
fold) for all subjects, keeping the corresponding number of blocks in the training folds and
dropping the rest. Figures 3 and A1 show each classifier’s accuracy relative to the data
availability. We statistically compare the two newly proposed classifiers, STBF-STRUCT and
STBF-SHRUNK, for different levels of training data availability using a one-sided paired
Wilcoxon rank-sum test with Holm correction for the multiple pairwise comparisons
between classifiers. We performed this analysis three times: by only using the first trial
of a block, by averaging epochs across the first two trials of a block, and across the first five
trials of a block. Results validated on one trial are reported in Table 1, two-trial results in
Table 2, and five-trial results in Table 3.

Table 1. p-values calculated via the one-sided paired Wilcoxon rank-sum test with Holm correction
using one testing trial for different classifiers and levels of data availability. p-values < 0.05 are
considered significant and marked bold.

1 Trial
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.005 0.030 0.015 0.543 0.284 0.159 – – 0.952
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.086 0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – 0.499 0.071 <0.001 <0.001 <0.001 <0.001 0.001 0.001
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Table 2. p-values as in Table 1, averaging over two testing trials.

2 Trials
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.014 0.006 0.040 0.040 0.004 0.846 0.888 – –
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.103 0.004 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – – 0.163 0.001 0.001 <0.001 <0.001 <0.001 <0.001

Table 3. p-values as in Table 1, averaging over five testing trials.

5 Trials
Nb. of Training Blocks

1 2 3 4 5 6 7 8 9

STBF-STRUCT > STBF-SHRUNK 0.005 0.030 0.015 0.543 0.284 0.159 – – 0.952
STBF-STRUCT > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

STBF-STRUCT > xDAWN+RG 0.086 0.002 <0.001 <0.001 <0.001 0.004 0.006 <0.001 <0.001

STBF-SHRUNK > STBF-EMP <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001
STBF-SHRUNK > xDAWN+RG – 0.499 <0.001 <0.001 <0.001 <0.001 <0.001 0.001 0.001
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Figure 3. Accuracy of the different classifiers for all 21 subjects relative to the number of blocks
available for training. One block consists of 135 epochs and corresponds to 27 seconds of stimulation.
Accuracies are shown for the evaluation settings averaging over 1, 2, and 3 trials of testing stimuli.
Figure A1 contains results for all numbers of trials. Although STBF-EMP is unstable when few
training data are available, regularization of the covariance matrix (STBF-SHRUNK and STBF-STRUCT)
drastically improves performance.

The tables show that STBF-STRUCT has a significant advantage over STBF-SHRUNK

when the number of training blocks is low. This effect is present for 1-, 2-, and 5-trial
evaluations. This advantage decreases (the p-value increases) when adding more training
blocks. Both STBF-STRUCT and STBF-SHRUNK perform significantly better than STBF-EMP

for all evaluated settings. Compared to xDAWN+RG, STBF-STRUCT also has significantly
higher accuracy in almost all evaluated settings, except when using only one training block.
STBF-SHRUNK does not outperform xDAWN+RG when training data are scarce but gains
a significant advantage when using more training data.

3.3. Classifier Training Time

In order to evaluate the training time of the investigated classifiers, the cross-validation
scheme was run four times for each subject, each time with an increasing number of EEG
channels retained in the analysis, to explore the scalability of each classifier for analyses
with higher spatial resolutions. The temporal resolutions were not varied, but we expect
that increasing the temporal resolution has a similar effect on training time, since the
training times for the STBF-based classifiers are primarily dependent on the number of
parameters in their respective covariance matrix estimators, as evidenced by the complexity
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calculations in Section 4.2. Figure 4 shows the measured training times. These results were
obtained using a laptop with an Intel® Core™ i7-8750H CPU (Intel Corporation, Santa
Clara, CA, USA) and 16 GB of RAM.
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Figure 4. Median fold training time for different classifiers at different spatial resolution levels
evaluated over all training folds for all subjects. Error bars represent standard deviation. The training
time of STBF-SHRUNK increased more steeply with resolution compared to STBF-STRUCT. All STBF

classifiers were able to be trained significantly faster than xDAWN+RG.

Figure 4 shows that the training time of STBF-STRUCT increased less steeply than that
of STBF-SHRUNK and STBF-EMP. The training time of all three STBF-based classifiers was
much lower than that of xDAWN+RG, which appears nearly constant when using 4, 8, 16, or
32 channels.

4. Discussion
4.1. Classification Accuracy

As evidenced by Figure 3 and Tables 1–3, the regularized classifiers STBF-SHRUNK and
STBF-STRUCT significantly improve the classification accuracy compared to the original
STBF-EMP for all the numbers of training blocks indicated. We believe there are three
reasons for this. First and foremost, the empirical covariance matrix in STBF-EMP becomes
ill-conditioned when the number of available training epochs is smaller than the num-
ber of features (n < cs), rendering its inversion with the Moore–Penrose pseudoinverse
unstable. This is the case for STBF-EMP when n = cs = 32 × 17 = 544, after which the
accuracy of STBF-EMP starts to increase. This effect is visible in Figure 3, where the accuracy
starts increasing when using more than four training blocks, amounting to 540 epochs.
The noticeable dip in accuracy when using around 540 epochs can be explained by nu-
merical effects in the pseudoinverse for very small eigenvalues [60–63]. Regularization
of the covariance matrix with shrinkage ensures that the covariance matrix is non-singular
and better conditioned so that it can stably be inverted. Second, covariance regularization
introduces a trade-off between the variance and bias of the model [32]. Better perfor-
mance on unseen data can be achieved when some model variance is traded for extra
bias. Regularization reduces the extreme values present, as shown in Figure 1, resulting
in a classifier with better generalization. Third, the true spatiotemporal covariance ma-
trix may vary throughout BCI sessions, e.g., due to movement of the EEG-cap, changing
impedances of electrodes, subject fatigue, the introduction of new spatiotemporal noise
sources, and other possible confounds. A regularized covariance matrix should better
account for changes in true covariance. Note that the LOOCV method in principle assumes
that the covariances of the training data and unseen data are the same. Because the covari-
ance might have changed for unseen data, the shrinkage estimate obtained with LOOCV is
probably still an underestimation of the optimal—but unknown—shrinkage coefficient that
would yield the best classification accuracy for the unseen data.
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Another observation is the significantly better accuracy score of STBF-STRUCT over
STBF-SHRUNK when the amount of available training data is small. This property is an
attractive advantage in a BCI setting since it is desirable to keep the calibration (training)
phase as short as possible without losing accuracy. The accuracy advantage of the struc-
tured estimator is a consequence of the Kronecker–Toeplitz covariance structure, which is
informative for the underlying process generating the epochs, if it is assumed that the EEG
signal is a linear combination of stationary activity generated by random dipoles in the
brain with added noise [24,35,41]. Hence, STBF-STRUCT can utilize this prior information
to better estimate the inverse covariance. The increase in accuracy for small training set
sizes can also be explained by the smaller number of parameters necessary to estimate
the inverse covariance (see Section 4.2), increasing the stability of matrix inversions.

When compared to the state-of-the-art xDAWN+RG classifier, we conclude that STBF-
STRUCT reaches similar accuracy when using only one block of training data. The authors
suspect this is due to both classifiers having insufficient training information to reach
satisfactory classification accuracy. When more data are available, STBF-STRUCT reaches
significantly better accuracies. Combined with the benefits laid out in Sections 4.2 and 4.3,
this makes it an attractive option for ERP classification. STBF-SHRUNK does not show
decisive accuracy improvements over xDAWN+RG using a few training blocks, but this
improves as the training data increases.

4.2. Time and Memory Complexity

As mentioned above, inverting the full cs× cs dimensional covariance matrix to con-
struct STBF-EMP and STBF-SHRUNK can be costly and unstable, in particular in high-
resolution settings with many EEG channels or time samples. Constructing the full co-
variance and inverse covariance matrices also requires a considerable amount of memory.
The structured covariance estimator of STBF-STRUCT has two advantages here.

First, because of Properties 1 and 2 there is no need to calculate the full cs× cs symmet-
ric covariance and inverse covariance matrices for STBF-STRUCT or keep them in memory;
they can instead be replaced by two smaller symmetric matrices of dimensions c× c and
s× s, respectively. Furthermore, since the temporal component of the Kronecker product
is Toeplitz-structured, it only requires s parameters to estimate. Although the inverse co-
variance of STBF-EMP and STBF-SHRUNK is defined by cs(cs+1)

2 = 32×17(32×17+1)
2 = 122.128

parameters accounting for the symmetric nature of covariance, the structured estimator
only requires c(c+1)

2 + s = 32(32+1)
2 + 17 = 545 unique parameters. This reduction in pa-

rameters to estimate reduces memory usage and contributes to the regularization effect
for low-data-availability settings. The inverse covariances of STBF-EMP and STBF-STRUCT,
represented as 32 × 17× 32 × 17 symmetric matrices of single-precision real floating point
numbers for weight calculation, use 9.03 MiB of memory. The 32× 32 and 17× 17 matrices
of STBF-STRUCT only require 5.12 KiB.

Second, structured estimation has better time complexity. Covariance estimation
and inversion occupy the largest part of the STBF training time. For STBF-EMP and STBF-
SHRUNK, the time complexity of this process is O(nc2s2 + c3s3). Thanks to Property 1,
the complexity can be reduced to O(nc2s2 + c3 + s3) for the structured estimator of STBF-
STRUCT. The results presented in Figure 4 confirm these calculations. It can be observed
that the training time of STBF-STRUCT stays low compared to STBF-EMP and STBF-SHRUNK

when dimensionality increases.
The results shown in Figure 4 also confirm that the STBF-based estimators are very fast

to train compared to the state-of-the-art estimator xDAWN+RG, which confirms the results
in [21]. Since the training times of all STBF-based classifiers are already of the order of tenths
of seconds, the question arises as to whether the improvements achieved using the struc-
tured estimator would be relevant in practice. However, the authors believe that these
results could significantly impact some use-cases of the spatiotemporal beamformer, such as
high-spatial- or temporal-resolution ERP analyses. One example is single-trial ERP analysis
with a high temporal resolution to extract ERP time features. Such higher-resolution analy-
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ses can later be incorporated into an ERP classification framework. In addition, the speed
provided by structured estimation yields a faster off-line evaluation of the STBF ERP classi-
fier, in which multiple cross-validation folds, subjects, and hyperparameter settings often
need to be explored, which can quickly increase runtime. Improvements in computation
speed and memory usage can remove the need for dedicated computation hardware and
enable group analyses to be run on a personal computer.

4.3. Interpreting the Weights

The weight matrix of the STBF determines how each spatiotemporal feature of a given
epoch should contribute to enhancing the SNR of the discriminating signal in the clas-
sification task. Alternatively, the activation pattern can be regarded as a forward EEG
model of the activity, generating the discriminating signal and the weights as a backward
model [60,64]. Regularization enables a researcher to interpret better the distribution
of the weight over space and time after reshaping the weight vector w to its spatiotemporal
matrix equivalent, W, such that vec(W) = w. Figure 5 compares the weights calculated in
STBF-EMP and STBF-SHRUNK with the weights from STBF-STRUCT.
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Figure 5. Spatiotemporal beamformer weights calculated using four blocks of data (of 1215 epochs)
from Subject 01 from 0.2 s before until 1.0 s after stimulus onset. Regularized weights show an
interpretable sparse pattern, whereas the empirical weights appear noisier. (A) Spatiotemporal
activation pattern with spatial and temporal global field power. (B) STBF-STRUCT weights with spatial
and temporal averages of absolute values. (C) STBF-SHRUNK weights. The shrinkage factor α = 0.05
was determined with the closed-form LOOCV method. (D) STBF-EMP weights.

Since the linear filter’s noise suppression and signal amplification functions are deeply
entangled, it is not necessarily true that features with a high filter weight directly correlate
to features containing discriminatory information [64]. However, it is still possible to inter-
pret the weights in terms of which features contribute most to the classification process, be
it through noise suppression, signal amplification, or—most likely—a combination of both.
The weights obtained by STBF-EMP seem to be randomly distributed over space and time;
the regularized estimator used by STBF-SHRUNK and STBF-STRUCT reveal a more inter-
pretable weight distribution. The STBF-SHRUNK weights show a sparse spatial distribution,
whereas the STBF-STRUCT weights show a sparse distribution in both space and in time.

As expected, Figure 5b and d exhibit weight around the central and parietal regions,
where the P300 ERP component is present. Especially the spatial weights of STBF-SHRUNK

in Figure 5d correspond to the spatial activation pattern in Figure 5a. This is not surprising,
since shrinkage transforms the covariance matrix closer to the identity matrix and assuming
identity covariance in Figure 4 yields weights identical to the activation pattern (up to a
scaling factor). Additionally, Figure 5b shows that weights in the baseline interval and after
0.6 s, which should contain no response information, are close to zero for the structured
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estimator. Meanwhile, these weights are high in the occipital region between 0.1 s and
0.2 s, containing early visual components with relatively low SNR. This high weight
for the early visual components confirms the results from Treder and Blankertz [65] that
state that, in addition to the P300, the early N1 and P2 ERP components are also modulated
by oddball attention and contain discriminatory information between attended and non-
attended stimuli.

Using an interpretable classification model has many advantages. For instance, one
can use the weight matrix to determine relevant time samples and EEG channels for per-
subject feature selection to refine the model further. The number of channels is also an
important cost factor in practical BCI applications. Determining which channels do not
contribute to the classification accuracy helps to reduce the number of required electrodes.
Spatially clustered weights indicate that some electrodes are not used by the classifier and
can be discarded accordingly with no substantial accuracy reduction. As another example,
information about the timing and spatial distribution of the discriminatory information
in the response can be extracted from the weights and linked to neurophysiological hypotheses.

5. Conclusions

Although it is possible to regularize the spatiotemporal LCMV beamformer classifier
for ERP detection through other methods, such as by employing feature selection, by adding
regularizing penalties to the cost function beamforming problem, or by crafting a cleaner
activation pattern, our work focused on estimation methods for spatiotemporal covariance.
We introduced a covariance estimator using adaptive shrinkage and an estimator exploiting
prior knowledge about the spatiotemporal nature of the EEG signal. We compared these
estimators with the original spatiotemporal beamformer and a state-of-the-art method
in an off-line P300 detection task. Our results show that the structured estimator performs
better when training data are sparsely available and that results can be computed faster and
with substantially less memory usage. Since these algorithms are not paradigm-specific,
the conclusions can be generalized to other ERP-based BCI settings.

Future work should focus on introducing more robust regularization strategies using
prior knowledge, such as shrinking the spatial covariance to a population mean or a previ-
ously known matrix based on sensor geometry or characterizing the temporal covariance as
a wavelet or autoregressive model. More accurate results could be obtained by expressing
the covariance as the sum of multiple Kronecker products to account for spatial variation
in temporal covariance. It could also be interesting to explore the impact of covariance
regularization on transfer learning of the STBF between subjects to alleviate calibration
entirely. Finally, it could be insightful to evaluate the proposed algorithms in a real-world
on-line BCI setting.
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Figure A1. Accuracy of the different classifiers for all 21 subjects relative to the number of blocks
available for training. One block consists of 135 epochs and corresponds to 27 s of stimulation.
Accuracies are shown for the evaluation settings, averaging over different numbers of trials, ranging
from 1 to 15.
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