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ABSTRACT Landslide risk assessment is an important component of the landslide research field. For
the problem of landslide assessment indicators, we utilize the TOPSIS-Entropy method to assess the
risk situation of landslide occurrences, which is easy to obtain directly from sensor data. By using the
TOPSIS-Entropy method in landslide datasets, the instability margins of landslide risk are obtained, reflect-
ing the current instability probability of the landslide body. For the landslide prediction issue, deep neural
networks are used to predict the corresponding landslide instability margins (LIMs). Attention mechanism-
based (Attn) temporal convolutional networks (TCN) connected with recurrent neural network (RNN)
models for landslide risk prediction are proposed, including TCN-Attn-RNN and RNN-Attn-TCN, which
both use an encoder–decoder architecture. The encoder in the first model uses the temporal convolutional
network (TCN), and the decoder uses a neural network with an RNN architecture, including long short-
term memory (LSTM) networks, gated recurrent units (GRUs), and their derivative algorithms. In the
second model, the encoder uses a neural network with an RNN architecture, and the decoder uses a TCN.
Combining the TOPSIS-Entropy method with TCN-Attn-RNN and RNN-Attn-TCN, reliable prediction
models of landslide risk are proposed. By building a landslide simulation platform, we obtained landslide
data. Compared to their counterparts, the proposed prediction models of landslide risk instability margins
have better predictive effects.

INDEX TERMS Landslide risk, TOPSIS-Entropy, instability margin, attention mechanism, temporal
convolutional network, recurrent neural network.

I. INTRODUCTION
Landslide risk assessment is a critical technical tool for fore-
casting the occurrence of deadly landslides. However, a reli-
able model for predicting landslide risk still faces challenging
issues. First, the identification and modeling of landslide
hazard triggering factors are important technical difficulties.
Second, landslide early warning is hampered by ambiguity
in the temporal and geographical forecasting of landslide
risk. Third, the quantitative evaluation of the landslide hazard
triggering factors cannot be applied to actual sites and still
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requires in-depth study. The goal in the landslide research
field is to identify suitable assessment metrics and build
accurate models to predict landslide risk.

Multisensor analysis still remains difficult. Aiming to
address the issues of communication in the Internet of
Things (IoT), Joshi et al. presented a useful approach using
edge computing to process and analyze landslide data [1].
Li et al. presented a quantitative model of landslide probabil-
ity composed of a rainfall intensity-duration threshold model,
and they were successful in predicting landslide probabil-
ity by utilizing geographic information system technology
(GIS) [2]. Remondo et al. presented a procedure for landslide
risk assessment that utilized spatial data to acquire a landslide
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susceptibility model, and quantitative hazard models were
obtained by past landslide frequency and magnitude [3].
Aiming at the rapid assessment of landslide risk levels,
Tan et al. proposed a stacked autoencoder algorithm to handle
the problems of current assessment methods, including time-
consumption, and this algorithm saves considerable time
in landslide risk assessment and shows better performance
than artificial neural networks (ANNs) and radial basis func-
tion neural networks (RBFs) [4]. In the field of landslide
susceptibility index, Goyes-Peñafie and Hernandez-Rojas
presented an integration of discrete and continuous data in
landslide analysis, and employed logistic regression (LR)
and weights of evidence (WoEs), showing highly accurate
landslide susceptibility [5]. For landslide sensor data recon-
struction, Utomo et al. analyzed the situation of abnormal
missing landslide data. For example, sensor data failure,
external interference, or other environmental factors may be
lost, and they predicted the missing data value through a long
short-term memory neural network (LSTM), which shows
great performance, even in the case of 90% data loss [6].
In displacement prediction, Liu et al. explored algorithms for
the prediction of landslide displacements, and the results
showed that LSTM and gated recurrent units (GRUs) perform
with encouraging results [7].

Rainfall has a significant influence on the incidence of
landslides. Srivastava et al. explored how the back propa-
gation neural network (BPNN), support vector regression
(SVR), and LSTM are used to forecast rainfall and pre-
dict the occurrence of landslides based on rainfall thresh-
olds [8]. Khaing and Thein used a deep learning system in
conjunction with the IoT to successfully forecast rainfall-
induced landslides. This system forecasts a univariate time
series using the baseline method, the LSTM model [9].
Landslide susceptibilitymapping reliability improvement can
also be achieved by a machine learning ensemble model.
Di Napoli et al. selected and assessed 13 predisposing factors
and adopted a new approach based on an ANN, a general-
ized boosting model, and maximum entropy algorithms. The
results showed that the proposed algorithm performed well
in terms of validation scores [10]. Dou et al. also modified
the landslide assessment approach using ensemble meth-
ods and used a support vector machine (SVM) with a bag-
ging, boosting, and stacking framework [11]. Liang et al.
performed research to assess and compare four alternative
landslide susceptibility mapping models, and the gradient
boosting decision tree (GBDT) model performed best in
the landslide prediction capability. Combined with cluster
analysis, the sampling strategy of non-landslide points can
be improved [12]. Ma et al. summarized the machine learn-
ing methods for landslide prevention. Three main directions:
image-based landslide detection, landslide sensitivity assess-
ment, and landslide early warning system development, were
the important elements of their investigation. They also dis-
cussed the challenges and potential opportunities for machine
learning in the area of landslide prevention. They combined a
data-driven approach with a knowledge-driven slippery slope

mechanism to explain the results of machine learning in
landslide prevention research [13]. Research on predicting
displacement in the event of a landslide is also progressing
rapidly. Liao et al. proposed an improved extreme learning
machine with grey wolf optimization (GWO). The cumula-
tive landslide displacement was decomposed into trend dis-
placement and periodic displacement. A cubic polynomial
model was then used to predict the trend displacement, and
after statistical analysis of the displacement data, the model
was used to predict the periodic displacement [14]. Ensemble
models can also be used in landslide displacement predic-
tion. A new data-driven monitoring and forecasting approach
was proposed by Li et al., and they developed an autore-
gressive motion-averaged time series model to analyze the
autocorrelation of landslide triggers. In addition, a parametric
correlation model was fitted to the predicted displacements,
and the link between the trigger variables and the landslide
displacement values was explored [15].

Numerous ANN approaches to predict landslide
displacements do not capture the potential nonstationary
characteristics of landslide displacements. A discrete wavelet
transform (DWT)-extreme learning machine (ELM) model
based on chaos theorywas proposed byHuang et al. to predict
landslide displacement. Using the cumulative displacement
time series of landslides as the dataset, the displacement of a
landslide was estimated precisely [16]. Displacement occurs
under the complex conditions of various impact factors, such
as geological conditions and precipitation. By examining the
response relationships among landslide deformation, rainfall,
reservoir water level, and groundwater level, an ELM was
proposed and a landslide displacement prediction model
related to control factors was established by Cao et al. [17].
In 2014, Cheng Lian et al. proposed an integrated learning
paradigm based on the EEMD-ELMmodel (extreme learning
machine integrated with empirical mode decomposition) to
address monitoring data for landslide displacement predic-
tion [18]. In 2015, the aim of the BPNN was to predict
slope deformation using daily and antecedent rainfall as
input variables, and the model had great performance in
accuracy [19].

The above scholars have shown that the application of
machine learning and deep learning in landslide data analysis
is effective, but they still face three major problems. First, the
identification and modeling of landslide risk impact elements
is an important technical challenge. Second, the uncertainty
of the geographical and temporal prediction of landslide risk
has an impact on landslide early warning. Third, the quantita-
tive assessment of landslide risk impact elements still requires
in-depth research. The focus in the landslide research field
is to find suitable assessment indicators and build suitable
models to predict landslides.

Recent breakthroughs in time-series forecasting have influ-
enced the applied field. Data-driven models, such as LSTM,
can be used to solve prediction problems in nonlinear time
series and possess unique advantages [20]. Landslide pro-
cesses include time-series data, such as rainfall, surface

37636 VOLUME 10, 2022



D. Zhang et al.: Landslide Risk Prediction Model Using Attention-Based TCN Connected to RNN

displacement, shallow moisture content, and deep moisture
content. We use an encoder–decoder architecture to connect
attention (Attn), temporal convolutional networks (TCNs),
and recurrent neural networks (RNNs), and propose TCN-
Attn-RNN and RNN-Attn-TCN landslide risk prediction
models.

The contributions of this paper are shown as follows: First,
we use the TOPSIS-Entropy method to access landslide risk,
and the instability margin of landslide risk is obtained, which
is more practical to obtain directly from sensor data than
the stability and safety factors. Second, the TCN-Attn-RNN
and RNN-Attn-TCN are proposed to solve the prediction
issue of instability margins. The encoder–decoder architec-
ture connects the TCN and RNN, and the attention mecha-
nism plays the role of regulating the weight of intermediate
vectors. Third, this paper integrates the assessment method
of landslide instability margins (LIMs) and the landslide
risk prediction methods, and solves the modeling problem
from the sensor acquisition of landslide hazard information
to landslide risk prediction.

Section II introduces the structure of the landslide simu-
lation platform. In section III, the TOPSIS-entropy method
and deep learningmodels are discussed. The TCN-Attn-RNN
and RNN-Attn-TCN models for landslide risk prediction are
proposed. Section IV demonstrates the effectiveness of the
proposed models. Finally, the conclusions and discussion of
landslide risk models are presented in section V.

II. LANDSLIDE SIMULATION PLATFORM
The landslide platform is constructed to simulate a real land-
slide occurrence, as shown in Figure 1.

FIGURE 1. Architecture of the landslide simulation platform, including a
simulated rainfall system, sensor measurement system, and a data
collection system. The simulated rainfall system comprises the following:
a water pump (WP), simulated rainfall sprinkler head (SRSH), test
soil-carring box (TSCB), and hydraulic lifting system (HF). Rainfall
measurement (RM), displacement measurement (DM), shallow soil
moisture content measurement (SSMCM), and deep soil moisture content
measurement (DSMCM) are all part of the sensor measurement system
(DSCM). The host computer display (HCD) and database storage (DS) are
two components of the data collection system.

Throughout the simulation of the landslide, we used sen-
sors to monitor the landslide process factors, including rain-
fall, shallow soil moisture content, deep soil moisture content,

and surface displacement. The magnitude of rainfall is an
important factor affecting rainfall-induced landslides, and it
also directly affects the magnitude of soil water content and
indirectly affects soil stress and surface displacement. The
landslide simulation platform uses heavy rainfall to simulate
the landslide process, and the experiment lasts for approxi-
mately several hours, focusing on the simulation of landslides
occurring in the case of 30 degree of slopes during intense
rainfall. Every second, experimental data are collected, and
approximately tens of thousands of datasets are used for
landslide data modeling.

FIGURE 2. Physical diagram of the on-site disaster simulator, which
includes the test soil-carrying box (TSCB), simulated rainfall sprinkler
head (SRSH), hydraulic support rod (HSR), and lifting bar (LB).

Figure 2 shows a physical diagram of the test soil-carrying
box at the disaster test site. The collection sensors mainly
include a tipping bucket type rain sensor for measuring
rainfall, a tensile displacement sensor for measuring surface
displacement, and soil moisture sensors for measuring deep
moisture content and shallow moisture content, as shown in
Figure 3.

III. METHODOLOGY
In this section, the TOPSIS-Entropy method used to access
the landslide risk instability margin is introduced first. Then,
canonical sequence deep learning models, such as TCN,
LSTM, and GRU models, are formulated. In addition, our
proposed models for landslide risk prediction are presented,
including TCN-Attn-RNN and RNN-Attn-TCN.
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FIGURE 3. Landslide data monitoring sensors.

A. TOPSIS-ENTROPY METHOD
The technique for order preference by similarity to the
ideal solution (TOPSIS) was presented in 1981 and is also
known as the superior–inferior solution distancemethod [21].
The TOPSIS-Entropy approach is an evaluation model con-
structed using the TOPSIS method in which the entropy
weight method is used for weight assignment [22]. To obtain
the instability margin, the data correlation among landslide
influencing factors is determined using the TOPSIS-Entropy
method, and the output of the TOPSIS-Entropy approach is
utilized as the landslide instability margin, which effectively
utilizes the data from the landslide monitoring sensors and
makes it easier to calculate the landslide instability coefficient
compared to the traditional method.

The landslide instability margins (LIMs) are calculated
using (1)-(6), and the calculation process is shown in Figure 3.
The first step is to set the four landslide influencing factors
as the initialization matrix and then normalize them. Second,
the weights are assigned to different landslide factors. The
weights are assigned according to the magnitude of infor-
mation entropy, which is calculated as follows. The very
small, intermediate, and interval indicators in the matrix are
normalized to very large indicators.

1. Calculate the magnitude of the weight of the jth moment
of the ith observation. Here xij denotes the observation,
zij denotes the normalized data, and pij denotes the weight
size.

zij =
xij −min{x1j, x2j, . . . xnj}

max{x1j, x2j, . . . xnj} −min{x1j, x2j, . . . xnj}
(1)

pij = zij/
n∑
i=1

zij (2)

2. Calculate the entropy value ej of the jth item.

ej = −(1/ ln n) ·
n∑
i=1

pij lnpij (3)

3. Then, calculate the coefficient of variation gj; the larger
the variation is, the smaller the entropy value.

gj = 1− ej, 0 < gj < 1 (4)

4. Calculate the weight of the jth term.

ωj = gj/
n∑
i=1

gi (5)

5. Calculate the comprehensive evaluation value Si of the
ith evaluation object.

Si =
n∑
j=1

ωjpij, i = 1, 2, · · · , n (6)

Finally, the observed values of each time period are mul-
tiplied by the corresponding weights to obtain the landslide
instability margin, which characterizes the probability of
landslide occurrence. The entropy weighting method is an
objective weighting method, where the smaller the degree
of data variation is (i.e., the smaller the variance is), the
less information the data contain and the lower the weight.
The landslide instability margin reflects the magnitude of
the probability of landslides on a mountain. The TOPSIS-
Entropy method scores directly reflect the probability of a
landslide.

FIGURE 4. Block diagram for solving the landslide instability margin is
based on the TOPSIS-Entropy method. Source data first go through the
data preprocessing, including landslide impact factors (LIF) detemination
and the data normalization process (DNP), and then undergo the TOPSIS
calculation process, which comprises the calculation of the weight
(W) and the entropy value (EV), as well as the degree of variation (DV) of
the data. Finally, the socre and output landslide instability margins (LIMs)
are computed, and the data are weighted.

B. DEEP LEARNING MODELS
1) SEQUENCE MODEL
Sequence prediction by RNNs dominates the research on
time-series prediction in deep learning due to its ability to
capture long-term-dependent memory, which stores impor-
tant information from the past and is used to forecast
sequences at future moments. Framework models of RNNs,
such as LSTM [23], GRUs [24] and their derivative algo-
rithms, have shown superior performance in sequence predic-
tion. In recent years, a dual-stage attention-based RNNmodel
(DA-RNN) for nonlinear autoregressive exogenous scenarios
has been proposed, and it captures long-term dependencies
very well [25]. Canonical convolutional neural networks are
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generally less suitable for modeling time-series problems
because their convolutional kernel size limits their ability to
capture long-term-dependent information.

Bai et al. successfully used convolutional neural networks
in sequence prediction modeling in 2018 [26], proposing an
algorithm for temporal convolutional networks (TCNs) using
a time-constrained model with causal convolution to capture
longer dependencies, and an inflated convolution algorithm
that allows for a larger sensory field, and constructing a
residual connection, replacing one layer of convolution with
a block of residuals. Compared with that of an RNN, the
model structure of a TCN is simpler andmore effective.Many
scholars have extended TCNs to multivariate time-series pre-
diction [27], [28]. Note that while TCNs solve some of the
problems associated with gradient disappearance and gradi-
ent explosion in RNNs, they fall short in capturing long-term-
dependent information compared to the RNN framework
and transformer, which can capture temporal information
of arbitrary length. Some researchers have combined CNN
and RNN structures and proposed the convolutional LSTM
(ConvLSTM) algorithm [29].

The attention mechanism is actually the computation of a
matrix of automatically weighted coefficients corresponding
to the sequence. The query and key-value pairs are mapped
to the output, where query, key, and value are vectors and the
output is weighted by the values [30]. Many researchers have
explored attention methods for time-series forecasting, such
as transformer time series [31], and Informer [32]. The atten-
tion model can be divided into two categories: hard attention
and soft-attention. Hard-attention is a 0-1 problem, where a
region is either attended to or not attended to. Soft attention
is a continuous distribution problem of [0,1], with different
scores ranging from 0 to 1 reflecting the degree of attention of
each region. Soft attention is a continuous distribution prob-
lem of [0,1], that uses different scores ranging from 0 to 1,
to reflect the degree of attention of each region. In essence, the
attention mechanism filters out important information from a
large amount of information and gathers this vital information
while ignoring the unimportant information [33]. The focus-
ing process is reflected in the attention weight coefficient, and
the larger the weight coefficient is, the more important the
information.

The existence of two effective attention processes demon-
strates DA-RNN’s superior performance. The attentionmech-
anism is added to the input stage to focus the weights on
the fundamental aspects. Before LSTM decoding provides
the final output, which is supplied to extract information
about the time series characteristics, the temporal attention
mechanism is applied to the intermediate hidden layer out-
put. Our research, inspired by the DA-RNN model, proposes
combining the parallelism and flexibility of convolution and
the timing scalability of RNNs. By combining the features of
the TCN structure andRNN structure and adding the attention
mechanism, we propose TCN-Attn-RNN and RNN-Attn-
TCN, and we use them in landslide risk prediction to con-
struct a novel deep learning landslide risk prediction model.

Combining an RNNwith a TCN and retaining the input atten-
tion mechanism and temporal attention mechanism, namely
RNN-Attn-TCN and TCN-Attn-RNN, can effectively com-
bine the advantages of RNNs and TCNs, and more effectively
predict the situation of complex sequences. The application
of a sequence prediction algorithm in complex landslide
time-series data prediction is an innovation of our design.

FIGURE 5. Architecture of temporal convolutional neural networks (TCNs).

Shaojie Bai et al. made improvements to the basic TCN
structure, such as residual connectivity and regulariza-
tion [26]. The residual block is shown in Figure 5. The orig-
inal one-dimensional causal convolutional layer is replaced
by a residual block with 2 layers having the same expansion
privacy and residual connectivity. The output of these two
convolutional layers is added to the input of the residual block
and fed into the next residual block. To adjust the width of
the residual tensor, a 1×1 convolution is added. At this time,
the width of the receptive field of the TCN is twice that of the
original basic causal layer. Therefore, the receptive field size
r can be obtained by (7).

r = 1+
n−1∑
i=0

2(k − 1)bi = 1+ 2(k − 1)
bn − 1
b− 1

(7)

n =
[
logb

(
(l − 1)(b− 1)

2(k − 1)
+ 1

)]
(8)

where k denotes the size of the convolution kernel, b denotes
the dilation base, and k ≥ b. The number of residual blocks n
is related to the length l of the input tensor and is calculated as
shown in (8). The 1×1 convolutionmaintains the same length
between the input and output for the residual block [34] and
dilated causal convolution guarantees that the output will not
be influenced by future information [27].

LSTM is a tpye of sequence model with an RNN architec-
ture, and the core feature is the inclusion of gating structures
such as forget gates, which enables information to be passed
on, as shown in Figure 6. Even knowledge from a previous
time period may be remembered at a later point in time,
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FIGURE 6. Architecture of LSTM and GRUs.

enabling long-term memory.

ft = σ (Wf [ht−1, xt ]+ bf ) (9)

it = σ (Wi[ht−1, xt ]+ bi) (10)

C ′t = tanh(Wc[ht−1, xt ]+ bc) (11)

Ct = ft � Ct−1 + it � C ′t (12)

ot = σ (Wo[ht−1, xt ]+ bo) (13)

ht = ot � tanh(Ct ) (14)

The gate equation for LSTM is shown in (9)-(11), where
the input is the cell state Ct−1,the hidden state ht−1 at the pre-
vious moment, the input xt at moment t, and the output is the
cell state Ct at moment t and the hidden state ht at moment t .
The forget gate decides which of the previous moment’s
informationmust be retained, the input gate determineswhich
of the current input information must be retained, and the
output gate determines the concealed state of the following
moment.

The function of the forget gate ft is to determine what
useful information to keep, which is determined by the sig-
moid function, a sigmoid funciton close to 0 means more
information is discarded, while a sigmoid function close to
1 means more information is kept. The input gate is used to
update the state of the hidden layer by passing the state of
the hidden layer at the previous moment and the current input
information into the sigmoid. Then, the hidden layer informa-
tion from the previous layer and the current input information
are passed through the tanh function and multiplied by the
sigmoid output value to output a candidate value,Ct ′. The cell
state is updated as shown in (12). The cell state of the previous

layer is dot multiplied with the oblivion gate output, and then
it is dot multiplied with Ct ′, which updates the cell state Ct .

GRUs are tpyes of RNNs of the RNN architecture, that
contains only two elements: the update gate and the reset
gate. Their structure is shown in Figure 6. The input is the
hidden layer state ht−1 at the previous momenta and the input
xt at moment t , and the output is the hidden layer state ht at
moment t .

rt = σ (Wr [ht−1, xt ]+ br ) (15)

zt = σ (Wz[ht−1, xt ]+ bz) (16)

h̃t = tanh(W [rt � ht−1, xt ]+ b) (17)

ht = (1− zt )� ht−1 + zt � h̃t (18)

where rt denotes the reset gate at moment t , zt denotes the
update gate at moment t , and ht denotes the hidden layer
state at moment t . tanh and σ denote the activation functions.
σ denotes the sigmoid function, which has an output between
0 and 1, and tanh is the hyperbolic tangent function, which has
an output between −1 and 1. The reset gate rt is computed
using (15), which determines the magnitude of forgetting the
previous moment’s information, which updates the input and
the previous moment’s hidden layer state. The update gate zt
using (16) is similar to merging the forget gate and the input
gate in LSTM and determines what information is forgotten
and what information is added. Compared with LSTM, GRUs
have fewer tensor operations and fewer parameters, and in
some cases, they are more precise than LSTM.

Attention mechanisms were first used in machine transla-
tion tasks to achieve memory for long sequences of sentence
input. The attention mechanism considers the context vec-
tor and all the sequence input information to construct the
connection. The weights of the connections for each output
element are learned automatically. The process of calculating
attention can be viewed as querying in key and value pairs.
The first step is to calculate the similarity of query Q and
key K , which can be solved by finding the vector dot product
of the two, by finding the vector cosine similarity of the two,
or introducing additional neural networks to find the value,
as (19):

f (Q,K t ) =


QTK, dot
QTWaK, general
Wa[Q;K t ], concat
vTa tanh(WaQ+ UaK t ), perceptron

(19)

αt = softmax(f (Q,K i)) =
exp(f (Q,K i))∑
j
exp(f (Q,K i))

(20)

C = Attention(Q,K,V ) =
∑
t

αtV t (21)

The second step is to normalize the weights to obtain
directly usable weights using (20), and then, in the third step,
the weights and values are weighted and summed to obtain
the attention value using (21).
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2) ATTENTION-BASED TCN CONNECTED WITH AN RNN
MODEL
In this study, temporal convolutional networks are connected
to a recurrent neural network for a landslide risk prediction
model.

As shown in Figure 7, both the TCN-Attn-RNN and
the RNN-Attn-RNN models proposed in this paper use the
encoder–decoder architecture. The input of the TCN-Attn-
RNNmodel is a tensor composed of landslide time series data
that is passed through the TCN through the residual block
framewor. Then, a weight vector is generated through the
attentionmechanism andmultiplied by the output of the TCN,
followed by the decoder operation, where the decoder uses
LSTM or a GRU of the RNN architecture.

The RNN-Attn-TCN model is similar. The difference is
that the input time-series data tensors after the input attention
mechanism are decoded by the RNN. Here, the RNN gener-
alizes the RNN architecture. It can generally use LSTM or
GRU. To more fully use the sequence data, the BiLSTM or
BiGRU algorithm can be used. The decoder uses the TCN
model. The specific steps for RNN-Attn-TCN are the same
as those for TCN-Attn-RNN, so they will not be repeated.

IV. EXPERIMENT AND RESULTS
In Figure 8, the training process of the landslide risk predic-
tion model uses the sliding window, and the sliding window
is the landslide sensor data input to TCN-Attn-RNN or RNN-
Attn-TCN. The inputs are rainfall, surface displacement,
shallowmoisture content and deepmoisture content, and each
moment links to a landslide instability margin. The purpose
of the landslide risk prediction is to predict the landslide
instability margin at a future moment. Therefore, the output
of the prediction model is the landslide instability margin at
the next time.

The collection process of the landslide dataset can be
realized through the landslide simulation platform introduced
in section II, and the ratio of the training dataset to the
test set dataset is 16:3. The training process uses a super-
vised learning approach to train the model parameters of the
TCN, attention mechanism and RNN with 200 iterations.
Figure 9 shows the four measured data points of the landslide
sensor and landslide instability margin. In the process of
increasing rainfall, the shallow moisture content and deep
moisture content also continue to increase, but the surface
displacement does not change, at this time, the landslide
instability margin begins to increase. When the surface dis-
placement moves, the landslide instability margin changes
greatly. After that, the soil moisture content changes very
little, while the ground displacement changes drastically, and
the landslide instability margin changes accordingly.

For the above data, the input dimension at each moment
is 4, and the input and output time lengths are set to 100-10,
100-50, and 1000-100. The codes run on a i5-10500F CPU
with a Windows 10 operating system, an NVIDIA GeForce
GTX1650GPU, and 16GB ofmemory, and the deep learning

Algorithm 1 : TCN-Attn-RNN
Initialization:
(1) Obtain the landslide source data, and then normalize
the data.
(2) Obtain the LIMs using the TOPSIS-Entropy method,
shown in Figure 4.
(3) Build the TCN and RNN, and then use the landslide
training datasets to train the nets. Note that the input vec-
tors are four impact factors: rainfall, surface displacement,
shallow moisture content, and deep moisture content, and
the output is the LIM.
Input: X t = {x1t , x

2
t , . . . , x

n
t }; H t−1; Y t−1

Step 1. Input attention mechanism: In the soft-
attention mechanism, query, keys, and values are equal to
the input tensor X t . The queryQ, keys K , and values V can
be obtained by (22)-(24), and the attention coefficient can
be obtained by (25). Finally, output X̃ t using (26).

Qinput = WqiX t (22)

K input = W kiX t (23)

V input = W viX t (24)

I t =
exp(QTinputK input )∑
j
exp(QTinputK input )

(25)

X̃ t =
∑
t

I tV t (26)

Step 2. Encoder processing: For the input attention
output X̃ t and the hidden state of the TCN model at the
t − 1 moment H t−1 to be encoded, the encoding function
adopts the TCN model, and the generated hidden state is
H t = {h1t , h

2
t , . . . , h

n
t }, which can be expressed as shown

in (27).

H t = f TCN (X̃ t ,H t−1) (27)

Step 3. Temporal attention mechanism: Our model
uses a soft attention mechanism to generate weights
At = {a1t , a

2
t , . . . .a

n
t }, which are calculated as shown in

(28)-(31).

Qtemporal = WqtH t (28)

K temporal = W ktH t (29)

V temporal = W vtH t (30)

At =
exp(QTtemporalK temporal)∑
j
exp(QTtemporalK temporal)

(31)

C t =
∑
t

AtV temporal (32)

where At is a weight vector, and the function f can take
different functional forms, the details of which are avail-
able in (19). Here, the function f uses the dot product.
Finally, the weighted intermediate vector C is generated
by weighting and summing the V temporal using (32).
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FIGURE 7. Architecture of the attention-based temporal convolutional network connected to the recurrent neural
network.

(Continued.) TCN-Attn-RNN

Y t = f RNN (C t ,Y t−1) (33)

Step 4. Decoder processing: For the intermediate vec-
tor C, the decoding function adopts the LSTM or GRU
model, and the output is Y t , which is the predicted
sequence information.
Output: Y t ; H t .

FIGURE 8. Architecture of the landslide data series prediction process.

framework includes Python 3.6, Keras 2.0.2, TensorFlow
1.9.0.

We verify the performance of the model by compar-
ing the average absolute error (MAE), the root mean
square error (RMSE) and the mean absolute percentage
error (MAPE) of the model output [35]. The three metrics
are calculated as follows (34)-(36), where yi represents the

FIGURE 9. Architecture of the landslide data series prediction process.

ith ground truth data and ŷi represents the ith model-predicted
value data.

To quantitatively show the performance improvement of
our model, we use the metrics of the LSTM model as
the benchmark to calculate the metric reduction percent-
age (MRP) of other deep learning time series prediction
models. The calculation formula is shown in (37).

MAE(Ŷ ,Y ) =
1
N

N∑
i=1

|̂yi − yi| (34)

RMSE(Ŷ ,Y ) =

√√√√ 1
N

N∑
i=1

(̂yi − yi)2 (35)

MAPE(Ŷ ,Y ) =
100%
N

N∑
i=1

∣∣∣∣ ŷi − yiyi

∣∣∣∣ (36)

MRP(ML ,MD) = (ML −MD)× 100%/ML (37)

Here, ML signifies the LSTM function’s metrics, and MD
denotes themetrics of other deep learningmodels in (37). The
metric decrease percentage (MRP) is obtained using (37).

The prediction model performs better when the metric is
smaller. As a result, the greater the MRP with LSTM, as the
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benchmark model, is, the better the model’s performance,
indicating that the performance of the model is improved
more than that of its counterparts. A negative MRP indicates
a decline in performance. The metric data in Table 1 are
obtained by testing various deep learning time-series pre-
diction models with varying inputs and prediction lengths,
i.e., the statistics of RMSE, MAE, and MAPE. Table 2 is
obtained after the MRP results are counted, and the different
input and prediction lengths of several deep learning models
are tested.

TABLE 1. Study of different prediction lengths for deep learning models.

TABLE 2. Study of the metric reduction percentage for different deep
learning models.

We selected typical deep learning models for landslide
risk prediction. Because of their outstanding and typical
prediction outcomes in deep learning time-series prediction,
the LSTM, GRU, TCN, and convLSTM models are selected

FIGURE 10. Error comparison of different landslide risk models.

for comparison. In Table 1 and Table 2, when the ‘‘input
length–prediction length’’ is set to 100–10, the RMSE and
MAPE metrics of TCN-Attn-RNN are lower, decreasing by
76.31% and 30.49%, respectively, compared with those of
LSTM. At this time, the MAE metric of RNN-Attn-TCN
is reduced by 87.76%. The RMSE and MAE metrics of
TCN-Attn-RNN are 25.00% and 28.04% lower, respectively,
than those of the LSTM model when the ‘‘input length-
prediction length’’ is set to 100–50. The MAPE of RNN-
Attn-TCN, on the other hand, is 1.8016, which is 38.52%
lower than the benchmark. The MAE and MAPE are lower
for TCN-Attn-RNNwith MRP values of 38.46% and 5.12 %,
respectively, for a sliding window of 1000–100 for long-
term prediction. For RNN-Attn-TCN, its RMSE metric is
lowered by 68.89%. When comparing models with the same
sliding window length, our model outperforms the others for
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three metrics. While comparing different input and output
lengths, the longer the prediction is, the worse the prediction.
In addition, compared to that of other models, the perfor-
mance improvement is not as excellent as the short time-
series prediction.

Figure 10 depicts a comparison of the prediction errors
of several models for three different sliding window length
instances. Our proposed models have fewer errors and are
better suited for landslide time-series prediction, as evidenced
by a comparison of the errors in the three sliding window sit-
uations. Meanwhile, the error volatility is greater for 100-50
because the predicted length to input length ratio is higher,
which limits the model’s prediction effect to some extent.
For 100-10 and 1000-100, the error volatility is substantially
lower. Notably, RNN-Attn-TCNwill have amarginally worse
prediction effect than TCN-Attn-RNN, as seen in Table 2 and
Figure 10.

V. CONCLUSION AND DISCUSSION
In this work, we concentrate on the landslide risk prediction
issue, namely landslide risk assessment and modeling. First,
the LIMs are calculated by the TOPSIS-Entropy method,
which inputs four landslide impact factors and outputs the
landslide instability margin. Second, through TCN-Attn-
RNN and RNN-Attn-TCN for landslide risk, the output is
the future time series for the LIM. To assess the models’
efficacy, a comparative analysis of a vanilla LSTM, a GRU,
a TCN, ConvLSTM, and our models is conducted. Based on
the evaluation of the MAE, RMSE, and MAPE, our models
outperform their counterparts in terms of the metric reduction
percentage (MRP). Through the high accuracy of the models,
the landslide risk can be predicted by deep learning methods
based on large-scale landslide data.

For the landslide risk assessment issue, we employ the
TOPSIS-Entropy approach for comprehensive assessment of
four landslide impact factors for landslide risk assessment.
This method can immediately acquire the final LIM used
for assessment from sensor data, making it very intuitive
and convenient. This multisensor integrated assessment of
landslides is more extensive than the single-factor assessment
technique. To tackle the landslide risk prediction problem,
deep learning for temporal prediction is introduced. The
architecture composed of an attention-based TCN paired with
an RNN optimizes the model structure of deep learning and
has a better ability to handle challenging circumstances such
as landslide data modeling.

Note that our models cannot operate with small amounts
of data because they require a substantial amount of data for
training. There are also issues with integrating the model into
an actual landslide prediction site, which is something we
should explore in the future. We plan to apply our methods
to real-world scenarios and develop a software system to
efficiently run our model as required to meet online predic-
tion requirements. In addition, we will expand our studies
to include new types of landslide sensor data, such as soil
pressure and underground displacement, as more landslide

impact factors equal more comprehensive landslide hazard
information.
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