
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JSTARS.2022.3179461, IEEE Journal
of Selected Topics in Applied Earth Observations and Remote Sensing

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

1 

Abstract—As high-resolution remote sensing images begin to 

integrate new characteristics such as a great volume of data, a wide 

variety of ground objects and a high structural complexity, 

traditional methods previously used for feature extraction in low-

resolution remote sensing images are inefficient and inadequate 

for the accurate feature description of various objects. Thus, 

object feature extraction from high-resolution remote sensing 

image remains to be a challenge. To address this issue, we 

introduced the visual attention mechanism into high-resolution 

remote sensing image analysis in this study by proposing a novel 

object-oriented random walk model for visual saliency (ORWVS) 

detection from high-resolution remote sensing images. In the 

proposed model, an object-oriented random walk strategy is 

designed to simulate the transfer path of visual focus on the images, 

and to extract the local salient regions in an efficient and accurate 

manner, laying a foundation for accurate feature descriptors. The 

ORWVS model is compared to eight visual attention models , and 

the experiments prove its superiority.  

Index Terms—focus of attention (FOA), salient object detection, 

random walk, visual saliency 

 

I. INTRODUCTION 

ITH the continuing development of new sensor 

technology and earth observation technologies, spatial 

resolution of remote sensing images continues to increase. At 

present, the spatial resolution of GeoEye, an international 

commercial remote sensing satellite, has reached 0.41 meters, 

the U.S. military reconnaissance satellite KH-12 has reached an 

optical resolution of 0.1 meters [1], and the spatial resolution of 

the Chinese Earth observation satellite Gaofen-2 has reached 

0.8 meters [2]. These high-resolution remote sensing images 

document detailed and complex land covers with rich color 

(spectrum), texture, geometric and structural information, 

offering us a new opportunity for advancing the interpretation 

of remote sensing images. At the same time, geospatial object 

detection and scene-level geographic image categorization, the 

two fundamental yet challenging research aspects of remote 

sensing image analysis, have attracted increasing attention.  

Traditional pixel-based analysis methods for low-resolution 
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remote sensing images are not powerful enough when dealing 

with high-resolution remote sensing images. They also fall 

short in obtaining accurate and discriminative descriptions of 

objects.  

 
Fig. 1. Comparison of global color histogram of remote sensing images. (a) 

WorldView-2 remote sensing image 1. (b) Color histogram (quantized to 512 

levels) of image 1 in the CIELab color space. (c) WorldView-2 remote sensing 

image 2. (d) Color histogram (quantized to 512 levels) of image 2 in the CIELab  

color space. 

Fig. 1 shows a set of examples where (a) and (c) present two 

WorldView-2 remote sensing images and (b) and (d) 

demonstrate their corresponding global color histograms 

(quantized to 512 levels) in the CIELab color space. The major 

difference between images (a) and (c) is the existence of a house 

with an orange roof in (a). Despite the fact that the local salient 

objects in the two images own great visual differences, the color 

histogram distributions of the two images are very similar to 

each other due to the small proportion of the changing area (i.e., 

the house) in (a). Therefore, for the remote sensing image (a), 

traditional feature extraction methods that fail to separate the 

image target from the background are unsuitable to represent 

local salient objects. However, when facing high-resolution 
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remote sensing images, humans are often able to discern the 

characteristics of these ground objects in a rapid and accurate 

manner. Thus, how to simulate the human visual attention 

mechanism to obtain visual features of various ground objects 

remains to be challenging task. 

As early as the 1980s, neuroscientists discovered that when 

facing massive amounts of visual information in a complex 

scene, the human visual system (HVS) would selectively focus 

on some local regions and ignore the background that often 

takes a higher proportion area of the scene. By simulating the 

visual attention mechanism of HVS, scholars from the 

computer vision field came up with several visual attention 

models that include ITTI [3], GBVS [4], etc. The performances 

of these models have been validated in a number of natural 

image databases [5]. 

In this paper, the visual attention mechanism of HVS is 

introduced into high-resolution remote sensing image 

processing, and an object-oriented random walk model for 

visual saliency detection in remote sensing images is proposed. 

In the proposed model, an object-oriented random walk strategy 

is adopted to simulate the transfer path of visual focus on 

remote sensing images, aiming to obtain the local salient 

regions of images efficiently and accurately. This study lays a 

foundation for the accurate description of salient objects in 

high-resolution remote sensing images. 

The remaining paper is organized as follows. Section II 

reviews the related works on visual attention models. Section 

III presents each stage of our visual saliency detection model. 

Section IV first introduces the datasets used for performance 

evaluation, and then shows the experimental results. Section V 

draws the conclusions. 

II. RELATED WORK 

Most existing efforts on the visual attention model (VAM) 

are concentrated in the field of natural image analysis, such as 

the ITTI model [3], a classical VAM proposed by Itti et al. from 

the University of Southern California in 1998 based on the 

classical “feature integration theory” [6]. The ITTI model 

contains five steps for calculating the scan path of focus of 

attention (FOA) in the image. First, an input image is 

subsampled into a Gaussian pyramid, with each pyramid level 

decomposed into channels for red, green, blue, yellow, intensity, 

and local orientations. Second, center-surround feature maps 

for different features are constructed and normalized from these 

channels. Third, maps are summed across the scale and 

normalized again in each channel. These maps are linearly 

summed and normalized once more to produce the “conspicuity 

maps”. Fourth, the conspicuity maps are linearly combined to 

generate the saliency map. Finally, based on the saliency map, 

a “winner-take-all” (WTA) neural network [7], [8] and an 

“inhibition of return” method [9] are employed to obtain the 

scan path of FOA. 

Inspired by the ITTI model, more VAMs were designed. 

Bruce and Tsotsos proposed the AIM (Attention based on 

Information Maximization) model by introducing the self-

information metric in the classical Shannon information theory 

to image saliency calculation [10]. Harel et al. proposed a 

graph-based visual saliency (GBVS) computation method 

based on the ITTI model [4]. Hou and Zhang proposed a 

dynamic visual attention (DVA) model based on sparse features 

[11]. Garcia-Diaz et al. used local energy variability to measure 

the saliency of images with an adaptive whitening saliency 

(AWS) model [12]. Goferman et al. proposed a context-aware 

(CA) saliency detection model based on context awareness [13]. 

As the effectiveness of VAM in the field of image analysis has 

been confirmed through these studies, more attention has been 

paid to VAM with the design of other notable methods [5], [14]. 

From the perspective of human visual behavior, the selective 

attention mechanism of HVS often appears as the fixation and 

transfer of FOA. FOA is usually defined as the point that has 

the highest score of saliency in a scene. Therefore, the scan path 

of FOA is very important for the visual saliency distribution in 

the image. Studies in cognitive psychology have shown that the 

FOA transfer path has certain randomness, and an appropriate 

random walk model allows us to effectively predict the FOA 

transfer path [15], [16]. On the basis of this theory, scholars 

have proposed a series of VAMs based on random walk models 

for predicting the visual saliency distribution of images [4], [17], 

[18]. Among them, the most classical and influential model is 

the visual saliency model based on the graph theory proposed 

by Harel et al., called GBVS [4]. This model improves two steps 

on the basis of the existing models and traditional methods: one 

is the activation map generation, and the other is the activation 

map normalization and fusion. The GBVS model defines 

Markov chains in different feature maps, calculates the 

transition probability of the visual focus between the pixels by 

comparing the character difference and distance of pixel points, 

and treats the equilibrium distribution of FOA on the image 

pixels as the saliency value of the pixels. Experiments show that 

the GBVS model is able to accurately predict the fixation of 

FOA and owns notable advantages compared to other VAMs 

[19]. However, the GBVS model has some limitations. First, 

GBVS treats pixels as the basic unit and calculates the saliency 

value of each pixel by a constructed Markov chain. Such a 

Markov chain tends to have a large number of nodes, leading to 

great computational needs. Second, the GBVS model calculates 

the final saliency map with a Gaussian smoothing step, 

resulting in blurred edges of the salient region. 

In light of the deficiencies of the GBVS model, this paper 

introduces the idea of object-based image analysis into the 

VAM field. The object consisting of adjacent similar pixels is 

used as the basic unit in visual saliency computing, as an 

alternative to a single pixel in the traditional way. An Object-

oriented Random Walk model for Visual Saliency (ORWVS) 

detection in high-resolution remote sensing images is proposed. 

The ORWVS model not only reduces the number of nodes in 

the Markov chain but also obtains sharp edges from the saliency 

map, benefiting the extraction of salient regions from the 

images. 

III. METHODOLOGY 

Our proposed ORWVS model is mainly different from the 

existing GBVS model in that we introduce object-based image 

analysis for visual saliency map computation and regard objects 
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as the basic processing unit, which has been proved to be 

effective for high-resolution remote sensing image. 

Furthermore, we exploit random walk model to predict the 

transfer path of FOA between the objects in the image, and thus 

propose an object-based random walk strategy to calculate the 

visual saliency distribution of the objects. Fig.2 illustrates the 

process of our proposed ORWVS model, which include five 

steps: multi-scale segmentation, object feature extraction, FOA 

transition probability computation, visual saliency computation, 

and saliency maps fusion. 

 
Fig. 2. The flowchart of the proposed ORWVS model 

  

Specially, in the first step, N scales are set to perform multi-

scale segmentation for the input image to obtain N 

segmentation maps, and the adjacent regions with similar color 

features in each segmentation map will be merged to improve 

segmentation result. Visual features including color, intensity 

and texture of each segmented region are then extracted to 

establish an object set for segmentation map of each scale. For 

the object set of each scale, the edge weights are derived from 

feature differences between the objects to calculate the 

transition probabilities of FOA, and the visual saliency map of 

each scale is then achieved via saliency computation, which are 

further fused to obtain the final saliency map. 

A. Multi-scale Segmentation 

The continuous improvement of spatial resolution of remote 

sensing images over the last decade facilitates the acquisition of 

detailed information about diverse ground objects. Such a trend 

redirected the research attention from pixel-based image 

analysis to object-oriented image analysis [1]. 

The idea of object-oriented image analysis was first applied 

in remote sensing image processing in the 1970s [21]. Since 

2000, with the popularity of high-resolution remote sensing 

images, object-oriented image analysis methods have 

experienced rapid development due to their advantages [22-24]. 

The idea of object-oriented image analysis is to treat the object 

as the minimum image processing unit instead of pixels. A 

common approach for extracting objects from an image is 

image segmentation [20]. 

Image segmentation, a process of dividing an image into a 

number of homogeneous regions (also called “superpixels”) 

without overlap [25], is an important task in the computer vision 

community. After years of development, great achievements 

have been made in image segmentation. The current 

mainstream image segmentation methods can be broadly 

divided into two categories, i.e., graph-based methods and 

gradient ascent methods [26]. 

To explore the performances of different image segmentation 

methods on visual saliency computing, three image 

segmentation methods were employed for comparative analysis, 

including the graph-based image segmentation (GS) [27], the 

quick shift (QS) method [28], and the simple linear iterative 

clustering (SLIC) method [26]. However, due to the wide 

variety of ground objects and the high structural complexity in 

high-resolution remote sensing images, different ground 

objects in images always appear on different scales. Therefore, 

it is challenging to extract various ground objects on a single 

scale. To address this issue, scholars have proposed solutions 

from two perspectives. Some solutions used multiple-scale 

parameters to perform multi-scale segmentation on remote 

sensing images; others performed an over-segmentation on 

remote sensing images, followed by merging over-segmented 

regions with certain constraints. Inspired by these solutions, we 

multiple-scale parameters to perform multi-scale segmentation 

on remote sensing images and further analyze the adjacency 

matrix and color features of the segmented regions at each scale, 

followed by a merging mechanism that merges the adjacent 

regions with similar color features. 

It is worth noting that we perform multi-scale segmentation 

using N different scale levels where each level has its own scale, 

and the multi-scale parameter “N” is determined by manually 

setting one scale per level. Therefore, for each image, we can 

obtain N segmentation maps which are then further used for 

subsequent feature extraction for objects.  

B. Object Feature Extraction 

Image segmentation is intended to obtain a series of 

homogenous regions without overlap. However, if we want to 

construct objects on the basis of the segmented regions, the 

extraction of visual features from these segmented regions is 

needed. In the field of VAM, scholars often consider color, 

intensity, texture and orientation as the common visual features, 

with color features being the most widely used ones. In this 

study, we extract three types of common features from the 

objects, including color, intensity and texture, and provide a 

comparative analysis of these three types of visual features on 

the visual saliency computing performance in the following 
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experiment section.  

 (1) Color Feature Extraction 

In early studies of VAMs, scholars generally used the red-

green-blue (RGB) color space to obtain color feature maps. 

However, with the development in the color theory field, it was 

discovered that the RGB color space is inconsistent with the 

human perception of color psychology, as visual differences 

between two colors often failed to be presented accurately in 

the form of distance between two points in the RGB color space. 

To address this issue, many VAMs adopt visual perception-

oriented color models, such as the hue-saturation-value (HSV) 

color space and the CIELab color space. 

The HSV color space is a classic visual perception-oriented 

color model that contains three channels, i.e., hue, saturation 

and value, corresponding respectively to the color, the color 

depth, and the degree of brightness. HSV color space has two 

major advantages. The first advantage is that the value channel 

and the color channels are independent of each other; the other 

advantage is that the hue channel and the saturation channel are 

more suitable for human perception of color. CIELab, another 

visual perception-oriented color model, is more uniform in a 

visual sense. Euclidean distance can be used to measure the 

dissimilarity between colors in the CIELab color space. 

According to the above advantages of the two color spaces, 

we combine the H channel of HSV color space with the L, a, 

and b channels of the CIELab color space to build a color 

feature map for objects’ saliency computation. First, the 

original remote sensing image is converted from the RGB color 

space to the HSV color space and the CIELab color space. 

Second, values in the H, L, a, and b channels are quantized into 

4, 8, 16, and 16 levels, respectively. Third, these four channels 

are combined into an 8192 (4 × 8 × 16 × 16) level color feature 

map. Finally, the color histogram of all pixels within each 

segmented region of the image is calculated to obtain the 

objects’ color features. 

(2) Intensity Feature Extraction 

As one of the three core features of human perception of 

color, the intensity feature has attracted wide attention and has 

been widely used in visual saliency computation. In this paper, 

we use a similar method of extracting color features to acquire 

objects’ intensity features in images. First, the original remote 

sensing image is converted from RGB space to HSV space. 

Second, values in the V channel are quantized to 256 levels. 

Further, the intensity histogram of all pixels within each 

segmented region of the image is calculated to obtain the 

intensity feature of each object. Assuming that the original 

remote sensing image is I , and the three color channels of the 

RGB color space are R , G , and B , respectively, the 

corresponding intensity feature map V  can be easily calculated 

by the following equation: 

( )
1

3
V R G B= + +                             (1) 

(3) Texture Feature Extraction 

As a type of commonly used low-level visual features, 

texture features have attracted more and more attention in the 

VAM field in recent years [29], [30]. In this study, we employ 

the rotation-invariant local binary pattern (LBP) [31] to 

compute the objects’ visual saliency. 

The texture feature extraction process for objects in the 

image is similar to the color feature extraction process. First, 

the original remote sensing image is converted into a grayscale 

image, from which the LBP feature map and local contrast (LC) 

feature map (quantized to 8 levels) are extracted. Then, the LBP 

feature map and the LC feature map are combined into a texture 

feature map. Since the rotation-invariant LBP pattern has only 

36 possible values, LC and LBP feature maps can be combined 

as a 288 (36 × 8) level texture feature map. Finally, the texture 

histogram of all pixels within each segmented region of the 

image is calculated to obtain the texture feature of each object. 

Note that the texture feature represents the joint probability 

distribution of the LBP values and the LC values. 

For all the segmented regions of the image, after extracting 

the above three types of visual features, we construct a complete 

object set, serving as a state space of the Markov chain in the 

next step. Given a remote sensing image I , 
n

SEG  is the 

segmentation result of image I  under scale n , where 

1, 2,...,n N= , N  is the number of scale levels, ( )n

ir  is a 

segmented region in 
n

SEG , where 1, 2,..., ( )i R n= , ( )R n  is the 

total number of the segmented regions under scale n . To 

construct object ( )n

i
Obj  based on the segmented region ( )n

ir , 

we extract the following properties and visual features of the 

region ( )n

ir : 

① Area ( )n

iarea , i.e., the total number of pixels within the 

region ( )n

ir . 

② Center coordinates ( ) ( ) ( )
( , )

n n n

i i i
center x y= , i.e., the mean 

2D coordinates of all pixels within the region ( )n

ir . 

③ Color feature vector ( )

1 2 8192
( , ,..., )

n Clr Clr Clr

i
Clr H H H= , i.e., 

color histogram of the region ( )n

ir . 

④ Intensity feature vector ( )

1 2 256
( , ,..., )

n Int Int Int

i
Int H H H= , i.e., 

intensity histogram of the region ( )n

ir . 

⑤ Texture feature vector ( )

1 2 288
( , ,..., )

n Tex Tex Tex

i
Tex H H H= , i.e., 

texture histogram of the region ( )n

ir . 

⑥ Set of adjacent objects ( ) ( )
{ | NB( )}

n n

k i
Obj k Obj , where 

( )
NB( )

n

i
Obj  records all index numbers of the adjacent objects 

of ( )n

i
Obj . 

With these properties and visual features of segmented 

regions in n
SEG , we further construct an object set ( ) ( )

1
{ }

n R n

i i
Obj

=
 

under scale n . 

C. FOA Transition Probability Computation 

Studies on the human visual cortex show that the receptive 

fields of most neurons present as concentric circles, while the 

center neurons and the surrounding neurons are in a mutual 

inhibition competition. Based on this evidence, Schiller et al. 

suggested that the mammalian visual system has both an ON 

channel (with a central activated region and a surrounding 
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inhibited region) and an OFF channel (with a central inhibited 

region and a surrounding activated region) to yield equal 

sensitivity and to facilitate high contrast sensitivity [32].  

Inspired by this study, we hypothesize that the saliency of an 

individual object is primarily determined by the feature contrast 

between itself and its adjacent objects. Based on this 

assumption, we further hypothesize that the edge weight 

between objects is mainly determined by two factors, i.e., the 

visual feature differences and the centroid distances between 

adjacent objects. The calculation of edge weight (taking the 

color feature as an example) follows: 
( ) ( ) ( ) ( ) ( )

,

( ) ( ) 2 ( ) ( )

( ) ( ) ( ) ( ) 2

1

( , ) ( , )

( , ) exp( ( ( , ))) 1

( , ) exp( ( ( )) / )

n n n n n

i k Fea i k Spt i k

n n n n

Fea i k i k

n n n n

Spt i k i k

w D Obj Obj D Obj Obj

D Obj Obj N Clr Clr

D Obj Obj N center center c



= 

= −

= − −









 (2) 

where ( )

,

n

i kw  is the edge weight between 
( )n

i
Obj  and its adjacent 

objects 
( )n

k
Obj . If two objects are not adjacent in the image, the 

edge weight between them should be zero. 
( ) ( )

( , )
n n

Fea i k
D Obj Obj  

represents the visual feature differences between the two 
objects, and it can be replaced by the corresponding feature 
vector when calculating the intensity or texture feature 

difference instead. ( ) ( )
( , )

n n

Spt i k
D Obj Obj  represents the centroid 

distances between the objects. Moreover, 
2 ( ) ( )
( , )

n n

i k
Clr Clr  

represents the chi-square distance between the color feature 

vectors, 
( )n

i
Clr  and 

( )n

k
Clr . For the feature vectors 

( )
1 2

= , ,...,
T

A a a a  and ( )
1 2

= , ,...,
T

B b b b , their chi-square 

distance can be calculated as follows [33]: 

( )

( )

2

2

1

( , )
2

T
t t

t t t

a b
A B

a b


=

−
=

+
                        (3) 

In addition, ( ) ( )n n

i k
center center−  represents the Euclidean 

distance between the centroids of the two objects. ( )N   is a 

linear normalization function: 

 ( )
max( )

m
N m

M
=                           (4) 

where m  is an arbitrary element of matrix M and 1c is a 

constant parameter (its settings are discussed in a sensitivity 

analysis).  

After sderving all edge weights between objects, the 

transition probability 
( )

,

n

i k
p  of FOA between 

( )n

i
Obj  and its 

adjacent object 
( )n

k
Obj  can be calculated as follows: 

 
( ) ( ) ( )

, , ,

1

K
n n n

i k i k i k

k

p w w
=

=                               (5) 

D. Visual Saliency Computation 

After computing the FOA transition probabilities between all 

objects, an FOA transition probability matrix between objects 

can be built. Further, the FOA equilibrium distribution among 

objects can be calculated. Assuming that the FOA equilibrium 

distribution is
( ) ( ) ( ) ( )

1 2 ( )
( , ,..., )

n n n n

R n
   = , and the transition 

probability matrix is 
( )nP : 

( ) ( ) ( )

1,1 1, 1, ( )

( )

( ) ( ) ( )

( ),1 ( ), ( ), ( )

n n n

k R n

n

n n n

R n R n k R n R n

p p p

P

p p p

 
 
 

=  
 
 
 

          (6) 

According to the nature of equilibrium distribution, the 

relationship between 
( )n

  and 
( )n

P  conforms to the following 

formula: 

 ( ) ( ) ( )n n n
P =                                (7) 

In practice, any element 
( )n

i  of the equilibrium distribution 
( )n

  can be quickly calculated by the edge weights 
( )

,

n

i kw  from 

Equation (2), which is calculated as [34]: 

 
( ) ( ) ( )

, ,

,

n n n

i i k i k

k i k

w w =                         (8) 

where 
( )

,

n

i k

k

w  is the sum of the edge weights between 
( )n

i
Obj  

and all its adjacent objects, 
( )

,

,

n

i k

i k

w  is the sum of all edge 

weights in the graph.  

Besides the FOA equilibrium distribution, we argue that the 

visual saliency of an object is also closely associated with the 

area of the object. For a remote sensing image with a relatively 

stable segmentation result, objects with very large areas tend to 

be the background of the image. Thus, when calculating the area 

factors of an object, its visual saliency with very large areas 

should be inhibited. The formula of the area factor can be 

expressed as 

 
( ) ( ) 2

2
1 (1 ( ( )) )

n n

i i
A c area iw ih= +                  (9) 

where iw  and ih  are the width and height of the original 

remote sensing image, respectively, 2c represents a constant 

parameter (discussed in the sensitivity analysis). After 

obtaining the equilibrium distribution 
( )n

i  and the area factor 

( )n

i
A  of each object by Equation (8) and (9), respectively, visual 

saliency 
( )n

i
S  of the object 

( )n

i
Obj  can be calculated as 

 
( ) ( ) ( )n n n

i i i
S A=                                 (10) 

To generate a normalized saliency map under each 

segmentation scale, we normalize the visual saliencies of the 

objects: 
( ) ( )

( )

( ) ( )

min({ })

max({ }) min({ })

n n

n i i

i n n

i i

S S
Saliency

S S

−
=

−
         (11) 

By assigning the normalized visual saliency values to all 

pixels in the corresponding objects, we can obtain the scale –

wise normalized saliency map. 

E. Saliency Map Fusion 

After obtaining the normalized visual saliency maps under 

multiple scales, we further fuse them into a single visual 

saliency map. Assuming that pxl  is a pixel in the original 

remote sensing image I , its multi-scale saliency can be 

expressed as  
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where 
pxlI  is the three-dimensional feature vector in RGB 

color space of the pixel pxl , 
( )n

ic  is the color center of all the 

pixels in 
( )n

i
Obj ,   is a small constant (set as 0.1 in our 

experiment), and 
( )

( )
n

i
l pxl Obj  is an indicator function, 

whose specific values are as follows: 
( )

( )

( )

1,   

( )

0,   

n

i
n

i

n

i

pxl Obj

l pxl Obj

pxl Obj



 =








                (13) 

The multi-scale visual saliency of each pixel can be obtained 

by Equation (12). We further normalize the visual saliencies of 

all pixels again to obtain the final saliency map of the original 

remote sensing image. 

IV. EXPERIMENTAL ANALYSIS 

A. Experiment Dataset 

UCM dataset: The UCM dataset [35] consists of 21 image 

categories, and each category has 100 images with the size of 

256×256 pixels. We selected 600 images containing distinct 

ground objects from 8 categories, which are airplane (100 

images), baseball diamond (100 images), freeway (59 images), 

golf course (65 images), river (67 images), sparse residential 

(58 images), storage tanks (97 images), and tennis courts (54 

images). These images are then manually labeled to generate 

the ground truth masks for performance evaluation. 

ORSSD dataset: The ORSSD dataset [36] is a challenging 

dataset with diverse spatial resolutions including 1264×987, 

800×600, and 256×256. It contains 800 optical remote sensing 

images collected from several existing datasets. 

B. Evaluation Measures 

We employ two sets of evaluation criteria to compare the 

performances of different methods quantitatively, i.e., the 

precision-recall curve (i.e., PR curve) with the F-measure curve 

for full-range thresholds and the average precision, recall, and 

F-measure for adaptive thresholds. 

The PR curve and the F-measure curve for full-range 

thresholds are calculated as follows. First, an integer value 

within the range [0,255] is selected as a threshold for generating 

a binary mask from the saliency map. Second, the precision and 

recall can be calculated by comparing the binary mask B  and 

the ground truth mask G : 

B G
Precision

B

B G
Recall

G

=

=









                       (14) 

where   denotes the number of non-zero entries in the mask.  

The F-measure can be calculated as 
2

2

(1 ) Precision Recall
F measure

Precision Recall





+  
− =

 +
      (15) 

where 
2  is a weight parameter, commonly set to 0.3 to 

increase the importance of the precision value [14], [18], [39]. 

Third, for each integer threshold within the range [0,255], the 

precision, recall and F-measure are calculated based on the 

binary mask and the ground truth mask. Fourth, for all images 

in the experimental dataset, the precision, recall and F-measure 

values for full-range thresholds are calculated, and then the 

average precision, recall and F-measure for each threshold 

within the range [0,255] can be obtained. Finally, the PR curve 

is plotted by setting the average precision and average recall as 

the ordinate and abscissa values, respectively; the F-measure 

curve is plotted by setting the average F-measure and the 

threshold as the ordinate and abscissa values, respectively.  

The average precision, recall, and F-measure for adaptive 

thresholds are calculated as follows. First, the Otsu method [39] 

is employed to perform an adaptive binarization on the saliency 

map. Second, the precision, recall and F-measure are calculated 

via Equations (14) and (15) based on the adaptive binary mask 

and the ground truth mask. Finally, for all images in the 

experimental dataset, the precision, recall and F-measure values 

are calculated, and then the average precision, recall and F-

measure for adaptive thresholds can be obtained. 

C. Performance Analysis 

(1) Visual saliency computation based on different 

segmentation methods 

As a key step in our ORWVS model, image segmentation has 

a great impact on the subsequent object extraction and visual 

saliency computing. To analyze the performances of different 

segmentation methods on visual saliency computation, we 

employ the GS, QS and SLIC segmentation methods and their 

two combination schemes to segment the original remote 

sensing images at multiple scales and calculate the final 

saliency map. The first scheme is to compute the mean values 

of the saliency maps based on the three methods at the pixel 

level (named “Mean”), and the other scheme is to compute the 

max values of the three saliency maps at the pixel level (named 

“Max”). 

The segmentation results measured using average precision, 

recall, and F-measure for adaptive thresholds are reported in 

Table I. From Table I, we notice that, in terms of average 

precision and F-measure, GS outperforms the other two 

methods. However, when using the average recall as an 

evaluation measure, QS and SLIC perform notably better than 

GS, while QS achieves the best performance among the three 

methods. Such inconsistent rankings are mainly due to the 

adaptive thresholds. Our further analysis suggests that the 

adaptive threshold values of the QS and SLIC saliency maps are 

less than that of GS saliency maps in general. Therefore, QS 

and SLIC saliency maps often have a larger foreground area, 

leading to a higher recall and a lower precision. However, 

according to Equation (15), precision is more important for the 

F-measure calculation. Thus, the performance rankings using 
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average F-measure are similar to that using average precision 

and different from that using average recall. 

 
TABLE I 

PERFORMANCES OF THE GS, SLIC, QS SEGMENTATION METHODS AND THEIR 

FUSIONS ON AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE 

THRESHOLDS 

Datasets Methods 
Evaluation measures 

Precision Recall F-measure 

UCM 

GS 0.6564 0.7555 0.6370 

SLIC 0.4869 0.6211 0.4761 

QS 0.4722 0.6372 0.4688 

Mean 0.5800 0.7546 0.5826 

Max 0.5030 0.7982 0.5229 

ORSSD 

GS 0.4739 0.6884 0.4770 

SLIC 0.4408 0.6616 0.4476 

QS 0.4715 0.6390 0.4674 

Mean 0.4543 0.6685 0.4639 

Max 0.3890 0.7020 0.4412 

 

 (2) Visual saliency computation based on different object 

features 

Object feature extraction is another critical step of our 

proposed ORWVS model. To thoroughly analyze the 

performances of different object features on visual saliency 

computation, we extract color, intensity, and texture features of 

the objects to construct the image object sets and then compute 

the visual saliency for objects to obtain their corresponding 

visual saliency maps.  

The performances of different object features on salient 

object extraction are shown in Table II. With regard to the 

average recall and F-measure, the color feature outperforms the 

other two features, particularly the texture feature. However, as 

for the average precision measure, the performance rankings of 

these three features follow intensity, color and texture, with 

intensity and color performing significantly better than the 

texture. Similar to the experimental results presented in Table I, 

due to the greater importance of precision in the calculation of 

F-measure, the performance rankings using average F-measure 

are similar to that using average precision and different from 

that using average recall. 
TABLE II 

PERFORMANCES OF THE COLOR, INTENSITY, TEXTURE FEATURES AND THEIR 

COMBINATIONS ON AVERAGE PRECISION, RECALL, AND F-MEASURE FOR 

ADAPTIVE THRESHOLDS 

Datasets Methods 

Evaluation measures 

Precision Recall F-measure 

UCM 

Color 0.6564 0.7555 0.6370 

Intensity 0.6636 0.7233 0.6338 

Texture 0.5889 0.5904 0.5236 

Mean 0.6531 0.7631 0.6380 

Max 0.6106 0.7849 0.6110 

ORRSD 
Color 0.4739 0.6884 0.4770 

Intensity 0.4742 0.6713 0.4748 

Texture 0.4512 0.6361 0.4518 

Mean 0.4711 0.7075 0.4720 

Max 0.4306 0.7192 0.4449 

 

 (3) Sensitivity analysis to model parameters 

There are two important hyperparameters in our proposed 

ORWVS model, i.e., 1c  and 2c . We evaluate the performance 

with different values of 1c  (Table III) and 2c ( Table IV).  

TABLE III 

PERFORMANCES OF THE ORWVS MODEL WITH DIFFERENT VALUE OF 1c  ON 

AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE THRESHOLDS 

Datasets 
1c value 

Evaluation measures 

Precision Recall F-measure 

UCM 

0.2 0.6543 0.6603 0.6088 

0.4 0.6619 0.7258 0.6351 

0.6 0.6584 0.7431 0.6360 

0.8 0.6564 0.7555 0.6370 

1.0 0.6489 0.7596 0.6321 

ORRSD 

0.2 0.4756 0.6567 0.4701 

0.4 0.4739 0.6884 0.4770 

0.6 0.4655 0.7198 0.4703 

0.8 0.4620 0.7318 0.4677 

1.0 0.4614 0.7271 0.4669 

 
TABLE IV 

PERFORMANCES OF THE ORWVS MODEL WITH DIFFERENT VALUE OF 2c  ON 

AVERAGE PRECISION, RECALL, AND F-MEASURE FOR ADAPTIVE THRESHOLDS 

Datasets 
2c value 

Evaluation measure 

Precision Recall F-measure 

UCM 

0.5 0.6491 0.7592 0.6303 

0.6 0.6493 0.7575 0.6306 

0.7 0.6497 0.7574 0.6313 

0.8 0.6527 0.7561 0.6334 

0.9 0.6564 0.7555 0.6370 

1.0 0.6564 0.7537 0.6368 

ORRSD 

0.4740 0.6926 0.4765 0.4740 

0.4737 0.6929 0.4762 0.4737 

0.4740 0.6944 0.4769 0.4740 

0.4733 0.6954 0.4761 0.4733 

0.4733 0.6902 0.4762 0.4733 

0.4739 0.6884 0.4770 0.4739 

 

(4) Comparison with other VAMs 

To validate the performance and advantage of our ORWVS 

model, we compare this model with other eight VAMs. These 

eight models are AIM [10], AWS [12], CA [13], DVA [11], 

GBVS [4], ITTI [3], RC [37], and SVO [39]. We conduct a 

detailed comparative analysis between our ORWVS model and 

the other eight models. The PR curves and F-measure curves of 

all these models are presented in Fig. 3 and 4, respectively.  
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(a)  Results on UCM dataset.                                                                                          (b)  Results on ORSSD dataset. 

Fig. 3.  PR curves of the ORWVS model and the other eight models  on two datasets.

 
(a) Results on UCM dataset.                                                                         (b) Results on ORSSD dataset. 

Fig. 4.  F-measure curves of the ORWVS model and the other eight models  on two datasets. 

 

To compare the performances of our ORWVS model and the other eight models on salient object extraction, we further calculate 

the average precision, recall, and F-measure for adaptive thresholds. The results are documented in Table V. We notice that our 

ORWVS model outperforms the other eight models by a large margin in terms of average precision and F-measure on both UCM 

and ORSSD datasets. However, the GBVS model performs the best in terms of average recall. In fact, pixel-based models generally 

perform well on average recall, mainly due to the Gaussian smoothing process for saliency map generation in these pixe l-based 

models, which brings in a high recall as well as a low precision. However, for salient object extraction, precision is considered 

more important than recall. Thus, in our evaluation, we value precision more than recall . 

TABLE V 

PERFORMANCES OF THE COLOR, INTENSITY AND TEXTURE FEATURE ON AVERAGE PRECISION, RECALL, AND F-MEASURE 

FOR ADAPTIVE THRESHOLDS ON TWO DATASETS. 

Datasets VAM 
Evaluation measure 

Time(s) 
Precision Recall F-measure 

UCM 

ORWVS-Color 0.6564 0.7555 0.6370 0.396 

ORWVS-Mean 0.6531 0.7631 0.6380 1.406 

AIM 0.2337 0.6309 0.2542 1.896 

AWS 0.2513 0.4853 0.2536 1.887 

CA 0.2752 0.4314 0.2637 64.028 

DVA 0.2799 0.1644 0.1828 1.072 

GBVS 0.3948 0.7800 0.4197 1.714 
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ITTI 0.3840 0.6547 0.3958 0.285 

RC 0.4627 0.6285 0.4539 1.238 

SVO 0.3080 0.7435 0.3299 147.393 

ORRSD 

ORWVS-Color 0.6564 0.7555 0.6370 0.396 

ORWVS-Mean 0.6531 0.7631 0.6380 1.406 

AIM 0.2337 0.6309 0.2542 1.896 

AWS 0.2513 0.4853 0.2536 1.887 

CA 0.2752 0.4314 0.2637 64.028 

DVA 0.2799 0.1644 0.1828 1.072 

GBVS 0.3948 0.7800 0.4197 1.714 

ITTI 0.3840 0.6547 0.3958 0.285 

RC 0.4627 0.6285 0.4539 1.238 

SVO 0.3080 0.7435 0.3299 147.393 

 

For visual analysis, we take UCM dataset as an example and present its visual saliency maps by different VAMs. The results 

are illustrated in Fig.5. It can be observed that our model and particularly ORWVS-Color outperforms other competing models.  
 

 
Fig. 5.  Comparison of the visual saliency maps  of UCM by different VAMs (1st column are sample images, 2nd column are ground truth mask images, 3rd-12th 

columns are saliency maps by the ORWVS-Color, ORWVS-Mean, AIM, AWS, CA, DVA, GBVS, ITTI, RC and SVO models , respectively.) 

V. CONCLUSION 

The merging remote sensing platforms that provide high-

resolution images provide great opportunities as well as 

challenges. We notice that the efficient and accurate feature 

extraction for ground objects in images has attracted increasing 

attention. In this study, we introduce the selective attention 

mechanism of HVS into remote sensing image processing and 
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employ the visual attention models to extract ROI (i.e., salient 

region) from remote sensing images. We propose a new visual 

attention model, i.e., the object-oriented random walk model for 

visual saliency detection (ORWVS). The proposed views image 

objects as the basic units in visual saliency computation, 

leading to its great computation efficiency and accuracy in 

terms of salient object extraction. We further analyze the 

performances of different segmentation methods and different 

object features in the model and conduct a comprehensive 

comparative analysis between our ORWVS model and other 

eight VAMs. Experimental results show that, in the saliency 

maps generated by our ORWVS model, salient objects own 

clear edges and accurate contours. Quantitative evaluations 

suggest that the overall performance of our proposed model is 

superior to that of the other eight VAMs. 

The ORWVS model can be widely used for object detection 

and recognition, change detection, image retrieval, and scene 

understanding from high-resolution remote sensing images. As 

for future works, we plan to further improve this model in two 

directions, i.e., the efficiency of the multi-scale image 

segmentation method and the development of innovative object 

features. 
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