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Abstract: Due to the characteristics of hyperspectral images
(HSIs), such as their high spectral resolution and multiple
continuous narrow bands, HSI technology has become
widely used in fields such as target recognition, environ-
mental detection, and agroforestry detection. HSIs are
subject, for various reasons, to noise in the processes of
data acquisition and transmission. Therefore, the denoising
of HSIs is very necessary and important. In this article,
according to the characteristics of HSIs, an HSI denoising
model combining principal component analysis (PCA) and
CANDECOMP/PARAFACdecomposition (CP decomposition)
is proposed, which is called PCA-TensorDecomp. First, we
use PCA to reduce the dimension of HSI signals by
obtaining the first K principal components and get the prin-
cipal composite components. The low-rank part corre-
sponding to the first K principal components is considered
the characteristic signal. Then, low-rank CP decomposition
is carried out, to denoise the first principal components and
the remaining minor components, the secondary composite
components, which contain a large amount of noise.
Finally, the inverse PCA is then used to restore the HSIs
denoised, such that the effect of comprehensive denoising
is achieved. To test the effectiveness of the improved algo-
rithm introduced in this article, we compare it with several
methods on simulated and real hyperspectral data. The

results of the analysis herein indicate that the proposed
algorithm possesses a good denoising effect.

Keywords: hyperspectral denoising, principal component,
low-rank, tensor decomposition

1 Introduction

In recent years, the rapid development of hyperspectral
image (HSI) technology has provided abundant spectral
spatial features for a wide range of applications, such as
target detection and classification [1]. An HSI is equiva-
lent to the superposition of many grayscale images.
Therefore, the HSI can be regarded as a cube structure
image, which contains rich information. On one hand, it
is equivalent to a two-dimensional spatial image, from
which spatial dimension information can be obtained.
On the other hand, it also contains the spectral structure
of the observed target.

In the process of imaging and transmission, HSIs are
inevitably polluted by noise from sensors, the atmo-
sphere, and other sources, such that the quality of HSIs
may be seriously reduced, which undoubtedly has adverse
effects on the extraction of HSI information. Therefore, as a
key preprocessing step to improve the subsequent recog-
nition ability, HSI noise reduction has attracted the atten-
tion of many scholars and has become a hot topic in the
field of hyperspectral remote sensing in recent years.
Compared with panchromatic and multi-spectral imagery,
the noise distribution of hyperspectral imagery is more
complex. As a result, traditional gray image denoising
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methods, such as K-SVD [2], block matching, and 3D fil-
tering [3], may not always be good at removing noise from
HSIs. Therefore, a reasonable and effective denoisingmethod
should be designed, according to the characteristics of HSIs.

In recent years, numerous denoising methods for
HSIs have been proposed, most of which have focused
on enhancing the restoration effect in the spatial and
spectral domains. Denoising methods can be roughly
divided into two types: The first type refers to two-dimen-
sional image denoising methods, which introduces the
spatial spectrum characteristics in different transform
domains for HSI denoising, such as wavelet transforms
[4], principal component analysis (PCA) [5], and sparse
3D transform-domain collaborative filtering (BM3D)method
[3]. However, such methods only consider spatial domain
denoising, and they do not use spectral information to
attenuate noise. Thus, there generally still exists some
noise, which could not be removed by such methods. HSI
denoising must consider both spatial and spectral domains.
The second type of methods consists of denoising in the
spectral and spatial domains in different stages. To better
reduce the noise in homogeneous regions while main-
taining edge and texture information, Yuan et al. [6] have
proposed a spectral adaptive total variation model to
smooth the noise and signals. In addition, Sun and Luo
[7] have proposed a three-dimensional mixed denoising
method in the differential domain of HSIs, in which a
spectral dimension transformation is first performed on
the HSI, following which the inverse transformation is
performed after denoising. Compared with the first type,
methods of the second type take both spatial and spectral
information into consideration in the denoising algorithm,
such that the denoising effect can be significantly improved.

An HSI contains three dimensions: one spectral dimen-
sion and two spatial dimensions. It can be modeled as
three-order tensor data. Therefore, tensor-based models
can improve the denoising results, because they can fully
capture the spatial–spectral correlation of the HSI. Recently,
with the development of tensor theory, many tensor-based
HSI denoising methods have emerged, such as the Tucker
decomposition-based HSI denoising algorithm [8,9], but
these methods often have the problem of low efficiency
and ignore the nonlocal self-similarity prior. Zheng et al.
[10] proposed a novel nonlocal patch-based FCTN (NL-
FCTN) decomposition for MSI inpainting. At the same
time, due to the characteristics of HSIs, the structured
high-dimensional information inherent in the original
observations may be discarded when the high-dimen-
sional HSI data are converted into two-dimensional data
by traditional methods and processed separately. Inspired
by the noise estimation method proposed in ref. [11], Meng

et al. [12] proposed an HSI denoising method by jointly
exploiting Tucker tensor decomposition and PCA based
on the noise power ratio (NPR) analysis. With the NPR,
they estimate the Tucker rank. And as this method exploits
the correlation effects in all of the dimensions of HSI data,
it gets some good results when denoising.

When using Tucker decomposition, the first step is to
estimate the rank of Tucker decomposition. However, for
a fixed N-rank image, the uniqueness of the Tucker
decomposition is not guaranteed. Scholars have made
some improvements on this basis, such as the kernel
non-negative Tucker decomposition [13], non-negative
Tucker decomposition based on non-local self-similarity
in the spatial domain [14], and Tucker decomposition
based on non-local self-similarity and global correlation
across the spectrum [15]. Although these methods can
better demonstrate the structural correlation of HSIs and
reduce the artifacts of overlapping regions, they cannot
solve the problem that the Tucker decomposition is not
unique.

CANDECOMP/PARAFAC decomposition (CP decom-
position), can be regarded as a special form of Tucker
decomposition [16,17]. It implements the tensor approx-
imation by manipulating the CP rank; thus, it has been
used as an effective method. Liu et al. [18] proposed an
HSI denoising method based on CANDECOMP/PARAFAC
decomposition (CP decomposition) and estimated the CP
rank depending on the variance of additive noise. How-
ever, in practice, the variance is often unknown. There-
fore, some low-order models of joint local and nonlocal
self-similarity can be used to improve the quality of
denoising, such as the non-local image denoising model
based on the weighted tensor rank-1 decomposition of
Wu et al. and Guo et al. [19,20].

In addition to being widely used in the field of HSI
denoising [21,22], low-rank priors can improve HSI super-
resolution. Dian and Li [23] proposed a novel subspace-
based low tensor multi-rank regularization method for
the fusion, which makes full use of spectral correlations
and non-local similarities of the HR-HSI. Xue et al. [24]
propose a new HSI super-resolution method that fully
considers the spatial/spectral subspace low-rank rela-
tionships between available high-resolution multispec-
tral image/low-resolution HSI and potential HSI.

Another widely used HSI denoising method is tensor
regularization [25,26]. Xue et al. [25] used the local reg-
ularization CP low-rank tensor decomposition method for
HSI denoising. Zhang et al. [27] approximated the rank by
a sum of tensor ranks in different directions, considering
the validity of singular value decomposition (SVD) in the
literature. Liu et al. [28] suggest a novel HSI restoration
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model by introducing a fibered rank constrained tensor
restoration framework with an embedded plug-and-play-
based regularization. For HIS mixed noise, Zheng et al.
[29] proposed a double-factor-regularized LRTFmodel for
HSI mixed noise removal. Zheng et al. [30] proposed a
fibered rank minimization model for HSI mixed noise
removal, in which the underlying HSI is modeled as a
low-fibered-rank component. The key problem in tensor
regularization is how to construct a reasonable regular-
ization term to reflect the global correlation and non-
local similarity. Tensor regularization can introduce prior
information into the HSI denoising and retain the spectral
and spatial dimensional information. It can be seen that
tensor regularization has a good application prospect for
HSI denoising.

To make use of the advantage of tensor decomposi-
tion and tensor regularization and take the characteris-
tics of HSIs into account, in this article, we propose an
HSI denoising model combining PCA and CP decomposi-
tion, which we call PCA TensorDecomp.

In summary, the main contributions of this work are
as follows:
(1) A novel method proposed to solve HSI denoising by

combining PCA and CP decomposition named PCA
TensorDecomp.

(2) Inspired by the alternating direction method of multi-
pliers (ADMM) and alternate least squares, a new
algorithm has been proposed to effectively solve the
method proposed in this article.

(3) A broad experimental analysis has been provided
based on several datasets. The numerical outcomes
are also corroborated by a qualitative analysis.

The remainder of this article is arranged as follows:
Section 2 briefly introduces the principles of PCA and CP
decomposition. In Section 3, the PCA TensorDecomp is
proposed. In Section 4, some numerical experiments are
provided and Section 5 is the conclusion.

2 Notations and related methods

2.1 Notations

In this article, lowercase or uppercase letters (e.g., i, I R∈ )
are used to denote scalars. Vectors are represented by bold-
face lowercase letters, e.g., x RI

∈ . Boldface capital letters
(e.g., X RI J

∈
× ) are employed to represent matrices. A tensor

is a multi-dimensional data array, and an n-order tensor

(n 3≥ ) is represented by a calligraphic letter RI I In1 2� ∈
× ×…× .

X Rk
I

∈ represents the k-th column vector of X. An element
value of � in position (i , i , , i1 2 n … ) is represented as
xi i in1 2… . The normal mode-k matricization of a tensor is

represented as X Rk
I I In1 2

( ) ∈
× ×…× . Moreover, the Frobenius

norm of a matrix X is calculated as xX F i
I

j
I

ij
21 2|| || = ∑ ∑ .

2.2 PCA

HSI data are complex. HSIs consist of dozens or even
hundreds of continuous and subdivided spectral bands
imaging the target region at the same time, which pro-
vides us with abundant information and is conducive to
the fine division of ground objects. The increase in band
number not only leads to information redundancy but
can also lead to a requirement for rather complex data
processing, such that it is necessary to reduce the dimen-
sion of the HSI data. PCA can separate the principal and
secondary components of HSIs well. On one hand, redun-
dant data can be removed; on the other hand, essential
information can be retained. It is, therefore, suitable for
the complex data processing of HSIs.

The essence of PCA is to transform a group of related
variables into a group of unrelated variables through an
orthogonal transformation and it has been widely applied
in many fields [5,31]. The formula is as follows:

Z AX,= (1)

where X is the original data, Z z z z, , ,1 2 p
T( )= … is the prin-

ciple components, and A is the orthogonal transforma-
tion to realize this process.

Considering that PCA cannot directly process three-
dimensional data, such as HSIs, we carry out a prepro-
cessing to reduce the dimension before conducting the
PCA. The specific steps for dimensionality reduction of
hyperspectral data are as follows.

The first step is to convert the HSI data � into two-
dimensional data X. Compressing each band into one-
dimensional data, the multiple bands then form a data
matrix.

The second step is to calculate the covariance matrix
S of the data matrix X. The specific formula is as follows:

S X X̄ X X̄1
n

l l ,T[ ][ ]= − − (2)

where l 1, 1, ,1 1 p[ ]= … × , X̄ x x x, , ,1 2 p 1 p
T[ ]= …
×
, and

X xi
1
n k 1

n
ik= ∑

=
.

In the third step, with the covariance matrix S
obtained, and in the second step, solve the eigenequation
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I S Uλ 0( )− = and get all the eigenvalues of the matrix S.
Then, the corresponding eigenvectors should be found.

Finally, all the eigenvectors are sequentially arranged
to form the orthogonal matrix A.

Usually, with PCA of HSIs, the new principal composite
components contain less and less information. Therefore,
we mainly retain most of the relevant information with the
first few principal components and discard the secondary
composite components, which are the so-called noise signal
components. However, those secondary composite compo-
nents usually contain some useful information and, so,
after discarding the secondary composite components,
the reconstruction of HSIs will lead to some loss of the
information. Therefore, how to extract information from
the secondary composite components is a very critical
problem.

2.3 CP decomposition

The essence of CP decomposition is to decompose third-
order tensor data into a sum of R rank-1 tensors [16]. Note
that HSIs can be treated as cube data (namely, a third-
order tensor). Because of this property, CP decomposition
can not only solve the problem of low-rank tensor com-
pletion [32] but also be used for HIS denoising.

Given a third-order tensor RI J K� ∈
× × , the CP decom-

position formula is as follows:

a b c ,
r 1

R

r r r� ∑≈ ∘ ∘

=

(3)

where R is an integer and a Rr
I

∈ , b Rr
J

∈ , and c Rr
K

∈ ,
r 1, 2, ,R= … . According to the definition of the cross pro-
duct, each element can also be expressed as:

x a b c ,

i 1, 2, , I; j 1, 2, , J; k 1, 2, ,K.

ijk
r 1

R

ir jr kr∑≈

= … = … = …

=
(4)

Tensor � can be unfolded to form matrices. The com-
bination of vectors from the rank-1 components, i.e.,
A a a a, , ,1 2 R[ ]= … is called the factor matrix. In this way,
we can construct B and C similarly. Using these defini-
tions, we can equivalently define CP decomposition in the
matrix form as:

X A C B
X B C A
X C B A

,
,
,

1
T

2
T

3
T

( )

( )

( )

( )

( )

( )

≈ ⊙

≈ ⊙

≈ ⊙

(5)

where X i( ) represents mode-n matricization of tensor �
and ⊙ is the Khatri–Rao product.

In general, the column vectors of the matrices A, B,
and C are normalized. Let λ R∈ , then, the CP decomposi-
tion can also be expressed as follows:

X A B C a b cλ; , , λ ,
r 1

R

r r r r[[ ]] ∑= ≡ ∘ ∘

=

(6)

where a Rr
I

∈ , b Rr
J

∈ , and c Rr
K

∈ , r 1, 2, ,R= … .
CP decomposition requires two steps:

(1) Determine the number of decomposition ranks; that
is, the rank of the so-called tensor.

The rank of a tensor is different from that of a
matrix, such that there is no simple method to solve
the rank of CP decomposition. That is to say, solving
the tensor rank is currently an NP-hard problem, and
there is no definite method or algorithm, which is
accurate for determining the decomposition rank.
We can, however, choose several different values to
compare their effect, or start from rank-1 and carry
out an iterative approach. Of course, the tensor ranks
of some dimensions have been obtained by some
scholars, which provide us with a good reference in
particular cases [33,34].

(2) Once R, the rank of a tensor, has been determined,
decomposition of the tensor can be performed.

When we solve the CP decomposition of a third-order
tensor, it is equivalent to using the sum of R rank-1 ten-
sors to approximate the original tensor �. The objective
function is as follows:

a b c A B C

min ˆ ,

s.t. ˆ λ λ; , , ,

ˆ

r 1

R

r r r r

� �

�

�

∣∣ ∣∣

[[ ]]∑

−

  = ∘ ∘ =

=

(7)

where �̂ is the tensor to be optimized.
Equation (7) can be solved by the ADMM [35]. The

optimization principle of the ADMM optimization algo-
rithm is to first fix the other parameters, except for the
one to be optimized. In the above formula, the specific
process is fixed first and then optimized. The operation is
repeated until the iteration has reached a certain number
or the error gets to the requirement of the experiment.
The specific optimization processes of different para-
meters are similar, so the following only introduces the
optimization process for the parameter A.

As all of the matrices are fixed, except for one, the
problem becomes a linear least-squares problem. Here,
we optimize for parameter A, with B and C fixed. According
to equation (5), we can write the above minimization pro-
blem, in the matrix form, as:
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X Â C Bmin .
Â

1
T

F∣∣ ( ) ∣∣( ) − ⊙ (8)

When Â A diag λ( )= ⋅ , the optimal solution is:

Â X C B .1
T †[( ) ]( )= ⊙ (9)

Here A† denotes the Moore–Penrose pseudoinverse of
A [36].

Due to the special form of the Khatri–Rao product,
the above formula can be written as:

Â X C B C C B B⁎ .1
T T †( )( )( )= ⊙ (10)

The advantage of equation (10) is that we only need
to calculate the pseudo-inverse of a R R× matrix, instead
of seeking a JK R× matrix. Due to the potential ill-posed
problem of numerical calculation, to solve this problem,

we normalized the columns of Â to get A. In other words,

let aλr r|| ||= and a a
r λ

r

r


= , for r 1, 2, ,R= … .

Algorithm 1: ADMM-based CP denoising algorithm

Input: noisy image �, kmit, ∈

Output: denoising image denoising image �̂

1. Initialization: Â B̂ Ĉ 00 0 0
= = = , k 1= ;

2. while k kmit< or relcha > ∈ do

3. Update Â via(10);
4. Update B̂ via(11);
5. Update Ĉ via(12);
6. Update X̂ via(7);
7. end

For the parameters B and C, we have the following
equations to keep iterating until the experimental require-
ments are met.

B̂ X C A C C A A⁎ ,2
T T †( )( )( )= ⊙ (11)

Ĉ X A B A A B B⁎ .3
T T †( )( )( )= ⊙ (12)

The corresponding denoising algorithm is summar-
ized in Algorithm 1, in which, kmit is the maximum itera-
tion of execution. The convergence of the designed scheme
is guaranteed [37].

3 PCA tensor decomposition
method

HSI data contain multi-dimensional information, such
that analysis of the data in each dimension may lose
the potential structure of the data. Fortunately, tensor
decomposition can effectively mine the potential infor-
mation among the data. In this section, we propose an
HSI denoising method based on the PCA and low-rank CP
decomposition (PCA TensorDecomp).

The denoising process of PCA TensorDecomp is shown
in Figure 1.

The HSI model is formulated as:

,� � �= + (13)

where � is the noisy HSI data,� is the clean image, and
� is the noise to be removed. Our purpose is to remove
the noise data � in � through PCA TensorDecomp.

Considering the roles of PCA, on one hand, it can
achieve the aim of dimensionality reduction for the HSI
and, on the other hand, it can separate the principal
composite components from the secondary composite
components. With the few main principal composite

Figure 1: Flowchart of PCA TensorDecomp.

522  Hao Wu et al.



components, most of the relevant information can be
retained. As mentioned earlier, those secondary compos-
ite components contain most of the noise, but they still
have some useful information. Discarding the secondary
composite components, this useful information will lose.

As the HSIs are tensor-type data, low-rank CP decom-
position can be used for denoising. The use of a low-rank
tensor decomposition can effectively remove the noise
contained in the tensor.

Thus, to combine the advantages of PCA and CP
decomposition, we propose a denoising algorithm based
on the PCA and low-rank tensor CP decomposition named
PCA TensorDecomp.

The steps of the algorithm are as follows:
Step 1: Input the noisy image � � �= + .
Step 2: Preprocess the hyperspectral noise image �

into the 2D data E and use PCA to reduce the dimension of
the processed data into the data Y; that is (D is the trans-
formation matrix):

Y DE.= (14)

Step 3: Separate the principal and minor components
and keep the previous principal composite components
unchanged, denoted as X1. Then, treat the remaining
principal composite components, which we denoted
as X2.

Step 4: Denoise the previous principal composite
components X1 and the remaining minor components X2
with the low-rank CP decomposition algorithm to obtain

the denoised primary component X1 and minor compo-
nent X2 . The optimization function is:

X X X X

X a b c A B C

X a b c A B C

min , min ,

s.t. λ λ ; , , ,

λ λ ; , , ,

X
1 1

X
2 2

1
R

r 1

1 1r 1r 1r 1 1 1 1

2
R

r 1

2 2r 2r 2r 2 2 2 2

1 2

1

2









∣∣ ∣∣ ∣∣ ∣∣

[[ ]]

[[ ]]

∑

∑

− −

= ∘ ∘ =

= ∘ ∘ =

=

=

(15)

where the symbol definition above is the same as in
Section 2.2.

Step 5: Finally, combine the denoising former principal

composite component X1 and secondary composite compo-
nent X2 together to form Ŷ. Inversely transform the compos-
ite components Ŷ to obtain the final data Ê. That is:

Ŷ X X ,1 2 
= + (16)

Ê D Ŷ ,1
=

− (17)

where D 1− is the invertible matrix of the previous trans-
formation matrix.

Step 6: Finally, the inversely converted data Ê are
restored to an HSI; that is, the denoised image � .

The flow chart of the proposed algorithm is shown
below.

Algorithm 2: PCA TensorDecomp denoising algorithm

Input: noisy image �

Output: denoising image denoising image �

1. Preprocess � into the 2D data E, and use PCA to
reduce the dimension via(14);

2. Separate the principal components X1 and minor
components X2;

3. X1 and X2 are obtained by denoising via(15);
4. Combine X1 and X2 together to form Ŷ via(16);
5. Inversely transform Ŷ to obtain the final data Ê via(17);
6. Restore Ê to � .

4 Experimental results and
analysis

To test the effectiveness of the proposed denoising algo-
rithm, in this section, we mainly report the results of
experiments on simulated and real HSI data. Five tradi-
tional HSI denoising algorithms, Tucker decomposition
[38], Adaptive Non-Local Means 3D (ANLM3D) [39], lower
rank tensor approximation (LRTA) [40], truncated sin-
gular value decomposition (tSVD) [41], and PARAFAC
[18], were selected for comparison. We evaluated the
denoising results both subjectively and objectively. That
is, we discuss the merits and demerits of five denoising
algorithms from the perspective of both visual qualitative
analysis and quantitative analysis. Peak signal-to-noise
ratio (PSNR), structural similarity (SSIM), feature simi-
larity (FSIM) [42], and erreur relative globale adimen-
sionnelle de synthese (ERGAS) [43] were used for the
quantitative analysis of simulated HSIs and real hyper-
spectral data.¹ The values of SSIM and FSIM are in the
range [0,1] while the values of PSNR approach infinity as
a limit. The greater the value, the less image distortion.
Different from the former three measures, the smaller
ERGAS is, the better does the target HSI estimate the
reference one. Meanwhile, we then examine the hori-
zontal average fluctuation of a given band. Notice that
the parameter setting for PCA was three in all the fol-
lowing experiments.



1 https://rslab.ut.ac.ir/data.
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4.1 Simulated HSI denoising experiments

We selected theWashingtonDCMall set from theHyperspectral
Digital Imagery Collection Experiment sensor for the simulation
experiments. The original image is of size 1, 208 307 191× × .
We selected 256 256× pixel and 191 sub-images of bands for
the experiment. The shape of a sub-image (the bands 30, 40,
and 50 are taken as R, G, and B components, respectively) is
shown in Figure 2a. We added Gaussian noise with the noise
intensity of 0.1 and 0.2 to this image and then used the
denoising algorithm mentioned above to denoise the image
and compare the denoising effects.

During the experiment, the number of ranks for the
first principal components for CP decomposition was
240/22 (denoised with noise intensity 0.1/denoised with
noise intensity 0.2) and the number of ranks for the
second principal components for CP decomposition was
180/4.

Comparing Figures 2 and 3, it can be seen that the
tSVD algorithm had the worst effect in both cases because
it used matrix factorization technology to perform the
denoising processing. The image restored by ANLM3D
is blurred and has artifacts. Although Tucker obtained
acceptable results at low noise levels, it could not remove
noise at high noise levels. LRTA and PARAFAC effectively

eliminated noise, but image detail was lost. These visual
conditions can be observed in the enlarged box. In com-
parison, the PCA TensorDecomp algorithms achieved
superior results competitive with the other methods.

Table 1 presents the quantitative results from compar-
ison of the denoising approaches with the Washington DC
Mall set at two different noise levels. We highlight the top
two algorithms with two different representations of the
data. Between the two, the best performance for each
quality index is highlighted by bolding the data, and the
second-best performance is highlighted by highlighting
the data. It can also be seen, from the comparison results
in Table 1 that the average PSNR of the denoising method
proposed in this article was the highest, indicating that it
achieves a better improvement of the denoising results,
compared with the other denoising algorithms. At the
same time, the structural similarity of the denoising algo-
rithm mentioned in this article was also significantly
improved, compared with that of the other five algorithms,
which indicates that the denoising algorithm proposed in
this article also significantly improved the authenticity of
image restoration.

Figure 4 shows the PSNR and SSIM values of each
band on the Washington DC Mall set at two different
noise levels. From the experimental results in Figure 4,

Figure 2: Image schematic diagram after denoising the simulated data with a noise intensity of 0.1. (a) Original image, (b) noisy image (0.1),
(c) Tucker, (d) ANLM3D, (e) LRTA, (f) tSVD, (g) PARAFAC, and (h) PCA TensorDecomp.
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we can see that, with different denoising algorithms, the
PSNRs and SSIMs of different sub-images from the simu-
lation experiment were all greater, compared to the noisy
image. On the other hand, for different noise intensities
and sub-images, the PCA TensorDecomp denoising algo-
rithm was more effective than most of the other denoising
methods because it obtained the best results in most bands.
This indicates that the PCA TensorDecomp algorithm

proposed in this article can outperform the traditional
denoising algorithm.

4.2 Real HSI denoising experiments

In this experiment, two groups of real HSI data were
selected, namely Indian Pines and Gaofen-5 data.

Figure 3: Image schematic diagram after denoising the simulated data with a noise intensity of 0.2. (a) Original image, (b) noisy image (0.2),
(c) Tucker, (d) ANLM3D, (e) LRTA, (f) tSVD, (g) PARAFAC, and (h) PCA TensorDecomp.

Table 1: The image quality evaluation index of all bands of each denoising algorithm (bold: best; underline: second best)

Noise intensity Method MPSNR MSSIM MFSIM MERGAS

0.1 Noisy image 20.00 0.432 0.732 422.499
Tucker 32.83 0.920 0.953 93.569
ANLM3D 27.95 0.740 0.838 162.521
LRTA 33.62 0.929 0.959 85.635

tSVD 26.03 0.690 0.867 209.735
PARAFAC 31.59 0.902 0.942 108.098
PCA TensorDecomp 35.82 0.953 0.975 67.887

0.2 Noisy image 13.98 0.191 0.560 844.942
Tucker 29.47 0.877 0.929 139.550
ANLM3D 25.78 0.630 0.781 208.236
LRTA 30.05 0.858 0.919 128.480
tSVD 21.36 0.461 0.764 359.067
PARAFAC 30.43 0.875 0.929 123.041

PCA TensorDecomp 32.14 0.879 0.940 115.865
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4.2.1 Indian Pines data

The real data were collected using the AVIRIS sensor at
the Indian Pines Test site in northwestern Indiana. The
size of the HSI data is 145 145× pixels and the original
data are composed of 220 bands with a wavelength range
of 0.4–2.5. The shape of a sub-image in this Indian Pines
data (bands 3, 2, and 1 are taken as R, G, and B compo-
nents, respectively) is shown in Figure 5a.

The HSI was denoised and the three denoising
algorithms (Tucker Decomposition, PARAFAC, ANLM3D)
mentioned in the previous section were compared. In
the experiment, the rank of CP decomposition was 20/20.
In the consideration of analyzing the experimental
results qualitatively, row signature curves of the first

band estimated by all the compared methods were
compared in Figure 6.

Comparing Figure 5, it can be seen that the denoising
effect of PARAFAC was not very good for real data
denoising. Tucker can get clear edges that ANLM3D
cannot get, but it has artifacts in some areas.

Figure 6 shows the horizontal mean profiles of band 1
before and after denoising. As shown in Figure 6a, due
to the existence of noise, there are rapid fluctuations in
the curve before denoising. After processing by several
denoising algorithms, the fluctuations are more or less
suppressed. Here, we can see that the curve of the pro-
posed PCA TensorDecomp method is more stable, which
is in accordance with the visual results presented in
Figure 5.

Figure 4: PSNR and SSIM of the different band from the simulated data Washington DC Mall analog. (a) PSNR (0.1), (b) SSIM (0.1), (c) PSNR
(0.2), and (d) SSIM (0.2).

Figure 5: Image schematic diagram after denoising of the real data. (a) Original image, (b) Tucker, (c) PARAFAC, (d) ANLM3D, and (e) PCA
TensorDecomp.

Figure 6: Row signature curves estimated by all the compared methods. (a) Original image, (b) Tucker, (c) PARAFAC, (d) ANLM3D, and
(e) PCA TensorDecomp.

526  Hao Wu et al.



4.2.2 Gaofen-5 data

To test the effectiveness of the denoising algorithm pro-
posed in this article, we adopted another data set Gaofen-
5 data. The original data set consists of 256 256× pixels
and 283 bands after cutting. In the experiment, the rank
of CP decomposition was 260/20. The real sub-image of
the data (bands 3, 2, and 1 are taken as R, G, and B
components, respectively) is shown in Figure 7a.

As above, different denoising algorithmswere adopted
to denoise the Gaofen-5 data. Results are shown in Figure 7.
As you can see from the figure, Tucker gets a distorted
image and ANLM3D gets a blurred image. Figure 8 shows
the horizontal mean profiles of the third band before and
after denoising. As shown in Figure 8a, we get the same
conclusion as the Indian Pines data set. Here, we can see
that compared with other denoising algorithms, PCA Ten-
sorDecomp proposed in this article shows more superior.

Figure 7: Image schematic diagram after denoising of the real data. (a) Original image, (b) Tucker, (c) PARAFAC, (d) ANLM3D, and (e) PCA
TensorDecomp.

Figure 8: Row signature curves estimated by all the compared methods. (a) Original image, (b) Tucker, (c) PARAFAC, (d) ANLM3D, and
(e) PCA TensorDecomp.

Figure 9: Relationship of CP rank with PSNR values at different noise levels in WDC datasets. (a) noise intensity = 0.1 and (b) noise intensity =
0.2.
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4.3 Analysis of CP rank

In the PCA TensorDecomp model, when executing the
algorithm, we need to determine the size of the CP rank
to get the best denoising effect. Figure 9 shows the
changes in PSNR corresponding to different CP ranks in
WDC datasets under two noise intensities. It can be seen
from the figures that when the noise intensity is 0.1, the
greater the CP rank of the first principal component and
the CP rank of the second principal component is in the
interval of [22,30], the better the denoising effect of
the proposed algorithm. When the noise intensity is 0.2,
the CP rank of the first principal component is in the
interval of [170, 190], and the smaller the CP rank of
the second principal component, the better the denoising
effect of the proposed algorithm. Therefore, the para-
meter size set in this article is reasonable and benign.

5 Conclusion

A new method for HSI noise reduction using PCA and a
low-rank CP decomposition model (PCA TensorDecomp)
was presented in this article. This method takes advan-
tage of the fact that PCA can reduce the complexity of the
processing data, as well as take into account the charac-
teristics of HSIs and the correlations between various
bands. To verify the validity of this algorithm, we selected
simulated HSI data and two sets of real SIs to carry out
comparative experiments, through both qualitative (i.e.,
assessing the visual effect) and quantitative analyses of
the proposed method and five traditional methods. The
results demonstrated that, compared with these methods,
the proposed PCA TensorDecomp method can effectively
reduce the noise of HSIs while retaining their fine struc-
ture. There are some aspects to be improved; for example,
in the process of PCA, the principal component selection
is carried out manually according to the degree of con-
tribution. Meanwhile, a better algorithm should be sought,
to get the number of CP decomposition ranks.
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