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ABSTRACT As the basis of human-computer interaction (HCI), gesture recognition interprets user-
performed gestures as commands, followed by the content execution expressed by users’ gestures. Gesture
recognition through wireless signals denotes a novel branch of human perception. Despite the recent
popularity of Radio Frequency Identification (RFID) following specific advantages (lightweight, low-cost,
and universality), several intricacies remain unresolved in RFID sensing research. First, most studies
performed simplified body movements assessments instead of identifying complex and fine-grained or
subtle gestures. Second, users require extensive training in a novel discipline to collect training data in a
specific pattern. Given the paucity of an intuitive and effective means of identifying user gestures, the RF-
E-letter proposed in this study denotes an RFID recognition system for complex, fine-grained, and domain-
independent gestures. A multi-label array was utilized to gather gesture signals. Fine-grained gesture data
could be obtained pre-processing with a novel data-processing method. Seemingly irregular RFID phase
data could be converted into intuitive images for the deep learning module input as convolutional neural
networks (CNNs) encompass automatic extraction characteristics for complex space-time features. The
average accuracy of new environments for novel users is 95.6% and 96.6%, respectively (significantly
better than current RFID-based solutions), thus demonstrating effectiveness and versatility.

INDEX TERMS Gesture recognition, RFID, Tags

1 INTRODUCTION
Given the rapid development of wireless technologies to
locate and track people [33], researchers have been
exploring different means of performing fine-grained
human perception. Human gesture recognition implies one
of the emerging branches of human perception that
significantly influences multiple applications [32]: smart
homes, virtual reality (VR), sign language recognition, and
smart cities [33-36]. Gesture recognition facilitates
improved user experience compared to conventional
techniques. Gesture recognition in public areas, such as
hospitals, libraries, supermarkets, and museums could
improve user experience without physical contact due to the
current health crisis. The non-contact approach could also
prevent the spread of germs and bacterial infections. People
could also execute specific gestures to interact with smart
assistants in 5G smart homes and further promote smart
home development.
Traditional solutions involving gesture recognition

typically utilize wearable sensors [3-9] and cameras [1-4,
37] for gesture recognition. Nevertheless, the approaches

remain limited despite the high recognition accuracies of
such alternatives. Although computerized vision-based
gesture recognition through cameras could achieve high
gesture recognition accuracy, the camera-based approach is
inefficient in dark environments and potentially violates
user privacy [10, 11]. Wearable sensor-based approaches
utilize inertial sensors, accelerometers, smartphones, tablets,
and smartwatches for gesture recognition. In [61], the Myo
armband was utilized for electromyographic (EMG) signal
acquisition. A simple network structure of a fully connected
neural network was employed to achieve seven specific
gesture recognition. Although the method could be
effective and accurate for hand gesture recognition, wearing
such sensing devices might be practically inconvenient. For
example, some older adults and children might refuse to
wear the devices or forget them at home.
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Figure 1. RF-Eletter's lab scenario deployment

This study explored a flexible and deployable gesture
recognition mechanism. Generally, wireless signal-based
solutions recognize gestures as a particular user gesture that
would affect the wireless channel and cause RF signal
changes (amplitude or phase). Through specific gesture
data acquisition, data pre-processing, and gesture data
feature extraction [19, 20], the system could perform
gesture recognition with the extracted features: dynamic
time warping (DTW)-based template matching or distance-
oriented classifiers. Regardless, both components require
extensive and labor-intensive data pre-processing and
feature extraction. Gesture recognition performance is also
highly dependent on the selection of feature extraction
algorithm.
The recent development of deep learning has rapidly

advanced the CNNs in natural language processing (NLP),
image recognition, and other disciplines [48, 49]. As CNNs
could automatically learn and extract complex features, the
possibility of automatically extracting the feature
representation of gesture signals from complex time-series
wireless signals is questioned. In this vein, a device-free,
fine-grained, and domain-independent (different
environments and users) gesture recognition system named
RF-Eletter was designed. Following Figure 1, the tag array
and antenna were placed facing one another while users
drew specific letters in between. The RF-Eletter
subsequently mapped the captured signal to the performed
gesture. In the experiment, volunteers freely drew the given
letters between the antennas and tag arrays in three different
places: dormitory, conference room, and classroom.
Three barriers were encountered in designing the RF-

Eletter. Although the volunteers were not statically placed
(immobile) between the tag array and antenna in the letter-
drawing process, the users dynamically performed letter-
drawing that involved complex, diverse, and fine-grained
gesture transformations as many letters encompassed
similar hand movements (c vs. l). Nevertheless, current
commercial RFID readers provide signal (received signal
strength (RSS) and phase) indicators with limited spatial

resolution. As hand gesture recognition involves complex
spatio-temporal transformations, some subtle finger
movements might be difficult to identify. Due to the
multipath effects within the experimental environment, the
additional noise produced in the collected data caused
complexities in determining the letters drawn by users.
Compared to the conventional target recognition activity
using Received Signal Strength Indication (RSSI) , the
phase reflected higher fine-grained resolution. Given that
RSSI is highly influenced by multi-path effects, the
spectrograms were compared through RSS and phase. The
phase was utilized for letter recognition works based on
significant gesture recognition features. The final barrier
involved domain-independent feature extraction works.
Typically, RF signals carry much gesture-independent
information with high dependence on users and their
environment (referred to as domain in this study). As a
gesture recognition model trained by users in one
environment would be significantly less accurate in a novel
domain, domain-independent feature extraction denotes a
highly challenging issue. The RF signal attributes also
instigate complexities in implementing domain-specific
feature extraction.
Several solutions were identified in the raw signal and

deep learning network contexts to address the
aforementioned intricacies. As current commercial RFID
readers could only provide limited information, sensing
capabilities could be optimized with two-dimensional
multi-tag arrays. In this study, a 2*3 two-dimensional tag
array was deployed where the spatial distribution could
capture complex and fine-grained gestures. Given the raw
noise in the collected data that is not easily recognized,
smoothing, subtraction and normalization operations, and
data expansion were performed on the gathered data to
further optimize RF signal sensing capability. A novel idea
was proposed to convert the raw phase data into a 100*100
pixel picture as the conversion could intuitively represent
the executed gesture as the deep learning module input. A
multimodal CNN was designed to extract features and
complex temporal and spatial features in each tag. Spatio-
temporal warping was employed to extract modal features
across time and space by extracting phase features at higher
levels. Accurate gesture recognition is thus achieved by
performing feature analysis.
This study experimented with three different scenarios

(conference rooms, classrooms, and dormitories) and
invited three volunteers (two men and one woman) to
collect approximately 6,000 sample sets for system
evaluation. Notably, the distance between the label array
and antenna denotes the distance set by the actual
experiment.
The current study contributions could be summarized as

follows: (1) the RF-Eletter is device-free as the system
employs a (i) multi-tag array (2*3) and a (ii) multi-modal
CNN for feature collection and extraction to sense complex
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and fine-grained gesture data; (2) RF-Eletter adopts a novel
approach to convert the original low-resolution RFID phase
data into a more intuitive and high-resolution image as the
deep learning module input, thus facilitating the conversion
of complex and low-resolution gesture data while retaining
gesture-specific information; (3) dynamic, complex, fine-
grained, and device-free continuous gesture recognition is
attained on commercial RFID devices. Based on the results,
RF-Eletter is deemed to be flexible, deployable, and highly
accurate in recognizing different alphabetic gestures with
an overall accuracy of 96.1%.
The remaining sections in this article are organized as

follows: Section 2 presents the research overview, Section 3
describes the preliminary work, Section 4 thoroughly
explains the posture recognition system design, Section 5
discusses the experimental method implementation and
evaluation, Section 6 elaborates on the study experiment
and future research prospects, and Section 7 concludes with
future studies and the study summary.

2 RELATED WORK

2.1 GESTURE RECOGNITION TECHNOLOGY
Current gesture recognition is divided into three categories:
wearable-based gesture recognition, computerized vision-
based gesture recognition, and wireless technology-based
gesture recognition. Wearable sensor-based approaches
utilize sensors that are embedded in sensing devices to
capture hand and finger movements. For example, [16, 50]
employed inertial sensors that were embedded into a
bracelet to recognize eating and smoking gestures while [15]
integrated gyroscopes and accelerometers with a glove and
utilized the glove to track subtle finger movements. Other
scholars employed bracelets for fine-grained gesture
recognition [5, 18, 61]. In [61], the Myo armband was
placed on the forearm for gesture signal acquisition and
duly processed and utilized as input for a fully connected
network to recognize gestures. Despite the prevalence of
real-life wearable sensing devices, people inevitably forget
to wear the devices or experience discomfort.
Computerized vision-based gesture or human recognition

systems employ cameras or light sensors [21-24] to
recognize gesture movements or humans. In [22], the RGB
camera in a mobile device was utilized to recognize
gestures. In the deep learning environment context,
computerized vision-based methods were significantly
optimized and incorporated into activity and gesture
recognition accuracies [1, 2]. Some researchers also utilized
Kinect [26] and Leap Motion [27, 28] to further improve
gesture recognition performance. Nevertheless, the systems
are susceptible to variations in lighting conditions that do
not apply to occlusion-oriented situations. Although
computerized vision-based approaches encounter specific
intricacies, such as the invasion of user privacy, RF-Eletter

is independent of illumination-based conditions due to its
lightness, scalability, and pervasiveness.
Wireless infrastructure could provide device-free gesture

recognition given the prevalence of gesture recognition
with wireless technology. The WiFi [12-14], RFID [38-40],
ultrasound [41,42], radar [43-45], and other wireless
technologies have been employed for gesture recognition,
such as the channel state information (CSI) of WiFi
utilized in reference [12] to whole-body activity and coarse-
grained gesture recognition. For example, [14] and [22]
employed WiFi signals to recognize common sign language
and gesture recognition. In [41], LLAP utilized a
microphone and speaker to precisely recognize hand-
tracking in the millimeter range. Regarding wireless-based
positioning and tracking technologies, some researchers
tracked object movements with RF signal analysis [29, 30].
Witrack [29] employed the frequency-modulated
continuous-wave (FMCW) technology to track target
personnel with unique and complex equipment. Although
target gesture tracking was achieved by eliminating the
reflection from surrounding objects in [30], fine-grained
gesture recognition could not be attained as such methods
typically require specific equipment for gesture recognition.
Consequently, IoT devices were incorporated into various
applications [31]. Overall, RF-Eletter facilitates device-free
fine-grained gesture recognition as the system is
incorporated into commercial RFID devices.

2.2 RFID-BASED PERCEPTION
The RFID is generally utilized for object identification. For
example, [46, 47] employed RFID signals to determine
target materials, specifically liquid. Notwithstanding, recent
studies have revealed RFID signals to be information-rich
for localization [51-53], activity identification [54,55],
human identification [56,57], and vital sign detection [58-
60 ]. Specifically, [60] proposed the LunkTrack system that
performs breath detection on a commercial RFID device
without any equipment placed on the target. Detection
could be accomplished through receivers ’ signal
fluctuations following chest movements while breathing.
Meanwhile, optimization techniques serve to locate
multiple RFID tags and facilitate the system to monitor the
breathing of two target individuals.

The TagSleep system designed in [59] proposed a two-
layer sensing concept with breathing information as the first
layer to obtain rich second-layer sensing information,
including sleep activities (coughing, snoring, and sleep
talking) and detect the target individual ’ s breathing status
through subtle changes. Meanwhile, RFIDraw [55] was
utilized for a high-precision tracking of subtle hand
movements. Some researchers explored tagless sensing to
avoid the inconvenience of physical body tagging. For
example, TagFree [54] extracted signal angle-of-arrival
(AOA) information from a multi-antenna array to achieve
device-free activity recognition albeit with AOA
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information processing. Although current device-free RFID
sensing solutions emphasize the recognition of coarse-
grained or simple gestures rather than fine-grained and
complex counterparts, accuracy tends to decrease
dramatically in novel environments or with new users
despite being domain-specific.

2.3 RFID-BASED GESTURE RECOGNITION
Gesture recognition with wireless signals, such as RFID is
an emerging non-touch user interface technology that has
garnered much attention following its lightness,
affordability, and prevalence. CAO DIAN et al. [25]
proposed RFree-GR , a domain-independent RFID system
that utilizes a 3*4 array of tags to capture users ’ gesture
signals through the designed multi-modal convolutional
neural network (MCNN) to aggregate information between
signals, abstract complex spatio-temporal patterns, and
facilitate complex and fine-grained gesture recognition.
Despite an average accuracy of 90% for novel users and
environments, the system failed to recognize dynamic
gestures. Meanwhile, Han Ding et al. [17] recommended
RFnet to recognize static or dynamic gestures with time-
series RFID signals through extensive experiments in three
environments. Resultantly, RFnet achieved an average
accuracy of 94.8% in dynamic gesture recognition. The
system reflected high recognition accuracy for dynamic
gestures albeit with reliance on a sensing plane that
encompassed an array of 7*7 tags.

Multiple tags might instigate coupling effects between
tags and cause the sensing plane to occupy a large space. In
alleviating such effects and minimizing the occupied area, a
2*3 tag array was adopted as the sensing plane. The RF-
Eletter, a framework based on multi-branch CNN, was also
proposed as a novel approach to convert the raw low-
resolution RFID phase data into a more intuitive and high-
resolution image as the deep learning module input. The
input subsequently enabled the conversion of complex low-
resolution gesture data while retaining gesture-specific
information. The model was validated with extensive
experiments. Based on the study outcomes, the RF-Eletter
system was found to be flexible, deployable, and highly
accurate in dynamic gesture recognition.

3 PRELIMINARIES
This section presents some fundamental RFID technology
principles for an optimal RFID sensing model.

3.1 RF TECHNOLOGY PRINCIPLES
The RFID tags are utilized to perceive target environments
in RFID technology. When the tag accesses the antenna
receiving range, the antenna subsequently senses the RF tag
product information in the environment through the RF
signal emitted by the reader. The read and decoded
information is then conveyed to the central information
system for relevant data processing. As a natural reflecting

and receiving medium, the human body encompasses a
wide range of applications in RFID. In the simulation
environment of the RFID system, the signal emitted from
the antenna would be disrupted by various media in the
environment and induce different waveforms. The RF-
Eletter system parallels the RFID technology principle and
deploys a tag array to capture human finger movements and
complete the gesture recognition spectrum.
3.1.1 RFID-AWARE TECHNOLOGY PRINCIPLES
In RFID systems, the reader transmits an RF signal from
the antenna for target label access, derives energy from the
RF signal to respond, and returns the backward-scattering
signal S t to the reader as follows:

S t = α t e−iθ t (1)

� � = �0 +
4��
�

(2)

Specifically, α t and θ t denote the receiving signal
amplitude and phase, respectively, θ0 implies the initial
offset, i is an imaginary unit, d reflects the propagation path
length, and λ demonstrates the wavelength. A dynamic
signal impacts the signal change when the user gestures
between antennas and labels. Static signals beyond user
influence are also identified. Thus, S t can be computed as
follows:

� � = �� � + �� � = ⥂���−��� +
�� � �−��� � (3)

The Ss and Sd represent static and reflective dynamic
signals, respectively. Human reflection causes shifts in
phase and receiving signal. As amplitude is not a primary
factor in this experiment, dynamic amplitude(αd) and static
amplitude (αs ) are perceived as constants and (3) could be
computed as follows:

� � = � �−��� + �−��� � (4)

The final S t result is conclusively obtained.
3.1.2 PRELIMINARY EXPERIMENTS
A set of 2 × 3 tag arrays were utilized to study the effect of
human motion on the back-scattered signal while 4 × 3 tag
arrays were employed for data acquisition following [25].
Resultantly, 2 × 3 tag arrays enabled the acquisition of
complex and fine-grained gesture data. Dynamic gestures
were also performed between the tag arrays and antenna to
collect RSS and phase values. A high coupling effect was
identified when the tags were placed closer to one another.
As the spacing between the tags deployed in this study
exceeded 15 cm [59], higher accuracy was attained with
fewer tags.

3.2 SETTINGS OF THE EXPERIMENTAL DEVICE
Two fundamental questions are posed before conducting a
human gesture recognition experiment: (1) How to select
and set labels to capture motion gesture information? and (2)
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How can the distance between the antenna and label be
controlled? Based on past research, the H47UHF label was
selected and formed into a 2 × 3 label array to precisely
cover human gestures and produce more accurate signal
changes. The label array of 2 × 3 could also better eliminate
coupling effects with higher accuracy and fewer labels.
Figures 1a and b demonstrate the H47UHF labels and label
array settings employed by the RF-Eletter system,
respectively.
Specifically, volunteers were only required to move their

fingers slightly in drawing the corresponding letters without
overstretching the label to the antenna (direct distance) and
controlling the label-antenna distance in RF-Eletter at 35
cm.

Figure 2a: H47UHF label

Figure 2b: Experimental label array

3.3 GESTURE AWARENESS ANALYSIS
This study analyzed the perceptions of human gesture
recognition. Figures 3a and b illustrate the RSS and phases
under various dynamic letters, respectively. Different
gestures exhibited distinct waveforms with higher
recognition compared to RSS. Generally, the signal
received by the antenna from the label contained human
gesture information that could be analyzed by docking the
signal to deduce human body gestures. In Figure 3a, the
RSS in human gesture perception demonstrated a less
obvious trend of change. Thus, a phase was chosen in this
experiment to perform the corresponding experimental
analysis of human gesture recognition [25].

Figure 3a: RSS information under different letters

Figure 3b: Phase information under different letters

Different users ’ human gesture recognition capabilities
were also studied. Figures 4a and b represent the RSS and
phase maps, respectively when various users wrote the
same dynamic gesture under the same label. Specifically,
different users demonstrated distinct characteristics for the
same gesture. In this experiment, as many gestures as
possible were gathered from different users to increase
dataset diversity. In comparing the RSS and phase
spectrums, phase was found to contain palpable and
recognizable human gesture characteristics.

Figure 4a: RSS information for different users
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Figure 4b: Phase information for different users
The ability of different labels to recognize human

gestures was also examined. Figure 5 represents a phase
map where the same user wrote the same dynamic gesture
under different labels. Resultantly, different labels reflected
different variations in the user ’ s characteristics. Based on
the user ’s time-varying characteristics, a 2 × 3 label array
was implemented to minimize the perceived blind spot of
the RFID signal. Based on the study experiment, label 5
was selected as the experimental analysis label given that
tag 5 was more recognizable to the user ’ s gestures. For
example, the volunteers habitually utilized five labels as
references when writing gestures. In comparing the RSS
and phase spectrums, phase was found to contain palpable
and recognizable human gesture characteristics.

Figure 5: Phase information under different labels

4 SYSTEM DESIGN
This section provides an overview of the study system (see
Section 4.1) and thoroughly elaborates on the core system
modules.

4.1 OVERVIEW OF THE SYSTEM
Following Figure 6, RF-Eletter primarily encompasses

three modules: signal acquisition, signal pre-processing,
and deep learning. In the signal acquisition module, a 2 × 3

RFID tag array was employed to capture the original RSS
and phase values. Based on the original signal analysis, the
phase was finally selected as the characteristic signal input
follow-up module. In the signal pre-processing module, the
original phase was subtracted to highlight the differences
between different gestures and normalize the processed
signal data into the data-smoothing operation for low noise
interference. Additionally, the data was expanded to further
improve data diversity and output for conversion into the
image format. Lastly, the pre-processed signal data were
incorporated into the deep learning module for gesture
recognition.

Figure 6: Overview of RF-Eletter systems

4.2 SIGNAL PRETREATMENT MODULE
Owing to environmental noise and interference, it was
deemed inappropriate to directly integrate the original
signal with the neural network for training. Thus, the signal
was initially incorporated into the pre-processing module
for optimal signal recognition.
4.2.1 SUBTRACTION OPERATIO
Based on the antenna-tag array distance, reader, and tag
(physical characteristics of the impact), the original signal
was frequently accompanied by environmental noise in the
output. In this vein, the signal output significantly differed
from the anticipated counterpart. The RFID acquisition of
phase denoted the super-position of LOS and NLOS signals.
As the NLOS signal primarily occurred through static
(tables and chairs) and dynamic (human gesture motions)
reflection within the RFID hardware, the signal was
initially gathered in an empty environment without the
dynamic reflection signal. Gesture motion was then
performed between the RFID and tag for signal collection
by subtracting both signals [17]. The dynamic reflection
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signal could be extracted following human gesture motions
and the reflected dynamic signal caused by human gesture
movements. The signal was then utilized as the
characteristic signal of human gesture movements. The
noise interference from physical characteristics, such as the
environment could be effectively omitted for a distinct
feature curve.
4.2.2 DATA NORMALIZATION
In RFID systems, the original phases gathered might
demonstrate different scale units following the nature of the
label and position of human gesture movements to alleviate
data comparability and gesture recognition accuracy. Data
normalization operation aimed to normalize the original
data to the same order of magnitude, resolve the
comparability between data indicators, and improve the
model convergence rate and accuracy. Specifically, the
minimum-maximum standardized method was
implemented for a linear transformation of the original data
(X1) output as follows:

�1 =
�−���

���−���
(5)

Specifically, X denotes the subtraction processed data,
max implies the maximum value of the current sample data,
and min reflects the minimum value of the present sample
data.
4.2.3 DATA SMOOTHING
Excessive noise from raw data is a common challenge in
gesture recognition experiments, such as the original data
“a ” output from tag 1 (see Figure 7). Specifically, output
“ a ” was merely smoothed due to the jittery signal and
complexities in distinguishing accuracy.

Figure 7: Label 1 outputs the original phase information for the letter ‘a’

The fundamental notion of data smoothing could be
summarized as “hijacking the rich and the poor”. In other
words, the probability distribution was inclined to the actual
level as much as possible for increased zero probability
(low probability) and reduced high probability. In this study,
the data were smoothed with a Savitzky-Golay filter that
proved more appropriate for RFID following data change
dominance. The width of the filter window was set to m =

2n + 1, the prediction point was x = t − n, t − 1,⋯, t, t +
1, t + n , and the data in the window was fitted with a k −
1 polynomial. The fitting formula is presented in (6) as
follows:

� = �0 + �1� + �2�2 + … +
��−1��−1 (6)

In obtaining a similar solution and 2n + 1 ≥ k , the least
squares were obtained to determine the fitted parameter A
as presented in (7):
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The matrix above is simplified as follows:

� 2�+1 ×1 = � 2�+1 ×� ⋅ ��×1 +
� 2�+1 ×1 (8)

In the aforementioned formula, Y , X , A , and reflect the
matrix representations of the formulas in (7) while the
subscripts represent their respective dimensions. For
example, Ak×1 represents a parameter with k rows and 1
column. The solution of Ak×1 could be derived from the
least square method as follows:

� = �� ⋅ � −1 ⋅ �� ⋅ � (9)

The aforementioned mark, T, indicates transposition. The
predicted or filtered model Y value is computed as follows:

� = � ⋅ � = � ⋅ �� ⋅ � −1 ⋅ �� ⋅ � =
� ⋅ � (10)

Lastly, a matrix of the filter value-observation
relationship is formulated as follows:

� = � ⋅ �� ⋅ � −1 ⋅ �� (11)

The observations could be quickly converted into filter
values for data smoothing upon obtaining matrix B.
4.2.4 DATA AUGMENTATION
Neural network training requires large data to mitigate
value loss and obtain high accuracy. Convolutional
networks tend to overfit in managing small datasets. To
prevent overfitting and attain a better training effect, the
study dataset required expansion for high accuracy. In the
study system, the data deformation and adjustment method
for increased dataset optimized data diversity and
robustness. Specifically, the data output was smoothed as a
100 × 100 pixel image. The literature [17] uses GAN for
data expansion. Regardless, the expanded data image
resulted in biased training data. As the effect of
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incorporating the biased data into the deep learning module
could not attain the anticipated effect, noise was embedded
into the converted image to expand the training set and
convey the data to the deep learning module as network
input.

4.3 DEEP LEARNING MODULE
The collected gesture signals were pre-processed and
utilized as the deep learning module input to implement
feature extraction and gesture recognition. This section
introduces the deep learning module in detail (see Figure 8).
The framework diagram of this designed network
encompasses two parts: feature extractor and gesture
recognizer.

Figure 8: CNN Frame

4.3.1 FEATURE EXTRACTION PHASE.
A three-tier CNN network structure was employed for
feature extraction. The data were pre-processed for input to
the deep learning module. The CNN was utilized following
its suitability in analyzing the time-series of sensing data
and optimizing feature extraction from the fixed-length
segment of the whole sequence. The convolution layer
output characteristics are defined as follows:

� = ���� ���� ��0 + � (12)

This study utilized a three-layer convolution. The
convolution core size was 3 × 3, the number of data input
channels was three, the number of channels in the first layer
convolution was eight, the number of channels in the
second-layer convolution was 16, and the number of
channels in the third convolution was 24. Through the
three-layer convolution, different dimensional phase
features could be extracted from the pre-processed image.
After the image passed through the convolution layer, the
ReLU activation layer [19] was employed to increase the
non-linear segmentation ability of the image and apply the
average pooling operation to the activated image along the
time dimension. As such, the network parameters could be
reduced to prevent overfitting through pooling operation. A
high-level phase representation was extracted using CNN as
follows:

�� = � � �, �� � (13)

Specifically, x denotes a picture of the pre-processed data
while θf e represents all the feature extraction parameters.
4.3.2 GESTURE RECOGNITION STAGE.
As the advanced feature representation of gesture data was
obtained post-feature extraction, the gesture recognizer
could simply employ the complete connection and softmax
layers for gesture classification.

�� = �� ��, ��� (14)

The θgr implies all the gesture recognizer ( GR)
parameters. Additionally, the cross-entropy loss function
could be implemented to compute the LG loss between the
predicted GP and ground truth (GT):

�� ���, ��� =− 1
� 1

�
1
� ��

���� ��� ���
��

(15)

Notably, N and J denote the number of gesture samples
and categories, respectively.

5 IMPLEMENTATION
This section presents the hardware and software employed
in this experiment with RFID equipment and multi-label
arrays to test and verify the model accuracy and
performance. Based on the experimental parameters (see
Table 1), the study model was designed based on different
novel domains and various users with average accuracies of
96.6% and 95.6%, respectively.
Experimental environment: Three experimental sites

were designed in this study. Experimental site 1 was
arranged in a classroom area of approximately 7m x 10m
with several tables and chairs (see Figure 9). Experimental
site 2 was arranged in a conference room area of
approximately 7.2m x 8.5m with much electronic
equipment (see Figure 10). Experimental site 3 was
arranged in a dormitory area of approximately 4.5m x 8.5m
with four iron bunk beds (see Figure 11). The label array
was designed as a 2*3 two-dimensional multi-label array
with a target in the antenna and label array at a 35 cm
distance. Regarding gesture recognition, the user sat in
front of the desk and performed specific gestures between
the antenna and tag array for users ’ gesture movements,
data extraction, and identification by transmitting Ethernet
to the PC side.
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Figure 9: Classroom experiment scene diagram

Figure 10: A picture of the lab scene in a conference room

Figure 11: Dormitory experiment scene map

Hardware facilities: The hardware encompassed four
parts: an Impinj R420RFID reader (see Figure 12)
operating at 920.875MHz, an RFID UHF circular
polarization antenna (see Figure 13), six 4 cm × 4 cm labels,
and a Lenovo R7000p computer.

Figure 12: Impinj R420 RFID Reader

Figure 13: UHF circular polarization antenna
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Software facilities: The study model was operated on a
Lenovo computer equipped with 2.5GHz AMDR7 and 16G
memory (for data acquisition and pre-processing), RFID
card readers connected to laptops through Ethernet cables,
and low-level card reader protocols (LLRPs) for
communication. The method was implemented by c while
the designed neural model was implemented with Python.
Experimental data set: A total of 15 volunteers (eight

males and seven females) were invited for data collection.
Specifically, 10 of the individuals were randomly employed
for dataset training while the remaining five encompassed
the test set (three males and two females). Each volunteer
drew seven different letters in three distinct scenes.
Drawings c and l produced more similar images while i and
w produced images that significantly differed. All seven
letters were utilized for drawing as the letters proved
sufficient to cover the 26-letter differences between them.
Each letter was drawn 25 times. Lastly, the collected
dataset was expanded by embedding noise into it thrice.
Out of the 23, 625 gathered data (25*7*15*3*3), 15, 750
(25*7*10*3*3) were training set samples while 2625
(25*7*5*3) were test set counterparts.
Metrics: Two evaluation metrics accuracy and correct

recognition (FRR) were employed to describe the model
performance. The ACC measures the likelihood of precisely
recognizing users’ gesture movements as follows:

ACC = TP+TN
TP+FP+FN+TN

(16)

The TP represents the number of accurately predicted positi
ve examples while TN reflects the number of accurately pre
dicted negative examples. The FP represents the number o
f inaccurately predicted positive examples while FN represe
nts the number of negative inaccurately predicted examples.
The FRR implies the model likelihood of precisely identify
ing a word as ‘yes’ and is computed as follows:

��� = ��
��+��

(17)

TABLE I

EXPERIMENTAL PARAMETER TABLE

Parameter Value

Spacing between adjacent labels 5cm

Spacing between tag and antenna 35cm

Angle between antenna and ground 90℃

Reader frequency 920.875MHz

5.1 PERFORMANCE IN DIFFERENT ENVIRONMENTS
Comparative experiments were performed to authenticate
the cross-domain performance of the study model. Three
environmental types were established without loss of
generality. Environment 1 involved a classroom with four
tables and chairs in an area of approximately 7m x 10m.
Environment 2 encompassed a conference room with an
area of approximately 7.2m x 8.5m and multiple electronic
devices interfering in the experimental environment.
Environment 3 involved a dormitory encompassing an area
of approximately 4.5m x 8.5m with four iron bunk beds.
Each user drew 175 gestures per environment (25 per letter).
The FRR rate of the RF-Eletter system was evaluated using
the model (see Figures 14 and 15). The matching model
accuracies in conference rooms, dormitories, and
classrooms were 93.14%, 97.14%, and 100%, respectively.
Following the interference of multiple electronic devices in
the conference room, the phase characteristics of the words
c and l were similar while the FRR rate was under 90%.
Regardless, the average accurate recognition rate of other
words exceeded 95%.

Figure 14. ACC in different environments

Figure 15. FRR in different environments

5.2 PERFORMANCE UNDER DIFFERENT USERS
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The impact of different users’ performance regarding the
same gesture on the channel was explored despite
performing the same action. Regardless, different users
demonstrated various signal impacts following distinct
letter-drawing speed, size, and other relevant factors. In
authenticating the RF-Eletter model accuracy for different
users ’ gesture recognition, five volunteers were invited to
participate in this experiment. The participants executed
seven letters in Environment 2 by drawing each letter 25
times. The FRR rates of the RF-Eletter system for different
users ’ gesture recognition are presented in Figures 16 and
17.
The average matching accuracy of recognition among the
five volunteers with the RF-Eletter model was 100%,
98.28%, 89.14%, 96%, and 96.57%, respectively. The
accuracy of user 3 was under 90% as the phase maps of c
and l that were drawn by the user were more similar and
resulted in lower model accuracy. The FRR rate
performance results could be divided into two groups. The
first group encompassed gesture activities a, m, r, t, and w
with an average FRR rate exceeding 97%. The second
group involved gesture activities c and l with an average
FRR rate of 88.8% and 93.6%, respectively. Compared to
the first group of activities, the measurement accuracy of
gesture recognition was mitigated as the c and t gestures
were highly similar during the drawing process. Although
the phase graphs were not significantly different, the system
still provided a correct rate exceeding 88.8%.

Figure 16. ACC for different users

Figure 17. FRR for different users

5.3 PERFORMANCE UNDER DIFFERENT
INTERFERENCE FACTORS
The system design and production are influenced by metal
and electronic products as RFID tags and other electronic
products are susceptible to interference from metals and
other wireless signals. Metal would cause eddying currents
around the over-clocked RFID tags and readers and reduce
the overall effectiveness of the RFID electromagnetic field.
The surrounding objects would also reflect RFID signals
and cause interference. In verifying the model performance
under the interference factors, three scenarios were
established for comparison. Regarding Scenario 1, the user
performed a gesture action in Environment 3 without
interference factors. Regarding Scenario 2, a metal water
cup was placed close to the tag and reader. The user
performed the gesture action while the metal water cup
caused interference.
Concerning Scenario 3, the user performed a gesture with

multiple people walking around the house and causing
interference. The user performed such gestures 175 times
(25 times for each letter) in every scenario. The
experimental results are presented in Figures 18 and 19. For
each different scenario, the average accuracy reflected
100%, 98.28%, and 97.14%, respectively. The accuracies
measured in Scenarios 2 and 3 proved similar to the
counterpart without interference factors (Scenario 1), thus
indicating the high resistance of RF-Eletter against
environmental interference.



This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3128293, IEEE Access

Author Name: Preparation of Papers for IEEE Access (July 2021)

VOLUME XX, 2021 9

Figure 18. ACC under Interference Factors

Figure 19. FRR under different Interference Factors

5.4 COMPARISON WITH OTHER GESTURE RECOGNITI
ON ALGORITHMS
A novel method was adopted in RF-Eletter to convert the
initial low-resolution phase data into more intuitive and
high-resolution pictures. The pictures were utilized as the
training model input of the CNN network for gesture
recognition. A series of comparative experiments were
constructed to verify the gesture recognition algorithm
effectiveness. Several advanced gesture recognition
systems were compared based on wireless signals, such as
RFree-GR [25] and RFnet [17] (see Figure 20). The
average accuracy rates of RFree-GR for novel users and
environments were 89.03% and 90.21%, respectively
(lower than the two preceding counterparts). The RFnet
utilized a 7*7 tag array to increase the average accuracy of
novel users and environments to 95.1% and 94.4%,
respectively. Contrarily, RF-Eletter demonstrated the most
optimal performance in both tests at 95.6% and 96.6%,
respectively with fewer tags for higher accuracy.

Figure 20. Comparison of different classification algorithms

6 DISCUSSION
The RF-Eletter system encountered some limitations in
real-life applications. First, more gesture data were required
to practically meet specific application prerequisites.
Additionally, the designed neural network required
additional parameters for real-time gesture recognition.
This study aimed to employ the simple fully connected
neural network in [61] for real-time gesture recognition and
improve the gesture recognition algorithm in the future. In
this vein, the MUSIC (multiple signal classification)
algorithm was deemed appropriate. The researchers intend
to design a neural network with better robustness and
generalizability for real-time detection and gesture
recognition to complement realistic future applications.
Although the designed RF-Eletter could achieve

individual letter recognition in different domains, word
recognition proved challenging following the highly
complex and fine-grained gesture recognition of words (an
intriguing complexity to be examined in future research).
As such, data segmentation and subsequent techniques [62]
could be considered to split the words into different parts
and splice the content for word recognition. Different signal
waveforms could also be generated for different words
through relevant word recognition analysis.
Lastly, RF-Eletter required more gesture data to

accurately identify gesture performance for different users.
The researchers aim to implement the DCGAN adversarial
neural network in future research to retain specific gesture-
related information and omit domain-specific knowledge
using the adversarial learning process for improved model
generalization capabilities. In this vein, the DCGAN
network facilitates data expansion and user-environmental
domain distinctions for accurate user gesture recognition.

7 CONCLUSION
This study proposed RF-Eletter, a device-free, RFID-based,
and domain-independent system that facilitated complex
and fine-grained gesture recognition. The RFID tag array
was implemented to efficiently capture gesture space-time
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transformations. Subtraction operation and the data
normalization, smoothing, and expansion of some pre-
processing columns were performed to ensure that the
original variance was not particularly high. The RFID
gesture signal could be utilized for CNN network feature
extraction towards accurate and robust gesture recognition.
Multiple experiments demonstrated RF-Eletter to reflect an
average accuracy of 100% in classrooms and 95.6% and
96.6% in other counterparts (different users in different
scenarios). As the rate proved higher than the current
RFID-based gesture recognition scheme, RF-Eletter designs
could significantly facilitate gesture-based HCIs.
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