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ABSTRACT Techniques for creating and manipulating multimedia information have progressed to the
point where they can now ensure a high degree of realism. DeepFake is a generative deep learning algorithm
that creates or modifies face features in a superrealistic form, in which it is difficult to distinguish between
real and fake features. This technology has greatly advanced and promotes a wide range of applications
in TV channels, video game industries, and cinema, such as improving visual effects in movies, as well
as a variety of criminal activities, such as misinformation generation by mimicking famous people. To
identify and classify DeepFakes, research in DeepFake detection using deep neural networks (DNNs) has
attracted increased interest. Basically, DeepFake is the regenerated media that is obtained by injecting
or replacing some information within the DNN model. In this survey, we will summarize the DeepFake
detection methods in face images and videos on the basis of their results, performance, methodology
used and detection type. We will review the existing types of DeepFake creation techniques and sort
them into five major categories. Generally, DeepFake models are trained on DeepFake datasets and tested
with experiments. Moreover, we will summarize the available DeepFake dataset trends, focusing on their
improvements. Additionally, the issue of how DeepFake detection aims to generate a generalized DeepFake
detection model will be analyzed. Finally, the challenges related to DeepFake creation and detection will be
discussed. We hope that the knowledge encompassed in this survey will accelerate the use of deep learning
in face image and video DeepFake detection methods.

INDEX TERMS Deep learning, DeepFake, CNNs, GANs.

I. INTRODUCTION

FAKE document detection is not a new issue. Rather, this
issue has existed for quite some time. In the past, the

process of legitimizing documents was confined to proofing,
verification, and inquiry, and digital data had no significant
role in this process. The recent growth of digital data through-
out the Internet, as well as its relevance in everyday life,
such as digital marketing, legal forensics imagery, medical
imagery, sensitive satellite image processing, and many other
applications, cannot be overlooked. Moreover, digital data in
different applications are evolving in such a way that they
are also fueling an uptick in cybercrime. In this context,
the trend indicates serious vulnerabilities and a decrease in
the trustworthiness of digital data. Furthermore, discerning

whether the acquired digital data are authentic or altered and
legitimizing digital documents are currently major problems.

Multimedia forensics research [1] has been active for at
least 15 years and comes from not only research communities
but also major IT businesses and government organization-
s. The U.S. Department of Defense’s Defense Advanced
Research Projects Agency (DARPA) established the large-
scale Media Forensic project (MediFor) in 2016 to encourage
research on media integrity, with significant results in terms
of methodologies and benchmark datasets. Digital media
confirmation may check for physical, digital, and semantic
integrity, according to the MediFor taxonomy. Deep learn-
ing models’ efficacy can no longer be overlooked; in fact,
they are gradually replacing most technology and are being
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FIGURE 1: An example of Style-GAN [4] images.

rapidly embraced by many research communities and large
IT firms.

The combination of deep learning and computer vision
techniques, e.g., GANs [2] and autoencoders [3], has opened
the door to producing superrealistic fake images and videos,
which are known as DeepFakes. DeepFakes (a combination
of the terms "deep learning" and "fakes") allow attackers or
even nontechnical machine learning users to modify a picture
or video by swapping out the content and generating a new
image or video that cannot be differentiated by humans or
computers. The creation of DeepFakes reduces people’s trust
in digital media content since they can no longer believe
the images they are seeing. In the absence of deep learning,
research on identifying or detecting fake manipulated media
is considered traditional research.

At present, generative deep models are very powerful for
creating DeepFakes, which are difficult to distinguish by
traditional methods. This gap creates the need for DeepFake
detection research to maintain people’s trust in digital multi-
media. For example, FaceSwap1 is a technology that creates
DeepFake videos of genuine individuals performing fictional
activities, with even humans having difficulties differentiat-
ing what is fake from what is authentic. These technologies
can cause distress for and negatively affect those who are
targeted, promote disinformation and hate speech, and even
heighten political tensions, spark controversy, terrorism, or
violence. An example of different fake images generated
by Style-GAN [4] is shown in Figure 1, which looks very
realistic. The AI-based generation of DeepFakes has a wide
range of applications in the computer vision and graphic-
s industries, including human face synthesis and stunning
scenery production. This breakthrough, however, is vulner-
able to misuse. Many people with sinister intentions have
utilized these technologies to make fake videos of female

1https://faceswap.dev/

celebrities and members of the general public in ways that
have created significant societal issues. According to recent
research2, 96 percent of DeepFakes come from porn films.
Due to the lack of supporting data, the recognition of these
DeepFakes or fabricated images/videos3 is difficult. Many
malicious applications have made use of DeepFakes, such
as DeepNude4, as they can take a fully dressed woman’s
photograph and generate an image with her clothes removed.

Because of the use of deep learning to construct Deep-
Fakes and web-based tools to quickly create DeepFakes,
forgery detection is extremely difficult for forensics profes-
sionals. Thus, researchers are developing a DNN model to
detect DeepFakes.

In essence, the model is trained on DeepFake datasets and
then tested in trials to see how well it performs. We will
discuss picture and video DeepFake detection techniques
in depth in this article. We will also review the DeepFake
production methods and datasets that are employed to detect
DeepFakes. Recently, studies based on DeepFake generation
and detection in pictures, audio, and videos [5]–[9] have been
published.

The main goals of this article are highlighted below:
• to introduce DeepFake tools that are used to manipulate

the different aspects of images and videos;
• to introduce DeepFake datasets and some traditional

datasets for forensic evaluation; and
• to review some recent existing DeepFake detection tech-

niques used in images and videos.
The review starts with providing a technical background
in Section II. Then, DeepFake tools and applications are
discussed in Section III, and Section IV proceeds to under-
stand the types of manipulation methods. Section V discusses
the available image and video datasets and their fungibility.
A brief survey of image and video detection methods is
presented in Section VI. Then, additional major challenges
for DeepFake creation and detection are discussed in Section
VI, and conclusions are drawn in Section VII.

II. TECHNICAL BACKGROUND
A. CNN background
The CNN or ConvNet is a special kind of deep-learning ar-
chitecture that has gained much attention in computer vision
and robotics. The initial idea of CNN, called neocognitron,
was presented in 1979 by Kunihiko Fukushima [10], which
later became known as the predecessor of CNN. Furthermore,
the CNN architecture has been explained by Le-Cun et al.
[11]; later, an improved version was explained in [12]. A
developed CNN network called LeNet-5 was found to be
able to classify handwritten digits. Popular architectures from
2012 to 2015 are examined in [13], along with their basic
components, and their applications are discussed in [14].

2https://rb.gy/9ffkom
3https://rb.gy/bv5530
4https://rb.gy/lgho24
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FIGURE 2: The basic architecture of CNN.

The basic structure of the CNN model comprises three
types of layers: convolutional, pooling, and fully connected.
Figure 2 presents the basic structure of the CNN model.
The purpose of the convolution layer is to perform feature
extraction. In the convolutional operation, an array of num-
bers (kernel) is applied across inputs (tensor) to construct the
feature map. The procedure of constructing a feature map is
an elementwise product between each element of the kernel
and the input tensor, and the outputs are summed to obtain
the element of the kernel. The kernel convolves across all the
elements on the input tensor to construct the elements of the
feature map for that kernel. An arbitrary number of feature
maps can be obtained by implementing the convolution oper-
ation with different kernels. While training, the convolution
operation is called forward propagation; during backpropa-
gation, the gradient descent optimization technique updates
the learnable parameters (kernels and weights) according to
the loss value. The feature value (Zl

i,j,k) at location (i, j) in
the kth feature map of the lth layer in [13] is as follows:

Zl
i,j,k = (W l

k)
Txli,j + blk (1)

where W l
k and blk are the weight vector and bias term of the

kth filter of the lth layer, respectively. xli,j is the input patch
centered at location (i, j) of the lth layer. Then, a nonlinear
activation function is applied to detect nonlinear features
such as sigmoid, tanh and ReLU. A nonlinear activation
function A(·) can be expressed as:

ali,j,k = A(Zl
i,j), (2)

where ali,j,k is the output value after applying the nonlinear
activation function.

A pooling layer provides a typical downsampling oper-
ation to reduce the dimensionality of the feature maps to
introduce translation invariance to small shifts and distortions
and thereby decrease the number of subsequent learnable
parameters. The pooling function is pool(·); for each feature
map al:,:,k, we have:

yli,j,k = pool(alm,n,k), ∀(m,n) ∈ Ri,j , (3)

where Ri,j is a local neighborhood around location (i, j).
The fully connected layers are the final outputs of the CNN,
such as the probabilities for each class in classification tasks.
The number of output nodes in the final fully connected
layer is usually equal to the number of classes. A nonlinear

function, such as ReLU, follows each fully connected layer.
Finally, a loss function is calculated to assess the compati-
bility of the CNN’s forward propagation output predictions
with the provided ground truth labels. The loss of CNN can
be calculated as follows:

L =
1

N

N∑
n=1

`(θ; y(n), o(n)), (4)

where N denotes the number of input-output relations
(x(n), y(n)), x(n) is the nth input data, y(n) is its target label,
and o(n) is the output of the CNN [13]. Training a CNN
determines the global minima, which identify the best-fitting
set of parameters by minimizing the loss function. Currently,
many CNN models exist, such as AlexNet [15], ZFNet [16],
VGGNet [17], GoogLeNet/Inception [18] and ResNet [19].
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FIGURE 3: The basic architecture of RNN.

B. RNN background
An RNN is a neural network in which the output from the
previous step is used as input in the next phase. All inputs
and outputs in typical neural networks are independent of one
another; however, in some situations, such as when predicting
the next word of a phrase, the prior words are necessary,
and therefore, the previous words must be remembered.
Consequently, RNNs were created, which use a hidden layer
to overcome the problem. The hidden state, which remembers
certain information about a sequence, is the most significant
aspect of RNNs. RNNs have a “memory" that stores all infor-
mation about the calculations. This memory utilizes the same
settings for each input since it produces the same outcome
by performing the same job on all inputs or hidden layers.
Unlike in other neural networks, this method minimizes the
complexity of the parameters. When the gap between the
relevant input data is large, Hochreiter and Schmidhuber
[20] proposed long short-term memory (LSTM) in 1997,
which handles long-term dependencies. LSTM has been the
focus of deep learning since it accomplishes nearly all the
exciting outcomes based on RNNs. The recurrent layers, also
known as hidden layers in RNNs, are made up of recurrent
cells whose states are influenced by both previous states and
current input via feedback connections. The classic recurrent
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sigma cell and LSTM with only input and output gates are
depicted in Figure 3. The LSTM mathematical expressions
are as follows:

it = σ(Wiht−1 +Wixt + bi)

ĉt = tanh(Wĉht−1 +Wĉxt + bĉ)

ct = ct−1 + it · ĉt
ot = σ(Woht−1 +Woxt + bo)

ht = ot · tanh(ct),

(5)

where xt, ct, ot and ht denote the input, the recurrent infor-
mation, and the output of the cell at time t, respectively; Wi,
Wĉ, and Wo are the weights; and b is the bias. ct denotes the
cell state of LSTM, and the operator ‘·’ denotes the pointwise
multiplication of two vectors.
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FIGURE 4: The basic architecture of a GAN.

C. GANs background
GANs are a revolutionary tool used for teaching generative
models to generate realistic examples from a data distribution
[2]. Basically, GANs are a combination of two neural net-
works: the generator, (G), and the discriminator, (D). These
two neural networks compete in a dynamic minimax game.
The intuition behind this idea is that G attempts to create
fake samples, while D attempts to determine which samples
are fake and which are real. If the two models are allowed
to compete for a long time, they will ultimately improve.
In other words, the generator G aims to capture the data
distribution, whereas a D aims to estimate the probability
that a sample comes from the training data rather than from
G. The basic structure of the GAN model can be visualized
in Figure 4. The mathematical minmax optimization (G∗) of
neural networks G and D is as follows:

G∗ ∈ argminmaxV (G,D)

= argminmaxEX∼Pdata(X)
[log(D(X))]

+ EZ∼PZ(Z)
[1− log(D(G(Z))],

(6)

where Z is the input for generator G(Z) with probability
distribution PZ and return X with certain probability distri-
bution Pg . The discriminator D(X) estimates the probability
thatX is from the distribution of training data Pdata. Recent-

ly, various kinds of GANs, such as DCGAN [21], WGAN
[22], PGGAN [23], BigGAN [24], and Style-GAN [4], [25],
[26], were created to improve designs, losses, and training
techniques.

III. TOOLS USED TO CREATE A DEEPFAKE
In recent years, deep learning has achieved remarkable
progress in computer vision and robotics. Moreover, the
areas of digital face images and video manipulation are of
leading interest because they use the power of GANs, which
are capable of producing very realistic results. However,
GANs still have challenges in establishing disentangled and
controllable syntheses, particularly in the high-resolution
domain. Disentangling distinct elements allows us to regulate
changes across all factors independently. Nevertheless, with-
out further adjustments such as regularization to encourage
greater disentanglement, this technique is difficult to apply
in GANs. Table 1 shows the tools used to create deep-fake
images and videos. Mobile-based applications such as the
Chinese apps ZAO, Auto FaceSwap and FaceApp allow or-
dinary internet users to easily create fake images and videos,
which greatly helps the spread of DeepFakes. Several spoof
videos created using GAN-based face-swapping techniques
have been uploaded to YouTube and other video sites. Face
swapping is very popular for moving a face from a source
image to a target image to obtain realistic, unedited results.
The main idea behind realistic face swapping is GANs [2].
Increasing numbers of face-swapping-, face synthesis-, face
reenactment- and attribute manipulation-based applications
are becoming popular; for example, images produced using
Style-GAN [4], Style-GAN2 [25] and StyleGAN2-Ada [26]
are becoming increasingly realistic and completely indistin-
guishable from human vision systems. By manipulating skin
color or eye size without influencing other facial parameters,
StyleGAN [4] cannot be utilized to generate high-fidelity
human faces, and BigGAN [24] is unable to alter the color
or length of a dog’s hair without altering other aspects of the
image.

Basically, face manipulation methods can be divided into
five types [7]: entire face synthesis, identity swap, attribute
manipulation, expression swap and miscellaneous. Table 2
shows the underlying idea of face manipulation methods.
Detailed information on the face manipulation categories is
summarized below.

A. Entire face synthesis
This type of method generates nonexisting face images,
usually using a powerful GAN, such as Style-GAN [4], Style-
GAN2 [25] and StyleGAN2-Ada [26]. These approaches
produce incredible outcomes, such as high-resolution facial
images with a great degree of realism. Moreover, realistic
face syntheses are becoming increasingly advanced. En-
tire face synthesis is based on datasets such as Generated-
Images [4](100k-StyleGAN), Faces [27](100k-StyleGAN),
DFFD [28](100k-StyleGAN, 200k-ProGAN), and iFake-
FaceDB [29](250k-StyleGAN, 80k-ProGAN). This kind of
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TABLE 1: Tools used to create a DeepFake.

Tool Information URL Environment
ZAO It allows users to use a single image to superim-

pose their faces over television and movie footage.
https://apps.apple.com/cn/app/id1465199127 Application

AutoFaceSwap Drag and drop the face or use the webcam for live
face-swapping.

https://www.microsoft.com/en-us/p/
auto-face-swap/9nblggh3m5nq

Application

FaceApp Face image and video editing to make the face
smile, look younger, look older, or change the
gender.

https://apps.apple.com/gb/app/
faceapp-ai-face-editor/id1180884341

Application

FaceSwap A deep learning-based method used to swap faces
in images and videos.

https://github.com/deepfakes/faceswap TensorFlow

FSGAN A novel RNN face-swapping and face reenact-
ment method for a single image or a video se-
quence.

https://github.com/YuvalNirkin/fsgan PyTorch

FaceSwap-GAN A GAN-based face-swapping model used for im-
ages and videos by adding adversarial loss and
perceptual loss.

https://github.com/shaoanlu/faceswap-GAN TensorFlow

FewShotFace
translation

A GAN-based face image swap model that is also
capable of translating to Asian faces.

https://github.com/shaoanlu/
fewshot-face-translation-GAN

TensorFlow

StyleGAN A Style-Based Generator Architecture for GANs. https://github.com/NVlabs/stylegan TensorFlow
StyleGAN2 Improves image quality by proposing weight de-

modulation, regularizing path length, redesigning
the generator, and removing progressive growth.

https://github.com/NVlabs/stylegan2 TensorFlow

StyleGAN2-
ADA

An adaptive discriminator augmentation mecha-
nism that significantly stabilizes training in lim-
ited data regimes.

https://github.com/NVlabs/stylegan2-ada TensorFlow

DFaker Inputs are 64 × 64 images, outputs are a pair of
128 × 128 images, with one RGB with a recon-
structed face. Structural dissimilarity (DSSIM)
loss function is used to reconstruct faces.

https://github.com/dfaker/df TensorFlow

DeepFake_tf DeepFake_tf employs a similar idea as that used
in DFaker.

https://github.com/StromWine/DeepFake_tf TensorFlow

Deepfakes web A face-swapping, video creation model that uses
deep learning algorithms.

https://deepfakesweb.com/ Web based

StarGAN Unified GANs for Multi-Domain Image-to-Image
Translation.

https://github.com/yunjey/stargan PyTorch

StarGAN-V2 Diverse image synthesis for multiple domains. https://github.com/clovaai/stargan-v2 PyTorch
DeepFaceLab Generates better face-swapping videos. https://github.com/iperov/DeepFaceLab TensorFlow
DiscoFaceGAN Disentangled and controllable face image genera-

tion via 3D imitative-contrastive learning.
https://github.com/microsoft/DiscoFaceGAN TensorFlow

manipulation might help a variety of businesses, including
video games and 3D modelling, but it could also be used for
negative purposes, such as the development of very realistic
false accounts on social media to spread disinformation.
Figure 5 depicts the nonexisting face images created by
StyleGAN2 [25].

FIGURE 5: Example of entire face synthesis in [25].

B. Identity swap
The identity swap technique, also called the face-swap
method, is very popular for replacing the face of one person
in an image or video with that of another person. An example
of an identity swap can be seen in Figure 6, where the
source image shows the identity, the target image provides
the attributes and a swapped face image is generated. Such
swaps can be divided into two major types: i) graphics-
based approaches such as FaceSwap and ii) deep learning
technique-based approaches such as DeepFakes. The exist-

TABLE 2: Facial manipulation techniques used to create
DeepFakes.

Facial
manipulation

Key idea

Entire Face Syn-
thesis

Creates entire non-existent face images are generat-
ed through a powerful GAN model, e.g., StyleGAN,
StyleGAN2-Ada.

Identity Swap Replacing the face of one person in image or video with
the face of another person, e.g., FaceSwap, DeepFake.

Attribute Manip-
ulation

Modifying some attributes of the face such as the color,
hair, skin, gender, age, adding glasses, etc., e.g., Star-
GAN.

Expression Swap Altering the facial expression of one person in a video
with the facial expression of another person, e.g.,
Face2Face, Neural-Textures.

Miscellaneous Face Morphing: create artificial biometric face samples
that resemble the given biometric information.
Face De-Identification: remove the identity information
present on a face image or video.
Audio-to-Video & Text-to-Video: facial expression swap
is the synthesis of video from audio or text, also known
as lip-sinc deep fakes.

ing face-swap datasets are UADFV (49-FakeApp), D-TIMIT
(620-faceswap-GAN), FF++ (1k-FaceSwap,1k-DeepFake),
DFD(3k-DeepFake), Celeb-DF (5k-DeepFake) and DFDC
Preview (4k-Unknown). This kind of manipulation might be
useful in a variety of industries, including the entertainment
industry. However, it might also be used for malicious ob-
jectives, such as the production of celebrity pornographic
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videos, fraud, and financial fraud.
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FIGURE 6: Example of identity swap in [30].

C. Attribute manipulation
Attribute manipulation, also known as face editing or face
retouching, entails changing aspects of the face, such as hair
or skin color, gender, age, and the addition of spectacles
[31]. An example of attribute manipulation can be seen in
Figure 7, where Figure 7(a) shows the source image and the
corresponding generated images: blond hair, gender, aged,
and pale skin. Figure 7(b) shows the source image and the
corresponding generated images: angry, happy, fearful. This
manipulation process is usually carried out through a GAN,
such as the StarGAN approach proposed in [31]. The popu-
lar AI face editor FaceApp, which is a mobile application,
is an example of this type of manipulation. The existing
attribute manipulation dataset is DFFD [28](80K-StarGAN,
12K-FaceAPP). Consumers may utilize this technology to
test a wide range of items in a virtual environment, including
cosmetics and makeup, spectacles, and hairstyles.

Blond hair Gender Aged Pale skin(a) Source

(b) Source Angry Happy Fearful

Blond hair Gender Aged Pale skin(a) Source

(b) Source Angry Happy Fearful

FIGURE 7: Example of attribute manipulation in [31].

D. Expression swap
Expression swap, also known as face reenactment, modifies
the facial expression of a person. An example of an expres-
sion swap can be seen in Figure 8, where the input expression
is transferred to the targeted image, which then generates a
reenactment result. The available techniques, such as image-
level manipulation through popular GAN architectures [32],
[33] and some popular video-based manipulation techniques,
such as Face2Face [34] and neural textures [35], replace one
person’s facial expression in a video with another person’s
facial expression. The existing reenactment-based datasets
are FF++(509k-Face2Face [34], 406k-Neural-Textures [36]).

This form of fraud could have significant consequences, such
as a video of someone saying something that he or she never
said.
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FIGURE 8: Example of expression Swap in [34].

E. Miscellaneous
Regarding miscellaneous manipulation, we identified three
types: face morphing, face deidentification, audio-to-video
and text-to-video facial expression swaps.

Face morphing is a technique used for creating artificial
biometric face samples that mimic the biometric data of
multiple people. This type of manipulation leads to correctly
verifying the created morphed face images against a ma-
nipulated reference in a facial recognition system database
if a morphed face image is stored as a reference. Hence,
morphed face images constitute a significant threat to face
recognition systems, as they contradict the core principle of
biometrics, which is the unique link between the sample and
its matching person. [37] presented a comprehensive study
of face morphing in 2019, covering both morphing strategies
and morphing attack detectors.

Face deidentification is a type of manipulation used to
remove artificial biometric fingerprints from images and
videos. This technique can save artificial biometric finger-
print information for illegal verification. This action can be
accomplished in a variety of ways. The most basic method is
face blurring or pixelating. Other methods also exist, such as
swapping an identity or synthesis identity swapping (apply-
ing some operations, i.e., pose, expression). An adversarial
autoencoder-based video face deidentification method was
demonstrated in [38].

Audio-to-video (A2V) and text-to-video (T2V) are also
called lip-sync deep fakes [39]. Basically, the expression
of the face in a video is synthesized using audio or text.
An example of a fake video [40] describes a method used
for synthesizing high-quality films of a person (in this case,
Barack Obama) speaking with an accurate lip-sync track.
Other important state-of-the-art methods are discussed in
[41], [42]. In addition, [43] presents a procedure for blending
counterfeit recordings from a text that takes information from
a video of an individual talking and the necessary content to
be spoken and makes another video wherein the individual’s
lips are synchronized with the new words.
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TABLE 3: Publicly available forgeries detection datasets.

Year Dataset Original Fake Methods Details of dataset URL
images videos images videos

2011 MICC-F220,
MICC-F2000,
MICC-F600

110,
1300,
440

�
�
�

110,
700,
160

�
�
�

None Used for image copy-move tampering detec-
tion [44].

https://rb.gy/oecdyh

2013 IEEE IFS-TC 1050 � 450 � None The IEEE IFS-TC also contains 450 ground-
truth mask for manipulation.

http://ifc.recod.ic.unicamp.
br/fc.website/index.py

2015 WWD [45] 13.5k � � � None 82 cases of forgery, 92 forgery variants, and
101 unique masks for splice detection.

https://mklab.iti.gr/results/
the-wild-web-tampered-image-dataset/

2015 CelebA [46] 202K � � � � The images in this dataset cover large pose
variations and background clutter.

https://liuziwei7.github.io/
projects/FaceAttributes.html

2017 VISION [47] 34.4k 1914 � � � A video and image source identification
application-based dataset (35 portable devices
of 11 major brands).

https://lesc.dinfo.unifi.it/
VISION/

2018 UADFV [48] 17.3k 49 17.3k 49 1 The DeepFake videos are generated by using
FakeAPP; it is straightforward and only has 2
classes: real and fake.

https://sites.google.com/
view/grli-uavdt

2018 DF-TIMIT [49] 34.0k 320 68.0k 640 2 Two types of datasets, namely, low-quality
DF-TIMIT-(LQ) and high-quality DF-TIMIT-
(HQ), obtained using a face-swap GAN mod-
el.

https://www.idiap.ch/en/
dataset/deepfaketimit

2018 FF [50] 500.0k 1004 521.4k 2 Two ways to generate DeepFakes: Face2Face,
and self-reenactment.

https://github.com/ondyari/
FaceForensics/tree/original

2019 FF++ [51] 509.9k 1,000 509.0k 4000 4 Two graphics-based approaches (Face2Face
[34] and FaceSwap) and two learning based
approaches (DeepFakes and Neural Textures
[36]).

https://github.com/ondyari/
FaceForensics

2019 DFFD [28] 58.7k 1,000 240.3k 3,000 � The DFFD dataset combines multiple forgery
types in a single dataset.

http://cvlab.cse.msu.edu/
dffd-diverse-fake-face-dataset.
html

2019 DFD [52] 315.4k 363 2,242.7k 3,068 5 Google joined with the FF++ Dataset; addi-
tionally invited 28 paid actors in 16 differen-
t scenes, as well as over 3000 manipulated
videos using DeepFakes.

https://github.com/ondyari/
FaceForensics/tree/master/
dataset

2019 DFDC-P [53] 488.4k 1,131 1,783.3k 4,113 2 The DFDC-P dataset works on deepfake detec-
tion technology to measure its performance.

https://ai.facebook.com/
datasets/dfdc/

2020 DFDC [54] � 23k � 104k 8 Eight facial modification algorithms have been
used to extend the DFDC-P.

https://ai.facebook.com/
datasets/dfdc/

2020 Celeb-DF [55] 225.4k 590 2,116.8k 5,639 1 YouTube video clips of 59 celebrities of di-
verse genders, ages, and ethnic groups. The
DeepFake videos are generated using an im-
proved deepfake synthesis method.

https://github.com/yuezunli/
celeb-deepfakeforensics

2020 DF-1.0 [56] 12.6M 50,000 5.0M 10,000 1 A large-scale dataset for real-world face
forgery detection.

https://github.
com/EndlessSora/
DeeperForensics-1.0/
tree/master/dataset

2020 WDF [57] 11.8M � 7,314 707 � A small dataset that challenges the real-world
dataset for DeepFake detection.

https://github.com/
deepfakeinthewild/
deepfake-in-the-wild

2021 OF [58] 16K � 173K � � Large-scale challenging dataset for multi-face
forgery detection and segmentation in the
wild.

https://sites.google.com/
view/ltnghia/research/
openforensics/

IV. DATASETS

Forensics datasets can be classified into two broad type-
s: traditional and DeepFake datasets. Traditional forensics
datasets are created manually with extensive manual effort
under carefully controlled conditions such as camera arti-
facts, splicing, inpainting, resampling and rotation detection.
The Dresden Image Database (DID) [59] is based on camera
fingerprinting and consists of 14,000 images from 73 cam-
eras. The 73 different cameras were of 25 different models
and camera fingerprinting types (indoor and outdoor scenes).
While most traditional datasets incorporate image alteration
forensics, only some of them cover video-based manipula-
tion forensics. For example, MICC-F220, MICC F2000, and
MICC-F600 are image datasets used to detect copy-move
modifications. MICC-F220 is composed of 110 tampered
and 110 original images, MICC-F2000 is composed of 700
tampered and 1300 original images, and MICC-F600 is com-
posed of 160 tampered and 440 original images. The IEEE

Information Forensics and Security Technical Committee
(IFS-TC) conducted the First Image Forensics Challenge
(2013), which is an international competition that collected
thousands of photographs of varied scenes, both indoors and
outdoors, using 25 digital cameras. The Wild Web Dataset
(WWD) [45] contains 82 cases of 92 forgery variants and 101
unique mask splice detections. The WWD aims to address
that gap in the evaluation of image tampering localization
algorithms. The performance of [45] is evaluated in [60].
The CelebFaces Attributes Dataset (CelebA) is a large-scale
face attribute dataset with more than 200K celebrity images,
each with 40 attribute annotations. The images in this dataset
cover large pose variations and background clutter. CelebA
has large diversities, large quantities, and rich annotations,
including 10,177 identities, 202,599 face images, 5 landmark
locations, and 40 binary attribute annotations per image. In
2017, a VISION dataset was created that contained 11,732
original images and 648 original videos. The images were u-
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ploaded to social platforms such as Facebook and WhatsApp,
and the videos were uploaded to YouTube and WhatsApp,
resulting in a total of 34,427 images and 1,914 videos.

The second main type of forensics datasets are DeepFake
datasets. These datasets are generally created by GAN-based
models, which are very popular due to their realistic perfor-
mance. The UADFV [48] consists of 49 real YouTube and
49 DeepFake videos. The DeepFake videos are generated
using the DNN model with FakeAPP. The average length of
these videos is approximately 11:14 seconds, with a typical
resolution of 294× 500. The DeepFake-TIMIT (DF-TIMIT)
dataset [49] was created by using the VidTIMIT dataset [61]
and FaceSwap-GAN; 16 similar-looking pairs of people from
VidTIMIT [61] were selected, and for each of the 32 people,
the database generated approximately 10 videos using low-
quality of size 64×64, i.e., DF-TIMIT-(LQ), and high-quality
of size 128 × 128, i.e., DF-TIMIT-(HQ) by using a face-
swap GAN model. FaceFornesics (FF) [50] is a DeepFake
dataset that aims to perform forensic tasks for facial identifi-
cation and segmentation to forged images. It is composed of
1004 videos (face videos downloaded from YouTube) over
500,000 frames. The two types of manipulation are source-
to-target, where facial expressions from a source video to a
target video use Face2Face [34], and self-reenactment, where
Face2Face reenacts the facial expressions of a source video.
The FaceFornesics++ (FF++) [51] dataset has 1,000 real
videos collected from YouTube, and 1,000 DeepFake videos
were generated by applying each of the 4 face modification
techniques: DeepFake, Face2Face [34], FaceSwap and Neu-
ral Texture [36] (4,000 face modification videos were created
overall). These fake videos have produced 1.8 million manip-
ulated face images. The Diverse Fake Face Dataset (DFFD)
dataset combines multiple forgery types (FaceSwap, Deep-
fake, DeepFaceLab, FaceAPP, StarGAN and StyleGAN) in
a single dataset. DeepFake Detection (DFD) [55] was de-
veloped by Google and JigSaw; 363 original videos were
filmed with the assistance of 28 invited actors based on
over 3,600 DeepFake videos using DeepFake techniques.
In September 2019, Amazon Web Services, Facebook, Mi-
crosoft, and a number of academics collected a large-scale
DeepFake dataset for the DeepFake Detection Challenge-
Preview (DFDC-P) [53]. A full version of the DFDC-P was
developed with eight manipulation methods and is known as
the DeepFake Detection Challenge (DFDC). The Celeb-DF
dataset [55] contains 590 actual videos and 5,639 DeepFake
videos. Recently, the DeeperForensics-1.0 dataset (DF-1.0)
[56] was found to consist of 60,000 videos with a total of 17.6
million frames for real-world face forgery detection. In addi-
tion, 100 paid actors were invited from 26 countries to collect
high-resolution images of size 1920 × 1080. The new end-
to-end face-swapping method (i.e., DF-VAE) was introduced
and systematically applied to seven types of perturbations of
fake videos at five intensity levels. More recently, a small
WildDeepfake dataset (WDF) [57] was found to consist of
7,314 face sequences extracted from 707 DeepFake videos
collected completely from the internet. WildDeepfake is a

small dataset that can be used in addition to extending the
existing datasets. Moreover, WDF is used to develop and test
the effectiveness of DeepFake detectors against real-world
DeepFakes. On the other hand, research on DeepFakes is also
expanding to examine more than one face in a single image to
detect DeepFake forgery, such as the OpenForensics dataset
(OF) [58]. The OF dataset consists of 115K unrestricted
images with 334K human faces. Table 3 summarizes these
existing datasets.

V. DEEPFAKE DETECTION
DeepFake face images and video detection dominate research
on monitoring multimedia information and have the posi-
tive intention to improve the confidentiality and integrity of
multimedia content. In addition, it is not an easy task to
detect such altered multimedia content. This task has become
more challenging after the emergence of generative models.
Basically, forgery detection in multimedia content entails
analyzing the multimedia content to determine whether the
generated multimedia has been tampered with or is original.
In the past, forgery detection techniques were considered
traditional research; however, in recent years, DNN (AI-
based)-based generated multimedia detection has become
more popular. In this section, we will discuss both traditional
and DeepFakes forensics-based techniques.

A. Traditional forensic-based techniques
To modify image content, various traditional image pro-
cessing technologies are employed, such as copy-move (s-
plicing), resampling (resize, rotate, stretch), and the addi-
tion and/or removal of any part of the image. Traditional
forensics-based techniques are commonly divided into two
types: active and passive.

Active techniques require prior knowledge of multimedia
for the authentication process. Basically, at the time of mul-
timedia generation, some information is encoded, such as
watermarks and digital signatures. For instance, a watermark
is information that is added to a source image without degrad-
ing the visible artifact. Watermark extraction procedure is
used to recover the watermark on the target image to discern
whether the image has been manipulated. The manipulated
portions in the target image can be detected using the extract-
ed watermark. Over the past few years, mimicking aspects
of genuine users or generating hyperrealistic masks at the
presentation side for face images and videos have highlighted
one kind of biometric vulnerability (biometric attack). To
monitor or identify such biometric attacks, a variety of anti-
spoofing techniques are used to counter these attacks, includ-
ing eye blink detection in live stream scenarios, challenge-
response techniques, 3D cameras, Active Flash and deep
learning.

Facial recognition [110] is essential for face image and
video detection before applying a traditional or a deep fake
method. In this context, many researchers are interested in
recognizing face images to identify authentic expressions,
such as gestures made by the human face, which commu-
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TABLE 4: DeepFake detection methods.

Year Study Methods Detection type Techniques Dataset Used
Traditional techniques for DeepFake detection

2018 Koopman et al. [62] PRNU Analysis Facewap detection PRNU Self dataset by using GUI OpenFaceSwap
application

2018 Afchar et al. [63] Meso-4, MesoInception-4 DeepFake images CNN DeepFake online videos, FF.
2019 Nataraj et al. [64] Co-occurrence matrices DeepFake images DNNs CycleGAN and StarGAN datasets
2020 Li et al. [65] Color components DeepFake images DNNs with linear discrimina-

tive
LFW, LSUN, FFHQ, CelebA, FFHQ

2021 Haliassos et al. [66] Semantic irregularities DeepFake videos ResNet-18 FF++, DF-1.0, Celeb-DF, DFDC
2021 Lugstein et al. [67] PRNU-based Analysis DeepFake videos PRNU, SVM FF++, DFD, DF-TIMIT

DNN-based techniques for DeepFake detection
2018 Güera and Delp [68] ntra-frame and temporal in-

consistencies
FaceSwap detection CNN, LSTM A collection of 600 videos obtained from

multiple websites.
2019 Nguyen et al. [69] Capsule-forensics Replay attack, Face-swapping,

Facial reenactment, Computer-
generated images

VGG-19, Capsule networks DeepFake online videos, FF, REPLAY-
ATTACK database [70].

2019 Xuan et al. [71] Preprocessing combined
with deep network

Generalization ability on unseen
types of fake image

DCGAN, WGAN-GP, PG-
GAN

CelebA-HQ

2019 Sabir et al. [72] Temporal discrepancies DeepFake, Face2Face and
FaceSwap detection

CNN and RNN FF++

2020 Jeon et al. [73] Fine-Tune and transformer DeepFake images SqueezeNet, ShallowNet,
ResNet, Xception

CelebA, PGGAN, DF, FF

2020 Jeon et al. [74] Self-training DeepFake images EfficientNet and ResNext TPGGAN and StyleGAN-dataset
2020 Hsu et al. [75] Pairwise learning DeepFake images CNN concatenated to CFFN The CelebA and corresponding DeepFakes

are created by the GAN method.
2020 Gandhi and Jain [76] Adversarial perturbations Adversarial perturbations to

enhance DeepFakes and fool
DeepFake detectors

VGG, ResNet The CelebA and corresponding DeepFakes
are created by the GAN method.

2020 Wu et al. [77] Steganalysis features DeepFake images XceptionNet, LSTM FF++ dataset
2020 Liu et al. [78] Analyzing global image tex-

ture
DeepFake images ResNet model CelebA-HQ and FFHQ images.

2020 Khalid and Woo [79] One-class Variational Au-
toencoder (VAE)

DeepFake image OC-FakeDect model FF++

2021 Fung et al. [80] Unsupervised Contrastive
Learning

DeepFake detection Xception network, SVM, and
Bayes classifier

FF++, UADFV and Celeb-DF.

2021 Tariq et al. [81] Spatial and temporal infor-
mation

DeepFake videos Convolutional LSTM-based
Residual Network (CLRNet)

FF++, DFD, DeepFake-in-the-Wild videos
(self).

Artifact analysis for DeepFake detection
2017 Zhang et al. [82] Bag of words and shallow

classifiers
Facewap detection SVM, RF, MLP LFW face database [83]

2018 Li et al. [84] Eye blinking DeepFake videos CNN, LRCN CEW Dataset [85] for CNN and EBV
dataset [86] for LRCN

2018 Li and Lyu [87] Face-warping artifacts DeepFake images VGG-16, ResNet UADFV and DF-TIMIT
2019 Agarwal et al. [88] Facial expressions and

movements
DeepFake videos SVM Person of interest (POI) videos.

2019 McCloskey and Al-
bright [89]

Camera imagery DeepFake images SVM CelebA HQ

2019 Marra et al. [90] PRNU based DeepFake images GAN models A raw images dataset for digital image
forensics [91].

2019 Yu et al. [92] Image fingerprint DeepFake images CelebA, LSUN bedroom scene dataset
[93]

2019 Yang et al. [48] Head poses AI-generated fake face images
and videos

SVM UADFV and DARPA MediF

2019 Matern et al. [94] Missing reflections, eye col-
or, teeth, and eye tears

Generated faces, DeepFakes,
Face2Face detection

Logistic regression, MLP CelebA, ProGAN, Glow [95].

2019 Fernandes et al. [96] Heart rate variations DeepFake videos Neural-ODE COHFACE (https://deepfakesweb.com/),
VidTIMIT database

2020 Agarwal et al. [97] Using appearance and be-
havior

DeepFake videos ResNet-101, VGG The world leaders dataset [88], FF++,
DFD, DFDC and Celeb-DF.

2020 Chai et al. [98] Patch-based classification DeepFake images Resnet-18, Xception,
MesoInception4, CNN

CelebA-HQ

2020 Mittal et al. [99] Using emotion audio-visual
affective

DeepFake videos Siamese network architecture DF-TIMIT and DFDC.

2020 Agarwal et al. [39] Phoneme-viseme mismatch-
es

DeepFake videos CNN Instagram and YouTube [100], [101], A2V
[40], T2V [43]

2020 Chugh et al. [102] Modality Dissonance Score
(MDS)

DeepFake videos MDS network DFDC, DF-TIMIT

2020 Guarnera et al. [103] Analyzing convolutional
traces

Forensics trace detection in
DeepFake images

K-NN, SVM, and linear dis-
criminant

CelebA and LFW [83] datasets.

2020 Fernandes et al.
[104]

Attribution-based
confidence (ABC) metric

DeepFake videos Pre-trained ResNet50 on VG-
GFace2 [105]

VidTIMIT, COHFACE (idi-
ap.ch/dataset/cohface), DF-TIMIT

2020 Qi et al. [106] Heartbeat rhythms DeepFake videos DeepRhythm FF++, DFDC-P
2021 Hu et al. [107] lack of physical/physiologi-

cal constraints
DeepFake images Canny edge detector, Hough

transform
FFHQ [4] dataset

2021 Demir and Ciftci
[108]

Consistency of eyes and
gazes

DeepFake videos 3 dense layers network archi-
tecture

FF++, CelebDF

2021 Nirkinet al. [109] Discrepancies between the t-
wo regions

DeepFake images Xception networks FF++, Celeb-DF, DFDC
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nicate information such as fear, disgust, happiness, sadness,
surprise, anger, and neutrality. Umer et al. [111], [112]
proposed a method to identify human facial expressions
using data augmentation and fine-tuning the CNN model.
A brief survey of biometric anti-spoofing methods for face
recognition is available in [113]. To check the validity of
the face images, Umer et al. [114] proposed a method that
combines preprocessing, feature extraction and classification
techniques. Initially, the landmark is extracted from the face
images to identify the face region of the person; next, the
detected face region is used to extract features. Finally,
features are extracted from the detected facial region, and
the scores are fused to calculate the final result based on the
performance of the classifier according to these features.

In contrast to active techniques, passive techniques do
not require prior knowledge of multimedia for the authen-
tication process. In fact, statistical information about the
source image (multimedia) that is highly consistent between
distinct images is used. Consequently, the inherent statistical
information of images is utilized to detect any fake areas of
the image. Moreover, in the absence of digital watermarks,
signatures, or specialized hardware, passive forensic tech-
niques are used [115]. In Table 5, passive forensic techniques
used in specific types of applications are summarized.

TABLE 5: Traditional forensics methods.

Type Forensics method
Format-Based
Forensics

Fourier, JPEG, Double JPEG, JPEG Header,
JPEG Ghost

Pixel-Based
Forensics

Resampling, Cloning, Thumbnails

Statistical-Based
Forensics

PCA, Linear Discriminant Analysis, Computer
Generated

Printer Forensics Clustering, Banding, Profiling
Geometric-Based
Forensics

Camera Model, Calibration, Rectification, Lens
Distortion, Composite, Reflection Shadow, Re-
flection Perception, Shadow Perception

Video Forensics Motion, Re-Projected, Projectile, Enhancement
Camera-Based
Forensics

Least-Squares, Expectation Maximization, Color
Filter Array, Chromatic Aberration

Physics-Based
Forensics

2-D Lighting, 2-D Light Environment, Lee Har-
vey Oswald, 3-D Lighting

B. DeepFakes forensics-based techniques
Currently, DeepFake forensics-based techniques are a very
active research area. Due to the popularity of DeepFake
tools on the internet, it is very easy to create fake content
that looks highly realistic and is difficult to distinguish with
traditional techniques. To mitigate this challenging task or
classify the content as either fake or pristine, researchers are
developing DeepFake detection models. In contrast, many
researchers are focusing on generating generalized realistic
models to create DeepFakes. Creating DeepFakes is fun for
users because many web-based tools are available online to
perform such manipulations, which can still identify peo-
ple and cause them to be misused for unwanted activities.
However, it is also a technique that cyber attackers employ
to penetrate identification or authentication systems to gain

illegitimate access, thus violating privacy and compromising
social security and democracy.

To combat the destructive impacts of DeepFakes, re-
searchers have also turned dedicated attention to multimedia
forensic techniques to identify DeepFakes. Existing methods
have focused on either spatial and temporal artifacts left from
the generation process or data-driven classification. Recently,
researchers have used features such as those in Figure 9 to
generate DeepFake detection models. This section reviews
these features to create detection methods, and a summary
of typical approaches is provided in Table 4. Inconsistencies,
irregularities in the background, and GAN fingerprints are
examples of spatial artifacts. Detecting fluctuations in a per-
son’s behavior, physiological signals, coherence, and video
frame synchronization are all examples of temporal artifacts.

In this part, we will review recent DeepFake detection-
based techniques grouped into three types: (1) traditional-
based techniques for DeepFakes, (2) DNN-based techniques
for DeepFakes, and (3) artifact analysis for DeepFakes.

1) Traditional-based techniques for deepfake
In this method, pixel-level differences in the image and
videos are examined to identify DeepFakes. Focusing on
pixels and exploiting the correlations are easy to understand
and provides hints in the detection process to clarify the
variations between real and counterfeit (fake). When images
or videos are modified by basic transformations, however,
these efforts suffer from robustness concerns.

A novel photoresponse nonuniformity (PRNU) analysis
method has been tested for its effectiveness at detecting
DeepFake video manipulation [62]. This PRNU analysis re-
veals a statistically significant difference in mean normalized
cross-correlation scores between real and DeepFake videos.
However, the model has been tested on a very small dataset.
The DeepFake GUI OpenFaceSwap application was used to
create 10 authentic and 16 DeepFake images. The results
shows that the cut-off value of 0.05 has a 3.8% false positive
rate and a 0% false negative rate. In [64], a steganalysis
method was adopted to identify DeepFake images. In fact, the
co-occurrence matrices were constructed from RGB images,
and the resulting values were trained with a deep convolu-
tional neural network to identify the fakes. The experimental
result shows 99% classification accuracy for cycleGAN-
and StarGAN-based fake images. Li et al. [65] evaluated
the statistical properties of deep network-generated images,
such as the correlation between adjacent pixels in HSV and
YCbCr color spaces, to distinguish DeepFake images. In Lips
Don’t Lie, Haliassos et al. [66] suggested a generalizable
and robust approach to detect face forgery in videos also
known as LipForensics. The fundamental theme is monitor-
ing lip movements with high-level semantic inconsistencies
that are present in many synthesized videos. Lugstein et al.
[67] designed a novel pipeline to detect DeepFakes using
photoresponse nonuniformity (PRNU). Basically, the PRNU
technique is famous for detecting facial retouching and face
morphing attacks. In Lugstein et al. [67], the PRNU feature
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FIGURE 9: Some important features used for detection.

detection is similar to that in [116], [117] and adds a face im-
age extraction stage, as well as an SVM classification stage.
Two types of mesoscopic (a compact facial video forgery
detection network) models (Meso-4 and MesoInception-4)
have been proposed by Afchar et al. [63] to classify hyperre-
alistic forged videos based on DeepFake and Face2Face. It is
obvious that uncompressed videos are severely degraded by
image noise, wherein microscopic investigation-based image
noise is not applicable. Moreover, the models are efficient in
detecting hyperrealistic forged videos at a low computational
cost. The average detection efficiency rate was found to be
98% for DeepFake videos and 95% for Face2Face videos
under real conditions of diffusion on the internet.

2) DNN-based techniques for deepfakes
In this method, existing DNN models are used to analyze spa-
tial characteristics, boost detection efficacy and improve the
generalization capacity to detect DeepFakes. These methods
are entirely data-driven. However, all of these DNN-based
detection approaches are vulnerable to adversarial attacks,
and very few studies have been able to assess their perfor-
mance in combating adversarial attacks. Existing studies that
use DNN to detect DeepFakes can be divided into three types.
A fine-tuning approach is employed to improve the detection
capacity of existing DNN models, explore artifact clues and
train DNN models on different types of datasets to improve
the generalization capacity. Güera and Delp [68] proposed a
face-swapping-based detection method combining CNN and
LSTM. InceptionV3 (CNN) is used to extract frame-level
features, and the output of CNN is fed to LSTM to construct a
sequence descriptor that is used for classification. The highest
accuracy of the model is greater than 97% when classifying
a video as pristine or DeepFake.

A capsule network is used to detect forged images and
videos in a variety of forging scenarios, including replay at-
tack detection and (both full and partial) computer-generated
image/video detection in [69], where a capsule network was
developed to resolve computer vision challenges and digital
forensics issues. The ability of a capsule network based on
a dynamic routing algorithm [118] to represent hierarchical

pose relationships between object pieces has recently been
demonstrated. To distinguish between fake and real images,
a dynamic routing algorithm is used to route the outputs of
the three capsules to the output capsules over a series of
iterations. Four datasets are used to test the approach, which
cover a wide spectrum of fabricated image and video attacks.
In these four datasets, the suggested strategy outperforms
existing methods. This outcome demonstrates the capsule
network’s utility in developing a generic detection system
that can effectively detect a variety of counterfeit image and
video attacks.

A generalized fake face image detection method was
proposed by Xuan et. al. [71] in 2019. The key aim is
to explicitly add a preprocessing step in the training stage
to remove low-level unstable artifacts of GAN images and
force the forensics classifier to focus on higher intrinsic
forensic indications to detect such GAN-based images. In
the preprocessing step, Xuan et al. used Gaussian blur and
Gaussian noise methods. Adding Gaussian blur and Gaussian
noise to low-level pixel data can depress low-level unstable
artifacts. DCGAN [21], WGAN-GP [22] and PGGAN [23]
are used to generate the GAN images, where pristine images
are taken from CelebA-HQ. The generated image is used for
PGGAN [23] to train the CNN and other DCGANs [21], and
WGAN-GP [22] is used for testing purposes. However, the
model shows little improvement in generalization ability on
unseen types of fake image datasets.

Investigating the artifact clues in the image and videos
is also a prominent scheme to detect DeepFakes. In [72],
a combination of a recurrent convolutional model and face
alignment approach was introduced to detect the three type-
s of manipulations: DeepFake, Face2Face and FaceSwap.
Initially, preprocessing operations are applied on video to
detect, crop and align faces in a sequence of frames. Next,
a combination of appropriate CNN models ResNet [19] or
DenseNet [119] with alignment and a bidirectional recurrent
network is used to test the accuracy. The model [72] is able to
utilize micro-, meso- and macroscopic features for manipula-
tion detection. Finally, according to the experimental results,
landmark-based face alignment with bidirectional recurrent
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DenseNet performs the best for detecting face manipulation
in videos.

Jeon et al. [73] introduced an FDFtNet method to improve
the capability of existing CNN models, such as SqueezeNet,
ShallowNetV3, ResNetV2, and Xception. In this method,
the fine-tuning method is used to extract the features using
MBblockV3, and the method can be called fine-tuning trans-
formation. This method shows a higher performance than that
of the existing classical models. Moreover, the preference for
unseen types of GAN-based image permutation attacks has
not been calculated. Jeon et al. [74] proposed a transferable
GAN-image detection framework (T-GD) technique, which
efficiently detects DeepFake images. The model works on
teacher and student relations, which mutually improve the
detection performance.

Hsu et. al. [75] proposed a pairwise learning model to
detect GAN-based generated fake images. The model was
designed by combining the architecture of the improved
version of the DenseNet backbone network and the Siamese
network and is also called a common fake feature network
(CFFN). To learn the discriminative common fake feature,
pairwise information (labeled training dataset) is provided
to the CFFN. The trained CFFN is capable of performing
the classification task indicating whether the image is real
or fake.

Gandhi and Jain [76] proposed a method to enhance the
performance of existing DeepFake models by adding adver-
sarial perturbations in DeepFake images. The fast gradient
sign method and the Carlini and Wagner L2 norms are used to
create adversarial perturbations in both black box and white
box settings, and Lipschitz regularization and deep image
prior (DIP) are introduced to increase the robustness of CNN
(ResNet and VGG)-based deep-fake detectors. Lipschitz reg-
ularization increases the detection of perturbed DeepFakes,
with a 10 percent improvement in the black box scenario, and
DIP defense obtains a 95 percent accuracy with an original 98
percent accuracy. Moreover, there are two models with some
limitations. The performance of Lipschitz regularization in
the white box scenario only improves by 2.2 percent, and the
DIP method shows higher performance than that of Lipschitz
regularization; however, the detection process is highly time-
consuming even after a high-performance configuration. Wu
et al. [77] introduced an SSTNet method that combines
spatial, steganalysis and feature extracted procedures to de-
tect DeepFakes. Basically, XceptionNet is used to monitor
the spatial features and statistical information of the image.
Moreover, steganalysis operations are applied, and RNN is
also used to mine the temporal features. Finally, all the
extracted information is combined for binary classification
to detect DeepFakes.

Liu et al. [78], using global texture data, increased the
robustness and generalization capabilities of existing CNNs
in identifying synthetic fake faces. Gram-Net shows signifi-
cant resistance to perturbation attacks such as downsampling,
JPEG compression, blur, and noise, according to experimen-
tal data. Gram-Net, which has demonstrated encouraging

results in the wild, also has a proven generalization capacity
in working with various GANs.

The current DeepFake detection methods use smal-
l datasets for specific types of manipulation. These types
of generated deep fakes are highly realistic. The detection
techniques for such DeepFakes suffer from performance.
To solve this issue, Khalid and Woo [79] proposed the
OC-FakeDect method, which uses a one-class variational
autoencoder (VAE) to train only on real face images and
detects nonreal images such as DeepFakes by treating them
as anomalies.

Fung et. al. [80] introduced a unique unsupervised learn-
ing method for detecting facial modification. Two modified
copies of a face image are generated using two distinct trans-
formations and fed into two sequential subnetworks (Xcep-
tion and projection head network). Furthermore, the outputs
of the projection head networks maximize the agreement.
The model architecture was inspired by the method proposed
by Chen et al. [120], which shows high accuracy of visual
representations over previous state-of-the-art methods.

By improving the generalization ability, conventional
DNNs have been frequently used to detect fake faces; how-
ever, they can overfit specific manipulation types and suffer
from transferability concerns when unknown manipulation
methods are not available. Tariq et. al. [81] proposed a gener-
alized method to detect multiple types of DeepFakes. Addi-
tionally, the model was tested on unseen types of DeepFakes,
such as the DeepFake-in-the-Wild video dataset (Shahroz-
tariq/CLRNet/blob/main/dataset_samples). The main idea is
to trace the spatial and temporal information in DeepFakes
by a convolutional LSTM-based residual network (CLRNet),
which has a unique type of training strategy. The best perfor-
mance of the CLRNet model on the DeepFake-in-the-Wild
video dataset is 93.86%.

3) Artifact analysis for DeepFakes
DeepFakes frequently produce artifacts that are difficult to
identify by humans but are quickly recognized by machine
and forensic analysis. Inconsistencies, irregularities in the
background, and GAN fingerprints are examples of spatial
artifacts. Detecting fluctuation in a person’s behavior, phys-
iological signals, coherence, and video frame synchroniza-
tion are all examples of temporal artifacts. Agarwal et al.
[88], [97] proposed a combination of static biometrics on
facial identity with temporal behavioral biometrics on facial
expressions and head movements for DeepFake detection.
According to Chai et al. [98], redundant artifacts can be
evaluated from local patches to identify the fake face. This
idea has been tested using different existing models, such as
Resnet-18 [19], Xception [121], MesoInception4 [63], and
CNN [122], with p values of 0.1 and 0.5 on the CelebA-HQ
and FFHQ datasets, respectively5. This idea shows general-
ized characteristics with different network architectures and
different datasets. Zhang et. al. [82] raised the concern about

5https://github.com/NVlabs/ffhq-dataset
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the applications used for face swapping in less than a minute.
This issue can be a serious problem for face authentication
on the internet. To solve this issue, automated face swapping
and its detection method were proposed with a combination
of basic machine learning techniques. Initially, the key points
from the face image are detected and presented as descriptors
(capturing local information about the key point). Because
each key point is independent, a further clustering operation
is applied to generate the codebook for each image. This
codebook is taken as input for linear or nonlinear-based
machine learning to estimate its legitimacy. However, the fea-
tures are extracted using speeded-up robust features (SURF)
[123], and bag of words (bow) [124] methods are used to
generate the codebook. The codebook information is then fed
into support vector machines (SVMs), random forests (RFs)
and multilayer perceptrons (MLPs) for binary classification.
In the experiments, the best solution for detection accuracy is
greater than 92%. Nirkin et al. [109] used the discrepancy
between faces and their context to identify fake faces. In
other words, two networks are trained; the first network is
trained to identify the person’s face, and the second context
recognition network takes the face’s context into account,
such as the person’s hair, ears, and neck. To identify fake
faces, discrepancies are calculated by comparing these two
networks. This method exhibits a high generalization ability.

Rather than looking at the visual artifacts in fake faces,
other researchers are looking at the imperfect designs of
the current GANs, which offer signals for distinguishing be-
tween genuine and DeepFake faces. McCloskey and Albright
[89] explored the architecture of a GAN generator, which
intended to enhance methods for detecting visual artifacts
in DeepFake images. In fact, the generator’s normalization
processes are taken into account, which will reduce the
frequency of saturated and underexposed pixels. Finally, the
generated features are classified by SVM. Marra et al. [90]
proposed GAN fingerprints (unique artifacts of Pro-GAN
and Cycle-GAN fingerprints), which aim to detect DeepFake
images.

Yu et al. [92] studied GAN fingerprints for image attri-
bution and used them to classify images as real or pro-
duced GANs. This study also identified the source of GAN-
generated images. If the model is trained by very little change
in the dataset, then the model fingerprint will be distinc-
t, which lends greater granularity to model authentication.
Additionally, finetuning is an effective technique used to
immunize the DNN model against adversarial perturbations
in fingerprint images.

Analyzing artifacts in biological signals is also gaining
prominent attention from researchers who aim to identify
DeepFakes. In the synthesized fake faces, biological signal
artifacts provide evident signals for fake detection. These
biological signals are divided into the following groups:
visual-audio inconsistency, visual inconsistency and biolog-
ical signal-in-video. The visual-audio irregularity in Deep-
Fake videos is a very important clue to detect the synthesized
video. The techniques [39], [99], [102] can clearly demon-

strate why the video is a fake. Mittal et al. [99] distinguish
“real” and “fake” videos using a correlation between modali-
ties and affective signals. For modelling the visual and audio
in videos, a Siamese network is used, along with a mixture of
the two triplet loss functions to determine similarity. One loss
function aims to calculate the similarity between visual and
auditory stimuli, while the other is designed to calculate ef-
fect cues such as perceived emotion. The experimental results
show that the idea of estimating the audio-visual correlation
is efficient in estimating DeepFake videos. Agarwal et al.
[39] introduced a fake video detection method that takes
advantage of abnormalities in the dynamics of the mouth
shape (visemes) and the pronounced phoneme. Mama, baba,
and papa are examples of phonemes that require the lips
to be totally closed to be properly spoken. The authors’
recommended strategy worked well, especially as the video
became longer. The Modality Dissonance Score (MDS) was
proposed by Chugh et al. [102] to detect DeepFake videos.
Basically, dissimilarity scores are calculated between audio-
visual segments over 1-second video segments, and the MDS
is estimated after applying aggregation to all the segments.
The resultant value can efficiently estimate the DeepFake
video. This method can also be utilized for temporal forgery
localization, which identifies the video segment that has been
tampered with.

The idea of monitoring the lack of visual consistency in
[48], [84], [87], [94], which is used to estimate DeepFake
videos, particularly the shape, facial features, and landmarks
of faces, is not based in nature. Li et al. [84] proposed an
eye blinking-based fake face video detection method using a
CNN and an RNN, which is an LRCN model. Basically, the
LRCN model consists of three steps: feature extraction from
the eye sequence by using VGG16, sequence learning by
using LSTM, a special kind of RNN, and finally, state predic-
tion, which generates the likelihood of eye open and closure
states based on the output of LSTM. The best performance of
the model under the ROC curve was 0.99. Li and Lyu [87] de-
scribed a new deep learning-based model that can distinguish
DeepFake videos from real videos. The model takes leverage
of the warping step during DeepFake creation. This step
leaves a resolution discrepancy between the warped face area
and the surrounding context, and noticeable artifacts appear.
Then, CNN models are used to detect such artifacts. CNN
is specifically trained to recognize faces first and then extract
landmarks to compute transform matrices to align the faces to
a standard configuration. Gaussian blurring is applied to the
aligned face, and then the inverse of the predicted transforma-
tion matrix is used to affine and warp it back to the original
image. Faces are aligned into several scales to boost data
diversity and to simulate more varied resolution scenarios
of affine warped faces. The performance was calculated on
four CNN models, namely, VGG16, ResNet50, ResNet101
and ResNet152, and on DeepFake datasets (UADFV and
DF-TIMIT with two qualities, LQ and HQ). The ResNet50-
based DeepFake detection model outperforms the DeepFake
datasets.
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Yang et al. [48] suggested a method for detecting changes
between 3D head pose movement, which includes head ori-
entation and position. To detect such orientation and po-
sitioning, 68 facial landmarks of the central face region
are used. The 3D head postures are investigated since the
DeepFake face generator pipeline has a flaw. After obtaining
the detection results, the retrieved features are passed into
an SVM classifier. Experiments on two datasets (UADFV,
DARPA MediFor) reveal that the detection method outper-
forms the other methods. Guarnera et. al. [103] proposed
a model for DeepFake detection by monitoring the hidden
forensics traces in images. Basically, the expectation maxi-
mization (EM) algorithm [125] is used to extract a set of local
features to model the underlying convolutional generative
process. The model was evaluated with five different types of
DeepFake creation techniques, namely, GDWCT, StarGAN,
ATTGAN, StyleGAN and StyleGAN2, and on the CELEBA
dataset using naïve classifiers to discriminate between origi-
nals and fakes.

Matern et al. [94] investigated a way to exploit DeepFake
and face manipulation artifacts based on visual attributes
such as eyes, teeth, and facial features. The visual artifacts
are caused by a lack of global consistency, an incorrect or
inadequate estimate of incident illumination, or an inaccu-
rate estimate of the actual geometry. To detect DeepFakes,
geometrical inconsistencies in reflections, eye and tooth areas
are monitored, and textural characteristics collected from the
face region based on facial landmarks and other factors are
taken into account. Consequently, eye, teeth, and full-face
crop features are employed. Following feature extraction, two
classifiers, namely, logistic regression and a shallow neural
network, are used to distinguish DeepFakes from original
videos. The model works well on YouTube videos, with a
best result of 0.851 in terms of the area under the receiver
operating characteristics curve. The drawback of this method
is that it requires pictures that satisfy specific criteria, such as
open eyes or visible teeth. Fernandes et. al. [104] proposed an
attribution-based confidence (ABC) metric [126] for detect-
ing DeepFake videos. Initially, DeepFake videos were creat-
ed using a commercial website (https://deepfakesweb.com/).
Then, the generated DeepFake was tested on a pretrained
ResNet50 model, where the model was trained with the
VGGFace2 dataset [105]. According to the obtained attribu-
tion score, a threshold value of 0.94 was considered for the
ABC metric that can differentiate a pristine from a DeepFake
video. Hu et al. [107] analyzed the inconsistency between
two eyes for detecting DeepFake face images. The detection
model takes advantage of physical/physiological restrictions
in GAN-based images and then sufficiently estimates the
discrepancy between two eyes to identify fakes. These re-
strictions provide solid assurances for explaining the choice
to differentiate a real from a fake; however, when improved
GANs are suggested, they will be invalid. In addition, the
model’s resistance against perturbation attacks is unknown.
Demir and Ciftci [108] proposed a model to detect Deep-
Fakes by analyzing the gaze in videos.

The biological signs in such videos are difficult to du-
plicate. Heart rate has been demonstrated in studies to be
useful in detecting DeepFake videos. Extracting the heart rate
from videos is another challenging task. Taking advantage of
the neural ordinary differential equation (Neural-ODE [127])
to identify DeepFake videos was presented by Fernandes
et al. [96]. Qi et al. [106] proposed a DeepRhythm model
that also exposes DeepFake videos using heartbeat rhythms.
The authors created motion-magnified spatial-temporal rep-
resentation (MMSTR) for the video to highlight heart rhythm
signals. Finally, based on the output of MMSTR, a dual-
spatial-temporal attentional network was built to identify
fraudulent videos.

VI. CHALLENGES FOR DEEPFAKE CREATION AND
DETECTION
In recent years, many DeepFake tools have become available
that have highly realistic performance levels, and many more
are in development. In contrast, the development of the
DeepFake generation model is creating large challenges for
forensics experts in terms of combatting them. DeepFakes
are AI-generated hyperrealistic images or videos that have
been digitally edited using techniques such as face swapping,
changing the attributes and representing individuals speaking
and doing things that never happened.

GANs, which are popular artificial intelligence (AI) tech-
niques, consist of two discriminative and generative models
that compete against each other to improve their perfor-
mance to generate believable fakes. These impersonations of
real persons are frequently highly viral and spread swiftly
across social media platforms, thereby making them an ef-
fective tool for propaganda. In digital forensics, as in other
security-related disciplines, it is necessary to account for
the presence of an adversary who is actively attempting to
fool investigators. In reality, a knowledgeable attacker who
understands the concepts on which the forensic tools are
based may take a variety of counterforensic steps to avoid
detection [128]. Forensics tools should be able to detect
such situational threats, as well as any real-world situations
that tend to degrade test accuracy. Therefore, the numerous
counter forensics approaches intended to confuse current
detectors are a valuable aid in the development of multimedia
forensics, as they expose the flaws in current solutions and
encourage research to find a more robust resolution.

To date, many models are available to create or detect
fakes, but they still have weaknesses. In the following sub-
section, we will discuss the main challenges, point by point,
in creating or detecting DeepFakes.

A. Challenges for DeepFake creation
Despite the fact that significant efforts have been made to
increase the visual quality of created DeepFakes, there are
still a number of hurdles to overcome. Some challenges re-
lated to creating DeepFakes include generalization, temporal
coherence, illumination stipulations, lack of realism in eyes
and lips, hand movement behavior and identity leakage.
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• Generalization: The characteristics of generative mod-
els depend on the type of dataset provided during train-
ing. Therefore, after finishing training on a particular
dataset, the output produced by the model reflects the
learned characteristics (fingerprint). In addition, the out-
put quality depends on the size of the dataset provided
during training. Thus, to generate high-quality output,
the model should be fed a dataset large enough to
achieve a particular type of characteristic. Moreover,
creating a convincing model requires hours of training.
It is usually simpler to obtain a dataset that contains
relevant content; however, finding enough data for a
single victim might be difficult. Retraining the model for
each unique target identification is also time-consuming.
Figure 10 shows the fingerprints left by different Deep-
Fake generator models, which can be easily detected by
a DeepFake detector.
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FIGURE 10: An example of a GAN fingerprint present in
DeepFake-generated media using different environments can
be discovered easily by a DeepFake detector.

• Temporal coherence: Other flaws include visible ab-
normalities such as flickering and jittering between
frames. These flaws occur because the DeepFake gen-
eration frameworks work on each frame without con-
sidering temporal consistency. To overcome these flaws,
some researchers offer this context to the generator
or discriminator, consider temporal coherence losses,
use RNNs, or use a combination of these approaches.
Visible abnormalities can be seen in Figure 11.

FIGURE 11: Abnormalities of temporal coherence.

• Illumination stipulations: Most available DeepFake
datasets are produced in a controlled environment, such

as using the same type of lighting and background.
However, a sudden shift in lighting circumstances in
indoor/outdoor scenarios causes color discrepancies and
odd abnormalities in the resultant output.

• Lack of realism in eyes and lips: The lack of natu-
ral emotions, interruptions, and the rate at which the
target talks are the primary difficulties of eye and lip
synchronization-based DeepFake creation. Eye blinking
abnormalities in DeepFake-generated video can be seen
in Figure 12.

FIGURE 12: Abnormalities of eye blinking in [84].

• Hand movement behavior: Another issue is that when
the target expresses emotion through hand movement,
it is difficult for the DeepFake model to reflect such
expressions. Moreover, this kind of expression dataset
is limited; therefore, producing this type of DeepFake is
challenging.

• Identity leakage: Target identity preservation becomes
a challenge when there is considerable discrepancy be-
tween the target identity and the driving identity, such
as in face reenactment tasks where target expressions
are driven by some source identity. The driving ’identity
facial data are partially transmitted to the manufactured
face. This event occurs when training is performed on
a single identity or many identities, yet data pairing is
performed on the same identity.

Many DeepFake tools are available, but they are not per-
fect. In fact, the available tools are uniquely designed and
focus only on certain types of characteristics. Given the
abovementioned challenges, generating DeepFake tools re-
quires more research to improve performance. To summarize,
developing a DeepFake generation tool is a challenging task.

B. Challenges for DeepFake detection
Although significant progress has been achieved in the per-
formance of DeepFake detectors, several issues related to
the current detection algorithms need to be addressed. Some
of the difficulties faced by DeepFake detection techniques
include a lack of datasets, unknown types of attacks on
media, temporal aggregation and unlabeled data.

• Lack of DeepFake datasets: The performance of a
DeepFake detection model depends on the variety of
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large datasets used during training. If the model is tested
on downloaded media, which have an unknown type
of manipulation, then designing the model to identify
the unknown type of manipulation is challenging. Due
to the popularity of web-based applications, postpro-
cessing operations are applied to DeepFake multimedia
with the intention of fooling the DeepFake detector;
such manipulation could consist of removing temporal
artifices, blurring, smoothing, cropping, etc.

• Unknown type of attack: Another challenging task is
to design a robust DeepFake detection model against
unknown types of attacks such as the fast gradient sign
method (FGSM) [129] and the Carlini and Wagner L2
norm attack (CW-L2) [130]. These attacks are used
to fool classifiers in their actual output. An example
of a DeepFake creation using source and target faces,
with adversarial perturbations, can be seen in Figure 13.
DeepFakes are accurately classified as fake by a Deep-
Fake detector, but adversarially perturbed DeepFakes
are classified as real.

FIGURE 13: An example of an adversarial attack on a
DeepFake detector in [76].

• Temporal Aggregation: Existing DeepFake detection
algorithms use binary frame-level classification, which
involves determining whether each video frame is real
or fake. However, as these methods do not take in-
terframe temporal consistency into consideration, they
may encounter issues, such as exhibiting temporal ab-
normalities and real/artificial frames occurring in con-
secutive intervals. Furthermore, these methods necessi-
tate an extra step to compute the video integrity score,
which must be integrated for each frame to obtain the
final result.

• Unlabeled data: Usually, DeepFake detection models
are trained with large datasets. However, in some cases,
such as journalism or law enforcement-based DeepFake
detection, only a small dataset may be available. More-
over, this kind of dataset needs an additional effort to
label the score corresponding to the type of forgery
used. Consequently, further study is required to un-
derstand journalism or law enforcement-based forgery

cases. Most DeepFake detection models, particularly
those based on deep learning approaches, lack such an
explanation because of their black-box nature. There-
fore, designing a DeepFake detection model using a
small and unlabeled dataset is challenging.

VII. CONCLUSION
This article offers a comprehensive survey of a new and
prominent technology, namely, DeepFake. It communicates
the basics, benefits and threats associated with DeepFake,
GAN-based DeepFake applications. In addition, DeepFake
detection models are also discussed. The inability to transfer
and generalize is common in most existing deep learning-
based detection methods, which implies that multimedia
forensics has not yet reached its zenith. Much interest has
been shown by different important organizations and experts
that are contributing to the improvement of applied tech-
niques. However, much effort is still needed to ensure data
integrity, hence the need for other protection methods. Fur-
thermore, experts are anticipating a new wave of DeepFake
propaganda in AI against AI encounters where none of the
sides has an edge over the other.
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