
This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 1

A review of population-based metaheuristics for

large-scale black-box global optimization: Part B
Mohammad Nabi Omidvar, Senior Member, IEEE, Xiaodong Li, Fellow, IEEE, and Xin Yao, Fellow, IEEE

Abstract—This paper is the second part of a two-part survey
series on large-scale global optimization. The first part covered
two major algorithmic approaches to large-scale optimization,
namely decomposition methods and hybridization methods such
as memetic algorithms and local search. In this part we focus on
sampling and variation operators, approximation and surrogate
modeling, initialization methods, and parallelization. We also
cover a range of problem areas in relation to large-scale global
optimization, such as multi-objective optimization, constraint
handling, overlapping components, the component imbalance
issue, and benchmarks, and applications. The paper also includes
a discussion on pitfalls and challenges of current research and
identifies several potential areas of future research.

Index Terms—large-scale global optimization, black-box opti-
mization, metaheuristics, evolutionary optimization

I. INTRODUCTION

The first part of this two-part survey series covered decom-

position methods and hybrid methods as two most widely

investigated approaches in the literature. Figure 1 depicts a

high-level structure of the main topics covered across both

parts. In this part, we review more approaches to large-

scale global optimization and also address several problem

areas including multi-objective optimization and constraint-

handling. Section II covers sampling mechanism and varia-

tion operators of two well-known algorithms, particle swarm

algorithm [1] and differential evolution [2], and how they

are modified to solve large-scale problems. Section III covers

the algorithms which rely on some form of approximation to

cope with the challenges of high-dimensionality. Section IV

covers population initialization methods and their significance

in large-scale global optimization. Section V addresses the role

of parallel algorithms to address the issue of scalability.

In addition to the algorithmic approaches to large-scale

optimization, the paper also addresses a range of problem areas

Mohammad Nabi Omidvar is with the School of Computing, University
of Leeds, and Leeds University Business School, Leeds LS2 9JT, UK (email:
m.n.omidvar@leeds.ac.uk). He is also the current chair of the IEEE Taskforce
on Large-Scale Global Optimization.

Xiaodong Li is with the School of Computing Technologies, RMIT Uni-
versity, Melbourne, Australia (email: xiaodong.li@rmit.edu.au).

Xin Yao is with the Guangdong Provincial Key Laboratory of Brain-
inspired Intelligent Computation, Department of Computer Science and Engi-
neering, Southern University of Science and Technology, Shenzhen 518055,
China. Xin Yao is also with the School of Computer Science, University
of Birmingham, Birmingham B15 2TT, UK (email: x.yao@cs.bham.ac.uk;
xiny@sustech.edu.cn).

This work was partially supported by an ARC (Australian Research
Council) Discovery Grant (DP180101170, DP190101271), Shenzhen Science
and Technology Program (Grant No. KQTD2016112514355531), the Program
for Guangdong Introducing Innovative and Entrepreneurial Teams (Grant
No. 2017ZT07X386), and the Program for University Key Laboratory of
Guangdong Province (Grant No. 2017KSYS008).

Algorithmic Approaches

Exploiting Problem Structure (part A §II)

Implicit Methods (part A §II-A)

Interaction Adaptation

Probabilistic Modelling of:

Variable Interactions (EDAs)

Sample Movement (CMA-ES)

Objective Function (Bayesian Opt.)

Explicit Methods (part A §II-B)

Interaction Detection

Decomposition/Grouping

Applications

Approximation (part B §III)

Initialization (part B §IV)

Hybrid/Memetic Algorithms (part A §III)

Variation Operators (part B §II)

Differential Evolution (part B §II-A)

Mutation Strategy

Parameter Adaptation

Diversity Maintenance

Particle Swarm Opt. (part B §II-B)

Update Rules

Re-initialization/Sampling

Rotational Invariance

Space Partitioning

Other Metaheuristics (supplement §S-II)

Parallelization (part B §V)

Problem Areas

Overlapping Functions (part B §VI-A)

Imbalanced Contribution (part B §VI-B)

Multiobjective Optimization (part B §VI-C)

Constraint Handling (part B §VI-D)

Benchmarks and Applications (part B §VI-E)

Fig. 1: Outline of the topics covered in the two parts of this

survey series on large-scale global optimization.

pertaining to large-scale global optimization. These include:

1) scalability of multi-objective optimization algorithms with

respect to their decision space; 2) challenges of constraint-

handling in the context of large-scale optimization; 3) chal-

lenges in dealing with problems with overlapping components

and the issue of exploitable structure; 4) resource allocation

and the problem of imbalanced contribution; 5) benchmarking

and application areas.

The paper also features a section on pitfalls and challenges

of the field and potential areas of future research.

II. SAMPLING AND VARIATION OPERATORS

In part A of this survey, we have seen that many optimizers

such as estimation of distribution algorithms (EDA), differen-

tial evolution (DE), and particle swarm optimization (PSO),

can be used as component optimizers in decomposition-based

frameworks (part A §II-B), and as explorative agents in

memetic algorithms (part A §III). In this section, we focus

on algorithm-specific aspects such as parameter adaptation,

modification of variation operators or design of new ones,

diversity maintenance mechanisms, etc. In what follows we



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 2

Sampling &

Variation

Operators
DE

Parameter
Adaptation

NPF

CR

Diversity
Maintenance

Multi-

population
Archive

Mutation
Strategy

Strategy

Adaptation

Vector

Selection

PSO

Update Rule

& Particle

Learning

Topologies
Discounted

gbest

Multi-swarm

Initialization

& Sampling

Nonseparability

/ Coordinate

Rotation

Partitioning

Fig. 2: DE and PSO are two widely used metaheuristic

algorithms used in large-scale global optimization. This figure

shows major aspects of these algorithms studied for large-scale

optimization problems.

cover DE and PSO in more detail and other metaheuristics are

covered in Section S-II of the supplementary document. EDAs

were covered in Part A §II-A due to their focus on modeling

variable interactions. Figure 2 shows major aspects of PSO and

DE, which have been studied under high-dimensional settings.

A. Differential Evolution

Due to its versatility, ease of implementation and simplicity,

differential evolution (DE) [2] has become a widely used opti-

mization algorithm for global optimization [3]. Consequently,

many variants of DE have been developed for large-scale

global optimization [4] from which the most popular ones are

briefly reviewed in this section. Most the DE variants proposed

for large-scale optimization are centered around maintaining

population diversity, which is done by various means such as

parameter adaptation, modification of DE mutation strategy,

and diversity maintenance mechanisms.

1) Mutation Strategy: Mutation strategy is DE’s central

variation operator and has been subject to extensive inves-

tigation in the literature [3]. Several attempts have been made

to improve DE for large-scale optimization by adapting or

hybridizing several mutation strategies or by proposing new

ones [5].

a) Adaptation of Mutation Strategy: Different mutation

strategies exhibit various degrees of explorative/exploitative

power each being suitable for certain problem types [5]. In

the context of LSGO, several attempts have been made to

use several mutation strategies to improve the convergence

properties of DE in high-dimensional spaces. These methods

are either based on adaptively applying a set of strategies to a

single population or using a multi-population approach where

each is evolved using its own mutation strategy. Ali et al.

[6] proposed a multi-population DE where each subpopulation

has its own mutation strategy. Banitalebi et al. [7] proposed

a binary DE which adaptively selects the mutation strategy

for generating trial vectors and also adapts the scaling factor

and crossover rate using a chaotic process (also see the

section on parameter adaptation later in this section). Kushida

et al. [8] proposed a rank-based mechanism for selecting the

mutation strategies. Wang et al. [9] proposed to adaptively

switch between DE/rand/1 and DE/current_to_best/1 mutation

strategies. There are also approaches that switch between

DE/rand/1/bin and a newly proposed strategy based on a

uniform distribution [10, 11].

b) Vector Selection: Canonical DE uses random individ-

uals in the mutation process to generate a scaled difference

vector to be applied to a base vector and generate a new so-

lution. The choice of the vectors participating in the mutation

procedure plays a crucial role in DE’s convergence behav-

ior [5]. Ge et al. [12] analyzed different DE strategies and

observed that those using the best individual are exploitative

while those using random individuals are more explorative.

They argue that instead of randomly selecting the participating

vectors, it is better to systematically choose a vector close

to the best solution to favor exploitation and far from the

mutant to favor exploration. Inspired by PSO personal and

global best particles, Wang et al. [13] proposed to generate

trial vectors by including the global best and personal best

individuals in the mutation strategy. The authors claim that

this process is akin to neighborhood search and improves

convergence. García-Martínez et al. [14] associate four basic

roles – placing, leading, correcting and receiving – to each

vector (solution), and the vector selection for mutation is

performed based on these four basic roles. The vector selection

strategy proposed by Ali et al. [6] is a function of the rank of

a solution in the population, favoring higher quality solutions

to participate in the mutation. Zhang and Sanderson [15]

proposed a generalization of the classic DE/current-to-best

mutation operator, DE/current-to-pbest, which uses the top p%

best solutions to balance the greediness level of the algorithm

and to maintain better diversity in the population. Some other

studies also proposed several mutation strategies in which the

solution quality is taken into account in the vector selection

process [10, 11]. Yang et al. [16] proposed to use multiple such

difference vectors which are scaled differently to generate trial

vectors.

The choice of the base vector to which the mutation is

applied is also important in DE’s convergence behavior. Ali

et al. [6] proposed a new mutation strategy by selecting the

base individual to be a convex combination of randomly

chosen individuals from the population. Wang et al. [17]

proposed an enhanced opposition-based differential evolution

in which the candidate solutions are translated into a so-called

opposite space using the definition of opposite numbers [18].

Wang et al. [17] argue that by evaluation of the candidate

solutions and their translated counterparts in the opposite

space, the probability of finding better solutions increases. This

hypothesis is backed up by a set of empirical results on a set

of 19 high-dimensional benchmark functions [19]. Hiba et al.

[20] proposed a center-based mutation strategy which uses the

center of three randomly chosen solutions as the base vector.

2) Parameter Adaptation: Population size (NP ), crossover

rate (CR), and the scaling factor (F ) are DE’s major parame-

ters affecting its convergence properties on different problem



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 3

types. To eliminate the need for practitioners to set these hard-

to-tweak parameters, several attempts have been made to adap-

tively set these parameters in the course of optimization [3].

In this section, we review some of these adaptation methods

pertaining to large-scale global optimization.

Scaling factor and crossover rate are the two most studied

parameters. Most of these attempts use some form of prob-

ability distribution from which the parameters are sampled.

Brest et al. [21] dynamically change F and CR using a

uniform distribution. Wang et al. [22] used a similar adaptation

mechanism except that they restricted the range of CR values.

Brest et al. [23] introduced a sign changing mechanism to F

in addition to sampling of CR and F values from a uniform

distribution. To improve the current best, it uses smaller F

values in the second half of the optimization process. Weber

et al. [24] use a multi-population approach each having its

own scaling factor which are regenerated in a probabilistic

way. Zamuda et al. [25] proposed to adapt CR and F using

a log-normal distribution. Improving upon self-adaptive DE

(SaDE) [26], Yang et al. [27] use a Gaussian distribution to

generate F and CR for each individual and update the mean

of the Gaussian based on the parameter values succeeding in

generating surviving offsprings. Zhang and Sanderson [15]

proposed JADE which randomly generates F and CR at

every generation using Cauchy and Gaussian distributions

respectively whose parameters are adapted in the course of

optimization. Yang et al. [28] attempted to generalize the at-

tempts by its predecessors such as JADE, SaDE, and SaNSDE

into a unified mechanism.

There are also alternative approaches which are not based

on sampling from probability distributions. For example, some

studies propose to change the crossover rate and the scaling

factor using a chaotic process [7, 9]. Takahama and Sakai [29]

proposed a DE variant in which the scaling factor is adapted

according to modality feature of the search space. Kushida

et al. [8] improves upon the works of Takahama and Sakai

[29] by adding a rank-based mechanism for setting the scaling

factor and crossover rate as well as the mutation strategies.

The attempts for adaptation of population size in large-

scale optimization are ad hoc and limited. Brest et al. [23]

proposed to gradually reduce the population size in the course

of optimization. Wang et al. [30] adaptively changes the

population size by adding or removing solutions based on their

performance. Tanabe and Fukunaga [31] linearly decrease the

population size.

3) Diversity Maintenance: Loss of population diversity is

central to DE’s deficiency in high dimensional spaces. This is

typically avoided in lower dimensions by means of increasing

the population size [32]. However, in high dimensional spaces,

large population size hinders convergence [33]. Adaptation

of the mutation scaling factor, hybridizing an array of mu-

tation strategies, or designing new ones are all attempts to

improve the population diversity, which were addressed in

the previous sections. Other approaches to diversification are

multi-population approaches, either in the form of several

islands searching the original search space or by means of

partitioning and coevolution, or maintaining an archive of

solutions (Fig. 2).

Weber et al. [24] proposed a multi-population strategy

simultaneously searches different parts of the search space.

This algorithm randomly rearranges the individuals across the

subpopulations with the aim of maintaining diversity among

the solutions. Ge et al. [34] also proposed a multi-population

DE, which maintains diversity through migration of similar

or diverse individuals. This mechanism controls the balance

between exploration and exploitation. Ge et al. [35] use a

multi-population approach with automatic merge and split

operations to improve population diversity. Ali et al. [6] used

a multi-population DE with each population having its own

mutation strategy to maintain population diversity. Information

exchange between populations helps with balancing explo-

ration and exploitation. Parsopoulos [36] uses cooperative

coevolution to partition the search space into smaller regions

and optimizes them with a micro DE. Micro DE is prone to

losing diversity and getting trapped in local optima; however,

CC helps DE to focus the search with its micro population on

smaller regions. Ge et al. [12] also use CC with cross-cluster

mutation to promote exploration.

Maintaining an archive of solutions in the course of opti-

mization is another means of maintaining diversity. Takahama

and Sakai [29] proposed a DE variant with an archive of old

solutions to help with diversification in the mating process,

especially when the population size is small. Yang et al. [16]

also proposed a DE variant which keeps an archive of failed

trial vectors with the hope of preserving good genetic material.

Zhang and Sanderson [15] proposed JADE which maintains an

external archive of inferior solutions to estimate the possible

improvement directions. The external archive of JADE proved

to be beneficial, especially on relatively high dimensional

problems with up to 100 dimensions.

B. Particle Swarm Optimization

Particle swarm optimization (PSO) [1, 37] is known to be

susceptible to premature convergence, which is magnified on

high-dimensional problems [38, 39]. Most approaches to han-

dle large-scale optimization problems are centered around in-

creasing diversity to improve exploration. In some cases how-

ever, extreme exploration and exploitation can co-exist [40].

The common remedies to PSO’s premature convergence in

large-scale global optimization literature are population re-

initialization, complementary sampling mechanisms, popula-

tion size adaptation, space partitioning (by means of cooper-

ative coevolution or otherwise), improving PSO’s update rule

and particle learning mechanisms, and mechanism to deal with

variable interaction and nonseparable problems.

a) PSO update rule and particle learning: Excessive

reliance on the global best particle can result in premature

convergence. Many attempts to avoid premature convergence

revolve around reducing the influence of global best. Cheng

and Jin [41] proposed a PSO variant, named CSO, which

does not use personal or global best solutions to update the

position of the particles. Instead random pairs are chosen

to compete and the winner returns directly to the swarm

while the loser is updated by learning from the winner. CSO

maintains a better diversity than PSO and is more explorative,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 4

making it better suited for large-scale global optimization. Tian

et al. [42] proposed a variant of CSO based on a two-stage

update rule for position of particles and applied it to solving

multiobjective problems. Naderi et al. [43] proposed a fuzzy

adaptive system to adjust the inertia weight. This eliminates

the use of global best in the velocity update rule to avoid

premature convergence. Tang et al. [44] used a new update

rule to exploit four best positions via Gaussian sampling to

reduce the influence of global best and promote exploration.

Pluhacek et al. [45] changes the velocity update rule such that

with some probability the velocity is either zero, or is updated

by taking either a random particle, personal best, or the global

best into account.

Controlling information exchange among particles by means

of population topologies or multi-population structures are

other ways of enhancing the swarm diversity [46]. Fan et al.

[47] proposed a PSO variant which builds a dynamic neigh-

borhood topology for PSO by performing clustering on the

population. The neighbors of the particles are chosen from the

same cluster. It also chooses a distant neighbor for particles

through random selection. Zhang et al. [48] improves CSO by

applying Cauchy and Gaussian updates on the winner particles

and uses a ring topology to enhance the swarm diversity.

Distributed multi-population schemes [49–51] also promote

controlled information exchange among particles which can

improve population diversity.

In addition to the above, several other modifications to

PSO’s update rule have been suggested in the context of

large-scale global optimization. Arasomwan and Adewumi

[52] found that inertia weight, acceleration coefficients, and

random factors were not of significance in velocity update

for obtaining global solutions. They proposed to adaptively

update particles’ velocity based on Euclidean distance be-

tween particles and the global best. It also introduces chaotic

behavior into the particle position update rule. The notion

of social learning has been proposed to reduce the adverse

effect of isolated asocial learning [53, 54]. Yang et al. [55]

proposed to group particles into several levels based on their

fitness. Two predominant particles from two different higher

levels are chosen to guide the learning of particles. This has

shown to improve diversity. Convergence speed controller was

proposed as an independent operator to respond to premature

or slow convergence [56]. Cheng et al. [57] proposed a

mutation operator based on the Alpha-stable distribution to

enhance the swarm diversity and avoid premature convergence.

Li et al. [58] changed the particles’ velocity update rule to

decouple exploration and exploitation. Xue et al. [59] used

multiple velocity and position update rules which are chosen

probabilistically whose parameters are adapted according to

the effectiveness of each strategy.

b) Re-initialization, sampling, and population size con-

trol: Hsieh et al. [60] proposed a PSO variant with dynamic

swarm size which increases or decreases the swarm size based

on the status of particles. In general, if the global best of the

swarm is not updated for several consecutive iterations, new

particles are generated by applying a crossover-like operator

on the best solutions that were obtained in the past. Conversely,

if the information content of the swarm is rich enough to

allow frequent and robust updating of the global best, some of

the poor quality solutions might be removed from the swarm.

There are some other mechanisms in place to avoid the growth

of the swarm size beyond bounds. de Oca et al. [61] proposed

an improved version of incremental particle swarm-guided

local search [62] which incrementally increases the population

size to solve large-scale continuous optimization problems.

Garcí-Nieto and Alba [63] proposed restart particle swarm

optimization with velocity modulation. Velocity modulation is

the process by which the particles are guided within a region of

interest. Additionally, a restart mechanism is devised to avoid

premature convergence of the algorithm. Cheng et al. [64]

proposed partial re-initialization to improve exploration. They

partition the search space and count the number of particles

in each partition and abandon the low activity areas. It also

subdivides and reinitializes particles in higher activity regions.

This mechanism has shown to improve exploitation. Zhou

et al. [65] introduced opposition-based sampling into CSO.

c) Nonseparability and coordinate rotation: The update

equations of PSO are dimension-wise which makes it suitable

for separable functions. Hendtlass [66] use dynamic momen-

tum values to enable PSO to better handle nonseparability,

making it suitable for functions with interacting dimensions.

Korenaga et al. [67] introduce coordinate rotation into the

velocity update rule which makes it possible to consider the

information of other coordinates when calculating the velocity

of a component. This can improve population diversity and

has shown to be beneficial for large-scale optimization. Chu

et al. [68] uses PCA to parts of the space not spanned by

the current population resulting in improved exploration. In

a similar way, Chu et al. [69] also uses PCA to find lost

dimensions and promote search in the less explored areas due

to lost dimensions.

d) Space partitioning: Zhang et al. [70] partition the

space by grouping the dimensions into segments. Then some

newly designed operators are assigned to each segment to

update those segments. These operators are designed to im-

prove population diversity and avoid premature convergence.

Zhao et al. [71] proposed to form subswarms which work

independently during the search. Then the subswarms are

randomly changed to enlarge their neighborhood and promote

information exchange and population diversity. This improves

exploration but may deteriorate exploitation which is compen-

sated for by means of local search. Cheng et al. [64] proposed

space partitioning with the aim of identifying and abandoning

low activity areas and focus the search effort in high activity

areas.

Balancing exploration and exploitation and maintaining

population diversity are generally central to the design of ef-

fective optimizers for large-scale optimization. In this section,

we have seen that this plays a crucial role in both DE and PSO.

Novel means of using population topologies [46], sampling

methods, parameter adaptation, and space partitioning are

needed to further improve these algorithms for large-scale

optimization.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 5

Approximation

Methods
Transformation

Coding:
B-spline

Dim.
Reduction

Intrinsic

Dimension

Random

Projection
PCA

Functional

mapping

Meta-modeling

HDMR

Radial Basis

Functions

Gaussian

Processes

Interaction

Detection /

Decomposition

Fig. 3: Problem approximation/simplification methods used for

large-scale global optimization.

III. APPROXIMATION AND SURROGATE MODELING

Solving an approximation of a problem can potentially be

more viable than obtaining a solution for its original high-

fidelity model. In other words, the aim of approximation is to

simplify. In optimization, this simplification is either achieved

by means of applying some transformation to the objective

function (often to reduce the dimensions), or by building a

model of the objective function or its constraints [72], i.e., a

meta-model to act as a surrogate to the original complex prob-

lem (Figure 3). Meta-models or surrogates are used to reduce

the computational overhead of optimizing expensive objective

functions. In recent years, one approach to large-scale global

optimization is to treat it as an expensive optimization problem

and use meta-models to solve it [73].

Meta-models are built and refined based on sampling of the

objective function. In high-dimensional spaces, the accuracy

of the model drops significantly due to the limited sample size

upon which the model is built. To alleviate this problem, sev-

eral studies use some form of problem decomposition to break

the problem into a set of lower dimensional subproblems each

of which is approximated using a meta-modeling technique

such as radial basis functions or the Gaussian processes. Due

to problem decomposition, it is clear that problem structure

and variable interaction plays an important role in building an

ensemble of surrogates. In some cases the meta-modeling itself

is used to identify separable and nonseparable components of

a problem [74]. For example, Li et al. [75] used cut-HDMR to

detect the components [75]. Then a multi-surrogate strategy is

used to model the nonseparable components. In other cases,

variable interaction analysis algorithms such as differential

grouping [76] is used to decompose the problem and the

subsequent subproblems are then approximated using meta-

modeling techniques [77]. Werth et al. [78] also proposed a

sliding window approach over the decision vectors to reduce

the dimensionality of the problem. They use LINC-R to dis-

cover variable interaction structure of a subset of the decision

variables falling within the sliding window. Then a surrogate-

assisted algorithm is used to optimize over those variables.

Meta-modelling and problem decomposition are mutually

benefiting approaches to solve large-scale optimization prob-

lems. Problem decomposition makes it possible to build more

accurate meta-models given the limited samples, while meta-

models can help with the issue of evaluating partial solutions

in a divide-and-conquer paradigm. In cooperative coevolution

and other divide-and-conquer paradigms, partial solutions need

to be evaluated in the context of other partial solutions to form

a complete solution. The issue of estimating the fitness of

partial solutions was studied by Wang and Gao [79] using

fixed auxiliary functions with no dynamic meta-modeling

mechanism. Several studies use meta-modeling as a means

of reducing the overhead of matching partial solutions and

their re-evaluation for cooperative coevolution [77, 80, 81]

and other divide-and-conquer paradigms, such as random

projections [73].

In addition to modeling of subproblems, meta-models have

also been used to balance the global search (exploration)

and local search (exploitation) efforts. Meta-models have been

used in competitive swarm optimizer [41] to approximate the

fitness of neighboring particles of a particle with a known

fitness [82]. Sun et al. [83] proposed to balance the exploration

and exploitation efforts by means of building local and global

surrogates. For the exploration part, they use social learning

PSO [53] which has good global optimization properties in

conjunction with radial basis functions capable of capturing

the global profile of the objective function. For exploitation,

they use a variant of the fitness approximation method pro-

posed by Sun et al. [82] in conjunction with PSO for local

search.

Beside building an explicit model of the objective function,

as is the case with meta-modeling, approximation can be built

into problem representation [84] or be achieved by means of

dimensionality reduction through transformation [85–91] or

finding intrinsic dimensions of a problem [92]. Wang et al.

[93] combined the benefit of meta-models and dimensionality

reduction by using auto-encoders to find lower dimensional

features of graph embedding problems and use them to con-

struct a surrogate model to approximate the robustness value of

large-scale graph networks. Principal component analysis has

also been used to identify a lower-dimensional representation

of the probabilistic Gaussian models of EDAs [88], and

the convergence variables on multiobjective problems [89].

Variable reduction strategy is another means of representing

the decision variables of an objective function or its constraints

based on a smaller subset of core decision variables [90, 91].

Random projection theory, which was covered in part A of the

survey as an implicit way of exploiting problem structure, can

be used for dimensionality reduction in the context of EDAs.

Weighted optimization framework, inspired from adaptive

weighting by Yang et al. [94], is another way of transforming

the problem into a lower dimensional one (See Section VI-C).

IV. INITIALIZATION METHODS

Random initialization of a set of candidate solutions is

at the heart of existing metaheuristic algorithms. The aim

of initialization methods is to make the best use of random

number generators or other sampling techniques to cover

the vast search space more uniformly. This section covers



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 6

the studies on random initialization for large-scale global

optimization.

A wide range of population initialization methods have

been employed by evolutionary algorithms [95, 96]. There

are various conclusions, conflicting at times, on the effect

of initialization methods on large-scale optimization [97–

99]. Kazimipour et al. [97] studied the effect of advanced

initialization methods on large-scale optimization. The study

suggested that EAs are more sensitive to initialization in high-

dimensional spaces than in lower-dimensional ones regardless

of the population size. They also reported that pseudo-random

number generator is inferior to advanced initialization methods

in high dimensions. A follow-up study showed that the effect

of advanced initialization methods becomes marginal when the

parameters of the optimizer is properly set [98]. A systematic

study of advanced initialization methods on a DE variant,

DE/rand/1/bin [3], showed that when the parameters of the

algorithm is set close to their optimal, the statistical difference

between random number generators and other initialization

methods becomes insignificant.

Segredo et al. [100] showed that although overall distinction

between random number generators and advanced initializa-

tion methods fades away in high-dimensional spaces, there

is still a significant difference between them when best-case

and worst-case performances are taken into account. They

therefore concluded that the choice of the initialization method

is of crucial importance, especially when a limited number of

runs is allowed.

Kazimipour et al. [99] used centered L2 discrepancy to

measure population uniformity as a function of population

size and the dimensionality of the space. They reported that

the loss of population uniformity (hence diversity) due to

curse-of-dimensionality is the dominant factor in the per-

formance degradation of optimization algorithms, regardless

of the choice of the initialization method. Putting differ-

ently, it is the geometric peculiarities of high-dimensional

spaces that affect all initialization methods. For example, it

is well-known that the contrast in distance between randomly

chosen points diminish as the dimensionality of the space

increases [101, 102], which has serious implications on various

initialization/sampling techniques. Consequently, Kazimipour

et al. [99] recommended the use of advanced initialization

methods only when the population size and the problem

dimensionality are low.

V. PARALLELIZATION

In this section we review the algorithms that rely on CPU

and GPU parallelization to improve solving large-scale global

optimization problems.

a) The Historical Context: Cantú-Paz and Goldberg

[103] study the scalability of parallel single- and multi-

population GAs. Their goal was to find the optimal number of

processors that minimizes runtime. Their analysis showed that

the number of processors that minimizes the execution time is

proportional to the square root of the population size and the

objective function evaluation time. Munetomo et al. [104] also

investigate the use of parallel processing for linkage learning

and proposed a parallel implementation of the LINC linkage

learning algorithm called pLINC (see part A of the survey).

They also proposed a two-level GA with a series of intra-GAs

operating on the linkage groups identified by pLINC, and an

inter-GA which operates at a higher level and treats the linkage

groups as a whole.

b) Large-Scale Cases: In the context of large-scale op-

timization, two types of parallelization are common. The first

type is specific to a particular EA, and the second type is a

generic framework applicable to a wide range of EAs most of

which are based on a divide-and-conquer paradigm by means

of problem decomposition.

In the algorithm specific department, Mendiburu et al. [105]

proposed a parallel master-slave implementation of several

binary and continuous EDAs based on a Bayesian network

model using MPI and POSIX threads. They parallelized the

learning phase or the model building process, which often

takes the maximum proportion of the execution time and tested

their algorithm on 500 dimensional binary problems and 1500

dimensional continuous problems. A drawback of this study is

the use of very simple benchmark problems such as OneMax

for the binary case and the sphere function, which is fully

separable, for the continuous case. Wang et al. [22] proposed

a parallelized version of DE based on GPU parallelization and

tackled continuous problems of up to 1000 dimensions. They

also observed that with a fixed population size the speed-up

rate decreases as the dimensionality of the problem increases.

Iturriaga and Nesmachnow [106] proposed a parallel version

of compact GA for CPU/GPU architectures and tested it on

OneMax and noisy OneMax with up to one billion variables.

They also proposed an asynchronous model on GPU which

is only suitable for large-scale separable problems. More

recently, Duan et al. [107] proposed a spark-based software

framework for parallelization of various PSO implementations.

Their proposed parallel PSO showed a super-linear speedup

and was tested on continuous benchmark functions with up

to 105 dimensions as well as on expensive functions. Cao

et al. [108] proposed a parallel quantum-enhanced DE by

parallelizing the fitness evaluation of individuals.

Lastra et al. [109] proposed a GPU-based MA-SW-

Chains [110], a memetic algorithm for large-scale global

optimization (see part A of the survey), by parallelizing all

major components of the algorithm such as fitness function

evaluation, crossover, local search, random number generation,

and population sorting. In another study, Cano and García-

Martínez [111] proposed an improved GPU-based model for

MA-SW-Chain and tested it on a scaled version of the

CEC’2013 large-scale benchmarking suite on functions with

up to 100 million decision variables. Cano et al. [112]

proposed a parallel MA-SW-Chains by adapting it to the

MapReduce framework to tackle problems with up to 10

million decision variables. The local search component of

the algorithm is done using a divide-and-conquer strategy by

performing local search for a subset of the decision variables.

Multi-population algorithms are common in parallelizing

many metaheuristics for large-scale optimization. Ge et al. [35]

proposed a multi-population topology-based island model with

a master-slave paradigm to solve large-scale problems. Wang



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 7

et al. [50] proposed a distributed PSO based on randomly

formed equally-size subpopulations which are co-evolved us-

ing a master-slave paradigm. Yang et al. [49] proposed a

distributed swarm optimizer based multi-population master-

slave model where the elites of each subpopulation are used

in the velocity update rule. Su et al. [113] proposed a parallel

multiobjective algorithm for community detection. They first

identify the key nodes in the network graph and the communi-

ties associated with the key nodes are then detected in parallel

using a multi-population model.

Problem decomposition into lower dimensional subprob-

lems is central in several recent parallelization frameworks.

Among them, Cao et al. [114] proposed a distributed parallel

cooperative coevolutionary algorithm for solving large-scale

multiobjective problems. They used a variant of differential

grouping [115] to decompose the decision space into smaller

components which are optimized in parallel using a two-

level parallelization structure based on the message passing

interface (MPI). The experimental results are based on 1000

dimensional DTLZ and WFG test functions. De Falco et al.

[80] proposed a decomposition-based parallel model for solv-

ing expensive large-scale continuous optimization problems.

They use the random grouping decomposition method and

build a separate surrogate (meta-model) for each component

of the problem. The components are then solved in parallel

using cooperative coevolution. The proposed algorithm was

tested on problems with up to 1000 dimensions. Yang et al.

[116] argue that decomposition-based methods, despite their

modular nature, cannot be readily parallelized due to defects

in how partial solutions are evaluated. They show that the

objective function used to assign a fitness to a partial solution

is not consistent with the ideal fitness assignment. They

address the problem of fitness assignment to partial solutions

for divide-and-conquer methods by appealing to a parallel

framework called naturally parallelizable divide-and-conquer.

Decomposition-based and multi-population parallelization

methods can also be combined to solve large-scale problems.

Hybrid two-way parallelism has also been used for large-

scale optimization. These often combine: 1) Parallelism by

means of problems decomposition, i.e, the problem is de-

composed into several lower-dimensional subproblems, and;

2) Parallelism by means of population distributions, i.e., a

distributed pool model [117]. Jia et al. [118] proposed such

a two-way algorithm which controls the resource allocation

by adapting the subpopulation sizes as well as the number of

iterations a particular component (subproblem) is optimized.

Another two-way parallelism decomposes the problem into

several components based on variable interaction analysis.

Each component is subsequently divided into subpopulations

each receiving a processor for optimization. A resource al-

locator then prioritizes processor allocation as a function of

components’ contribution towards the overall improvement of

the objective function.

VI. RELATED RESEARCH TOPICS

In the previous sections, we reviewed common approaches

to large-scale global optimization. In this section however,

we take a problem oriented perspective and discuss several

problem areas arising in the context of large-scale global

optimization, such as the problem of overlapping compo-

nents (§VI-A), resource allocation and the imbalance problem

(§VI-B), decision space scalability of multiobjective optimiza-

tion (§VI-C), and the scalability of constrained optimization

problems (§VI-D). The section concludes with a discussion on

benchmarking large-scale optimization algorithms and a brief

review of their real-world applications (§VI-E).

A. Overlapping Problems

The importance of problem structure and how it can be

exploited in various ways was discussed in part A of the

survey. The decomposition approaches covered in part A of

the series are mostly suited to partially separable problems,

i.e., those with distinct independent lower-dimensional com-

ponents. However, there are problems with sparse variable

interaction structure which are not partially decomposable.

These problems, which we refer to as overlapping problems,

occur in many application areas such as multidisciplinary

design optimization [119] and concurrent engineering [120].

Multiobjective optimization problems can also be seen as

overlapping problems due to shared decision variables among

the objective functions [121]. This is particularly the case

when a scalarization technique is used to convert them to a

series of single objective optimization problems. Constrained

optimization problems may have overlapping interaction struc-

tures [122] or may become overlapping depending on the

constraint-handling techniques used to handle them. The vari-

able interaction structure of the overlapping problems can be

discovered using the methods outlined in part A of the survey.

However, exploiting the structure is a more challenging task

as compared to partially separable problems. Despite the im-

portance of overlapping problems, very few works have been

dedicated to large-scale overlapping problems [78, 123, 124].

This section reviews some of such techniques that can help

with the scalability of algorithms for large-scale global opti-

mization.

Some approaches rely on breaking selected interactions

with the aim of converting the overlapping problems into

partially separable ones [125–127], or by means of special

crossover operators that take the overlapping nature of the

problem into account [128, 129]. Munetomo and Goldberg

[125] use monotonicity checking to identify the variable inter-

action structure of the objective function and propose a metric

to measure the linkage tightness with the aim of breaking

weak interactions. Yu et al. [130] use an information-theoretic

interaction detection mechanism to detect problem structure

and use an entropy-based measure of a component or building-

block to identify and break weak interactions. Yu et al. [131]

assumes that the interaction structure is given and designs a

crossover operator that partitions the interaction graph into two

sub-graphs such that the disruption of overlapping components

is minimized. Sun et al. [126] proposed a variation of recursive

differential grouping [132], RDG3, which limits the dimen-

sionality of components forcing some interactions to be broken

as a consequence. Li et al. [127] proposed a decomposition



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 8

method based on spectral clustering, which takes the strength

of interactions into account and breaks some weak interactions

such that inter-group interactions are minimized and the intra-

group interactions are maximized.

Thierens [128] proposed to use hierarchical clustering

to represent the interactions using a linkage tree which is

subsequently used to perform recombination. Bosman and

Thierens [129] proposed an improved version of linkage tree

recombination to eliminate superfluous hierarchical linkage

relations. Experimental results have shown that this type of

recombination performs well on overlapping problems.

In the context of cooperative coevolution, overlapping com-

ponents or groups with shared decision variables is a common

way of solving overlapping problems. Sun et al. [123] used

monotonicity detection to identify the structure of an n-

dimensional problem and form n groups, one for each decision

variable containing all other variables it interacts with. These

n groups, which are not necessarily mutually exclusive, are

optimized in a round-robin fashion within a CC framework.

Due to non-exclusive nature of the groups, this algorithm

takes, to some extent, the overlapping nature of the problem

into account. Jia et al. [133] use variable interaction analysis to

identify the underlying components of the objective function

and their shared variables. They then use a contribution-based

mechanism to promote components with a higher contribution

towards improving the objective function and assign the shared

variables the components with large contributions.

Werth et al. [78] used a sliding window mechanism and

optimizes the variables inside the window to reduce the

dimension of the problem. The problem structure is taken

into account by iteratively constructing the interaction matrix

of the problem using LINC-R; however, instead of finding

the entire matrix, only the interactions within a given sliding

window are considered at each iteration. To deal with overlap,

the Cuthill-McKee algorithm is used to reduce the bandwidth

of the matrix, which places interacting variables close to

each other. Song et al. [124] proposed overlapped cooperative

coevolution which uses a mechanism called delta disturbance

to find the most influential variables and distribute them among

the existing components. Although this algorithm was not

intended for overlapping problems, replication of influential

variables within all components can have a positive effect

on solving overlapping problems. However, this has not been

verified empirically on overlapping problems. Song et al. [134]

used a similar mechanism and identify important variables

which can participate in multiple components to solve large-

scale virtual network embedding problems.

Factored EA [135] is another framework with the capacity

to decompose a problem into a set of lower dimensional

subproblems. It can mimic CC as its special case and has the

capacity to define overlapping components suitable for solving

overlapping problems. FEA can be an effective method for

solving overlapping problem if the problem structure is known

a priori. The performance of FEA remains to be checked on

large-scale overlapping problems such as those proposed in

the CEC’2013 large-scale benchmark suite.

Bayesian optimization algorithm (BOA), uses Bayesian

networks to represent problem structure, which is capable of

capturing overlapping components [136]. Although modeling

Bayesian network is computationally expensive, their flexibil-

ity make them a good choice for solving overlapping problems.

Empirical evidence suggests that BOA performs better than

tightness detection [137]. Clustered EDAs are also among the

implicit methods that improve the identification of problem

structures as compared to canonical EDAs. Emmendorfer

and Pozo [138] proposed a cluster based EDA which uses

the notion of concept-guided combination to better capture

and exploit problem structure. This technique was shown to

outperform models based on Bayesian networks.

B. Resource Allocation and the Imbalance Problem

Efficient use of computational resources is of significant

importance in large-scale global optimization. The contribution

of a decision variable or a group of decision variables, belong-

ing to an underlying subfunction within the objective function,

can have a varying degree of influence on the function out-

put. This characteristic, which is often called the imbalance

problem, can have a detrimental effect on the optimization

performance if not handled properly. For example, Chuang and

Chen [139] showed that the model building process of EDAs

is affected by the imbalance problem. They reported that the

selected individuals based on which the probabilistic model

of EDAs is updated lacks the necessary information about

the linkage structure of some parts of the problem. Omidvar

et al. [140] also showed that the imbalance problem renders

the round-robin optimization policy of cooperative coevolution

suboptimal.

Although the imbalance issue has implications in many ar-

eas such as multiobjective optimization [141, 142], constraint-

handling [122], and dynamic optimization Yazdani et al. [143],

it has mostly been studied in the context of optimal compo-

nent selection policy of cooperative coevolution. Contribution-

based cooperative coevolution (CBCC) [140] is the first al-

gorithm of this kind. To deal with the imbalance problem,

CBCC and other contribution-aware algorithms first need to

estimate the contribution of components, and secondly devise

an exploration/exploitation policy to update the contribution of

components and to optimize the influential components longer.

The algorithms which will be reviewed in the rest of this

section differ in the way they handle these two aspects.

1) Problem Decomposition and Quantifying Contributions:

Problem decomposition and quantification of contributions

are important prerequisites of an effective resource allocation

policy. Under the black-box assumption, all we can observe is

the objective value and how it changes over time. In the liter-

ature, the improvement on optimizing a subset of the decision

variables (a component) can have on the objective function

value is taken as a unit of improvement or contribution. This

value can be quantified for an arbitrary subset of the decision

variables irrespective of whether or not they belong to an

underlying subfunction. For a partially separable problem, if

the ideal decomposition is known, one can study the effect

of a single component on the objective value by freezing all

other components. However, this may not be possible for an

overlapping problem (see Section VI-A) where an optimal



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 9

decomposition may not be known. It is therefore apparent

that problem decomposition and estimation of contributions

are closely interconnected.

Most algorithms define the contribution of a component to

be a function of the improvement it makes on the overall

objective value when it is optimized for a predetermined

number of iterations while all other components are kept

constant. Let δ
(t)
k

be the improvement we get at time t when

the kth component is optimized for τ iterations. Based on this

definition, the two original versions of the CBCC algorithms

(called CBCC1 and CBCC2), define the contribution of the

kth components to be 1
T

∑T

t=1 δ
(t)
k

, i.e., the average of all

previous improvements up to the current iteration. Due to

non-stationary nature of the underlying distribution of the

contributions, some algorithms defined the contribution as

a moving average over the last L iterations. CBCC3 [144]

used the extreme case of L = 1, while in the case of

CCFR [145] L = 2. CCFR2 [146] improves upon CCFR

by averaging the improvements per function evaluations to

account for unequal subpopulations. CCFR2 [146] and some

other algorithms [133, 142] exponentially decay the effect of

historical contributions. Ren et al. [147] define the contribution

as a function of both δ
(t)
k

and the standard deviation across all

components. Some authors suggested various normalization

of δ
(t)
k

[118, 133, 142, 148, 149] as the contribution of a

component.

In addition to δ
(t)
k

defined previously, other measures of con-

tributions have also been proposed. Global sensitivity analysis

techniques such as Morris screening is used in several works

as the contribution measure for individual variables as well

as components [150–152]. Delta disturbance is a perturbation

method proposed to measure the contribution of individual

variables and finding the most influential variables for further

optimization. Using the plain fitness of a component as the

contribution of a component has also been suggested [153].

2) Resource Allocation Policies: A simple allocation pol-

icy, the variations of which are used by many algorithms, is

to complement the round-robin policy of canonical CC by one

or more iterations of optimizing the highest contributing com-

ponent (as measured by the methods outlined in §VI-B1 and

Table I). CBCC1 [140] is the most conservative approaches

in which the round-robin is followed by only one episode of

optimizing the highest contributing component (also employed

by SACC1 [152]. CBCC2 [140] is greedier and exploits

the highest contributing component until no improvement is

observed (also employed by SACC2 [152]). This is shown

to be an unstable policy because the contribution of initially

best component may not remain the best for the rest of a run.

CBCC3 [144] addresses this issue by optimizing the highest

contributing component until its contribution drops below the

second best. This has the effect of equalizing contributions.

CBCC3 also randomly enters an exploration phase where

all components get a chance of updating their contributions.

CCFR [145] and CCFR2 [146] use a similar equalization strat-

egy and includes a stagnation detection mechanism to avoid

optimizing stagnant components. FCRACC [147] is similar to

CBCC3 in that it exploits the best component, but their method

of quantifying contributions differs (see §VI-B1). Meselhi

et al. [149] use round-robin followed by a fuzzy rule-based

allocation based on the contribution and population diversity.

Shen et al. [142] use a roulette-wheel selection mechanism

based on the contributions. Jia et al. [133] optimize all the

components whose contribution is more than half the best

contribution. Although not specifically designed to address the

imbalance problem, overlapped CC [124] replicates influential

decision variables in more than one component, which has the

effect of optimizing influential variables more often.

In addition to the heuristics described above, some algo-

rithms define the resource allocation policy as a function of the

estimated contributions. SACC3 [152] determines the number

of times a component is optimized (τ ) as a function of its effect

as measured by Morris screening. CCAOI [148] normalizes

the contributions according to Gini index and allocates the

computational resources accordingly. DCCA [118] uses a

distributed model and allocates more CPU instances to better

contributing components. The population size and τ are then

defined to be functions of the number of CPUs assigned to

a component. BBCC [154] uses multi-arm bandit approaches

such as ǫ-greedy, SoftMax, or Upper Confidence Bound (UCB)

to select the components based on their contributions aiming

at balancing exploration and exploitation in a more systematic

way.

3) Component Selection as a Multi-Armed Bandit Problem:

Despite being effective in outperforming the canonical CC,

the contribution-aware algorithms discussed so far are based

on a set of heuristics derived form empirical observations

with minimal theoretical basis. Some authors proposed that

the component selection policy of CC can be treated as a

multi-armed bandit (MAB) problem [154, 155]. Among these,

Kazimipour et al. [154] defined and mapped the building

blocks of a contribution-aware CC into a MAB framework.

This framework, bandit-based CC (BBCC), has the flexibility

to mimic the previously described algorithms as a special

case. BBCC treats the contribution of a component as the

utility or the value function in reinforcement learning. This

estimated contribution or long-term utility is defined to be a

function of immediate improvements or rewards measured by

quantities such as δ
(t)
k

. Given this interpretation, a wide range

of contribution estimators such as moving average (simple,

weighted, or exponential), rank-based, or hybrid estimators can

be used. The component selection policy is also responsible

for balancing between exploration and exploitation, which can

be done using a wide range of existing selectors such as ǫ-

greedy, ǫ-first, GreedyMix, LeastTaken, SoftMax, UCB, and

other similar selectors widely used in the multi-arm bandit

and reinforcement learning literature. The simplest instance

of BBCC with a normalized δ
(t)
k

, and simple averaging as the

contribution estimator, and ǫ-greedy has shown to outperform

all CBCC family of algorithms, as well as CCFR and MOF-

BVE on the CEC’2013 large-scale benchmark suite.

C. Multiobjective Optimization

Multiobjective optimization problems are prevalent in a

wide range of application areas [156]. As the name implies,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 10

TABLE I: List of contribution-aware algorithms with a short description of their method of estimating the contribution of

components as well as their resource allocation policy.

Algorithm Estimating Contribution Resource Allocation Policy

CBCC1 [140] Moving average: all previous contributions
∑

δ
(t)
k

Round-robin followed by the best component (once)

CBCC2 [140] see CBCC1 Round-robin followed by the best until stagnation

CBCC3 [144] the most recent contribution (δ
(t)
k

) The best component while better than the second best with occasional round-robin

CCFR [145] Average of two most recent contributions Equalize contributions then round-robin. It also has stagnation detection

BBCC [154] A value function based on improvements Multi-Arm Bandit: ǫ-greedy; SoftMax; UCB, etc

SACC1 [152] Sensitivity analysis: Morris screening See CBCC1

SACC2 [152] Sensitivity analysis: Morris screening See CBCC2

SACC3 [152] Sensitivity analysis: Morris screening Defining τ as a function of sensitivity analysis mechanism (Moris Screening)

OCC [124] Delta disturbance Replication of important decision variables in multiple components

CCAOI [148] Normalized contributions using Gini index The allocated resource is a function of Gini’s index

FCRACC [147] Weighted average of contributions and their st. dev Optimizes the highest contributing component

DCCA [118] see CBCC1 Distributed model (CPUs per component); Population size and τ are functions of # of CPUs

IMMO-CC [153] Bi-objective: fitness and diversity Components in the first front as determined by non-dominated sorting

CCFR [145] Weighted average of two most recent contributions (normalized) Equalize contributions then round-robin with stagnation detection

CBCCO [133] Weighted average of all previous contributions Round-robin followed by all components with contributions higher than half of the best

ICRA [142] Weighted average of all previous contributions Probabilistic roulette-wheel based on the contribution

F3C [149] Most recent normalized contribution Round-robin followed by fuzzy rule-based allocation based on contribution and diversity

these problems have two or more conflicting objectives causing

them to have multiple trade-off solutions known as the Pareto-

optimal solutions. Scalability of multiobjective problems can

be studied in either the objective space [157] or the decision

space. The former refers to the effect of the number of ob-

jective functions on the performance of the algorithms [157],

while the latter is concerned with the scalability of each objec-

tive function with respect to its number of decision variables.

In this section, we address the scalability of multiobjective

problems in the decision space, which has attracted attention

in the last decade [158–160].

Large-scale multiobjective approaches can be seen in four

major categories. 1) Problem decomposition where the aim is

to break the problem into a set of lower dimensional subprob-

lems in the decision space. 2) Problem transformation where

the aim is to reformulate the original problem into a single

lower dimensional problem. 3) Operator design where the aim

is to devise more efficient solution generation mechanisms.

4) Problem reduction and intrinsic dimensions where the aim

is to find a lower dimensional latent space embedded in a

higher dimensional sparse space.

Problem decomposition approaches, not to be confused with

scalarization techniques such as Tchebychev [161], operate

in the decision space and aim at forming a set of smaller

and more manageable subproblems. Such decompositions are

often done by considering the interaction structure of the

decision variables [115], or by grouping the variables based

on their effect in the objective space, i.e., those pertaining

to the convergence of solutions towards the Pareto-optimal

front, and those pertaining to diversity of the solutions on the

Pareto-optimal front [162, 163]. Problem decomposition by

means of variable interaction detection is a challenging task in

large-scale multiobjective optimization for the following major

reasons: 1) Lack of a consistent partially separable grouping

across all objectives; 2) The effect of problem formulation on

variable interaction [164]. For example use of scalarization

techniques may result in an sparse but overlapping interaction

structure due to shared decision variables among several ob-

jectives (see Section VI-A for more information about overlap-

ping problems); and 3) Cost of variable interaction detection

for several objectives. Cooperative coevolution has been used

with several decomposition strategies such as random group-

ing [165, 166], multi-level random grouping [167], differential

grouping [114, 168], and monotonicity detection [57, 162]

to solve large-scale multiobjective problems. In some cases

several variable decomposition methods are combined [142],

or completely new ones are proposed [169]. For instance, Ma

et al. [170] proposed to use a convergence relevance degree to

decompose the problem and, Wang et al. [169] used a tensor

canonical polyadic decomposition to divide the d-order tensor

of decision variables into a set of uncorrelated components.

Some other decomposition techniques [114, 162, 163, 168,

171] divide the decision variables based on their dominant

role in the optimization problems: convergence of solutions

on the Pareto-optimal front and diversity of solution on the

Pareto-optimal front. In such techniques it is customary to fur-

ther divide the convergence matrix using variable interaction

methods described before.

An alternative to problem decomposition is to transform

the original large-scale problem into a single low-dimensional

problem. This transformation can be implemented using well-

known methods such as PCA to obtain a lower-dimensional

representation of the convergence variables [89], regression

analysis to represent a subset of variables as a function another

subset [172], or other reformulation techniques [86, 173].

One such reformulation which has gained attraction in recent

years and has shown to outperform some state-of-the-art meth-

ods [174], is the weighted optimization framework (WOF) [86,

175]. Inspired by the notion of adaptive weighting [94], WOF

reduces the dimensionality of the decision space by forming

several groups of the decision variables, often using some

variable grouping method [176], and transforming them using

a given transformation function parameterized by a weight

vector.

Problem reduction is another approach where the algorithm

attempts to find the intrinsic dimensionality of the problem,

which is often substantially lower than its nominal dimensions.

Sparse multiobjective problems arise in many practical appli-

cation areas where the decision value of many Pareto-optimal

solutions are zero. The essence of these algorithms is to find



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 11

the sparse distribution of the decision variables using tech-

niques such as auto-encoders [177] or pattern mining [178],

and devising mechanisms capable of taking the sparsity into

account [179, 180].

The previous approaches stated above are all based on

operating in a lower-dimensional space. There are also a range

of algorithm-specific ways traversing the search space more ef-

fectively. For instance, Yi et al. [181] studied and improved the

crossover operator of NSGA-III [182]. Some studies proposed

new update strategies for PSO to improve its convergence and

diversity properties for large-scale multiobjective problems[42,

57, 183]. Similarly, quantum-enhanced DE [108] and variable-

importance-based DE [141] have also been proposed to tackle

high-dimensional multiobjective problems. Designing better

local and neighborhood search mechanisms [113, 184, 185]

and better solution selection mechanisms [186, 187] are other

ways of improving the overall search efficiency.

Multiobjective algorithms can be categorized into

dominance-based, decomposition-based, or indicator-based

approaches based on how they handle the multiplicity of

objective functions. Table II summarizes the large-scale

multiobjective algorithms based on these three approaches.

Figure 4 shows the percentage of each approach used in

the large-scale multiobjective literature. As can be seen,

dominance- and decomposition-based approaches are the

most dominant and indicator-based approaches are the least

explored. Here generic refers to the frameworks which are

neutral to the choice of optimizer.

TABLE II: Categorization of large-scale algorithms with re-

spect to their strategy of handling multiple objectives.

Type Reference

Dominance

Cheng et al. [57], Shen et al. [142], Zhang et al. [163], Antonio and

Coello [165], Wang et al. [169], Chen et al. [171], Liu et al. [176], Tian

et al. [177, 178, 179, 180], Yin et al. [183], Qin et al. [185], Xiao et al.

[188], Zhang et al. [189, 190], Ho et al. [191], Gong et al. [192]

Decomposition

Tian et al. [42], Liu et al. [89], Su et al. [113], Cao et al. [114], Liu et al.

[141], Antonio and Coello [166], Song et al. [167], Ma et al. [170], Yi

et al. [181], Cota et al. [184], Zhang et al. [186], Wang et al. [193], Shang

et al. [194]

Indicator He et al. [173], Hong et al. [187]

Generic Zille et al. [86], Brownlee et al. [164], Cao et al. [168], Zille et al. [175]

D. Constraint Handling

Constraints are indispensable part of many real-world op-

timization problems [195]. As a result, a wide range of

constraint-handling methods has been proposed for evolu-

tionary algorithms and nature-inspired metaheuristics [196].

Despite the plethora of constraint-handling techniques, they

suffer from the curse of dimensionality and very few studies

have been dedicated to the topic of scalability in constrained

optimization. Constraint-handling methods have the following

scalability challenges: 1) High dimensional objective and/or

constraint functions; 2) Dependence between the number of

constraints and the number of decision variables. For a large-

scale problem this may result in a highly constrained problem;

3) Complex problem structure due to shared decision variables

among the objective function and the constraints; and 4) The

Dominance Decomposition Indicator Generic

49%

5%

35%

11%

Fig. 4: Proportion of papers according to Table II using

different approaches to multiobjective optimization.

effect of constraint-handling method on problem structure and

variable interaction. For example, a simple penalty method can

convert a partially separable problem into an overlapping one

(see Section VI-A).

Constraint-handling techniques used in large-scale global

optimization are mostly based on problem decomposition and

variable interaction analysis. Accurate decomposition has been

shown to have a significant impact on reducing the number

of constraint violations [197]. Fitness difference minimiza-

tion [198] and the differential grouping family [115] are two

of the most widely used decomposition methods in large-scale

constrained optimization.

Sayed et al. [198] used a fitness difference minimization

approach to analyze the interaction structure of the objective

and constraint functions and decompose them into a set of

smaller subproblems. Aguilar-Justo and Mezura-Montes [199]

improved upon [198] and used an aggregate function of all

constraint violations, rather than the individual constraints, for

interaction analysis and problem decomposition. A problem

of fitness difference minimization methods is the need for

specifying the number or the size of components. To fix

this, Aguilar-Justo et al. [200] proposed to evolve the best

arrangement of the decision variables as well as the number

of components using GA to solve large-scale constrained

problems.

Finite difference decomposition methods (part A §II-B) are

generally more accurate than fitness difference minimization.

A study shows that one such algorithm, differential grouping

version 2 [115], is more robust and therefore better suited to

complex highly constrained problems [201]. Blanchard et al.

[202] used a variant of differential grouping, IDG [203], to

form an interaction structure matrix for the objective func-

tion and the constraints. The aggregate interaction matrix

of interactions are then used to decompose the objective

as well as the constraints. Xu et al. [122] also proposed a

coevolutionary algorithm based on differential grouping and

used a contribution-based mechanism to allocate resources

to components based on their contributions and degree of

constraint violations.

In addition to problem decomposition, other approaches



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 12

such as surrogate modelling [72], memetic algorithms [201],

offspring generation [204], and boundary constraints viola-

tions [69, 205] are also studied in the context of large-

scale constrained optimization. Approximation and variable

reduction techniques also appear to be promising approaches

for solving large-scale constrained problems [90, 91] requiring

further investigation.

E. Benchmarks and Applications

Although the ultimate goal of designing efficient algorithms

is to solve real-world problems, their sheer complexity due to

entanglement of various aspects such as constraint-handling

and dealing with mixed variable types, limits one’s ability to

conduct a focused study of a particular aspect of a problem

common to a wider range of problems. Benchmark problems

address this issue by capturing practical aspects such as

dimensionality, modality, structure, constraints, variable types,

noise, etc. into a set of tunable well-defined functions [206]. In

the context of large-scale global optimization, the IEEE CEC

large-scale global optimization benchmark suites [207–209]

are the most widely used. All the benchmarks are based on a

set of base functions popular in numerical optimization [210],

such as Rastrigin, Rosenbrock, Ackley, Schwefel, Sphere,

Elliptical, Griewank, and many more.

The CEC’2008 large-scale suite [207] contains a set of

seven functions which are tested in 100, 500, and 1000D

dimensions. This is a very small set and lacks modularity,

i.e., systematic control over how decision variables are linked.

The CEC’2005 suite, though not labeled as “large-scale” is

scalable but used mostly in low dimensional (≈30D) analyses.

It introduces composite functions1 through weighted sum of

a series of base functions, which can potentially cause partial

interaction between decision variables. However, this is not

implemented in a systematic way to give full control over

problem structure. Herrera et al. [19] used a similar approach

to propose a set of 19 functions used in the special issue

of Soft Computing Journal on scalability of evolutionary

algorithms and other metaheuristics for large-scale continuous

optimization problems [212].

To facilitate the study of variable interaction and

decomposition-based algorithms, the CEC’2010 large-scale

suite [208] introduced modularity into the benchmarks where

the number of component functions and their participating

decision variables are known and controllable. The bench-

mark contains a set of 20 1000-dimensional functions in

three categories: fully separable, two types of partially sep-

arable functions with and without a fully separable com-

ponent, and fully nonseparable. The CEC’2013 large-scale

suite [209] addressed the shortcomings of its predecessor by

introducing nonuniform component sizes, imbalance among

the contributions of components, and overlapping functions

the components of which may not be disjoint. It also includes

transformations such as symmetry breaking, ill-conditioning,

and local irregularities proposed in black-box optimization

1Composition used by Suganthan et al. [211] does not refer to composite
functions generally defined as f(g(x)) ≡ (f ◦ g)(x). It refers to weighted
sum of a set of subfunctions.

benchmark (BBOB) suite [213]. Sun et al. [214] extended the

CEC’2013 suite to make it more tunable. Other studies which

paid attention to problems with overlapping components are

conducted by Sayed et al. [215] and Werth et al. [78].

There are other scalable benchmarks that have been used

to study various other aspects of large-scale optimization

algorithms. COPS 3.0 represents a repertoire of scalable and

constrained problems found in various areas of engineering

and sciences. Goh et al. [216] use EEG big data optimiza-

tion problem and propose BigOpt2015 benchmark suite for

large-scale multiobjective optimization. Cheng et al. [217]

adopted the ideas proposed in [208, 218] to propose a set of

large-scale multi- and many-objective benchmark functions.

Scalable benchmark functions for constrained optimization

problems are very limited. Beside the constrained problems

compiled by Dolan et al. [219], which are not widely used in

the EC community, Sayed et al. [198, 215] also proposed a

set of artificial benchmark functions for constrained problems.

Recent studies also attempted to extend standard dynamic

optimization benchmarks to study large-scale dynamic opti-

mization problems [143, 220]

Applications: Benchmarks are used to ultimately help with

designing and evaluating efficient algorithms for solving real-

world problems. Some studies directly used real-world prob-

lem instances, in addition to artificial benchmarks, to compare

algorithms. Table S-III of the supplementary document shows

a set of high-dimensional optimization problems in a wide

range of application areas. The problem types include real-

valued, integer/binary, mixed integer, and combinatorial, and

about half of these include constraints. Among the approaches,

divide-and-conquer methods such as problem decomposition

and coevolutionary algorithms are the most popular followed

by hybrid methods (memetic algorithm, local search hybridiza-

tion, and ensembles), which is consistent with our observations

in part A of this survey series. Other approaches include par-

allelization, approximation and encoding schemes, and algo-

rithm specific sampling and variation operator design. Curse of

dimensionality is the predominant source of difficulty among

these application areas and the existence of other factors such

as constraints, noisy and non-smooth objective functions add

to the complexity. For the continuous decomposition-based

approaches, noise and non-smooth functions appear to be an

obstacle to an accurate variable interaction analysis. In the

case of combinatorial problems, finding an effective decom-

position is a major challenge in its own right. A challenge

for approximation and encoding schemes is model resolution

or granularity which mediates between the accuracy of the

model and its complexity. Among the constrained problems,

handling of infeasible solutions and the interplay between

dimensionality and the number of constraints are two of the

most important challenges.

Large-Scale Global Optimization Competitions: In this sec-

tion, we review the results of large-scale global competitions

since 2008 when the first IEEE CEC competition on large-

scale global optimization was held. Table III lists the winners

and runner-ups. Based on the approaches to large-scale global

optimization we outlined in this paper, high performing algo-

rithms almost exclusively belong to either memetic algorithms



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 13

TABLE III: Winning and runner-up algorithms of large-scale

global optimization competitions since 2008.

Algorithms

Year Competition Winner Runner-up

2008 IEEE CEC’2008 MTS [221] LSEDA-gl [222]

2010 IEEE CEC’2010 MA-SW-Chains [110] EOEA [223]

2011 Soft Computing Special Issue MOS [224] –

2013 IEEE CEC’2013 MOS [225] DECC-G [94]

2015 IEEE CEC’2015 MOS [225] IHDELS [226]

2018 IEEE CEC’2018 SHADEILS [227] LSHADE-SPA [228]

2019 IEEE CEC’2019 CC-RDG3 [126] MPS [229]

(part A §III) or decomposition-based algorithms (part A §II)

with memetic algorithms and local search dominating the

competition.

It is interesting to note that the algorithmic philosophy of

these two approaches are orthogonal and complementary to

each other. The premise of memetic algorithms is to balance

exploration and exploitation by means of combining global and

local search operators. Whereas the main premise of decom-

position methods is interaction-aware space partitioning and

dimensionality reduction. Consequently, memetic algorithms

lack an intrinsic mechanism for dealing with variable inter-

actions and systematic space partitioning, and decomposition

methods lack an intrinsic mechanism for balancing exploration

and exploitation. It is therefore not surprising to see that the

effort of hybrid algorithms is focused on proposing novel ways

of balancing exploration and exploitation, and the effort of

decomposition methods is centered around finding accurate

interaction detection principles and effective grouping. This

leaves both approaches with major blind spots. The absence

of interaction detection mechanism in hybrid frameworks puts

an extra burden on the exploration process by searching the

regions which could have been avoided through partitioning,

and reduces the efficiency of dimension-wise local search due

to ignored interactions. Most decomposition-based methods

also discount the role of component optimizer in balancing

exploration and exploitation. This deficiency is partially com-

pensated for by contribution-aware algorithms (see §VI-B)

which balance exploration and exploitation at the component

level.

The design biases of hybrid and decomposition-based meth-

ods stated above can also be seen among the competition

winners and runner-ups listed in Table III. MTS [221] uses

orthogonal arrays combined with a mixture of local operators.

Orthogonal arrays give an expansive initial coverage of the

search space which forms the basis for the subsequent local

search process. MA-SW-Chains [110], IHDELS [226], and

SHADEILS [227] combine a global search algorithm with a

chain of iterated local search attempts to balance exploration

and exploitation. MOS [224, 225], despite being a framework

capable of hybridizing any set of operators, uses a mixture of

global and local operators to control exploration and exploita-

tion. Even the algorithms such as MPS [229] and LSEDA-

gl [222], which are not memetic by definition, have explicit

elements of balancing the exploration and exploitation forces.

MPS [229], for instance, proposes a mechanism to disentangle

the exploration and exploitation mechanisms with the aim

of minimizing failed and deceptive exploration attempts and

maximize the successful ones. LSEDA-gl [222] also hybridizes

heavy-tailed distributions such as Lévy to promote exploration

with the classic Gaussian distribution to promote exploitation.

Among the competition winners and runner-ups listed in

Table III, LSHADE-SPA [228] and EOEA [230] are the only

hybrid algorithms that consider both exploration/exploitation

balance as well as problem decomposition. On the decompo-

sition side however, they both fall short of using an effective

variable interaction detection method. LSHADE-SPA [228]

uses the outdated random grouping [94] known to perform

poorly on partially separable problems (see §II of part A) and

EOEA [230] uses a grouping strategy incapable of an effective

space partitioning. Due to their emphasis on accurate interac-

tion analysis, decomposition methods are historically not sys-

tematic with their choice of component optimizer, which limits

their ability in maintaining good exploration/exploitation bal-

ance within the lower-dimensional subspaces. This is perhaps

why hybrid algorithms are dominant in competitions [231,

232]. As a matter of fact, decomposition-based algorithms are

capable of using any component optimizer, including memetic

algorithms and other hybrids, to further improve their scalabil-

ity. This is why the combination of accurate problem decom-

position (RDG3 [126]) and good component optimizer (CMA-

ES) resulted in superior performance by CC-RDG3 in 2019.

Further evidence also suggests that several decomposition-

based algorithms not present in competitions can outperform

competition winners. For example, the decomposition-based

algorithm proposed by Mei et al. [233] outperformed MA-

SW-Chains [110], the winner of CEC’2010 competition on

both CEC’2008 can CEC’2010 LSGO benchmark suites, and

recursive differential grouping [132] outperformed MA-SW-

Chains [110] and MOS [225] on the CEC’2010 and CEC’2013

LSGO benchmark suites. It is often stated that the cost

of decomposition prohibits their use in large-scale settings.

However, recent advances in variable interaction and grouping

methods allows this to be achieved in O(n log n) in the general

case and O(n) on separable functions (see part A §II-B for

more details).

VII. CONCLUDING REMARKS

In the two parts of this survey, we reviewed a wide range

of population-based metaheuristics for large-scale global op-

timization in six major categories: problem decomposition,

hybridization and memetic algorithms, sampling and variation

operators, approximation and surrogate modeling, initialization

methods, and parallelization. We reported on the state-of-the-

art and what has been achieved over the last decade. In this

section, we change perspective and try to touch upon two

major issues pertaining to the future of the field: 1) Where

do we stand as a field and what are the potential pitfalls and

challenges hindering the progress of the field? 2) Where to go

next? What are the pressing open questions and where more

focus is needed?

A. Large-Scale Global Optimization: Pitfalls and Challenges

The big picture: Despite the advances in various areas

of large-scale global optimization, sometimes their relation to



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 14

the bigger picture is unclear. This is partly due to lack of a

clear measure of the progress in the field and lack of clarity

about its grand challenges. The bulk of the research in the

field is currently driven by showing statistically significant

improvements over existing results with minimal reference to

whether these so-called significant results are actually mean-

ingful in real-world settings. There is also an overemphasis

of the success stories, rather than giving insights into why an

algorithm fails on a particular problem or a class of problems.

This is partly due to departure from the scientific method in

conducting research in favor of an engineering approach where

comparison with the state-of-the-art is encouraged.

The lack of a big picture may cause the field to focus

too much on nice-to-have incremental research rather than

addressing the core issues of large-scale global optimization.

This deficiency currently manifests itself in at least three

forms:

• Emergence of new ‘metaphor’-based algorithms: a wide

array of metaphor-based metaheuristics have been pro-

posed in recent years. These “novel" algorithms are often

a marginal variation of an existing algorithm under the

disguise of new terminology. In large-scale global opti-

mization, some works claim novelty by simply applying

one such new metaheuristic to solve some standard large-

scale benchmark suite. This is very detrimental to the

field and “take the field of metaheuristics a step backward

rather than forward" [234].

• Ad hoc improvements of algorithms with marginal sci-

entific or practical significance: This type of work often

present a minor variation of an existing algorithm, which

statistically improves upon the previous results despite

the magnitude of the difference being negligible for any

practical purpose. As an example, applying a known

parameter adaptation technique to dynamically control

the parameters of a new metaheuristic algorithm falls

short of addressing major challenges of the field.

• The theory-practice gap: given the ever growing need

for scalable optimization algorithms in a wide range of

application areas, the gap between theory and practice

in terms of the problem sizes currently being tackled is

widening. In other words, the large-scale problems being

studied now using the standard benchmarks is far from

the large-scale problems faced in practice.

To avoid falling prey to these defects, we need to check

where we stand as a community in relation to identifying

and addressing the grand challenges of the field and bridging

the gap between theory and practice. This perhaps requires a

separate quantitative in-depth investigation of the large body

of reported results, which is outside the scope of this paper.

Comparison: Despite the availability of relatively stan-

dardized and widely used benchmark suites, it is still hard

to compare the reported results across a wider body of

publications to be able to see the major patterns and trends.

Despite some attempts to develop automated comparison tools

such as the Toolkit for Automatic Comparison of Optimizers

(TACO)2, we currently do not know the answer to questions

2https://tacolab.org/

such as the following: Given a specific function or family of

functions, which algorithm or class of algorithms perform the

best and why? In continuous problems, especially due to the

imbalance effect, the overall solution quality may seem poor,

but the solution may indeed be close to the global optimum.

Based on the reported results, we currently do not know how

far the solutions are from the global optimum.

The large-scale global optimization competitions also acted

as a venue to compare a wider range of algorithms, but their

conclusions remain limited due to the absence of several state-

of-the-art algorithms from the competitions. We do not know

to what extent does the competition outcomes depend on

the allotted number of objective function evaluations. Do the

conclusions change if the algorithms are given less or more

resources?

Answering some of the questions stated above can help

in finding the recurring issues and bottlenecks and help with

shaping the big picture and identifying the core issues of the

field.

Adoption: Lack of streamlined and easy-to-use software

packages make the adoption of the recent developments very

difficult for practitioners or other researchers outside the field.

The most recent algorithms are often sophisticated and hard

to implement which is a stumbling block in the way of their

wider adoption.

B. Potential Areas for Future Research

a) The synergy between optimization and learning: Deep

learning problems are in essence high-dimensional problems

with the potential to contain millions or billions of decision

variables. Although evolutionary algorithms have shown com-

petitive results on high-dimensional learning problems [235,

236], research on devising population-based algorithms to

tackle large-scale learning problems is scarce [237–242].

Population-based metaheuristics in general, and evolutionary

algorithms in particular, are suited for environments that

require hard exploration. As a result they can be competitive

in areas such as neural architecture search [243], training of

deep neural networks [236], and reinforcement learning [244].

In reinforcement learning for instance, evolution strategies

has shown to perform better than policy gradient on Atari

2600 games. These methods are particularly suitable when

the effective number of time steps is long, the actions have

long-lasting effects, and no good value function estimator is

available [244].

Conversely, machine learning algorithms can be used in

conjunction with large-scale global optimization algorithms

to improve their scalability. For example, machine learning

can be used as a general approach to learn and discover a

problem’s structural information from available data [245].

The learned model can then be applied to unseen data for

the purpose of classification or time-series prediction. An

optimization process such as branch-and-bound can be mod-

elled as a decision making process, hence a machine learning

model can be applied, to learn the most efficient and effective

way [246]. This will go a long way in helping an algorithm’s

ability to scale to higher dimensional problems. Similarly,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 15

machine learning algorithms can be used to reduce the size of

an optimization problem before being tackled. For examples,

some recent work on employing machine learning techniques

to learn from known instances that contain optimal solutions

in order to reduce the problem first, without losing the optimal

solutions [247, 248].

b) The synergy between metaheuristics and classic math-

ematical programming: Several classic derivative-free opti-

mization algorithms have been successfully used as local

search operators in the context of memetic algorithms (c.f.

part A §III). Other promising areas of research at the intersec-

tion of population-based optimization algorithms and classic

mathematical programming are as follows:

• Problem decomposition: In classic mathematical pro-

gramming, there exist some decomposition methods such

as Column Generation, Bender’s cut, and Dantzig-Wolfe

decomposition[249]. These techniques can be effective

under certain assumptions such convexity or linearity. An

important question to ask is how one would combine

the merits of metaheuristics with these decomposition

methods to tackle real-world LSGO problems that are

often non-convex and nonlinear? As an example, ma-

chine learning has been used to learn when Dantzig-

Wolf decomposition is effective on mixed-integer linear

programming problems [250].

• Variation operators: Many large-scale real-world opti-

mization problems are combinatorial by nature, e.g.,

either discrete, binary, or mixed types. Examples include

large-scale traveling salesman problems or other graph-

based optimization problems. Designing metaheuristic

variation operators (such as crossover and mutation) in

order to produce new solutions from the existing ones

can be a significant challenge. Most existing success-

ful methods are conventional mathematical programming

methods such as branch-and-bound and branch-and-cut

methods. Hybrid methods that combine the merits of

meta-heuristics and exact methods (e.g., taking advantage

of the "shared information" in a meta-heuristic popula-

tion) is a promising direction [251–254].

c) Exploiting problem structure: Exploiting problem

structure and grey-box optimization has shown to be effective

ways of solving large-scale problems (part A §II). These

structural information can be used in the form of explicit

decomposition or implicitly through model building. The

challenge of explicit methods is the cost of offline variable

interaction learning, which requires objective function eval-

uations and causes an overhead on the overall optimization

cost. Another issue is that a crisp decomposition is sometimes

impractical due to various forms of couplings caused by

the existence of multiple objectives, overlapping components

(shared variables among subfunctions), or coupling through

constraints. Implicit methods also suffer from the accuracy of

capturing problem structure, especially when the problem size

grows in size. Finding more efficient and effective ways of

exploiting structural information, such as overlap, can have a

significant impact on improving the scalability of optimization

algorithms.

d) Noise, dynamism, and uncertainty: Scalability of op-

timization algorithms in the presence of noise, dynamical

changes of the landscape, and uncertainty has scarcely been

studied with only few papers addressing these issues [143,

220]. These problem types pose a range of new challenges to

the existing approaches to large-scale optimization presented

before. For example, variable interaction analysis methods are

designed based on the assumption that the objective function is

noiseless. The dynamical changes of the landscape can change

the structural properties of the objective function which makes

it difficult for the explicit and implicit methods to exploit these

information in an efficient manner.

e) Constraint handling: Constraints are indispensable

part of most real-world optimization problems; however, very

limited studies have been dedicated to the effect of problem

dimensionality on constraints [198, 202] (also see §VI-D).

There is still a lack of efficient constraint handling tools

to cope with high-dimensional constraint functions, or the

cases where the number of constraints is a function of the

dimensionality of the objective function [255, 256]. In the

later case, the problem may contain a large number of low

dimensional constraints. The field currently lacks scalable and

controllable constrained benchmark problems either synthetic

or based on real-world problems [195].

REFERENCES

[1] J. Kennedy and R. Eberhart, “Particle swarm optimization,” in Proc.

of IEEE International Conference on Neural Networks, vol. 4, 1995,
pp. 1942–1948.

[2] R. Storn and K. Price, “Differential evolution–a simple and efficient
heuristic for global optimization over continuous spaces,” Journal of

global optimization, vol. 11, no. 4, pp. 341–359, 1997.
[3] S. Das and P. N. Suganthan, “Differential evolution: A survey of

the state-of-the-art,” IEEE transactions on evolutionary computation,
vol. 15, no. 1, pp. 4–31, 2010.

[4] M. Sepesy Maučec and J. Brest, “A review of the recent use of Differ-
ential Evolution for Large-Scale Global Optimization: An analysis of
selected algorithms on the CEC 2013 LSGO benchmark suite,” Swarm

and Evolutionary Computation, vol. 50, p. 100428, Nov. 2019.
[5] A. W. Mohamed, A. A. Hadi, and A. K. Mohamed, “Differential Evo-

lution Mutations: Taxonomy, Comparison and Convergence Analysis,”
IEEE Access, vol. 9, pp. 68 629–68 662, 2021.

[6] M. Z. Ali, N. H. Awad, and P. N. Suganthan, “Multi-population
differential evolution with balanced ensemble of mutation strategies
for large-scale global optimization,” Applied Soft Computing, vol. 33,
pp. 304–327, 2015.

[7] A. Banitalebi, M. I. A. Aziz, and Z. A. Aziz, “A self-adaptive binary
differential evolution algorithm for large scale binary optimization
problems,” Information Sciences, vol. 367, pp. 487–511, 2016.

[8] J.-i. Kushida, A. Hara, and T. Takahama, “Rank-based differential
evolution with multiple mutation strategies for large scale global
optimization,” in IEEE Congress on Evolutionary Computation. IEEE,
2015, pp. 353–360.

[9] Y. Wang, B. Li, and X. Lai, “Variance priority based cooperative co-
evolution differential evolution for large scale global optimization,” in
IEEE Congress on Evolutionary Computation. IEEE, 2009, pp. 1232–
1239.

[10] A. W. Mohamed and A. S. Almazyad, “Differential evolution with
novel mutation and adaptive crossover strategies for solving large scale
global optimization problems,” Applied Computational Intelligence and

Soft Computing, vol. 2017, 2017.
[11] A. W. Mohamed, “Solving large-scale global optimization problems

using enhanced adaptive differential evolution algorithm,” Complex &

Intelligent Systems, vol. 3, no. 4, pp. 205–231, Dec. 2017.
[12] H. Ge, L. Sun, X. Yang, S. Yoshida, and Y. Liang, “Cooperative

differential evolution with fast variable interdependence learning and
cross-cluster mutation,” Applied Soft Computing, vol. 36, pp. 300–314,
2015.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 16

[13] H. Wang, Z. Wu, S. Rahnamayan, and D. Jiang, “Sequential de
enhanced by neighborhood search for large scale global optimization,”
in IEEE Congress on Evolutionary Computation. IEEE, 2010, pp.
1–7.

[14] C. García-Martínez, F. J. Rodríguez, and M. Lozano, “Role differen-
tiation and malleable mating for differential evolution: an analysis on
large-scale optimisation,” Soft Computing, vol. 15, no. 11, pp. 2109–
2126, 2011.

[15] J. Zhang and A. C. Sanderson, “Jade: adaptive differential evolution
with optional external archive,” IEEE Transactions on evolutionary

computation, vol. 13, no. 5, pp. 945–958, 2009.
[16] Q. Yang, H.-Y. Xie, W.-N. Chen, and J. Zhang, “Multiple parents

guided differential evolution for large scale optimization,” in IEEE

Congress on Evolutionary Computation. IEEE, 2016, pp. 3549–3556.
[17] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based

differential evolution for solving high-dimensional continuous opti-
mization problems,” Soft Computing, vol. 15, no. 11, pp. 2127–2140,
2011.

[18] S. Rahnamayan, H. R. Tizhoosh, and M. Salama, “Opposition-based
differential evolution algorithms,” in Evolutionary Computation, 2006.

CEC 2006. IEEE Congress on. IEEE, 2006, pp. 2010–2017.
[19] F. Herrera, M. Lozano, and D. Molina, “Test suite for the special issue

of soft computing on scalability of evolutionary algorithms and other
metaheuristics for large scale continuous optimization problems,” 2009.

[20] H. Hiba, S. Mahdavi, and S. Rahnamayan, “Differential evolution
with center-based mutation for large-scale optimization,” in IEEE

Symposium Series on Computational Intelligence. IEEE, 2017, pp.
1–8.

[21] J. Brest, A. Zamuda, B. Boskovic, M. S. Maucec, and V. Zumer, “High-
dimensional real-parameter optimization using self-adaptive differential
evolution algorithm with population size reduction,” in 2008 IEEE

Congress on Evolutionary Computation (IEEE World Congress on

Computational Intelligence). IEEE, 2008, pp. 2032–2039.
[22] H. Wang, S. Rahnamayan, and Z. Wu, “Parallel differential evolution

with self-adapting control parameters and generalized opposition-based
learning for solving high-dimensional optimization problems,” Journal

of Parallel and Distributed Computing, vol. 73, no. 1, pp. 62–73, 2013.
[23] J. Brest, A. Zamuda, I. Fister, and M. S. Maučec, “Large scale global

optimization using self-adaptive differential evolution algorithm,” in
IEEE Congress on Evolutionary Computation. IEEE, 2010, pp. 1–8.

[24] M. Weber, F. Neri, and V. Tirronen, “Shuffle or update parallel
differential evolution for large-scale optimization,” Soft Computing,
vol. 15, no. 11, pp. 2089–2107, 2011.

[25] A. Zamuda, J. Brest, B. Boskovic, and V. Zumer, “Large scale global
optimization using differential evolution with self-adaptation and coop-
erative co-evolution,” in IEEE Congress on Evolutionary Computation.
IEEE, 2008, pp. 3718–3725.

[26] A. Qin and P. Suganthan, “Self-adaptive differential evolution algorithm
for numerical optimization,” in Proc. of IEEE Congress on Evolution-

ary Computation, vol. 2, 2005, pp. 1785–1791.
[27] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution

with neighborhood search,” in 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence).
IEEE, 2008, pp. 1110–1116.

[28] ——, “Scalability of generalized adaptive differential evolution for
large-scale continuous optimization,” Soft Computing, vol. 15, no. 11,
pp. 2141–2155, 2011.

[29] T. Takahama and S. Sakai, “Large scale optimization by differential
evolution with landscape modality detection and a diversity archive,”
in IEEE Congress on Evolutionary Computation. IEEE, 2012, pp.
1–8.

[30] H. Wang, S. Rahnamayan, and Z. Wu, “Adaptive differential evolution
with variable population size for solving high-dimensional problems,”
in IEEE Congress on Evolutionary Computation. IEEE, 2011, pp.
2626–2632.

[31] R. Tanabe and A. S. Fukunaga, “Improving the search performance of
shade using linear population size reduction,” in 2014 IEEE congress

on evolutionary computation (CEC). IEEE, 2014, pp. 1658–1665.
[32] J. Lampinen, I. Zelinka et al., “On stagnation of the differential

evolution algorithm,” in Proceedings of MENDEL, 2000, pp. 76–83.
[33] C. Segura, C. A. C. Coello, and A. G. Hernández-Díaz, “Improving

the vector generation strategy of differential evolution for large-scale
optimization,” Information Sciences, vol. 323, pp. 106–129, 2015.

[34] Y.-F. Ge, W.-J. Yu, and J. Zhang, “Diversity-based multi-population
differential evolution for large-scale optimization,” in Genetic and

Evolutionary Computation Conference. ACM, 2016, pp. 31–32.
[35] Y.-F. Ge, W.-J. Yu, Y. Lin, Y.-J. Gong, Z.-H. Zhan, W.-N. Chen,

and J. Zhang, “Distributed Differential Evolution Based on Adaptive
Mergence and Split for Large-Scale Optimization,” IEEE Transactions

on Cybernetics, vol. 48, no. 7, pp. 2166–2180, Jul. 2018.
[36] K. E. Parsopoulos, “Cooperative micro-differential evolution for high-

dimensional problems,” in Proc. of Genetic and Evolutionary Compu-

tation Conference. ACM, 2009, pp. 531–538.
[37] E. H. Houssein, A. G. Gad, K. Hussain, and P. N. Suganthan,

“Major Advances in Particle Swarm Optimization: Theory, Analysis,
and Application,” Swarm and Evolutionary Computation, vol. 63, p.
100868, Jun. 2021.

[38] J. Vesterstrom and R. Thomsen, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms on
numerical benchmark problems,” in Proceedings of the 2004 Congress

on Evolutionary Computation (IEEE Cat. No. 04TH8753), vol. 2.
IEEE, 2004, pp. 1980–1987.

[39] F. van den Bergh and A. P. Engelbrecht, “A cooperative approach
to particle swarm optimization,” IEEE Transactions on Evolutionary

Computation, vol. 8, no. 3, pp. 225–239, 2004.
[40] N. Lynn and P. N. Suganthan, “Heterogeneous comprehensive learning

particle swarm optimization with enhanced exploration and exploita-
tion,” Swarm and Evolutionary Computation, vol. 24, pp. 11–24, Oct.
2015.

[41] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale
optimization,” IEEE Transactions on Cybernetics, vol. 45, no. 2, pp.
191–204, 2015.

[42] Y. Tian, X. Zheng, X. Zhang, and Y. Jin, “Efficient Large-Scale Mul-
tiobjective Optimization Based on a Competitive Swarm Optimizer,”
IEEE Transactions on Cybernetics, vol. 50, no. 8, pp. 3696–3708, Aug.
2020.

[43] E. Naderi, H. Narimani, M. Fathi, and M. R. Narimani, “A novel fuzzy
adaptive configuration of particle swarm optimization to solve large-
scale optimal reactive power dispatch,” Applied Soft Computing, 2017.

[44] R.-L. Tang, Z. Wu, and Y.-J. Fang, “Adaptive multi-context cooper-
atively coevolving particle swarm optimization for large-scale prob-
lems,” Soft Computing, pp. 1–20, 2016.

[45] M. Pluhacek, R. Senkerik, and I. Zelinka, “Investigation on the
performance of a new multiple choice strategy for PSO algorithm in
the task of large scale optimization problems,” in IEEE Congress on

Evolutionary Computation. IEEE, 2013, pp. 2007–2011.
[46] N. Lynn, M. Z. Ali, and P. N. Suganthan, “Population topologies for

particle swarm optimization and differential evolution,” Swarm and

Evolutionary Computation, vol. 39, pp. 24–35, Apr. 2018.
[47] J. Fan, J. Wang, and M. Han, “Cooperative coevolution for large-scale

optimization based on kernel fuzzy clustering and variable trust region
methods,” IEEE Transactions on Fuzzy Systems, vol. 22, no. 4, pp.
829–839, 2014.

[48] Q. Zhang, H. Cheng, Z. Ye, and Z. Wang, “A competitive swarm
optimizer integrated with cauchy and gaussian mutation for large scale
optimization,” in Chinese Control Conference. IEEE, 2017, pp. 9829–
9834.

[49] Q. Yang, W.-N. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and
J. Zhang, “A Distributed Swarm Optimizer With Adaptive Communica-
tion for Large-Scale Optimization,” IEEE Transactions on Cybernetics,
vol. 50, no. 7, pp. 3393–3408, Jul. 2020.

[50] Z.-J. Wang, Z.-H. Zhan, W.-J. Yu, Y. Lin, J. Zhang, T.-L. Gu, and
J. Zhang, “Dynamic Group Learning Distributed Particle Swarm Opti-
mization for Large-Scale Optimization and Its Application in Cloud
Workflow Scheduling,” IEEE Transactions on Cybernetics, vol. 50,
no. 6, pp. 2715–2729, Jun. 2020.

[51] Z.-J. Wang, Z.-H. Zhan, S. Kwong, H. Jin, and J. Zhang, “Adaptive
Granularity Learning Distributed Particle Swarm Optimization for
Large-Scale Optimization,” IEEE Transactions on Cybernetics, vol. 51,
no. 3, pp. 1175–1188, Mar. 2021.

[52] M. Arasomwan and A. O. Adewumi, “An adaptive velocity particle
swarm optimization for high-dimensional function optimization,” in
2013 IEEE Congress on Evolutionary Computation. IEEE, 2013,
pp. 2352–2359.

[53] R. Cheng and Y. Jin, “A social learning particle swarm optimization
algorithm for scalable optimization,” Information Sciences, vol. 291,
pp. 43–60, 2015.

[54] J.-R. Jian, Z.-G. Chen, Z.-H. Zhan, and J. Zhang, “Region Encoding
Helps Evolutionary Computation Evolve Faster: A New Solution
Encoding Scheme in Particle Swarm for Large-Scale Optimization,”
IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp.
779–793, Aug. 2021.

[55] Q. Yang, W.-N. Chen, J. Da Deng, Y. Li, T. Gu, and J. Zhang, “A level-
based learning swarm optimizer for large scale optimization,” IEEE



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 17

Transactions on Evolutionary Computation, 2017.
[56] H. Huang, L. Lv, S. Ye, and Z. Hao, “Particle swarm optimization with

convergence speed controller for large-scale numerical optimization,”
Soft Computing, vol. 23, no. 12, pp. 4421–4437, Jun. 2019.

[57] S. Cheng, H. Zhan, H. Yao, H. Fan, and Y. Liu, “Large-scale many-
objective particle swarm optimizer with fast convergence based on
Alpha-stable mutation and Logistic function,” Applied Soft Computing,
vol. 99, p. 106947, Feb. 2021.

[58] D. Li, W. Guo, A. Lerch, Y. Li, L. Wang, and Q. Wu, “An adaptive
particle swarm optimizer with decoupled exploration and exploitation
for large scale optimization,” Swarm and Evolutionary Computation,
vol. 60, p. 100789, Feb. 2021.

[59] Y. Xue, T. Tang, W. Pang, and A. X. Liu, “Self-adaptive parameter
and strategy based particle swarm optimization for large-scale feature
selection problems with multiple classifiers,” Applied Soft Computing,
vol. 88, p. 106031, Mar. 2020.

[60] S.-T. Hsieh, T.-Y. Sun, C.-C. Liu, and S.-J. Tsai, “Solving large scale
global optimization using improved particle swarm optimizer,” in IEEE

Congress on Evolutionary Computation. IEEE, 2008, pp. 1777–1784.
[61] M. A. M. de Oca, D. Aydın, and T. Stützle, “An incremental particle

swarm for large-scale continuous optimization problems: an example
of tuning-in-the-loop (re)design of optimization algorithms,” Soft Com-

puting, vol. 15, no. 11, pp. 2233–2255, 2011.
[62] M. A. M. De Oca, K. Van den Enden, and T. Stützle, “Incremental

particle swarm-guided local search for continuous optimization,” in
International Workshop on Hybrid Metaheuristics. Springer, 2008,
pp. 72–86.

[63] J. Garcí-Nieto and E. Alba, “Restart particle swarm optimization with
velocity modulation: a scalability test,” Soft Computing, vol. 15, no. 11,
pp. 2221–2232, 2011.

[64] S. Cheng, Y. Shi, and Q. Qin, “Dynamical exploitation space reduction
in particle swarm optimization for solving large scale problems,” in
IEEE Congress on Evolutionary Computation. IEEE, 2012, pp. 1–8.

[65] J. Zhou, W. Fang, X. Wu, J. Sun, and S. Cheng, “An opposition-based
learning competitive particle swarm optimizer,” in 2016 IEEE Congress

on Evolutionary Computation (CEC). IEEE, 2016, pp. 515–521.
[66] T. Hendtlass, “Particle swarm optimisation and high dimensional prob-

lem spaces,” in IEEE Congress on Evolutionary Computation. IEEE,
2009, pp. 1988–1994.

[67] T. Korenaga, T. Hatanaka, and K. Uosaki, “Performance improvement
of particle swarm optimization for high-dimensional function optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE, 2007,
pp. 3288–3293.

[68] W. Chu, X. Gao, and S. Sorooshian, “A new evolutionary search
strategy for global optimization of high-dimensional problems,” Infor-

mation Sciences, vol. 181, no. 22, pp. 4909–4927, 2011.
[69] ——, “Fortify particle swam optimizer (pso) with principal components

analysis: A case study in improving bound-handling for optimizing
high-dimensional and complex problems,” in IEEE Congress on Evo-

lutionary Computation. IEEE, 2011, pp. 1644–1648.
[70] Q. Zhang, W. Liu, X. Meng, B. Yang, and A. V. Vasilakos, “Vector co-

evolving particle swarm optimization algorithm,” Information Sciences,
vol. 394, pp. 273–298, 2017.

[71] S.-Z. Zhao, J. J. Liang, P. N. Suganthan, and M. F. Tasgetiren,
“Dynamic multi-swarm particle swarm optimizer with local search for
large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2008, pp. 3845–3852.
[72] R. G. Regis, “Evolutionary programming for high-dimensional con-

strained expensive black-box optimization using radial basis functions,”
IEEE Transactions on Evolutionary Computation, vol. 18, no. 3, pp.
326–347, 2014.

[73] P. Yang, K. Tang, and X. Yao, “Turning high-dimensional optimization
into computationally expensive optimization,” IEEE Transactions on

Evolutionary Computation, vol. 22, no. 1, pp. 143–156, 2018.
[74] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Cooperative co-

evolution with a new decomposition method for large-scale optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE, 2014,
pp. 1285–1292.

[75] E. Li, H. Wang, and F. Ye, “Two-level multi-surrogate assisted opti-
mization method for high dimensional nonlinear problems,” Applied

Soft Computing, vol. 46, pp. 26–36, 2016.
[76] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution

with differential grouping for large scale optimization,” IEEE Transac-

tions on Evolutionary Computation, vol. 18, no. 3, pp. 378–393, 2014.
[77] B. Pang, Z. Ren, Y. Liang, and A. Chen, “Enhancing cooperative

coevolution for large scale optimization by adaptively constructing
surrogate models,” arXiv preprint, 2018.

[78] B. Werth, E. Pitzer, and M. Affenzeller, “Enabling high-dimensional
surrogate-assisted optimization by using sliding windows,” in Genetic

and Evolutionary Computation Conference Companion. ACM, 2017,
pp. 1630–1637.

[79] C. Wang and J.-H. Gao, “A differential evolution algorithm with
cooperative coevolutionary selection operation for high-dimensional
optimization,” Optimization Letters, vol. 8, no. 2, pp. 477–492, 2014.

[80] I. De Falco, A. D. Cioppa, and G. A. Trunfio, “Large scale optimization
of computationally expensive functions: an approach based on parallel
cooperative coevolution and fitness metamodeling,” in Genetic and

Evolutionary Computation Conference Companion. ACM, 2017, pp.
1788–1795.

[81] Z. Ren, B. Pang, Y. Liang, A. Chen, and Y. Zhang, “Surrogate model
assisted cooperative coevolution for large scale optimization,” arXiv

preprint, 2018.
[82] C. Sun, Y. Jin, J. Ding, and J. Zeng, “Fitness estimation strategy

assisted competitive swarm optimizer for high dimensional expensive
problems,” in Genetic and Evolutionary Computation Conference.
ACM, 2016, pp. 1277–1278.

[83] C. Sun, Y. Jin, R. Cheng, J. Ding, and J. Zeng, “Surrogate-assisted
cooperative swarm optimization of high-dimensional expensive prob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 21, no. 4,
pp. 644–660, 2017.

[84] Z. Yang, B. Sendhoff, K. Tang, and X. Yao, “Target shape design opti-
mization by evolving b-splines with cooperative coevolution,” Applied

Soft Computing, vol. 48, pp. 672–682, 2016.
[85] A. Tiwari, R. Roy, G. Jared, and O. Munaux, “Interaction and multi-

objective optimisation,” in Genetic and Evolutionary Computation

Conference. Morgan Kaufmann Publishers Inc., 2001, pp. 671–678.
[86] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “A framework

for large-scale multi-objective optimization based on problem transfor-
mation,” IEEE Transactions on Evolutionary Computation, 2017.

[87] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Toward large-scale
continuous eda: A random matrix theory perspective,” Evolutionary

Computation, vol. 24, no. 2, pp. 255–291, 2016.
[88] W. Dong, Y. Wang, and M. Zhou, “A latent space-based estimation

of distribution algorithm for large-scale global optimization,” Soft

Computing, vol. 23, no. 13, pp. 4593–4615, Jul. 2019.
[89] R. Liu, R. Ren, J. Liu, and J. Liu, “A clustering and dimensionality

reduction based evolutionary algorithm for large-scale multi-objective
problems,” Applied Soft Computing, vol. 89, p. 106120, Apr. 2020.

[90] G. Wu, W. Pedrycz, P. N. Suganthan, and R. Mallipeddi, “A variable
reduction strategy for evolutionary algorithms handling equality con-
straints,” Applied Soft Computing, vol. 37, pp. 774–786, Dec. 2015.

[91] G. Wu, W. Pedrycz, P. N. Suganthan, and H. Li, “Using variable
reduction strategy to accelerate evolutionary optimization,” Applied Soft

Computing, vol. 61, pp. 283–293, Dec. 2017.
[92] M. L. Sanyang and A. Kabán, “REMEDA: Random embedding EDA

for optimising functions with intrinsic dimension,” in Parallel Problem

Solving from Nature. Springer, 2016, pp. 859–868.
[93] S. Wang, J. Liu, and Y. Jin, “Surrogate-Assisted Robust Optimization

of Large-Scale Networks Based on Graph Embedding,” IEEE Transac-

tions on Evolutionary Computation, vol. 24, no. 4, pp. 735–749, Aug.
2020.

[94] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization
using cooperative coevolution,” Information Sciences, vol. 178, no. 15,
pp. 2985–2999, 2008.

[95] B. Kazimipour, X. Li, and A. K. Qin, “A review of population
initialization techniques for evolutionary algorithms,” in IEEE Congress

on Evolutionary Computation. IEEE, 2014, pp. 2585–2592.
[96] S. Mahdavi, S. Rahnamayan, and K. Deb, “Center-based initialization

of cooperative co-evolutionary algorithm for large-scale optimization,”
in IEEE Congress on Evolutionary Computation. IEEE, 2016, pp.
3557–3565.

[97] B. Kazimipour, X. Li, and A. K. Qin, “Initialization methods for
large scale global optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2013, pp. 2750–2757.
[98] ——, “Effects of population initialization on differential evolution

for large scale optimization,” in IEEE Congress on Evolutionary

Computation. IEEE, 2014, pp. 2404–2411.
[99] B. Kazimipour, X. Li, and A. Qin, “Why advanced population initial-

ization techniques perform poorly in high dimension?” in Simulated

Evolution and Learning, ser. Lecture Notes in Computer Science.
Springer International Publishing, 2014, vol. 8886, pp. 479–490.

[100] E. Segredo, B. Paechter, C. Segura, and C. I. González-Vila, “On the
comparison of initialisation strategies in differential evolution for large
scale optimisation,” Optimization Letters, vol. 12, no. 1, pp. 221–234,



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 18

2018.
[101] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, “When is ‘near-

est neighbor’ meaningful?” in International Conference on Database

Theory. Springer, 1999, pp. 217–235.
[102] R. J. Durrant and A. Kabán, “When is ‘nearest neighbour’ meaningful:

A converse theorem and implications,” Journal of Complexity, vol. 25,
no. 4, pp. 385–397, 2009.

[103] E. Cantú-Paz and D. E. Goldberg, “On the scalability of parallel genetic
algorithms,” Evolutionary computation, vol. 7, no. 4, pp. 429–449,
1999.

[104] M. Munetomo, N. Murao, and K. Akama, “Empirical investigations on
parallelized linkage identification,” in Parallel Problem Solving from

Nature. Springer, 2004, pp. 322–331.
[105] A. Mendiburu, J. A. Lozano, and J. Miguel-Alonso, “Parallel im-

plementation of edas based on probabilistic graphical models,” IEEE

Transactions on Evolutionary Computation, vol. 9, no. 4, pp. 406–423,
2005.

[106] S. Iturriaga and S. Nesmachnow, “Solving very large optimization
problems (up to one billion variables) with a parallel evolutionary
algorithm in cpu and gpu,” in Seventh International Conference on

P2P, Parallel, Grid, Cloud and Internet Computing. IEEE, 2012, pp.
267–272.

[107] Q. Duan, L. Sun, and Y. Shi, “Spark clustering computing platform
based parallel particle swarm optimizers for computationally expensive
global optimization,” in International Conference on Parallel Problem

Solving from Nature. Springer, 2018, pp. 424–435.
[108] B. Cao, S. Fan, J. Zhao, P. Yang, K. Muhammad, and M. Tanveer,

“Quantum-enhanced multiobjective large-scale optimization via paral-
lelism,” Swarm and Evolutionary Computation, vol. 57, p. 100697, Sep.
2020.

[109] M. Lastra, D. Molina, and J. M. Benítez, “A high performance memetic
algorithm for extremely high-dimensional problems,” Information Sci-

ences, vol. 293, pp. 35–58, 2015.
[110] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic

algorithm based on local search chains for large scale continuous global
optimization,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 3153–3160.

[111] A. Cano and C. García-Martínez, “100 million dimensions large-
scale global optimization using distributed gpu computing,” in IEEE

Congress on Evolutionary Computation. IEEE, 2016, pp. 3566–3573.
[112] A. Cano, C. García-Martínez, and S. Ventura, “Extremely high-

dimensional optimization with mapreduce: scaling functions and al-
gorithm,” Information Sciences, vol. 415, pp. 110–127, 2017.

[113] Y. Su, K. Zhou, X. Zhang, R. Cheng, and C. Zheng, “A parallel multi-
objective evolutionary algorithm for community detection in large-scale
complex networks,” Information Sciences, vol. 576, pp. 374–392, Oct.
2021.

[114] B. Cao, J. Zhao, Z. Lv, and X. Liu, “A distributed parallel cooperative
coevolutionary multiobjective evolutionary algorithm for large-scale
optimization,” IEEE Transactions on Industrial Informatics, vol. 13,
no. 4, pp. 2030–2038, 2017.

[115] M. N. Omidvar, M. Yang, Y. Mei, X. Li, and X. Yao, “Dg2: A
faster and more accurate differential grouping for large-scale black-
box optimization,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 6, pp. 929–942, 2017.

[116] P. Yang, K. Tang, and X. Yao, “A parallel divide-and-conquer based
evolutionary algorithm for large-scale optimization,” arXiv preprint

arXiv:1812.02500, 2018.
[117] G. Roy, H. Lee, J. L. Welch, Y. Zhao, V. Pandey, and D. Thurston,

“A distributed pool architecture for genetic algorithms,” in 2009 IEEE

Congress on Evolutionary Computation. IEEE, 2009, pp. 1177–1184.
[118] Y.-H. Jia, W.-N. Chen, T. Gu, H. Zhang, H. Yuan, S. Kwong, and

J. Zhang, “Distributed cooperative co-evolution with adaptive comput-
ing resource allocation for large scale optimization,” IEEE Transactions

on Evolutionary Computation, 2018.
[119] J. R. Martins and A. B. Lambe, “Multidisciplinary design optimization:

a survey of architectures,” AIAA journal, vol. 51, no. 9, pp. 2049–2075,
2013.

[120] A. Yassine and D. Braha, “Complex concurrent engineering and the
design structure matrix method,” Concurrent Engineering, vol. 11,
no. 3, pp. 165–176, 2003.

[121] K. Li, M. N. Omidvar, K. Deb, and X. Yao, “Variable interaction in
multi-objective optimization problems,” in Parallel Problem Solving

from Nature. Springer International Publishing, 2016, pp. 399–409.
[122] P. Xu, W. Luo, X. Lin, J. Zhang, Y. Qiao, and X. Wang, “Constraint-

Objective Cooperative Coevolution for Large-scale Constrained Opti-
mization,” ACM Transactions on Evolutionary Learning and Optimiza-

tion, vol. 1, no. 3, pp. 12:1–12:26, Aug. 2021.
[123] L. Sun, S. Yoshida, X. Cheng, and Y. Liang, “A cooperative particle

swarm optimizer with statistical variable interdependence learning,”
Information Sciences, vol. 186, no. 1, pp. 20–39, 2012.

[124] A. Song, W.-N. Chen, P.-T. Luo, Y.-J. Gong, and J. Zhang, “Over-
lapped cooperative co-evolution for large scale optimization,” in IEEE

International Conference on Systems, Man, and Cybernetics. IEEE,
2017, pp. 3689–3694.

[125] M. Munetomo and D. E. Goldberg, “Linkage identification by non-
monotonicity detection for overlapping functions,” Evolutionary Com-

putation, vol. 7, no. 4, pp. 377–398, 1999.
[126] Y. Sun, X. Li, A. Ernst, and M. N. Omidvar, “Decomposition for large-

scale optimization problems with overlapping components,” in IEEE

congress on evolutionary computation, 2019.
[127] L. Li, W. Fang, Y. Mei, and Q. Wang, “Cooperative coevolution for

large-scale global optimization based on fuzzy decomposition,” Soft

Computing, vol. 25, no. 5, pp. 3593–3608, Mar. 2021.
[128] D. Thierens, “The linkage tree genetic algorithm,” in Parallel Problem

Solving from Nature. Springer, 2010, pp. 264–273.
[129] P. A. Bosman and D. Thierens, “More concise and robust linkage

learning by filtering and combining linkage hierarchies,” in Genetic

and Evolutionary Computation Conference. ACM, 2013, pp. 359–
366.

[130] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan,
“Dependency structure matrix, genetic algorithms, and effective recom-
bination,” Evolutionary computation, vol. 17, no. 4, pp. 595–626, 2009.

[131] T.-L. Yu, K. Sastry, and D. E. Goldberg, “Linkage learning, overlapping
building blocks, and systematic strategy for scalable recombination,”
in Genetic and evolutionary computation conference. ACM, 2005,
pp. 1217–1224.

[132] Y. Sun, M. Kirley, and S. K. Halgamuge, “A recursive decomposition
method for large scale continuous optimization,” IEEE Transactions on

Evolutionary Computation, 2017.
[133] Y.-H. Jia, Y. Mei, and M. Zhang, “Contribution-Based Cooperative Co-

Evolution for Nonseparable Large-Scale Problems With Overlapping
Subcomponents,” IEEE Transactions on Cybernetics, pp. 1–14, 2020.

[134] A. Song, W.-N. Chen, Y.-J. Gong, X. Luo, and J. Zhang, “A Divide-
and-Conquer Evolutionary Algorithm for Large-Scale Virtual Network
Embedding,” IEEE Transactions on Evolutionary Computation, vol. 24,
no. 3, pp. 566–580, Jun. 2020.

[135] S. Strasser, J. Sheppard, N. Fortier, and R. Goodman, “Factored evolu-
tionary algorithms,” IEEE Transactions on Evolutionary Computation,
vol. 21, no. 2, pp. 281–293, 2017.

[136] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz, “BOA: The bayesian
optimization algorithm,” in Proceedings of the 1st Annual Conference

on Genetic and Evolutionary Computation-Volume 1. Morgan Kauf-
mann Publishers Inc., 1999, pp. 525–532.

[137] M. Tsuji, M. Munetomo, and K. Akama, “Linkage identification by
fitness difference clustering,” Evolutionary Computation, vol. 14, no. 4,
pp. 383–409, 2006.

[138] L. R. Emmendorfer and A. T. R. Pozo, “Effective linkage learning using
low-order statistics and clustering,” IEEE Transactions on Evolutionary

Computation, vol. 13, no. 6, pp. 1233–1246, 2009.
[139] C.-Y. Chuang and Y.-p. Chen, “Sensibility of linkage information and

effectiveness of estimated distributions,” Evolutionary Computation,
vol. 18, no. 4, pp. 547–579, 2010.

[140] M. N. Omidvar, X. Li, and X. Yao, “Smart use of computational
resources based on contribution for cooperative co-evolutionary algo-
rithms,” in Genetic and evolutionary computation conference. ACM,
2011, pp. 1115–1122.

[141] S. Liu, Q. Lin, Y. Tian, and K. C. Tan, “A Variable Importance-Based
Differential Evolution for Large-Scale Multiobjective Optimization,”
IEEE Transactions on Cybernetics, pp. 1–15, 2021.

[142] X. Shen, Y. Guo, and A. Li, “Cooperative coevolution with an improved
resource allocation for large-scale multi-objective software project
scheduling,” Applied Soft Computing, vol. 88, p. 106059, Mar. 2020.

[143] D. Yazdani, M. N. Omidvar, J. Branke, T. T. Nguyen, and X. Yao,
“Scaling up dynamic optimization problems: A divide-and-conquer
approach,” IEEE Transactions on Evolutionary Computation, 2019.

[144] M. N. Omidvar, B. Kazimipour, X. Li, and X. Yao, “Cbcc3âĂŤa
contribution-based cooperative co-evolutionary algorithm with im-
proved exploration/exploitation balance,” in 2016 IEEE Congress on

Evolutionary Computation (CEC). IEEE, 2016, pp. 3541–3548.
[145] M. Yang, M. N. Omidvar, C. Li, X. Li, Z. Cai, B. Kazimipour, and

X. Yao, “Efficient resource allocation in cooperative co-evolution for
large-scale global optimization,” IEEE Transactions on Evolutionary

Computation, vol. 21, no. 4, pp. 493–505, 2017.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 19

[146] M. Yang, A. Zhou, C. Li, J. Guan, and X. Yan, “CCFR2: A more
efficient cooperative co-evolutionary framework for large-scale global
optimization,” Information Sciences, vol. 512, pp. 64–79, Feb. 2020.

[147] Z. Ren, Y. Liang, A. Zhang, Y. Yang, Z. Feng, and L. Wang, “Boosting
cooperative coevolution for large scale optimization with a fine-grained
computation resource allocation strategy,” arXiv preprint, 2018.

[148] G. A. Trunfio, “Adaptation in cooperative coevolutionary optimiza-
tion,” in Adaptation and Hybridization in Computational Intelligence.
Springer, 2015, pp. 91–109.

[149] M. A. Meselhi, S. M. Elsayed, R. A. Sarker, and D. L. Essam, “Contri-
bution Based Co-Evolutionary Algorithm for Large-Scale Optimization
Problems,” IEEE Access, vol. 8, pp. 203 369–203 381, 2020.

[150] S. Mahdavi, S. Rahnamayan, and M. E. Shiri, “Multilevel framework
for large-scale global optimization,” Soft Computing, pp. 1–30, 2016.

[151] ——, “Incremental cooperative coevolution for large-scale global op-
timization,” Soft Computing, pp. 1–20, 2016.

[152] ——, “Cooperative co-evolution with sensitivity analysis-based bud-
get assignment strategy for large-scale global optimization,” Applied

Intelligence, vol. 47, no. 3, pp. 888–913, 2017.
[153] X. Peng and Y. Wu, “Large-scale cooperative co-evolution with bi-

objective selection based imbalanced multi-modal optimization,” in
IEEE Congress on Evolutionary Computation. IEEE, 2017, pp. 1527–
1532.

[154] B. Kazimipour, M. N. Omidvar, A. K. Qin, X. Li, and X. Yao, “Bandit-
based cooperative coevolution for tackling contribution imbalance in
large-scale optimization problems,” Applied Soft Computing, vol. 76,
pp. 265–281, 2019.

[155] D. Rainville, M. Sebag, C. Gagné, M. Schoenauer, D. Laurendeau et al.,
“Sustainable cooperative coevolution with a multi-armed bandit,” in
Proceedings of the 15th annual conference on Genetic and evolutionary

computation. ACM, 2013, pp. 1517–1524.
[156] C. A. C. Coello and G. B. Lamont, Applications of multi-objective

evolutionary algorithms. World Scientific, 2004, vol. 1.
[157] B. Li, J. Li, K. Tang, and X. Yao, “Many-objective evolutionary

algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 48, no. 1,
p. 13, 2015.

[158] J. J. Durillo, A. J. Nebro, C. A. C. Coello, F. Luna, and E. Alba,
“A comparative study of the effect of parameter scalability in multi-
objective metaheuristics,” in 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence).
IEEE, 2008, pp. 1893–1900.

[159] J. J. Durillo, A. J. Nebro, C. A. C. Coello, J. García-Nieto, F. Luna,
and E. Alba, “A study of multiobjective metaheuristics when solving
parameter scalable problems,” IEEE Transactions on Evolutionary

Computation, vol. 14, no. 4, pp. 618–635, 2010.
[160] S. Liu, Q. Lin, K.-C. Wong, Q. Li, and K. C. Tan, “Evolution-

ary Large-Scale Multiobjective Optimization: Benchmarks and Algo-
rithms,” IEEE Transactions on Evolutionary Computation, pp. 1–1,
2021.

[161] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algo-
rithm based on decomposition,” IEEE Transactions on evolutionary

computation, vol. 11, no. 6, pp. 712–731, 2007.
[162] X. Ma, F. Liu, Y. Qi, X. Wang, L. Li, L. Jiao, M. Yin, and M. Gong,

“A multiobjective evolutionary algorithm based on decision variable
analyses for multiobjective optimization problems with large-scale
variables,” IEEE Transactions on Evolutionary Computation, vol. 20,
no. 2, pp. 275–298, 2016.

[163] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “A decision variable
clustering-based evolutionary algorithm for large-scale many-objective
optimization,” IEEE Transactions on Evolutionary Computation, 2016.

[164] A. E. I. Brownlee, J. A. Wright, M. He, T. Lee, and P. McMenemy,
“A novel encoding for separable large-scale multi-objective problems
and its application to the optimisation of housing stock improvements,”
Applied Soft Computing, vol. 96, p. 106650, Nov. 2020.

[165] L. M. Antonio and C. A. C. Coello, “Use of cooperative coevolution
for solving large scale multiobjective optimization problems,” in IEEE

Congress on Evolutionary Computation. IEEE, 2013, pp. 2758–2765.
[166] ——, “Decomposition-based approach for solving large scale multi-

objective problems,” in Parallel Problem Solving from Nature.
Springer, 2016, pp. 525–534.

[167] A. Song, Q. Yang, W.-N. Chen, and J. Zhang, “A random-based dy-
namic grouping strategy for large scale multi-objective optimization,”
in IEEE Congress on Evolutionary Computation. IEEE, 2016, pp.
468–475.

[168] B. Cao, J. Zhao, Y. Gu, Y. Ling, and X. Ma, “Applying graph-
based differential grouping for multiobjective large-scale optimization,”
Swarm and Evolutionary Computation, vol. 53, p. 100626, Mar. 2020.

[169] Q. Wang, L. Zhang, S. Wei, and B. Li, “Tensor decomposition-
based alternate sub-population evolution for large-scale many-objective
optimization,” Information Sciences, vol. 569, pp. 376–399, Aug. 2021.

[170] L. Ma, M. Huang, S. Yang, R. Wang, and X. Wang, “An Adaptive
Localized Decision Variable Analysis Approach to Large-Scale Mul-
tiobjective and Many-Objective Optimization,” IEEE Transactions on

Cybernetics, pp. 1–13, 2021.
[171] H. Chen, R. Cheng, J. Wen, H. Li, and J. Weng, “Solving large-scale

many-objective optimization problems by covariance matrix adaptation
evolution strategy with scalable small subpopulations,” Information

Sciences, vol. 509, pp. 457–469, Jan. 2020.
[172] A. Tiwari and R. Roy, “Variable dependence interaction and multi-

objective optimisation,” in Genetic and Evolutionary Computation

Conference. Morgan Kaufmann Publishers Inc., 2002, pp. 602–609.
[173] C. He, L. Li, Y. Tian, X. Zhang, R. Cheng, Y. Jin, and X. Yao,

“Accelerating Large-Scale Multiobjective Optimization via Problem
Reformulation,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 6, pp. 949–961, Dec. 2019.

[174] H. Zille and S. Mostaghim, “Comparison study of large-scale op-
timisation techniques on the lsmop benchmark functions,” in IEEE

Symposium Series on Computational Intelligence. IEEE, 2017, pp.
1–8.

[175] H. Zille, H. Ishibuchi, S. Mostaghim, and Y. Nojima, “Weighted
optimization framework for large-scale multi-objective optimization,”
in Genetic and Evolutionary Computation Conference. ACM, 2016,
pp. 83–84.

[176] R. Liu, J. Liu, Y. Li, and J. Liu, “A random dynamic grouping based
weight optimization framework for large-scale multi-objective opti-
mization problems,” Swarm and Evolutionary Computation, vol. 55,
p. 100684, Jun. 2020.

[177] Y. Tian, C. Lu, X. Zhang, K. C. Tan, and Y. Jin, “Solving Large-
Scale Multiobjective Optimization Problems With Sparse Optimal
Solutions via Unsupervised Neural Networks,” IEEE Transactions on

Cybernetics, vol. 51, no. 6, pp. 3115–3128, Jun. 2021.
[178] Y. Tian, C. Lu, X. Zhang, F. Cheng, and Y. Jin, “A Pattern Mining-

Based Evolutionary Algorithm for Large-Scale Sparse Multiobjective
Optimization Problems,” IEEE Transactions on Cybernetics, pp. 1–14,
2020.

[179] Y. Tian, X. Zhang, C. Wang, and Y. Jin, “An Evolutionary Algorithm
for Large-Scale Sparse Multiobjective Optimization Problems,” IEEE

Transactions on Evolutionary Computation, vol. 24, no. 2, pp. 380–
393, Apr. 2020.

[180] Y. Tian, R. Liu, X. Zhang, H. Ma, K. C. Tan, and Y. Jin, “A
Multipopulation Evolutionary Algorithm for Solving Large-Scale Mul-
timodal Multiobjective Optimization Problems,” IEEE Transactions on

Evolutionary Computation, vol. 25, no. 3, pp. 405–418, Jun. 2021.
[181] J.-H. Yi, L.-N. Xing, G.-G. Wang, J. Dong, A. V. Vasilakos, A. H.

Alavi, and L. Wang, “Behavior of crossover operators in NSGA-III for
large-scale optimization problems,” Information Sciences, vol. 509, pp.
470–487, Jan. 2020.

[182] K. Deb and H. Jain, “An Evolutionary Many-Objective Optimiza-
tion Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints,” IEEE

Transactions on Evolutionary Computation, vol. 18, no. 4, pp. 577–
601, Aug. 2014.

[183] Y. Yin, Y. Zhao, H. Li, and X. Dong, “Multi-objective evolutionary
clustering for large-scale dynamic community detection,” Information

Sciences, vol. 549, pp. 269–287, Mar. 2021.
[184] L. P. Cota, F. G. Guimarães, R. G. Ribeiro, I. R. Meneghini, F. B. de

Oliveira, M. J. F. Souza, and P. Siarry, “An adaptive multi-objective
algorithm based on decomposition and large neighborhood search
for a green machine scheduling problem,” Swarm and Evolutionary

Computation, vol. 51, p. 100601, Dec. 2019.
[185] S. Qin, C. Sun, Y. Jin, Y. Tan, and J. Fieldsend, “Large-Scale Evolu-

tionary Multiobjective Optimization Assisted by Directed Sampling,”
IEEE Transactions on Evolutionary Computation, vol. 25, no. 4, pp.
724–738, Aug. 2021.

[186] Y. Zhang, G.-G. Wang, K. Li, W.-C. Yeh, M. Jian, and J. Dong,
“Enhancing MOEA/D with information feedback models for large-
scale many-objective optimization,” Information Sciences, vol. 522, pp.
1–16, Jun. 2020.

[187] W. Hong, K. Tang, A. Zhou, H. Ishibuchi, and X. Yao, “A Scalable
Indicator-Based Evolutionary Algorithm for Large-Scale Multiobjec-
tive Optimization,” IEEE Transactions on Evolutionary Computation,
vol. 23, no. 3, pp. 525–537, Jun. 2019.

[188] J. Xiao, T. Zhang, J. Du, and X. Zhang, “An Evolutionary Multi-
objective Route Grouping-Based Heuristic Algorithm for Large-Scale



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 20

Capacitated Vehicle Routing Problems,” IEEE Transactions on Cyber-

netics, vol. 51, no. 8, pp. 4173–4186, Aug. 2021.
[189] X. Zhang, K. Zhou, H. Pan, L. Zhang, X. Zeng, and Y. Jin, “A Network

Reduction-Based Multiobjective Evolutionary Algorithm for Commu-
nity Detection in Large-Scale Complex Networks,” IEEE Transactions

on Cybernetics, vol. 50, no. 2, pp. 703–716, Feb. 2020.
[190] J. Zhang, L. Xing, G. Peng, F. Yao, and C. Chen, “A large-scale

multiobjective satellite data transmission scheduling algorithm based
on SVM+NSGA-II,” Swarm and Evolutionary Computation, vol. 50,
p. 100560, Nov. 2019.

[191] S.-Y. Ho, L.-S. Shu, and J.-H. Chen, “Intelligent evolutionary algo-
rithms for large parameter optimization problems,” IEEE Transactions

on Evolutionary Computation, vol. 8, no. 6, pp. 522–541, 2004.
[192] M. Gong, H. Li, E. Luo, J. Liu, and J. Liu, “A multiobjective coop-

erative coevolutionary algorithm for hyperspectral sparse unmixing,”
IEEE Transactions on Evolutionary Computation, vol. 21, no. 2, pp.
234–248, 2017.

[193] Y. Wang, B. Li, and T. Weise, “Estimation of distribution and dif-
ferential evolution cooperation for large scale economic load dispatch
optimization of power systems,” Information Sciences, vol. 180, no. 12,
pp. 2405–2420, 2010.

[194] R. Shang, K. Dai, L. Jiao, and R. Stolkin, “Improved memetic algo-
rithm based on route distance grouping for multiobjective large scale
capacitated arc routing problems,” IEEE Transactions on Cybernetics,
vol. 46, no. 4, pp. 1000–1013, 2016.

[195] A. Kumar, G. Wu, M. Z. Ali, R. Mallipeddi, P. N. Suganthan, and
S. Das, “A test-suite of non-convex constrained optimization problems
from the real-world and some baseline results,” Swarm and Evolution-

ary Computation, vol. 56, p. 100693, Aug. 2020.
[196] E. Mezura-Montes and C. A. C. Coello, “Constraint-handling in nature-

inspired numerical optimization: past, present and future,” Swarm and

Evolutionary Computation, vol. 1, no. 4, pp. 173–194, 2011.
[197] C. Peng and Q. Hui, “Comparison of differential grouping and random

grouping methods on ǫCCPSO for large-scale constrained optimiza-
tion,” in IEEE Congress on Evolutionary Computation. IEEE, 2016,
pp. 2057–2063.

[198] E. Sayed, D. Essam, R. Sarker, and S. Elsayed, “Decomposition-
based evolutionary algorithm for large scale constrained problems,”
Information Sciences, vol. 316, pp. 457–486, 2015.

[199] A. E. Aguilar-Justo and E. Mezura-Montes, “Towards an improvement
of variable interaction identification for large-scale constrained prob-
lems,” in IEEE Congress on Evolutionary Computation. IEEE, 2016,
pp. 4167–4174.

[200] A. E. Aguilar-Justo, E. Mezura-Montes, S. M. Elsayed, and R. A.
Sarker, “Decomposition of large-scale constrained problems using a
genetic-based search,” in 2016 IEEE International Autumn Meeting on

Power, Electronics and Computing (ROPEC). IEEE, 2016, pp. 1–6.
[201] A. E. Aguilar-Justo and E. Mezura-Montes, “A local cooperative ap-

proach to solve large-scale constrained optimization problems,” Swarm

and Evolutionary Computation, vol. 51, p. 100577, Dec. 2019.
[202] J. Blanchard, C. Beauthier, and T. Carletti, “A cooperative co-

evolutionary algorithm for solving large-scale constrained problems
with interaction detection,” in Genetic and Evolutionary Computation

Conference. ACM, 2017, pp. 697–704.
[203] M. N. Omidvar, IDG: A faster and more accurate differential grouping

algorithm. School of Computer Science, University of Birmingham,
2015.

[204] C. He, R. Cheng, Y. Tian, X. Zhang, K. C. Tan, and Y. Jin, “Paired
Offspring Generation for Constrained Large-Scale Multiobjective Op-
timization,” IEEE Transactions on Evolutionary Computation, vol. 25,
no. 3, pp. 448–462, Jun. 2021.

[205] W. Chu, X. Gao, and S. Sorooshian, “Handling boundary constraints
for particle swarm optimization in high-dimensional search space,”
Information Sciences, vol. 181, no. 20, pp. 4569–4581, 2011.

[206] O. A. Elhara, “Stochastic black-box optimization and benchmarking in
large dimensions,” Ph.D. dissertation, Université Paris-Saclay, 2017.

[207] K. Tang, X. Yao, P. N. Suganthan, C. MacNish, Y.-P. Chen, C.-M. Chen,
and Z. Yang, “Benchmark functions for the cecâĂŹ2008 special session
and competition on large scale global optimization,” Nature Inspired
Computation and Applications Laboratory, USTC, China, Tech. Rep.,
2007.

[208] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Bench-
mark functions for the CEC’2010 special session and competi-
tion on large-scale global optimization,” Nature Inspired Computa-
tion and Applications Laboratory, USTC, China, Tech. Rep., 2009,
http://nical.ustc.edu.cn/cec10ss.php.

[209] X. Li, K. Tang, M. N. Omidvar, Z. Yang, and K. Qin, “Benchmark

functions for the CEC’2013 special session and competition on large-
scale global optimization,” RMIT University, Melbourne, Australia,
Tech. Rep., 2013, http://goanna.cs.rmit.edu.au/ xiaodong/cec13-lsgo.

[210] M. Jamil and X.-S. Yang, “A literature survey of benchmark functions
for global optimization problems,” arXiv preprint arXiv:1308.4008,
2013.

[211] P. Suganthan, N. Hansen, J. Liang, K. Deb, Y. Chen, A. Auger,
and S. Tiwari, “Problem definitions and evaluation criteria for
the CEC 2005 special session on real-parameter optimization,”
Nanyang Technological University, Singapore, Tech. Rep., 2005,
http://www.ntu.edu.sg/home/EPNSugan.

[212] M. Lozano, D. Molina, and F. Herrera, “Editorial scalability of evolu-
tionary algorithms and other metaheuristics for large-scale continuous
optimization problems,” Soft Computing, vol. 15, no. 11, pp. 2085–
2087, 2011.

[213] N. Hansen, S. Finck, R. Ros, and A. Auger, “Real-parameter black-
box optimization benchmarking 2009: Noiseless functions definitions,”
Tech. Rep., 2009.

[214] Y. Sun, M. Kirley, and S. K. Halgamuge, “Quantifying variable
interactions in continuous optimization problems,” IEEE Transactions

on Evolutionary Computation, vol. 21, no. 2, pp. 249–264, 2017.
[215] E. Sayed, D. Essam, and R. Sarker, “Dependency identification tech-

nique for large scale optimization problems,” in IEEE Congress on

Evolutionary Computation. IEEE, 2012, pp. 1–8.
[216] S. K. Goh, K. C. Tan, A. Al-Mamun, and H. A. Abbass, “Evolutionary

big optimization (BigOpt) of signals,” in IEEE Congress on Evolution-

ary Computation. IEEE, 2015, pp. 3332–3339.
[217] R. Cheng, Y. Jin, M. Olhofer et al., “Test problems for large-scale

multiobjective and many-objective optimization,” IEEE Transactions

on Cybernetics, vol. 47, no. 12, pp. 4108–4121, 2017.
[218] M. N. Omidvar, X. Li, and K. Tang, “Designing benchmark problems

for large-scale continuous optimization,” Information Sciences, vol.
316, pp. 419–436, 2015.

[219] E. D. Dolan, J. J. More, and T. S. Munson, “Benchmarking optimization
software with COPS 3.0,” Mathematics and Computer Science Divi-
sion, Argonne National Laboratory, 9700 South Cass Avenue, Argonne,
Illinois 60439, Tech. Rep., 2004.

[220] W. Luo, B. Yang, C. Bu, and X. Lin, “A hybrid particle swarm
optimization for high-dimensional dynamic optimization,” in Asia-

Pacific Conference on Simulated Evolution and Learning. Springer,
2017, pp. 981–993.

[221] L.-Y. Tseng and C. Chen, “Multiple trajectory search for large scale
global optimization,” in IEEE Congress on Evolutionary Computation.
IEEE, 2008, pp. 3052–3059.

[222] Y. Wang and B. Li, “A restart univariate estimation of distribution
algorithm: sampling under mixed gaussian and lévy probability dis-
tribution,” in IEEE Congress on Evolutionary Computation. IEEE,
2008, pp. 3917–3924.

[223] ——, “Two-stage based ensemble optimization for large-scale global
optimization,” in IEEE Congress on Evolutionary Computation. IEEE,
2010, pp. 1–8.

[224] A. LaTorre, S. Muelas, and J.-M. Peña, “A mos-based dynamic
memetic differential evolution algorithm for continuous optimization: a
scalability test,” Soft Computing, vol. 15, no. 11, pp. 2187–2199, 2011.

[225] ——, “Large scale global optimization: Experimental results with
MOS-based hybrid algorithms,” in IEEE Congress on Evolutionary

Computation. IEEE, 2013, pp. 2742–2749.
[226] D. Molina and F. Herrera, “Iterative hybridization of de with local

search for the CEC’2015 special session on large scale global opti-
mization,” in IEEE Congress on Evolutionary Computation. IEEE,
2015, pp. 1974–1978.

[227] D. Molina, A. LaTorre, and F. Herrera, “SHADE with Iterative Local
Search for Large-Scale Global Optimization,” in 2018 IEEE Congress

on Evolutionary Computation (CEC), Jul. 2018, pp. 1–8.
[228] A. A. Hadi, A. W. Mohamed, and K. M. Jambi, “Lshade-spa memetic

framework for solving large-scale optimization problems,” Complex &

Intelligent Systems, vol. 5, no. 1, pp. 25–40, 2019.
[229] A. Bolufé-Röhler, S. Chen, and D. Tamayo-Vera, “An analysis of

minimum population search on large scale global optimization,” in
2019 IEEE Congress on Evolutionary Computation (CEC). IEEE,
2019, pp. 1228–1235.

[230] Y. Wang, J. Huang, W. S. Dong, J. C. Yan, C. H. Tian, M. Li, and W. T.
Mo, “Two-stage based ensemble optimization framework for large-
scale global optimization,” European Journal of Operational Research,
vol. 228, no. 2, pp. 308–320, 2013.

[231] D. Molina, A. LaTorre, and F. Herrera, “An insight into bio-inspired and
evolutionary algorithms for global optimization: review, analysis, and



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TEVC.2021.3130835, IEEE
Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. XX, NO. X, AUGUST 2015 21

lessons learnt over a decade of competitions,” Cognitive Computation,
vol. 10, no. 4, pp. 517–544, 2018.

[232] D. M. Cabrera, “Evolutionary algorithms for large-scale global op-
timisation: a snapshot, trends and challenges,” Progress in Artificial

Intelligence, vol. 5, no. 2, pp. 85–89, 2016.
[233] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-and-

conquer algorithm for unconstrained large-scale black-box optimiza-
tion,” ACM Transactions on Mathematical Software, vol. 42, no. 2,
p. 13, 2016.

[234] K. Sörensen, “MetaheuristicsâĂŤthe metaphor exposed,” International

Transactions in Operational Research, vol. 22, no. 1, pp. 3–18, 2015.
[235] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Designing

neural networks through neuroevolution,” Nature Machine Intelligence,
vol. 1, no. 1, pp. 24–35, 2019.

[236] F. P. Such, V. Madhavan, E. Conti, J. Lehman, K. O. Stanley, and
J. Clune, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learn-
ing,” arXiv preprint arXiv:1712.06567, 2018.

[237] S. Fujino, T. Hatanaka, N. Mori, and K. Matsumoto, “The evolutionary
deep learning based on deep convolutional neural network for the anime
storyboard recognition,” in International Symposium on Distributed

Computing and Artificial Intelligence. Springer, 2017, pp. 278–285.
[238] G. Morse and K. O. Stanley, “Simple evolutionary optimization can

rival stochastic gradient descent in neural networks,” in Proceedings

of the 2016 on Genetic and Evolutionary Computation Conference.
ACM, 2016, pp. 477–484.

[239] E. Real, S. Moore, A. Selle, S. Saxena, Y. L. Suematsu, J. Tan,
Q. V. Le, and A. Kurakin, “Large-scale evolution of image classifiers,”
in Proceedings of the 34th International Conference on Machine

Learning-Volume 70. JMLR. org, 2017, pp. 2902–2911.
[240] A. Yaman, D. C. Mocanu, G. Iacca, G. Fletcher, and M. Pechenizkiy,

“Limited evaluation cooperative co-evolutionary differential evolution
for large-scale neuroevolution,” in Proceedings of the Genetic and

Evolutionary Computation Conference, 2018, pp. 569–576.
[241] X. Cui, W. Zhang, Z. Tüske, and M. Picheny, “Evolutionary stochastic

gradient descent for optimization of deep neural networks,” in Advances

in neural information processing systems, 2018, pp. 6048–6058.
[242] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Don-

ahue, A. Razavi, O. Vinyals, T. Green, I. Dunning, K. Simonyan
et al., “Population based training of neural networks,” arXiv preprint

arXiv:1711.09846, 2017.
[243] T. Elsken, J. H. Metzen, and F. Hutter, “Neural Architecture Search:

A Survey,” Journal of Machine Learning Research, p. 21, 2019.
[244] T. Salimans, J. Ho, X. Chen, S. Sidor, and I. Sutskever, “Evolu-

tion Strategies as a Scalable Alternative to Reinforcement Learning,”
arXiv:1703.03864 [cs, stat], Sep. 2017.

[245] Y. Bengio, A. Lodi, and A. Prouvost, “Machine learning for combinato-
rial optimization: a methodological tour d’horizon,” European Journal

of Operational Research, vol. 290, no. 2, pp. 405–421, 2021.
[246] A. Lodi and G. Zarpellon, “On learning and branching: a survey,” Top,

vol. 25, no. 2, pp. 207–236, 2017.
[247] Y. Sun, X. Li, and A. Ernst, “Using statistical measures and machine

learning for graph reduction to solve maximum weight clique prob-
lems,” IEEE Transactions on Pattern Analysis and Machine Intelli-

gence, vol. 43, no. 5, pp. 1746–1760, 2019.
[248] Y. Sun, A. Ernst, X. Li, and J. Weiner, “Generalization of machine

learning for problem reduction: a case study on travelling salesman
problems,” OR Spectrum, vol. 43, no. 3, pp. 607–633, 2021.

[249] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization.
Athena Scientific Belmont, MA, 1997.

[250] M. Kruber, M. E. Lübbecke, and A. Parmentier, “Learning When to
Use a Decomposition,” in Integration of AI and OR Techniques in

Constraint Programming, ser. Lecture Notes in Computer Science,
D. Salvagnin and M. Lombardi, Eds. Cham: Springer International
Publishing, 2017, pp. 202–210.

[251] C. Blum and G. R. Raidl, Hybrid Metaheuristics: Powerful Tools for

Optimization. Springer, 2016.
[252] A. Kenny, X. Li, A. T. Ernst, and D. Thiruvady, “Towards solving

large-scale precedence constrained production scheduling problems in
mining,” in Genetic and Evolutionary Computation Conference. ACM,
2017, pp. 1137–1144.

[253] A. Kenny, X. Li, and A. T. Ernst, “A merge search algorithm and its
application to the constrained pit problem in mining,” in Proceedings

of the Genetic and Evolutionary Computation Conference, 2018, pp.
316–323.

[254] A. Kenny, X. Li, A. T. Ernst, and Y. Sun, “An improved merge
search algorithm for the constrained pit problem in open-pit mining,” in

Proceedings of the Genetic and Evolutionary Computation Conference,
2019, pp. 294–302.

[255] S. Elsayed, R. Sarker, D. Essam, and C. A. Coello Coello, “Evolution-
ary approach for large-Scale mine scheduling,” Information Sciences,
vol. 523, pp. 77–90, Jun. 2020.

[256] C. He, R. Cheng, C. Zhang, Y. Tian, Q. Chen, and X. Yao, “Evolu-
tionary Large-Scale Multiobjective Optimization for Ratio Error Esti-
mation of Voltage Transformers,” IEEE Transactions on Evolutionary

Computation, vol. 24, no. 5, pp. 868–881, Oct. 2020.

Mohammad Nabi Omidvar (M09, SM’20) re-
ceived the first bachelors (First Class Hons.) degree
in computer science, the second bachelors degree in
applied mathematics, and the Ph.D. degree in com-
puter science from RMIT University, Melbourne,
VIC, Australia, in 2010, 2014, and 2016, respec-
tively. He is currently an Assistant Professor of
Artificial Intelligence in Financial Services affiliated
with Leeds University Business School and School
of Computing, University of Leeds, Leeds, U.K
and the chair of IEEE Computational Intelligence

Taskforce on Large-Scale Global Optimization. Prior to that he was a Research
Fellow with the School of Computer Science, University of Birmingham,
Birmingham, U.K. Dr. Omidvar is the winner of IEEE CEC Large-Scale
Global Optimization Competition in 2019, and a recipient of the IEEE Trans-
action on Evolutionary Computation Outstanding Paper Award for his research
on large-scale global optimization in 2017, the Australian Postgraduate Award
in 2010, and the Best Computer Science Honours Thesis Award from the
School of Computer Science and IT, RMIT University. His current research
interests include large-scale global optimization, high-dimensional machine
learning, and AI for financial services.

Xiaodong Li (Fellow, IEEE) received the B.Sc.
degree from Xidian University, Xi’an, China, and the
Ph.D. degree in information science from the Univer-
sity of Otago, Dunedin, New Zealand. He is a Pro-
fessor with the School of Computing Technologies,
RMIT University, Melbourne, VIC, Australia. His
research interests include machine learning, evolu-
tionary computation, neural networks, data analytics,
multiobjective optimization, multimodal optimiza-
tion, and swarm intelligence. Prof. Li is a recipient of
2013 ACM SIGEVO Impact Award and 2017 IEEE

CIS “IEEE Transactions on Evolutionary Computation Outstanding Paper
Award.” He serves as an Associate Editor for the IEEE Transactions on
Evolutionary Computation and Swarm Intelligence (Springer). He is a former
Vice-Chair of the IEEE Task Force on Multimodal Optimization and a Former
Chair of the IEEE CIS Task Force on Large Scale Global Optimization.

Xin Yao obtained his Ph.D. in 1990 from the
University of Science and Technology of China
(USTC), MSc in 1985 from North China Institute
of Computing Technologies and BSc in 1982 from
USTC. He is a Chair Professor of Computer Science
at the Southern University of Science and Technol-
ogy, Shenzhen, China, and a part-time Professor of
Computer Science at the University of Birmingham,
UK. He is an IEEE Fellow and was a Distinguished
Lecturer of the IEEE Computational Intelligence
Society (CIS). He served as the President (2014-

15) of IEEE CIS and the Editor-in-Chief (2003-08) of IEEE Transactions on
Evolutionary Computation. His major research interests include evolutionary
computation, ensemble learning, and their applications to software engineer-
ing. His work won the 2001 IEEE Donald G. Fink Prize Paper Award; 2010,
2016 and 2017 IEEE Transactions on Evolutionary Computation Outstanding
Paper Awards; 2011 IEEE Transactions on Neural Networks Outstanding
Paper Award; and many other best paper awards at conferences. He received a
prestigious Royal Society Wolfson Research Merit Award in 2012, the IEEE
CIS Evolutionary Computation Pioneer Award in 2013 and the 2020 IEEE
Frank Rosenblatt Award.


