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ABSTRACT The convergence of legacy power system components with advanced networking and
communication facilities have led towards the development of smart grids. Smart grids are envisioned
to be the next generation innovative power systems, guaranteeing resilience, reliability and sustainability
and to facilitate energy production, distribution and management. Nonetheless, the development of such
systems entails challenges covering a broad spectrum ranging from operational management up to data-
driven power accounting and network security. Given the highly distributed properties of the modern grid,
energy theft can now be observed at various transmission and distribution levels. Apart from the financial
gain for a malicious actor, energy theft can also affect critical grid processes with a direct impact on its
overall resilience and safety. This survey reviews recent energy theft strategies as well as detection methods
from a data-driven perspective. By considering various operational and functional layers within modern
smart grids we critically assess how energy theft can be formulated. Moreover, we provide an overview of
the grid demand, supply and control chain with a focus on energy theft and associated security flaws that
currently exist in the smart grid ecosystem. Different attack detection models for theft detection in the smart
grid are categorized. Lastly, we discuss various open issues in the scope of data-driven energy theft detection
methods and provide future directions to carry out research in this field.

INDEX TERMS Energy theft, Data-driven methods, Smart grid, Cybersecurity

Nomenclature
Abbreviation
T&D Transmission and distribution
ACC Accuracy
AMI Advanced metering infrastructure
ANN Artificial neural network
AUC Area under the curve
BMS Building management system
CNN Convolutional neural network
DC Direct current
DL Deep learning
DR Demand response
DRES Distributed renewable energy sources
DSO Distribution system operator
EMS Energy management system
FDI False data injection

FIT Feed in tariff
FPR False positive rate
GBM Gradient boosting machines
GPS Global positioning system
GRU Gated recurrent unit
HAN Home area network
HEMS Home energy management system
HV High voltage
ICS Industrial control system
IEA International energy agency
IED Intelligent electronic device
KNN K-nearest neighbors
LAN Local area network
LOF Local outlier factor
LSTM Long short term memory
LV Low voltage
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MITM Man in the middle
MLP Multi layer perceptron
MV Medium voltage
NAN Neighbourhood area network
OPF Optimum path forest
PCA Principal component analysis
PDC Phasor data concentrator
PMU Phasor measurement unit
RNN Recurrent neural network
RTU Remote terminal unit
SCADA Supervisory control and data acquisition
SVM Support vector machine
TPR True positive rate
TSO Transmission control operator
WAMS Wide area measurement system
WAN Wide area network
Notation
α Theft coefficient on generation data
β Theft coefficient on supply data
γ Theft coefficient on demand data
G T&D grid
M Number of energy distribution buses
N Number of total nodes
P Number of prosumer nodes
Q Number of consumer nodes
S Number of grid supply nodes
Ec Demand node energy consumption
Er Prosumer node energy generation
Es Energy supply by T&D control nodes
NTL Cumulative non-technical energy loss
TL Technical energy loss

I. INTRODUCTION

CYBER-PHYSICAL attacks on power grids aiming ex-
plicitly at energy theft are the most prominent and they

have been reported to cause significant financial as well as
functional losses to energy utility companies at a global
scale. Hence, energy theft attacks cause major concerns to
both providers and consumers. Irrespective of whether such
attacks are executed by a single consumer or at a large
scale, losses incurred to providers due to energy theft are
undesirable and enormous. As reported in [1], energy theft
causes utility companies to loose more than £19 billion
yearly on a global basis.

Several studies carried out in 2019 point that almost 80%
of 2000 UK residents were not aware that energy theft is
directly affecting them [2]. The reported studies also reveal
that due to energy theft, £20 are added yearly on average to
a household bill. Thus, millions of clients pay for energy that
they have never used and, most importantly, did not steal.
In general, each year in the UK alone, energy worth £400
million is stolen leading to inflated customer bills [3].

In order to secure such energy and revenue losses, utility
companies typically conduct physical inspections in the lo-
cations where energy theft is due to intensify [4]. Nonethe-
less, such conventional energy theft detection tracking is

time-consuming, inaccurate, costly, and labour-intensive [5].
Therefore, to deploy more effective theft countermeasures,
providers need to make use of the present electricity market
driven by the need to collect and analyze data. The facilitation
of data-driven operation drives utility providers to embed
smart metering equipment in various levels of the electricity
flow within smart grids [6]. The entire life cycle of gathering
energy data runs through smart grid infrastructures which are
categorized into electricity generation, transmission and dis-
tribution (T&D), and end-user infrastructure. This data col-
lection infrastructure leads to the emergence of an advanced
line of detection method driven by measurement-based data
providing opportunities to address energy theft. Data-driven
detection is able to reduce the risk of lateral attacks leading
to energy theft and recognize anomalous system behaviours
arising from such events. Thus, reduce revenue losses for
service utilities.

Although, a variety of data-driven detection methods have
been developed, malicious actors continue to discover in-
novative strategies in an attempt to perpetrate energy thefts
across smart-grid infrastructures [7]. In this regard, the smart
grid data measurements and monitoring infrastructure can
pave the way for more approaches to fabricate next genera-
tion data-driven theft attacks, thus increasing relative energy
and financial losses. McLaughlin et al. [8] and Jiang et al. [9]
review these data-driven theft attacks from the perspective
of power-system communication-layer architectures, based
on adversary strategies targeting the integrity of the power
system by manipulating power demand data. However, these
surveys were not focused on energy theft and do not consider
recent advances in modern smart grids, as the nature of vul-
nerabilities and threats related to energy theft are constantly
changing due to the increasing intersection of power grids
with Internet-enabled cyber-physical systems [10].

Motivated by these observations, we investigate and sur-
vey the advances in energy theft from different perspectives
within the smart grid ecosystem revolving around energy data
manipulation from all the three functions of demand, supply,
and generation. A variety of vulnerabilities enable adver-
saries to exploit grid infrastructure components, communi-
cation networks and managements systems with the intention
of gaining monetary benefit. Hence, in this survey we provide
an overview of different types of energy theft attacks in smart
grids. We audit the latest research on data-driven attacks
enabling energy theft and outline key findings. Moreover, we
also discuss the existing data-driven energy theft detection
schemes and summarise outstanding challenges. This work
serves as the first stop for general audiences as well as
domain specialists looking for information and guidelines
regarding energy theft in present-day smart grid systems
and markets. We explicitly contribute in the wider research
community for modern energy grids by providing:

1) The first survey paper covering the largest spectrum of
data-driven attack strategies available in the literature
used for carrying out energy theft in the modern elec-
tricity market.
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2) A novel energy theft categorization model from the
different smart-grid data flow perspectives.

3) A critical assessment of lessons learned from the appli-
cation of various data-driven approaches presently used
for detecting energy theft.

4) Recommendations for future research directions with
respect to the design of data-driven energy theft detec-
tion schemes as tailored with an extensive analysis of
open issues.

The remainder of this paper is organized as follows:
section II focuses on the key infrastructures consisting the
modern power grids such as to relate attack vectors associ-
ated with energy theft. Section III provides a comprehensive
analysis on data-driven energy theft attacks. In section IV, we
categorize and discuss data-driven algorithms used in energy
theft detection systems. Section V presents the existing gaps
in research for data-driven energy theft detection discussing
open issues and recommends future research directions. Fi-
nally, in Section VI, we conclude and summarise this paper.

II. SMART GRID COMPONENTS
Energy theft may span over multiple logical or physical
entities and can be instrumented via numerous attack vectors
affecting one or more of the systems consisting the modern
smart grid. Within this work, the various properties of energy
theft are discussed in terms of the intrinsic characteristics
of each of these infrastructures. Therefore this section is
dedicated at presenting an overview of the infrastructure of
the smart grid with its core components.

One of the main goals within the modern smart grid is
to ensure the optimal operation of the electricity supply
chain1. As shown in Fig. 1, the end-to-end energy supply
chain is decomposed into three distinct phases; i) generation
, ii) transmission and distribution (i.e. T&D) and, iii) end-
user consumption. All three phases are directly dependent on
explicit technologies, administrative domains and networked
power system infrastructures. Each of these entities pose
unique vulnerabilities that can enable energy theft [11], [12].

The energy generation phase is achieved within large,
centralised power stations that nowadays are interfaced with
power generation DRES deployments and are commonly
owned by the national transmission energy network con-
trolled by one or a set of transmission control operators
(TSOs). Each TSO is engaged through a competitive energy
trading market scheme with a number of distribution system
operators (DSOs) in order to supply them with electricity
to be distributed to end-consumers 2. DSOs may also have
a direct interface and own DRES deployments or they fre-
quently have an energy trading contract with end-consumers
or third-party DRES owners that contribute directly in the
energy generation phase.

1This paper is focused on energy delivered by electricity networks and not
gas.

2In the USA a TSO may be referred to as an independent system operator
(ISO) and a DSO as a regional transmission operator (RTO).

In general, any control and management (sub)systems
alongside the electro-mechanical set of power systems en-
abling data and energy flows spanning the energy supply
chain are underpinned by diverse and ubiquitous data com-
munication technologies. Fig. 1, indicatively illustrates a
variety of potential networking technologies and deployment
setups that could be employed in modern smart grids. Sim-
ilarly with the energy trading market, the business model
behind the ownership of these deployments depends on a
number of aspects related to country-level legislation and
policies [13] and it is out of the interest within this paper.

A. ENERGY GENERATION
1) Centralised generation
Energy generation systems can be categorised to operate
either in a centralised or a decentralised fashion. Centralised
generation systems produce large-scale electricity at power
stations, utilising fossil fuels and nuclear plants or renewable
resources such as hydroelectric power plants, wind and solar
farms. These centralised systems are usually placed in remote
areas that are distant from the end users. and are linked to
distributed stations owned by a given DSO via a network of
HV transmission lines operated by a TSO [14]. The DSO
stations are responsible for transmitting electricity through
the medium and low voltage grids to multiple end-users [15].

2) Distributed Renewable Energy Sources (DRES)
DRES have evolved to act as an integral element of the
electricity generation infrastructure aiding the needs of the
backbone grid in terms of critical ancillary services (e.g.,
frequency regulation, reactive power) enabling grid stabil-
isation, diversifying energy trading and most importantly
matching the peak during overloaded periods [16]–[18].
Moreover, DRES deployments are currently considered as
the most suitable components for contributing towards the
reduction of global carbon emissions [17]. According to
the international energy agency (IEA), DRES deployments
have contributed to 40% of the total primary energy supply
globally in 2020 [19].

Energy generation billing and trading for DRES is cur-
rently achieved via two distinct systems; i) net metering
and, ii) feed in tariffs (FIT). Net metering operates with a
single meter and employs a model where prosumers use their
own DRES-based generated power on-site and any surplus
is considered as a future credit on their billing issued by
their DSO. On the other hand, FIT operates based on two
smart meters residing at the prosumer end dealing with
the capturing of energy generation and consumption rates
independently. By contrast to net metering, FIT decouples the
monitoring process and facilitates a simpler data processing
framework for energy trading as well as billing, thus it was
extensively adopted in a number of developed countries such
as the UK, Canada, Japan, China, and Australia [20].

Despite of the various benefits offered by DRES deploy-
ments, their direct dependency on natural resources (e.g.,
wind, solar radiation) that are in some cases unpredictable
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FIGURE 1: Phases and components of the energy supply chain in the smart grid.

to fully forecast may cause challenges and higher complexity
within the overall grid optimisation process. Thus increasing
risks related to aspects of reliability, resilience as well as
safety [21], [22]. Nonetheless, a number of approaches have
been proposed to confront complexity constraints through
ramp strategies [17]. In parallel, the integration of DRES
involves diverse types of data communication and system-
on-chip technologies that are commonly manufactured with
minimal security [23], [24]. Hence, enlarging the spectrum
of cyber attacks that could be initiated such as to support
potential energy theft acts [25].

B. ENERGY TRANSMISSION & DISTRIBUTION (T&D)

1) T&D energy flow

The T&D infrastructure is responsible for enabling the trans-
mission of power and further distribution of electricity to the
consumers. As depicted in Fig. 1, T&D infrastructures may
be categorised into the low voltage (LV), high voltage (HV)
and medium voltage (MV) power networks. Throughout the
years, the topology for these power networks has evolved
from an ordinary radial structure to interconnected or consis-

tent networks, which has guaranteed higher reliability, oper-
ational economy, and best equipment use [26]. Primarily, the
electricity produced by the centralized electricity generation
systems is transported to different distribution stations over
HV transmission lines, which is then supplied to the end-
users through the widespread transmission lines of MV and
LV networks. In parallel, modern T&D infrastructures also
distribute energy generated at DRES deployments through
MV-LV substations [26].

2) T&D data communication
The data communication network underpinning the oper-
ations of T&D infrastructures commonly consists of two
types of networked deployments that interact with the end-
consumer home area network (HAN). As demonstrated in
Fig. 2, end-to-end data communication between the T&D
infrastructure and a HAN is achieved via a wide area net-
work (WAN) interacting with a set of neighbourhood area
networks (NANs).

A WAN typically represents the aggregation of NANs and
it is mapped at the scale of a city-wide network considering
data flows related to energy distributed by multiple micro-
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FIGURE 2: Exemplar Smart Grid network architecture highlighting some of the main data communication standards.

grids where each micro-grid is linked with a particular NAN.
In real deployments, the structure of a WAN is quite diverse
since it may consist of multiple networking technologies with
varying physical, logical and software components dealing
with network control and management [27], [28]. On the
other hand, NANs can be considered as a subset of a WAN
since they support smaller geographical regions and they
act as proxies of a given WAN for functions related to
connectivity and data aggregation of HANs with the main
WAN. In general, a WAN or a set of WANs alongside re-
lated NANs and HANs are not necessarily always owned by
corresponding TSOs or DSOs as they could be managed and
maintained by third-party network providers (e.g., Internet
Service Providers) or community entities (e.g., municipality).

3) Data acquisition & management
The actual interface of data communication with data-driven
control and management of the processes explicit to reliable
and resilience distribution of energy is achieved via network-
enabled cyber-physical systems such as supervisory control
and data acquisition (SCADA) systems. These systems are
nowadays the most frequently used systems within modern
T&D infrastructures. SCADA systems provide native inte-
gration of data communication technologies and system com-
ponents such as remote terminal units (RTUs) and intelligent
electronic devices (IEDs) [29], [30]. The data communication
reliability offered by SCADA systems enables TSO/DSO
control centres to develop close to real-time state estimation
algorithms in order to optimise the grid’s performance and
increase situation-awareness [31], [32].

A relatively recent alternative approach to SCADA are
wide area measurement systems (WAMS) [33]. WAMS are
embedded with new data acquisition technologies facilitat-
ing synchronised measurements between remote T&D de-
ployments (e.g, micro-grids, substations) and facilitate the

basis for monitoring, operation and control [34]. In practise,
WAMS may be decomposed by a set of distributed Phasor
measurement units (PMUs) and phasor data concentrators
(PDCs) that sample data related to the waveform and the
analog voltage of remote sites through a global positioning
system (GPS) clock [33], [35].

C. END-USER INFRASTRUCTURE
1) Advanced Metering Infrastructure (AMI)
AMIs are considered one of the fundamental components
within the smart functionalities of the modern energy grid.
The operation of such infrastructures achieves end-to-end
metering in order to support the billing and trading processes
between an end-consumer or prosumer and a DSO/TSO.
A core innovation behind AMIs lies with the integration
of smart meters within residential households or business
buildings. In most developed and many of the developing
countries, smart meters have replaced the traditional me-
chanical and analogue meters and they enable a variety of
services. Apart from the real-time logging of measurements
related to end-user energy consumption (i.e. demand data),
smart meters also assess other features such as voltage levels
as well as real-time monitoring [36].

As already mentioned, data captured by smart meters
contribute to the overall demand response (DR) model and
they are transmitted through low-powered communication
and automation protocols (e.g., ZigBee, Z-Wave) in synergy
with upper layer application protocols (e.g., HTTP/HTTPS)
supported by their corresponding HAN. Fig. 2 provides an
exemplar illustration in which smart meter measurements are
locally aggregated within a HAN and are further distributed
to the corresponding T&D infrastructure through an adja-
cent NAN interacting with a WAN. The sampling rate for
measurements gathered by individual smart meters falls with
a pre-defined schedule agreed between the end-consumer
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or prosumer with its corresponding DSO. Normally, mea-
surements are agreed to be sent in 5, 15, 30, or 60 minute
intervals [36]–[39].

2) Energy Management System (EMS)
The adequate management and reactive control of energy
usage and production in end-user deployments is achieved
through the installation of EMS instances. Such instances
may be directly interfacing with a given DSO or through
proxy third-party stakeholders maintaining and supporting
large-scale EMS deployments. From the end-user perspec-
tive, there is a variety of EMS types coming with specific
functionalities such as home energy management systems
(HEMSs) and building management systems (BMSs)3. In
parallel, EMS can also be present at a larger scale deployed
either at a centralised or a distributed topology aggregat-
ing measurements for the T&D insfrastructure [40]–[42].
Nonetheless, the main role of an EMS instance at the end-
user infrastructure is to optimise energy consumption for
an individual or a set of individuals through controlling
the various appliances residing within a given building or
household [43]. Hence, EMS software instances are usually
composed of a controller instructed by advanced energy op-
timisation algorithmic components coupled with rule-based
control functions orchestrating the operations of appliances
[6], [44].

D. GRID EFFECTIVENESS PILLARS
The effectiveness of the grid in all levels depends on the
performance of both quantitative as well as qualitative in-
dicators. For instance, the reliable operation of the energy
grid directly affects the well-being and safety of consumers
whereas well-being is not a fully quantifiable parameter and,
in parallel, grid reliability depends on quantifiable perfor-
mance metrics (e.g., demand-supply rate) [45]. Moreover,
cyber-physical challenges, such as attacks enabling energy
theft may affect directly grid optimisation processes, thus
impacting grid reliability with a cascading impact over user
safety since some power system machinery could be affected
and malfunctioning [46], [47]. The latter example has a num-
ber of parameters that are not necessarily quantifiable (e.g.,
grid security level, safety impact on consumers/prosumers),
hence a holistic correlation scheme between the aforemen-
tioned pillars is an extremely challenging task.

As evidenced in Fig. 3 this work relates grid effectiveness
with the three broad domains of reliability, resilience and
safety that we refer to as pillars. We exploit definitions de-
veloped throughout the years and summarise the definitions
of the three inter-related pillars in order to structurally assess
the energy theft impact in the overall grid effectiveness [47]–
[49]:

1) Grid Reliability: preservation of continuous energy sup-
ply to end consumers .

3Discussion of EMS variations is out of scope for this paper.

2) Grid Resilience: preservation of continuous energy sup-
ply to end users with an acceptable level of energy
quality while under stress or faults.

3) User Safety: ensure that an individual or a group of
individuals utilising or maintaining the grid and its
services are not physically affected.

FIGURE 3: Grid effectiveness pillars.

This survey acknowledges that the highlighted pillars are
considered widely as independent research domains them-
selves. Hence, deeper investigation on the structure and prop-
erties of these pillars is out of the context within this paper.

III. ENERGY THEFT
Energy theft can be broadly defined as the case where indi-
viduals do not pay their electricity bills or they are paying
less than they should due to their meter being tampered
or bypassed. Attack vectors underpinning energy theft span
numerous vulnerability domains due to the emergence of a
plethora of smart grid applications (e.g., energy trading) that
rely on inherently vulnerable networked environments as a
result of the convergence of diverse legacy power systems
with Internet technologies (e.g., ICS deployments, metering).
In general, energy theft can be instrumented through a variety
of techniques exploiting both physical as well as data or
communication-oriented properties of the current grid [4],
[50], [51]. Hence, the adequate categorisation of energy theft
types is a highly challenging task.

In order to address the aforementioned challenge and ap-
propriately structure the focus within this work, we identify
two distinct classes of energy theft:

1) Data-agnostic energy theft: the act of physical tamper-
ing of power components through techniques such as
obstruction and bypass of electro-mechanical meters,
cable hooking as well as modification of meter circuitry.

2) Data-driven energy theft: the act of manipulating and al-
tering communication and/or consumption-related data
generated and/or logged at any networked metering
(e.g., smart-meter), management (e.g., SCADA system)
and control device (e.g., PLC) as well as billing software
(e.g., utility mobile apps) aiming at reporting false con-
sumption information to the power distribution authority
(e.g., a DSO).

Both classes target either of the bidirectional energy or
data flow between different grid aggregation points (e.g.,
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T&D, end-user, generation) and they have seen a consider-
able level of attention from the research community as well
as the society in general [12], [20]. Moreover, both types
have shown to be applicable in all three levels of aggregation
within a smart grid. Hence, energy theft can be deployed in
the power generation infrastructure, the T&D network as well
as the end-consumer level.

This work argues that the main concept of a given data-
driven theft attack can be abstracted by a discrete function
in which inter-dependent variables are tailored based on the
targeted infrastructures composing a complete smart grid
deployment. Hence, the function may vary depending on
the variable-specific adjustments conducted by a malicious
actor based on the intrinsic properties of a given smart
grid (sub)infrastructure (e.g., communication, power). Com-
monly, malicious actors attempt to target a set of diverse
vulnerabilities of both system and network components from
all three infrastructures described herein. Evidently, data-
driven energy theft in all three infrastructures has consider-
ably increased due to the data-oriented functioning of the
business layer as envisaged in the current smart grid reference
architectures (e.g., SGAM [52]).

A. TECHNICAL IMPACT OF ENERGY THEFT
Energy theft is underpinned by a large spectrum of cyber-
physical attacks that span a number of organisation (e.g.,
physical security) as well as technology-oriented vulnerabil-
ities (e.g., legacy ICS security). The current ubiquity offered
by the bidirectional flow of energy and data in the current
smart grid, alongside the highly distributed nature of various
components (e.g., DRES) enable the composition of energy
theft-related attempts.

In the year 2012, a German renewable power utility was
targeted with the denial of service (DoS) attack when thou-
sands of requests were sent to its server to block its operation
[53]. This attack knocked off the Internet connection of the
utility for five consecutive days. Such a scenario can serve
as an opportunity for the malicious entities to orchestrate
an energy theft without being detected causing major losses
to the utility. More recently, there have been unconfirmed
attempts on national grid infrastructure of the United States
and United Kingdom wherein the potential hackers tried to
break into the utility’s network to disrupt their services [54],
[55]. These attacks, if successful, have the potential to affect
grid effectiveness by hampering the business model of the
grid and can also lead to the infrastructure failure. Following
such events, the US and UK security services issued warnings
to the providers to raise the cyber-security standards in order
to mitigate such attacks which have increased manifolds.

Cyber attacks on power grids were, and still are in the
majority, instrumented with the intent to manipulate data
flows of the various grid resources and/or services. A number
of data-driven cyber attacks (e.g., as in [56], [57]) caused
catastrophic faults on system components leading vital grid
optimisation processes to malfunction. Thus, causing a decay
on the overall grid effectiveness. For instance, the infamous

cyber-attack in Ukraine’s T&D infrastructure resulted in
power outages that have affected around 225, 000 consumers
for several hours [56]. Another similar attack in 2019 targeted
the major electricity supplier in South Africa’s Johannesburg
which caused major disruption in the electricity supply for
some resident areas leaving these without electricity [58].
The attackers used ransomware to encrypt the files and com-
puter systems of the utility, which affected the ability of the
customers to buy pre-paid electrical energy and later hindered
with the response towards localised blackouts.

All of these attacks target for grid/service failure which in
turn hampers the grid infrastructure by causing temporary or
permanent damage to the grid assets. These attacks primarily
exploited the open and existing network vulnerabilities to
target the electrical infrastructure in the power sector. The
scale of these attacks will only increase with time (more
so where all the entities are connected over the Internet),
however, using the data-driven techniques, these attacks can
be mitigated to a great extent.

B. ENERGY THEFT MODEL

Energy theft in the context of the smart grid can be abstracted
using various generalised approaches. We indicate ways in
which data-driven energy theft can be modeled from the per-
spective of manipulating generation, supply and demand data
respectively. The proposed approaches rely on the notation
denoted in Table 1.

TABLE 1: Energy theft model notation.

Ec Demand node energy consumption
Er Prosumer node energy generation
Es Energy supply by T&D control nodes
NTL Cumulative non-technical energy loss
TL Technical energy loss
G T&D grid
S Number of grid supply nodes
M Number of energy distribution buses
N Number of total nodes
P Number of prosumer nodes
Q Number of consumer nodes
α Theft coefficient on generation data
β Theft coefficient on supply data
γ Theft coefficient on demand data

As depicted in Fig. 4, we consider a grid G in a NAN to
be defined by a set of N connected nodes and M connecting
energy buses. A node is indicated as a prosumer node if it has
a local DRES; otherwise, the node is indicated as a demand
node.

Let TLj(t) denote technical energy losses caused by wires
and equipment resistance under the normal, theft-free con-
dition in the jth bus, where j ∈ M . We also consider the
cumulative non-technical energy loss, NTL in G expressed
as:
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FIGURE 4: Energy grid model consisting of supply and demand nodes.

NTL(t) =
S∑
i=1

Esi(t) +
P∑
k=1

Erk(t)

−

 Q∑
h=1

Ech(t) +

M∑
j=1

TLj(t)

 (1)

The first two terms in equation 1 denote the total energy
supplied via i ∈ S T&D supply nodes in G and the total
energy generated by k ∈ P prosumer nodes where P ⊂ S.
The latter two terms are effectively subtracted by the former
two since they refer to total energy consumed by h ∈ Q
consumer nodes where Q ⊂ N and the aggregation of
technical losses caused by energy transmission over j ∈ M
buses respectively. The range of values for the final term in
equation 1 is normally between 5% and 8% of the transmitted
energy from the T&D infrastructure [4], [59].

1) Generation data-oriented theft
We consider that various data manipulation attacks may
be conducted on DRES generation data [60] and [10] and
two-metering end-user deployments [20] on the prosumer
site. Alongside the inability to accurately predict weather
fluctuations affecting energy generation, we abstract the total
electrical energy injected to the power grid by the k ∈ P
supply nodes during an energy theft attempt to be:

Er(t) =
P∑
k=1

αkErk(t) (2)

where αk(t) is the theft coefficient for each supply node and
two outcomes for this coefficient are possible being:{

αk(t) > 1, malicious prosumers

αk(t) = 1, honest prosumers

Each supply node k ∈ P has a theft coefficient α at time t.
In the legitimate case where no attack is present, the theft
coefficient αk(t) equals 1; meaning that there are no dis-
crepancies in the DRES generation measurement at node k,
since Erk(t) = αkErk(t). However, in the generation data-
oriented theft scenarios, the DRES generation measurements
entailed within Erk(t) are scaled by an attacker based on
an arbitrarily selected percentage, represented by αk(t). For
instance, the attacker in such a scenario may report 200% of
the actual measurements whenαk(t) = 2. Hence, we abstract
malicious prosumers that report falsified metering for their
DRES generation process. Consequently, the non-technical
energy loss, NTL, will be greater than that for the normal case
(i.e. equation 1); since

∑P
k=1 αkErk(t) >

∑P
k=1Eri(t).

2) Supply data-oriented theft
Let assume the generalised direct current (DC) model de-
scribed in [61], [62] such as the energy supply in our grid
G by S supply nodes to be defined as:

S∑
i=1

Esi(t) = J

 M∑
j=1

θj(t)

+
S∑
i=1

ei(t) (3)

where J
(∑M

j=1 θj(t)
)

are the state variables composed of
the voltages phase angles within a Jacobian matrix J and∑S
i=1 ei(t) is the measurement error from supply nodes

assumed to adhere to Gaussian noise e.
In data-driven energy theft, malicious actors normally

manipulate a subset of measurement data to alter metering.
Hence, the aggregation of energy supply Es from all supply
nodes can be defined as:

S∑
i=1

Esi(t) = J

 M∑
j=1

θj(t)

+
S∑
i=1

ei(t) + βi(t) (4)
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where βi(t) is a vector representing maliciously injected data
within the legitimate measurements captured by a given T&D
control center. Essentially, βi(t) can be mapped as a False
Data Injection (FDI) attack instrumented at various levels
(e.g., communication protocol, metering protocol etc.).

3) Demand data-oriented theft
Consumers or prosumers are also capable to lie on their
demand data by utilising FDI techniques to cause under or
over-reporting of energy consumption [23], [63]–[66]. We
denote as γi(t) to be the theft coefficient of node i at time
t and O to be the set of consumers or prosumers providing
falsified demand request data, whereO = P∩Q. Considering
a demand data-oriented theft the non-technical loss NTL can
be represented as [67]:

NTL =
O∑
i=1

γiEci(t) (5)

In this case, the NTL should be greater than that for the
normal case; since

∑O
i=1 γiEci(t) <

∑Q
i=1Eci(t). Hence,

the two possibilities for γi(t) would be:{
0 ≤ γi(t) < 1, malicious consumer/prosumer

γi(t) = 1, honest consumer/prosumer

In more detail, each consumer/prosumer i ∈ O has a theft
coefficient γ at time t. In the legitimate case assuming no
attack enabling energy theft, there are no discrepancies in the
demand measurements denoted by Eci(t), since the relative
theft coefficients γi(t) = 1 and Eci(t) = γi(t)Eci(t).
However, in the demand data-oriented theft, the attacker
manipulates the demand measurement signalEci at time t by
enforcing an arbitrarily selected percentage entailed within
γi(t). Therefore, the attacker under reports demand measure-
ments and just reports a small portion of measurements on
a regular basis. For instance, an attacker could potentially
report 50% of the actual demand data, when γ = 0.5.

C. ENERGY THEFT STRATEGIES
Data-driven energy theft is orchestrated either through tar-
geted or random methods [17], [68]. Targeted energy theft
refers to instances where a malicious actor has full awareness
of the vulnerability spectrum for a given system consisting of
a set of nodes (e.g., DRES deployment) and purposely injects
data such as to compromise its operation. Random methods
usually refer to scenarios where a malicious actor disturbs
the operation of individual nodes (e.g., a single DRES)
by randomly flooding the application protocol dealing with
metering data or by injecting corrupted measurement values
while a node communicates with a centralised monitoring
component (e.g., a SCADA system). In general, energy theft
triggered by random methods is detected with higher preci-
sion [69].

Both targeted or random methods for energy theft may be
triggered by a number of cyber-physical attack techniques.
The most common technique employed in the context of

energy theft is the combination of man in the middle (MITM)
with false data injection (FDI) [70]. These attempts refer to
cases where an individual with malicious intent intercepts
and redirects communication traffic between a smart meter
and an energy monitoring entity (e.g., SCADA instance in
a NAN) to its own hardware. Traffic is redirected to the
malicious actor such as to modify legitimate measurements
and further inject falsifying metering information and re-
transmit it to the monitoring component in order to affect
the energy billing process. Regardless of the attack scenario
underpinning energy theft, there are always some necessary
steps to be undertaken by a malicious actor. Fig. 5 briefly
provides some core steps that are frequently practised.

We highlight four steps that in many cases are used con-
currently in a given attack; i) reconnaissance, ii) scanning,
iii) exploitation, and iv) access. Hence, there exists a number
of variations of how the aforementioned synergistic use of
MITM and FDI can be instrumented [57], [70], [71]. For in-
stance, malicious actors could intercept general traffic at spe-
cific data recording entities (e.g., microgrid backend server)
that they were aware of due to either scanning or reconnais-
sance such as to jeopardise the final data writing process
with crafted, falsified measurements [8]. Other examples,
include a combination of physical tampering of meters at
various power grid levels (e.g., T&D, end-user smart-meters)
where an attacker could identify through simple social en-
gineering and bypassing of authentication protocols through
ANSI optical ports with software such as Terminator that
enables access [20]. In parallel, sophisticated MITM and FDI
techniques may also consider the overall topology of a given
grid deployment [72] in order to bypass any detection mech-
anisms whereas other utilise adversarial machine learning in
order to game optimisation, scheduling and control processes
within the EMS [17], [23]. The aforementioned technique
is relatively new and exploits the deficiencies of automated
management functions by manipulating and crafting falsified
training data to machine learning-based processes that profile
several measurements (e.g., ramp rate, power factor, reactive
power) [23].

Given the diversity of the cyber-physical attack vectors en-
abling energy theft [12], [24], this work organises the various
attack strategies based on their instrumentation and further
impact in Table 2. As depicted, there has been a large volume
in literature identifying, studying and further demonstrating
that such attacks can be initiated at various aggregation levels
by utilising different types of resources (e.g., SCADA, PV
panels). Interestingly different types of attacks affect explicit
grid efficiency pillars that we introduced in Section II.

IV. DATA-DRIVEN DETECTION METHODS
As briefly discussed in Section III, energy theft can be data-
agnostic and resulted purely from physical tampering of
various grid components, or data-driven via manipulating,
destroying or corrupting software processes with the goal
to modify any data related to energy demand, generation or
consumption. Throughout the years, both the industry and
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FIGURE 5: Steps and associated activities in cyber-physical attacks enabling energy theft.

the research community have developed and employed tech-
niques in aiming to detect any energy theft-related activities.
In general, energy theft detection methods are structured
under two main categories; i) hardware-based detection and
ii) data-driven detection. Since the focus of this work is on the
data-driven aspects of energy theft, only the latter category is
discussed in this section.

Generally, the data-driven energy theft detection is
achieved through the algorithmic solution composition focus-
ing on deviations of data related to aspects such as metering
and billing. Hence, such detection schemes place a strong
emphasis on analysing data patterns through a variety of
statistical tools and the majority utilises machine learning
techniques. As depicted in Fig. 6, this work stratifies and
discusses data-driven energy theft detection with respect to
three main categories; i) classification-based, ii) regression-
based and, iii) clustering-based detection.

Given the diversity of theft scenarios and associated attack
vectors over different data aggregation levels on the smart
grid infrastructure, detection methods have been employed
either at a centralised or a distributed fashion. Table 3 pro-
vides a comprehensive summary of methods introduced in
past literature over the last decade. Evidently, the majority
of methods consider a combinatorial use of algorithmic tech-
niques in order to address specific challenges ranging from
data pre-processing and filtering up to statistical correlation
analysis. Furthermore, some formulations are broadly used
(e.g., artificial neural networks -ANNs and support vector
machines - SVMs) over different types of attacks operating
under diverse data types gathered at various smart grid data
aggregation components.

Complementary, Table 4 illustrates the experimental ap-
proach underpinning the methods summarised in Table 3 and

FIGURE 6: Data-driven energy theft detection categories.

further provides their outcomes. As depicted, each method
was employed over energy theft use cases involving a number
of nodes within the actual grid and utilised specific statistical
features. In summary, we identify a range of raw as well
as post-processing features that are utilised within the listed
methods. Thus, there exist techniques involving one or more
of basic statistical features (e.g., mean, min/max), frequency
and temporal domain features (e.g., signal periodicity fre-
quency components), scaling on independently distributed
raw data, clustering or probability-based similarity metrics as
well as locality (e.g, geolocation coordinates), auxiliary (e.g.,
number of energy appliances) and environmental features
(e.g., temperature, humidity).
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TABLE 2: Overview of the data-driven energy theft attacks.

Ref. Strategies Infrastructure Resource Attack
Effect Remarks

[60], [73] Generation meter manipulation Generation PVs Grid reliability
Introduces physical attack functions applied to inject energy
into PV power systems.

[20] Generation meter manipulation Generation PVs Grid reliability
Introduces attack functions applied to manipulate the reported
energy generation profile of PV power systems.

[10] Generation meter manipulation Generation PVs
Wind turbines Grid reliability

Introduces stealthy adversary model initiated by generation
meters managed by prosumers.

[25] Generation meter manipulation Generation PVs
Wind turbines Grid reliability Assumes attacks manipulating the average of net generation

while the detection mechanism is perceptible.

[31] Monitoring and control
systems manipulation T&D PMU Grid resilience

Summarizes different methods applied to commit data-driven
theft against the grid measurements through WAMS manipu-
lation.

[74] Monitoring and control
systems manipulation T&D PMU

PDC Grid resilience Assumes attackers compromise one or more of the PMUs,
PDCs, communication links or/and routers.

[75] Monitoring and control
systems manipulation T&D SCADA Grid resilience Makes various assumptions about the attacks in the context

of the current security mechanisms in SCADA networks.

[76] Monitoring and control
systems manipulation T&D PMU Grid resilience Assumes the attacker has access to only the PMU measure-

ments at buses where the PMU has been compromised.

[77] Monitoring and control
systems manipulation T&D SCADA

PMU Grid resilience
Assumes the attacker only compromises a single state vari-
able. The attacker alters all the measurements to project the
desired changed state variable.

[72] Monitoring and control
systems manipulation T&D SCADA Grid resilience Assumes the attacker can access several SCADA’s sensors to

compromise several measurements.

[78] Monitoring and control
systems manipulation T&D SCADA Grid resilience

Introduces a more realistic attack where the attackers have
only inaccurate and incomplete information because of their
restricted access to the grid.

[79] Consumption meter manipulation End-user Smart meter User safety Introduces data-driven attacks enabling time-variant modifi-
cations on load profiles of the end users.

[67] Consumption meter manipulation End-user Smart meter User safety Generates and labels real-time attack patterns for use with
supervised detection algorithms.

[63] Consumption meter manipulation End-user Smart meter User safety Models the energy loss resulting from meter manipulating,
meter malfunctioning, and y illegal bypassing.

[64] Consumption data manipulation End-user Smart meter User safety
Introduces theft attacks based on the manipulation of the
smart meter, AMI, appliances load profiles, and withdrawing
heavy appliances from the actual measurements.

[65] Consumption meter manipulation End-user Smart meter User safety Presents theft attack assuming the customer has DRES.

[66] Consumption meter manipulation End-user Smart meter User safety

Introduces a theft attack designed by a fraudulent employee
who fabricates the consumption measurements based on the
past readings, instead of reading the actual measurements
from the smart meter.

1) Classification-based detection

Messinis et al. [80] proposed a classification system to detect
energy theft conducted at the end-user infrastructure. The
introduced solution was assessed over simulations replaying
the Irish Smart Energy Trail dataset and its operation relied
on the synergistic use of an SVM classifier, a power opti-
mization scheme and a voltage sensitivity analysis compo-
nent. In practise, the SVM classifier was producing a weight
function based on the annual active energy consumption for
a consumer that was expressed as the probability for com-
mitted fraud. The proposed system achieved a high accuracy
of 99.4%. However, this system required the utilization of
additional features such as voltage and active energy data
to detect theft. The problem with utilizing such sensitive
measures is that it can expose customer data to privacy vi-
olations. Moreover, features associated to real-time ancillary
services (e.g., active/reactive energy require adequate signal
smoothing techniques for complete conversion over the time-
frequency domain; an element missing from this piece of
work as it is not encapsulated within SVM formulations or
the proposed pre-processing stage. Thus, we argue that such
methods may not be generic enough.

A synergistic use of SVMs and decision trees for theft
detection in end-user infrastructure was proposed by Jindal
et al. [4]. Decision-tree formulation operates on various
features, including the numbers of heavy appliances and
persons, to generate the predicted consumption of each con-
sumer. Then, an SVM-based classifier is used to detect mali-
cious consumers. Results show that the proposed method can
be implemented in real-time scenarios as the false positive
rate is significantly reduced to 5.12%. A similar combination
was adopted by Althobaiti et al. in [10] to detect malicious
prosumers in generation infrastructure. To rigorously analyze
DRES generation data, an XGBoost and SVM were com-
bined for the proposed method. An XGBoost algorithm was
run on freely available weather data and used to calculate
the energy generated by the DRES, and SVM was used
for measurement classification. The results show improved
accuracy of 98% for theft detection. However, applying the
proposed methods to a large-scale theft detection process re-
mains limited due to the computational complexity resulting
from the synergistic use of multiple data-driven algorithms in
such detection methods.

Variations of the conventional SVM formulation in syn-
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TABLE 3: Overview of the data-driven energy theft detection methods.

Ref. Technique Nature Attack
Infrastructure Attack Type Data TypeCentred Distributed

[80] SVM, Voltage Sensitivity Analysis, Breakout
Detection Package

√
End-user Demand data manipulation Consumption

[4] Decision Tree, SVM
√ T&D

End-user Attacks caused NTL Consumption

[10] XGBoost, SVM
√

Generation Generation data manipulation PV and wind turbine
measurements

[62] SVM, Density based anomaly detection, PCA
√

T&D SCADA data manipulation Network measurements
[1] Convolutional ANN, Paillier Algorithm, SVM,

Random Forest, Logistic Regression

√
End-user Demand data manipulation Consumption

[81] Wide & Deep Convolutional ANN,
Three-Sigma Rule, Random Forest,

Convolutional ANN, SVM, Logistic Regression

√
End-user Demand data manipulation Consumption

[82] DL, Generalized Linear Modeling, Random
Forest, GBM

√
T&D SCADA data manipulation Network measurements

[20] Deep Feed Forward ANN, Deep Recurrent
ANN, Deep Convolutional Recurrent ANN,

SVM, ARIMA

√
Generation Generation data manipulation PV measurements

[83] OPF, SVM, Bayesian Classifier, Logistic
Regression

√ T&D
End-user

Demand data manipulation
(Direct tapping) Consumption

[84] Random Forest, Logistic Regression, SVM,
K-means

√ T&D
End-user

Demand data manipulation
(Direct tapping) Consumption

[85] SVM, KNN, Random Forest, Logistic
Regression

√ T&D
End-user

Demand data manipulation
(Direct tapping) Consumption

[7] Logistic Regression, KNN, Fourier Transform,
Random Forest

√ T&D
End-user

Demand data manipulation
(Direct tapping) Consumption

[86] XGBoost, K-means, KNN, SVM, Logistic
Regression

√ Generation
T&D

End-user

Attacks caused
NTL Consumption

[67] XGBoost, CatBoost, LightGBM
√

End-user Demand data manipulation Consumption

[87] MLP, RNN, LSTM, GRU, Simple Moving
Average

√ T&D
End-user

Demand data manipulation
(Direct tapping) Home appliances data

[65] Linear regression, SVR, ANN, Radial Basis
Function Network

√
End-user Demand data manipulation Consumption

[88] Decision Tree
√ T&D

End-user
Demand data manipulation

(Direct tapping) Consumption

[89] Random Forest, Decision Tree
√ T&D

End-user
Demand data manipulation

(Direct tapping) Consumption

[90] SVM, K-means
√

End-user Demand data manipulation Consumption
[91] Finite Mixture Clustering, Genetic

Programming, ANN, Random Forest, SVM,
KNN, GBM

√
End-user Demand data manipulation Consumption

[92] Local Outlier Factor, KNN, Maximal
Information Coefficient, Clustering by Fast

Search and Find of Density Peaks

√
End-user Demand data manipulation Consumption

ergy with principal component analysis (PCA) was also the
basis behind the work of Esmalifalak et al. in [62]. The eval-
uation of SVM-based formulations was based on labelling
load data that were simulated as stochastic processes such
as to comply with pragmatic power system behaviour in the
T&D system infrastructure. PCA was initially employed in
order to reduce the high dimensionality of the simulated
measurements and they were firstly labelled within the train-
ing process of a supervised SVM formulation. Subsequently,
newly generated measurements were tested over the super-
vised model and the identification of outliers implying theft
detection was feasible with 95% accuracy. However, due to
the dependence of the proposed scheme on PCA, there exists
a high likelihood of a trade-off between the loss of important
information included in the simulated measurements and the
dimensionality reduction process.

Recent developments in the area of deep learning (DL)
enabled the composition of adequate energy theft detection
schemes. Yao et al. in [1] demonstrated a novel synergy of

convolutional neural networks (CNN) and the Paillier cryp-
tosystem in order to maintain user privacy but also detect en-
ergy theft. Under a similar mindset, a modified wide and deep
CNN was proposed in [81] in which the wide component of
the customised CNN deals with global consumption features
whereas the deep CNN component was more focused on
profiling the consumer’s consumption periodicity such as
to detect deviations implying energy theft at end-user level.
The superiority of DL-based energy theft detectors was also
illustrated at the work in [82] where a number of traditional
and ensemble classifiers such as random forests, and gradient
boosting machines (GBM) were compared with a CNN-
based classifier using T&D infrastructure measurements.
Similarly, the work by Ismail et al. in [20] demonstrates the
applicability of a DL-based detection solution based on mea-
surements that are captured at DRES deployments. However,
such theft detection methods entail enormous computational
costs due to the large amount of data required to effectively
train fully supervised DL-based detectors.
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TABLE 4: Experimental approaches of surveyed studies on data-driven energy theft detection.

Ref. Number of Nodes
(≈) Features Evaluation Metrics

(Best algorithm) (%)

Experimental
Evaluation Percent of Attacked Samples

(≈) (%)Simulation Testbed

[80] 5K Statistical, Auxiliary, Scaling, Frequency ACC = 99.4, FPR = 0
TPR = 98.9, AUC = 99.9

√ √
50

[4] 1k Scaling, Auxiliary, Environmental, Temporal ACC = 92.5, FPR = 5.12
√

20
[10] 300 Environmental ACC = 98, AUC = 99.6

√
—

[62] 1k Similarity, Auxiliary F-score = 95
√

—
[1] 42k Similarity ACC = 92.67

√
—

[81] 42k Statistical, Scaling AUC = 96.86
√

9

[82] 100k Auxiliary ACC = 97.7, F-score = 98.78
AUC = 98.53

√
—

[20] 71 Auxiliary ACC = 99.3, FPR = 0.22
F-score = 99.55

√
—

[83] 42k Statistical, Auxiliary ACC = 83, F-score = 80.9
√

—
[84] 3.5M Similarity, Temporal, Locality, Auxiliary AUC = 75.03

√
10− 90

[85] 700k Locality, Auxiliary AUC = 62.8
√

1− 90

[7] 425 Statistical, Frequency, Scaling ACC = 98.37, FPR = 0
F-score = 87.50

√
16

[86] 57k Statistical, Similarity, Auxiliary AUC = 91
√

5.38− 8.37
[67] 5k Statistical FPR = 4, TPR = 97

√
50

[87] 1 Auxiliary ACC = 99.96
√

—
[65] 980 Auxiliary –

√
–

[88] 5k Temporal –
√

–
[89] 1 Auxiliary, Environmental, Temporal ACC = 95.78, AUC = 100

√
–

[90] 5K Auxiliary, Similarity FPR = 0.1, TPR = 94
√

–
[91] 4k Statistical, Similarity ACC = 99, AUC = 99.8

√
–

[92] 3.5k Statistical, Similarity AUC = 91.84
√

12

Several studies have also provided insightful compar-
isons of various classification-based energy theft detection
schemes and insights on the performance of particular sta-
tistical features. For instance, the work by Fernandes et al.
in [83] introduces the use of a customised optimum path
forest (OPF)-based detection scheme for attacks that target
explicitly energy theft. In evaluations of industrial and end-
user consumption data the proposed scheme outperformed
conventional classifiers such as SVM and Bayesian clas-
sifiers with respect to detection accuracy. However, with
respect to log loss function, SVM achieved the best value,
outperforming the customised OPF-based detection scheme.

Meira et al. in [84], examine a diverse set of spatiotem-
poral and exogenous features based on four criteria, namely,
auxiliary, similarity, locality and temporal. The performance
of the selected features was investigated through the classifi-
cation processes of customised SVM, logistic regression and
random forest formulations. It was clearly revealed that fea-
tures derived only from consumption measurements (such as
similarity features) are adequate for the accurate detection of
energy theft attacks. However, such a detection study entails
computational processes on further features from historical
consumption measurements, which limits the application of
this method in large-scale detection scenarios.

In parallel, the study by Glauner et al. in [85] demonstrates
that the classification process under various algorithms (e.g.,
SVMs) reveals that features related to aggregated neigh-
bourhood consumption alongside locality parameters outper-
formed individual meter time series distributions. However,
we argue that energy theft detection based on the utilization
of features related to neighbourhood consumption and local-
ity parameters may not be generic enough, due to the fact that

the consumption patterns of those who belong to the same
geographical domain differ from one another.

The assessment of features pointing to energy theft in
synergy with classification performance were also one of
the main focus areas in the studies conducted in [7],
[86] and [67]. Through the application and comparison
of classification-based ensemble methods (e.g., XGBoost,
CatBoost, LightGBM) with conventional classifiers (e.g.,
ANNs, SVMs) over simulated attack scenarios it was re-
vealed that ensemble methods contribute significantly to-
wards computationally-efficient and more accurate theft de-
tection. However, ensemble-based detection methods pose
some instability since a slight variation in the training data
would unavoidably entail substantial restructuring of the
main tree-based detection model. Thus, imposing higher
computational costs. Nonetheless, the work by Ashrafuz-
zaman et al. in [82] demonstrates the superiority of deep
learning-based theft detection schemes over any ensemble-
based approaches compared, where the detection accuracy
based on the deep learning technique was 97.7%.

Despite the relatively high accuracy performance and reli-
ability of classification-based techniques, the aforementioned
detection methods require labelled data from malicious and
energy theft-free behaviours. Obtaining such data is either
challenging in a real scenario or, even if they exist, they
do not cover all possible theft-attack behaviours [93]. Theft-
free data can be collected from historical grid measurements,
however, malicious data (i.e., theft samples) covering the
spectrum of theft behaviours for a particular node hardly ex-
ist. In such cases, the performance of the detection method is
limited due to malicious sample unavailability. These meth-
ods may remain unsuccessful in detecting more advanced and
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stealthy attacks that are not available in training data, which
directly affects the overall detection performance [94].

2) Regression-based detection
M. Li et al. [87] proposed a modular energy theft detection
system consisting of a three-stage decision making process
achieving 99.96% on theft detection accuracy. The first stage
relies on a multi-model power consumption prediction sys-
tem based on Multi Layer Perceptron (MLP) ANN, Long
Short Term Memory (LSTM) ANN, Recurrent Neural Net-
work (RNN) and Gated Recurrent Unit (GRU). The second
stage deals with monitoring a moving average whereas the
third stage employs a customer’s historical measurements to
determine occasional maximum energy consumption in order
to make a final decision on a theft attack. Although interest-
ing results are achieved, the proposed method is undynamic
for any future changes in consumption patterns, since the
main focus of such a system is the utilization of historical
consumption measurements in the detection process.

The behavioral profile of normal energy consumption was
assessed by Cody et al. [88] in order to detect deviations
implying energy theft. The conducted experiments revealed
that consumption values can be predicted using decision
tree learning and they can be categorised into normal or
fraudulent based on the threshold root mean squared error
value. Any value exceeding this threshold indicates a possible
energy theft attack. However, the prediction formulation pro-
posed in this study can be improved through the utilization
of further comprehensive features, such as numbers of appli-
ances and providing the prediction model with additional de-
tails to determine consumers’ energy consumption patterns.

Complementary work in [89] achieves regression based on
random forests to predict the expected energy consumption
over the US-wide consumption profiles for 2014. Through
the use of various performance metrics (e.g., prediction
accuracy, classification error rate) forecasting through ran-
dom forests achieved 95.78% of prediction accuracy and
outperformed a decision tree-based approach that reached
91.6% accuracy. Thus, providing a quite effective energy
theft prediction scheme. However, such a scheme cannot be
considered as generic since energy consumption is usually
characterized by invariable variance or non-stationary be-
haviour. Therefore, the fundamental principles underpinning
random forests model could become inappropriate for identi-
fying short-term irregularities in energy consumption.

A data-driven regression model was proposed by Y, Gao
et al. [65] for energy theft detection. Instead of using unre-
liable topology information and parameters from secondary
network, this method was based on modified linear regression
algorithm. It uses only the voltage data and consumer’s con-
sumption data making it more feasible to adopt. Finally, the
training data from real world smart meter was used to validate
proposed method and results illustrate effective identification
of cases related to energy theft. However, customers’ data
may be vulnerable to privacy breaches due to the dependence
upon voltage measurements.

Overall, despite the applicability of the aforemen-
tioned methods to identify advanced energy-theft attacks,
regression-based methods regularly demonstrate longer de-
tection times than other detection categories. In such cases,
regression techniques are principally employed in the first
stage of theft-detection methods and require additional pro-
cedures to reach a final decision during the detection process.
This in turn is a time-consuming task and limits the applica-
bility of such methods in a real-time energy trading scenario,
where the time required to detect theft activities is influential
in preventing any losses.

3) Clustering-based detection

A clustering-based theft detector utilising consumption pat-
terns was also proposed by Jokar et al. [90]. In order to
improve classification accuracy, the number of clusters in
the examined dataset was filtered through Silhouette plots
and subsequently clusters were hierarchically labelled across
various consumption profiles. The resulted outcomes of this
approach demonstrate that even with low measurement sam-
pling intervals, the algorithm is scalable and achieves a detec-
tion rate of 94%. However, the proposed technique required
the installation of transformer meters, which increased the
monetary cost of such systems.

An alternative approach based on genetic algorithms and
finite mixture modeling for composing clusters of consump-
tion in order to identify customer segmentation and potential
outliers was presented by Razavi et al. in [91]. In fact, the
proposed method outperforms a number of classification-
based approaches such as k-nearest neighbours (KNN), ANN
and SVM by 99.8% in the area under the curve for theft de-
tection. However, such a detection system cannot be applied
in a real-time scenario, since the results achieved indicate that
there is an increase in the relative to physical inspection.

An outlier-based detector of three modules was presented
by Peng et al. in [92]. The proposed method applied local
outlier factor (LOF) and the KNN algorithm as the basis to
detect theft at the end-user infrastructure. Firstly, consump-
tion profiles were analysed with k-means and subsequently
outlier candidates were selected based on the deviation of
each consumer from the relative cluster centers. Finally, the
anomaly ranking of the selected candidates was calculated
using the LOF algorithm. Although the proposed detector
achieves reasonably high detection accuracy of 91.84%, it
still fails to detect linear theft, where an attacker manipulates
the consumption profile to reduce it at a constant rate.

Despite the fact that clustering-based methods can be
used in scenarios of scarcity, minimal or zero availability
of malicious intent, these methods will normally produce
an end result with a high false-positive rate. To construct
a clustering-based model, no assumptions of labelled data
from malicious and theft-free behaviours are made. As a
result, the detection model can identify any abnormal patterns
as malicious behaviours [93]. In general, abnormalities may
occur due to non-malicious activities (e.g., smart-meter mis-
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configurations), leading to an increase of false-positive rates
resulted by clustering-based theft detection mechanisms.

4) Comprehensive analysis
Undoubtedly, malicious actors continue to target a diverse
set of vulnerabilities present over various system, network
and algorithmic components serving the (sub)infrastructures
composing a smart grid deployment. Hence, attackers intend
to launch energy theft attacks through a variety of tech-
niques that target the evasion from current detection schemes.
Evidently, data-driven methods for detecting energy theft
distilled by learning, profiling and detecting abnormalities
are considered as a means to adaptively engage with new
attack vectors.

In general, data-driven energy theft detection schemes
leverage three conceptual and data-driven procedures; (i)
data-processing and model-selection stages covering aspects
of data sanitisation and feature selection, (ii) model-training
procedure which varies across classification, clustering and
regression detection methods and (iii) decision-making pro-
cedure which includes applying a model trained on new data
such as to pinpoint anomalies that could relate with malicious
activity.

Given the "ad-hoc" employment of most of the detection
methods presented herein over specific use cases, we argue
that there is no universal data-driven methodology covering
all aggregation levels in a given smart grid deployment. In
general, the aforementioned three levels, categorized into
energy generation, T&D, and end-user infrastructures have
different probabilities for the deployment of theft and differ-
ent vulnerabilities exploited by malicious actors. Such factors
should be taken into consideration when a method is designed
to detect energy-theft attacks.

However, the utilization of a hybrid data-driven model
has proven to be more robust than adopting a single model
in detecting attack vectors underpinning energy theft. Such
hybrid methods are considered to make combinatorial use of
two or more data-driven models. In such methods, the entire
theft detection method leverages the analytic process of each
candidate model to achieve a specific action. All achieved ac-
tions are subsequently integrated into one detection system in
order to complement each other and mitigate the limitations
of the others.

Furthermore, the utilization of data from multiple and
diverse sources can create a more reliable method for de-
tecting energy-theft attacks over smart-grid infrastructures.
Detection methods utilizing a single data source are con-
strained to build a candidate model fitting specific data mea-
surements, thus its suitability is not generic. Moreover, the
candidate model is sensitive to the samples it was trained
with, which may potentially have been manipulated to falsify
the detection method to cope with new adversarial objec-
tives. However, by acquiring the data from various sources
which have less likelihood to be accessible to adversaries can
significantly increase the reliability and performance of the
detection method.

The adoption of data-driven methods that utilise multiple
and diverse data feeds would unavoidably invoke trade-
offs spanning across performance, privacy and computational
complexity. For instance, data-driven theft detection at the
end-user infrastructure method would require a privacy-
aware data processing and aggregation scheme. Hence, in
order to detect theft in DRES infrastructure, the detection
method should not rely on data that are not available to utility
providers such as EMS measurements. Such measurements
are usually maintained by the DRES owner and not accessi-
ble to any third party. Thus, there could be some limitations
in terms of the granularity of the anomaly detection process
employed by the theft detection scheme. On the other hand,
energy theft-detection process in the T&D infrastructure
inherently requires the utilization of high volume of network
and system log measurements. Therefore, an anticipated high
computational cost would be implied and thus limit the real-
time capabilities of a given theft detection scheme.

V. PRESENT GAPS AND FUTURE DIRECTIONS
Despite the various solutions proposed in terms of energy
theft detection, there exist various gaps and open issues thus
requiring further attention within future research directions.
Within this section, we highlight and discuss some of the
challenges and we further summarize potential future re-
search directions. As depicted in in Fig. 7 we decompose
the gaps spectrum into (i) measurement-driven , (ii) machine
learning and (iii) security-related challenges.

FIGURE 7: Present gaps in energy theft detection.

A. MEASUREMENT-DRIVEN CHALLENGES
a: Testbed scenarios and datasets
Diverse energy-related data sets, different network infrastruc-
tures, and multi-faceted energy theft-related attacks are stud-
ied in most of the presented works as discussed in this study.
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However, there is a notable lack of commonly available (and
applied) prototype implementation on realistic large-scale
testbed as well as datasets such as to enable extensive ex-
perimental verification nor experimental reproducibility tai-
lored for energy theft detection [93]. Most testbeds and their
corresponding datasets are principally designed in an ad-hoc
fashion for specific projects limiting the generalisation of
findings [95]. Therefore, we argue that it is of crucial im-
portance to build benchmark testbeds and properly designed
platforms such as to test connections and security features
of a system and maintain alignment with the pragmatic and
rapidly emerging design requirements of current and future
smart grid deployments.

b: Measurements & Big data
Volume, velocity, and variety are the traditional traits and
they naturally challenge any analysis domain within the
smartgrid ecosystem [96]. Hence, the adequate comprehen-
sion and optimisation of these diverse traits during data
collection, processing and analysis over particular smartgrid
scenarios such as energy theft detection is of vital impor-
tance. For instance, there are 27 million consumers that con-
sume domestic electricity in the UK alone. These consumers
have more than 100 million data points that are collected
either quarterly or half-yearly. These points are used by
the energy suppliers to store, record and use in the billing
system and identifying abnormal conditions that could relate
to specific energy theft-related attacks. However, with smart
metering, to collect the data from these many data points,
at a thirty-minute sampling rate, will require a substantial
amount of resources. For example, at least 4500 to 9000
times more of the present data size will be required to be
processed by the energy suppliers, and therefore this leads to
a significant augmentation in data size [97]. Thus, there is a
strong requirement for efficiently coupling the measurement
requirements for granular energy monitoring with optimised
storage as well as data processing solutions.

B. MACHINE LEARNING CHALLENGES
a: Class imbalance
Class imbalance problem is a traditional problem existing for
supervised or semi-supervised learning having direct impli-
cations on energy theft detection. In particular, this problem
occurs when one of the classes (in a multi-class problem) has
significantly more number of samples than the other classes,
thus the training model is biased leading the testing phase to
classify events towards the majority class label [98]. Hence,
in the case of learning for theft instances in which are by far
less than legitimate instances, the class imbalance problem
would result on a classifier to incorrectly label malicious
instances to the majority of normal behaviour. It is there-
fore important to establish adequate ground truth datasets
with correct scaling factors through the training phase of
learning processes by assigning correct weight parameters to
malicious samples. Thus, addressing the limitations from the
class imbalance problem [99]. Nonetheless, the composition

of concrete ground truth labels for theft instances is also a
topic aligned with the needs of optimised feature engineering
and selection as we discuss next.

b: Feature engineering and selection
Feature engineering accompanied by efficient feature selec-
tion is a powerful foundation for addressing the aforemen-
tioned class imbalance problem as well as tailoring a learning
procedure to identify energy theft instances. Evidently, it is
common in many energy theft detection processes to operate
over insufficient or incomplete feature vectors and experience
class imbalance as well as model over-fitting (i.e., learn
the only specific pattern in a given dataset), thus affecting
significantly detection accuracy. Therefore, designing and
engineering new features can improve the performance of
machine learning detection methods [99], [100].

c: Non-malicious abnormal activities
A classical problem within anomaly detection is the dis-
tinction of classes between anomalous events. Energy theft-
related attacks could relate to statistical abnormalities and
have similar properties as anomalous events that are caused
by legitimate intent (e.g., smart meter misconfiguration). A
great challenge is to compose adequate classification and
clustering schemes that are able to pinpoint the differences
between malicious and legitimate processes and further high-
light the specific properties entailed within an energy theft
incident. There can be many reasons that the ambiguities
in electrical node output patterns may occur. These can
happen owing to several altered causes such as new device
installation (for example, a new DRES) or changing in the
electricity usage habit of the residential end users [93]. This,
in turn, increases the overall inspection cost [4] as once the
model classifies an energy theft attack, physical inspection is
essential for final verification and that is a costly procedure
[90]. It can, therefore, be argued that there is a requirement
for more research in the improvement of the proposed de-
tection methods in terms of reconsigning the theft detection
activities and reducing the false positive alarms [99].

d: Adversarial machine learning
As already described, it is feasible for an adversary to ma-
nipulate end-user data or game the algorithmic learning pro-
cedure in a targeted manner. These particular types of attacks
are called adversarial machine learning attacks which are car-
ried out for the purpose of theft detection. For example, carry-
ing out an attack where input data is made to look like normal
electrical data, i.e., crafting an attack that seems normal to
the machine learning algorithm or changing the weights of
the trained ML model. These scenarios can maximize the
predicted loss or falsify trained models to new adversarial
objectives [23], [101], [102]. Moreover, handcrafted rule-
based attacks are more sophisticated (than automated attacks)
and proposes different challenges, and therefore a general-
ized detection model will not provide promising results [23].
Thus, more studies are required to investigate the capabilities
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and the limitations of existing machine learning detection
algorithms with respect to adversarial machine learning.

C. PRIVACY CHALLENGES
a: Data breach
Most of the energy theft attack detection schemes utilize
(some of) the private information of consumers/prosumers,
such as smart meter readings and user load/generation pro-
files. While this information can help to detect the theft
attacks to a certain extent, it should still be kept in mind that
disclosing such private data may raise concerns about the
user’s safety and breach his/her privacy. These data breach
threats can occur in different stages of the theft detection
process, including data collection, transmission and storage.
Such sensitive breached information might be purchased by
interested third parties such as marketing companies which
can use this data to sell their products to possible customers.
Apart from this, if criminals get their hands on this sensi-
tive data, the daily routine of a household can be analyzed
from electricity usage/generation pattern to carry out crimes.
Therefore, detecting energy theft attacks while maintaining
privacy of information is a challenging task, but there is
a notable lacking of intelligent privacy-preserving detection
schemes in the works of the energy theft [103].

VI. FUTURE RESEARCH DIRECTIONS
1) Measurement-driven solutions
a: Testbed simulation, emulation and hardware
Future works should consider the measurement-driven chal-
lenges that affect energy theft detection frameworks. The
energy theft activities should be ratified by experimental
environments and for this to happen, there is a strong need to
include testbed software simulation, emulation and hardware
for carrying out energy theft analysis. For instance, a cloud-
based environment can be created to store smart grid data
which can be used in these testbeds to conduct energy theft
analysis [30]. With simulation software and emulation hard-
ware, a quick verification of new concepts can be achieved
efficiently which can then be easily transferred to power
system industry and for more extensive public use. More-
over, these testbeds create interesting educational platforms
to understudies which would spur the research interests to
conduct multi-user experimental facilities for several smart
grid applications [95].

b: Big data schemes
To collect, store, and process monitoring data various diverse
data sources in smart grid results to the big data challenges
as discussed earlier. To cater to these challenges the two
important future directions include the creation on big data
analysis platforms and reducing the complexity of such data.
For the former, cloud computing technology has been used
to create big data platforms by the many industries since
this technology is scalable, self-organizing, and adaptive.
Therefore, platforms such as Hadoop, Cassandra, and Hive

in conjunction with cloud computing can be used by utility
providers for smart grid big data analysis [104]. For the
latter (to reduce the data complexity), different techniques
such as dimensionality reduction, distributed optimization
algorithms, and active learning can be useful to analyze
big data efficiently [105]. Different studies reported that the
computational process of the summarized and produced data
rather than the original data stream can result in an acceptable
relative error [106]. Therefore, these dimensionality reduc-
tion techniques are useful for reducing the communication
cost, computing complexity, and storage resource utilization
for smart grid big data analysis [107].

2) Machine learning solutions
a: Class Imbalance
Class imbalances happen when there are less samples in
one of the target classes for machine learning algorithms
or a close similarity in the number of samples in consid-
ered classes. To enhance the learning results associated with
imbalanced data classes (and improve on their bias), three
primary methods can be utilized: data-level, algorithm-level
and hybrid techniques [108]. In the data-level techniques, the
concentration is on the modification of training set to allow
more balanced distributions for oversampling (more minority
groups’ samples) and undersampling (fewer majority groups’
samples). The algorithm-level techniques modify the learners
that already exist to eliminate their bias for majority groups.
However, good insight is required into the modified learning
algorithm and real discovery of reason for skewed mining
distributions. Some popular algorithmic techniques include
cost-sensitive approach (to insert different penalties for every
group of samples) and one-class learning (concentrating on
the specific target groups). The hybrid techniques use the
combination of methods as mentioned above, by reducing
their weaknesses and making use of their strengths [108].

b: Feature engineering and selection schemes
We argue that future research directions could place stronger
focus on particularly exploring algorithmic and system-wide
principles to facilitate automated feature engineering and se-
lection methods. The feature engineering process can extend
the original detection model’s feature vector by adding new
features that are calculated based on other input features.
These engineered features may be the differences, averages,
or other statistical transformations of the original feature
vector, helping in better understanding of the interactions
amongst these features. This process is similar to the sta-
tistical transformations performed by human analysts for
constructing an engineered feature formulas. The task of
feature engineering and selection is mainly a time-consuming
task and each model type will respond in different manner to
different engineered feature types [109]. However, in general,
the selected and engineered featured would help in achieving
the maximum probability of success for the ML algorithms
to detect energy theft [110]. Typically for feature engineering
and selection, many methods can be used such as mathemat-
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ical functions, deep feature synthesis components, expansion
reduction, evolution-centric, multi layer neural networks and
hyper parameter optimization [109], [111].

c: False positive rate-reduction schemes
A meta-learning scheme can be helpful to reduce the false
positive rates resulting from non-malicious activities in the
process of energy-theft attack detection. Meta-learning can
be defined as a learning process involving the collection of
knowledge from past experience in order to use it in future
learning [112]. Meta-learning is required by the theft-attack
detection system to combine various classifiers (by taking
note of their behaviours) and adopting an integration rule
to reduce false positives. In the literature, the main meta-
learning techniques include stacking, bagging, voting and
boosting. In the voting approach, each classifier has one vote,
and the classification that has the highest votes determines
the final prediction. In stacking learning, the process adopts
a layered architecture wherein each layer has one or more
classification techniques. A layer’s projection is applied to
extend the original vector of the feature with the closest
instance. The bagging approach creates a combination of
classifiers through the manipulation of training samples in
a base classifier. It selects one base classifier and invokes it
many times using several training samples. Boosting, in con-
trast to bagging learning, generates various basic classifiers
through a procedure in which examples of data sets receive
new weights in sequence [113].

d: Adversarial machine learning schemes
With respect to adversarial machine learning, a binary
classifier-based intrusion detection system trained on avail-
able device behaviour logs is imperative [23]. This system
can attempt to tag approaching instances as either malicious
or benign, using features which are generated in real-time
from streams of energy data. Through gradual training in-
stances expansion and feature generation refinement, this
system can produce a confidence score that can be utilized
to set recall/precision. This will allow having low mainte-
nance overheads and fewer false alerts as compared to a
manual system. The underlying intrusion detection system
can employ a broader range of features including outgoing
data from the control algorithm [23]. As also discussed in
[23], [24] malicious behaviours can be detected using other
associated features such as network properties (e.g. packet
size, packet arrival time) and communication security (e.g.
certificate fingerprints, negotiated cyber suite).

3) Privacy preserving schemes
Privacy-preserving schemes can be used in two ways to
detect energy theft attacks; one, focusing on protecting the
identities of users, and the other, emphasising protecting
the data of users [114]. For the first aspect, pseudonym,
anonymization, and virtual ring have been used. Pseudonym
is considered to be a common user identity protection ap-
proach. The registration process for a pseudonym often in-

volves many data protection methods, such as ring signa-
ture and zero-knowledge proof [114]. Anonymizing smart-
grid data is one of the methods approved by the National
Institute of Standards and Technology [115]. The main goal
of anonymization is to enable smart grids’ nodes to com-
municate in an anonymous manner with various smart-grid
service providers by using different pseudonyms. Another
common method for user-identity preservation is a virtual
ring, where a ring signature is used to validate the identity
of users, without knowing their actual identity, by a control
centre [116]. On the other hand, for the second aspect,
emphasising protecting users’ data, many methods can be
used, such as data aggregation or authentication methods.
Data aggregation is a well-known scheme which is used to
protect the data of smart-grid users. It generally includes data
obfuscation algorithms and homomorphic encryption [103],
[114]. Authentication methods are efficient countermeasures
for privacy-related attacks and are usually based on key
public infrastructure [117].

VII. CONCLUSION
Smart power grids aim towards resilient, reliable and sus-
tainable operation of legacy power systems and also the
integration of smart business models for the optimised use of
energy by consumers. Nonetheless, their complex system ar-
chitecture in which diverse and heterogeneous infrastructures
interconnect, facilitates the basis for a number of attacks that
enable energy theft. Energy theft attacks affect critical grid
processes and facilitate financial gain for malicious actors. To
present the overall overview of such actors and their energy
theft activities, we conduct a through study of data-driven
energy theft attack and detection techniques in this paper for
smart grid systems. In this regard, we firstly present the smart
grid components in the energy supply chain with a focus on
their data communication along with the pillars to access grid
effectiveness. The impact of energy theft in the smart grid is
then discussed by critically assessing how energy theft can be
formulated by manipulating demand, supply, and generation
data. The data-driven energy theft attack examples are then
discussed along with their enabling activities. Furthermore,
we categorize extensive studies addressing the data-driven
aspect of energy theft detection and summarizing the ex-
perimental approaches for such studies. Lastly, we highlight
various open issues and challenges still persisting in the area
of energy theft detection. We summarise and further indicate
future research directions for data-driven energy theft.
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