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Abstract—Deep generative models have gained much attention given their ability to generate data for applications as varied as healthcare to
financial technology to surveillance, and many more - the most popular models being generative adversarial networks (GANs) and variational
auto-encoders (VAEs). Yet, as with all machine learning models, ever is the concern over security breaches and privacy leaks and deep
generative models are no exception. In fact, these models have advanced so rapidly in recent years that work on their security is still in its
infancy. In an attempt to audit the current and future threats against these models, and to provide a roadmap for defense preparations in the
short term, we prepared this comprehensive and specialized survey on the security and privacy preservation of GANs and VAEs. Our focus is
on the inner connection between attacks and model architectures and, more specifically, on five components of deep generative models: the
training data, the latent code, the generators/decoders of GANs/VAEs, the discriminators/encoders of GANs/VAEs, and the generated data.
For each model, component and attack, we review the current research progress and identify the key challenges. The paper concludes with a
discussion of possible future attacks and research directions in the field.

Index Terms—deep generative models, deep learning, membership inference attack, evasion attack, model defense.

F

1 Introduction

Over the past few years, computation power has advanced
sufficiently to enable the success of deep neural networks in
various applications. Within this category, there are two categories
of deep learning models: generative and discriminative. Generative
models synthesize data we can observe in our world, such as
plausible realistic photographs of human faces [1]. Collectively,
these are known as deep generative models (DGMs). The other
one is to divide observed data into different classes, e.g., face
recognition, recommender systems, etc. [2]. This category of
models is known as deep discriminative models (DDMs) [3].

The most popular DGMs are generative adversarial networks
(GANs) [4] and variational auto-encoders (VAEs) [5]. Both are
widely used to generate realistic photographs [6], synthesize
videos [7], translate one image into another [8], etc. As the tradi-
tional DDMs, recurrent neural network (RNN) [9], convolutional
neural networks (CNN) [10], and their variants perform well at
sentiment analysis [11], image recognition [12], natural language
progressing (NLP) [13], [14] and so on. A relationship diagram of
the AI landscape is presented in Fig. 1.

As with any technology of wide influence, model security
and privacy issues are inevitable. Naturally, any adversary will
have two aspirations. The first is to sabotage the model so it
does unsatisfactory work. The second is to breach privacy. In
sabotaging a model, for example, an attacker might turn a model
that is supposed to generate human portraits into one that generates
pictures of shoes [15], or instead of correctly classifying pictures
as pandas, it might classify them as gibbons [16]. Breaching
privacy might include stealing the training data or the whole
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Fig. 1. The AI landscape. AI has two main branches, generative models and
discriminative models. The deep neural network variants of these models
have evolved into VAEs and GANs on the generative side and into RNNs
and CNNs on the discriminative side.

trained model. A famous example of this was where adversaries
duplicated models trained by Amazon through black-box queries
from APIs provided by its machine-learning-as-a-service platform
[17]. The same tactic has been used to restore the training set so
as to acquire private information [18], [19].

Poisoning attacks [20], [21] and evasion attacks [16], [22] both
attempt to force a model to do unsatisfactory work. Poisoning
attacks operate during the training phase, and attempt to compro-
mise the model’s abilities at the formation stage. Evasion attacks
work during the test phase, with the aim of providing adversarial
input to the trained model so that it produces unsatisfactory output.
Adversarial input is generally called an adversarial example.

At the component level, there are several different types of
attacks. At the data level, we have membership inference attacks,
which attempt to infer whether a given sample belongs to the
model’s training set [18] and, also, model inversion attacks, which
try to reconstruct some or all of the training data based on the some
prior information and the model’s output [19]. At the attribute
level, we have attribute inference attacks, which attempt to infer
the sensitive attributes of data [23]. Model extraction attacks work
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at the model level. These are a severe threat that try to duplicate
the entire trained model [17].

Although research into these attacks on DGMs is still in its
infancy, there is a healthy body of literature on the security and
privacy issues associated with DDMs. For instance, Papernot et
al. presented a detailed adversarial framework of security and
privacy attacks that included adversarial examples, strategies for
membership inference attacks, and some defense methods [24].
Focusing on scenarios and applications, Liu et al. categorized
both the types of attacks and types of protection schemes [25].
Serban et al. elaborated on adversarial examples, including their
construction, defense strategies, and transfer capabilities [26]. As
differential privacy is one of the most effective measure for mit-
igating privacy breaches, Gong et al. published a comprehensive
review on differentially-private machine learning [27]. A number
of surveys have also been conducted on DDMs, particularly CNNs
and RNNs, see e.g., [28], [29], [30], [31], [32].

In terms of DGMs, there has been much less work, as this
survey will show. Our review unearthed the following research
papers on: poisoning attacks [33], [34]; evasion attacks [15], [35],
[36], [37], [38], [39], [40]; membership inference attacks [41],
[42], [43], [44], [45], [46]; and attribute inference attacks [46]
and model extraction attacks [47]. To the best of our knowledge,
there are no surveys devoted to the security and privacy of DGMs.
However, in recent years, GANs and VAEs have advanced greatly
so that, now, DGMs are attracting much more attention, both well-
meaning and ill-intentioned. We therefore think it is time for a
thorough survey of those attacks and, of course, their defenses.
By comparing DGM attacks with DDM attacks and their known
defenses, we may be able to identify some critical gaps between
them.

‚ On a basic level, adversarial attacks are about the evolution
of a strategy. The attacks mentioned above were originally
designed for discriminative models and DGMs have a very
different purpose to DDMs. As such, the training algorithms
and model architectures are also very different. Therefore,
to perform traditional attacks against DGMs, the attack
strategies must be updated. One single attack strategy cannot
reveal the overall direction this evolution will take. Rather, a
comprehensive review is required.

‚ Whether the evolved attacks will be general to DGMs is
another concern. Since there are multiple variants of VAEs
and GANs, such as beta-VAEs [48] and Wasserstein GANs
[49] as well as other less popular types of DGMS, generality
would make sense.

‚ There may be rare defense strategies specially designed for
the occasions when a DGM suffers various types of attacks.

In these regards, a systematic study of the current state-of-play
in the field will be essential to future research efforts. Thus, the
main contributions of this survey include:

‚ A brief introduction to VAEs and GANs, the most popular
DGMs, beginning with their standard model structures and
training procedures and ending with a comparison between
the DGM and DDM architectures.

‚ An analysis of the feasibility of the various attacks given the
two stated adversarial goals - to sabotage the model’s proper
functioning and to compromise privacy - and the vulnerability
of the model’s individual components. This section also
categorizes the common attack strategies.

‚ A summary of the existing defense schemes and a discussion

on the possible defense methods, which, given the rarity of
defenses, make up the bulk of future research directions.

‚ Suggestions for other fruitful research opportunities worthy
of further attention.

2 A Background on DGMs
2.1 Notations

Consider a DGM with a training set Dtrain that consists of numer-
ous instances sampled from a real data distribution Preal and an
expectation that the training data distribution Ptrain approximates
the real data distribution Preal. The model learns the real data
distribution from the training set and aims to generate samples
that seem to be real but are unseen. Here, x denotes a real sample
in training set, x̂ denotes a generated sample, and Dgenerated and
Pgenerated denote the collection and distribution of the generated
samples, respectively. For a generated data distribution Pgenerated

to be plausible, it must be close to the training data distribution,
and therefore, in turn, close to the real data distribution. This can
be expressed as Pgenerated « Ptrain « Preal. To maintain diversity,
latent code z is randomly sampled from a distribution defined as
Pz. This is another representation of an input sample.

Both GANs and VAEs have two components, each taking the
form of a neural network. A GAN consist of a generator and a
discriminator; the corresponding functions are expressed as fgen

and fdis. A VAE consist of an encoder and a decoder with the cor-
responding functions similarly expressed as fenc and fdec. Further,
most evasion attacks involve a target output, denoted as xtarget,
and most membership inference attacks involve a query/series
of queries xquery the adversary uses to infer information. So,
for instance, a membership inference might be explained as
Prpxquery P Dtrainq, where Prpq denotes the possibility rate.

TABLE 1
Notation

Notation Description

Preal Distribution of real data

Dtrain, Ptrain Training dataset and its distribution

x Real sample

x̂ Generated sample

Dgenerated ,
Pgenerated

Dataset of generated samples and corresponding data
distribution

z Latent code

Pz The latent distribution, such as Gaussian distribution

xquery The given query sample for membership inference

xtarget The given target output sample for evasion attack

fenc, fdec Function of encoder and decoder

fgen, fdis Function of generator and discriminator

KLp¨||¨q The Kullback–Leibler divergence

2.2 DGMs: GANs and VAEs

As a major branch of deep learning, DGMs focus on data gen-
eration. DGMs are unsupervised, automatically learning the data
patterns in a training set so that the model has the capacity to
generate new samples in accordance with a distribution that is as
similar as possible to the true data distribution. GANs learn the
distribution implicitly under a minimax game where a generator
tries to fool a discriminator and the discriminator tries not to be
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deceived [50]. VAEs learn the distribution explicitly by limiting
reconstruction errors under an encoder-decoder framework.

GANs and VAEs follow different principles and, thus, have
different model architectures, as shown in Figs. 2 and 3. However,
both are made up of the same five broad components. These are:

1) The training set, which consists of numerous real samples
following a distribution that approximates the real data dis-
tribution.

2) Latent code, which is an alternative vector representation of
the data. Typically, this has lower dimensionality than the
input representation and is generally randomly sampled from
a latent distribution to satisfy the requirement of never-seen
generated samples. Essentially, the distribution is defined as
latent space.

3) Generator (GANs)/decoder (VAEs) - both are generative
components that finish the mapping from randomly sampled
latent code to a sample formally denoted as z Ñ x.

4) Discriminator (GANs)/encoder (VAEs) - both are auxiliary
components that help the generator/decoder become better
trained and can, thus, be discarded when the training ends.

5) Generated data, which is the output of the generator/decoder.
With the well trained generator/decoder, the distribution of
generated data will approximate the real distribution.

2.2.1 GANs
In GANs, the generator takes latent code as input and generates
samples. Both these samples generated and real samples are
then sent to the discriminator, which acts as a binary classifier
with the task of distinguishing the real data from the generated
data. Thus, a GAN’s training is formulated as a minimax game
[51] where a discriminator and a generator compete against each
other. The generator tries to produce a fake sample that fools the
discriminator into classifying it as true, while the discriminator
tries to perfectly discriminate between the fake data and the true
data. Formally, this can be expressed as

min
fgen

max
fdis

LGAN “ Ex„Dtrain rlog fgenpxqs

` Ez„Pz rlogp1 ´ fdisp fgenpzqqqs,
(1)

where fgen and fdis denote the generator and discriminator func-
tions, respectively, Dtrain denotes the training set, and Pz is the
prior latent distribution, usually a normal Gaussian distribution.
The first term, denotes the real loss, i.e., the cross-entropy loss
of the real data that is classified as real by the discriminator.
The second term, denotes the fake loss, i.e., the cross-entropy
loss of the generated data that the discriminator classifies as
generated. The generator hopes to minimize the fake loss, while
the discriminator hopes to maximize both the real and fake loss.

During training, the generator and discriminator are each
trained in turn. While the discriminator is being trained, the
parameters of generator network are fixed, and vice versa. The
training ends when both the generator and discriminator are not
showing further improvement. As a result, the generated data is so
similar to real data that it successfully fools the discriminator.

2.2.2 VAEs
VAEs generate samples based on the cascaded work of the encoder
and decoder. The encoder compresses the input sample into a
lower-dimensional latent space and the decoder decompresses
randomly sampled latent code from the latent space into a sample.
This compressing and decompressing is commonly referred to as

x

Latent code
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Generator
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or

Fake 

x̂
Synthetic

Sample

Fig. 2. GAN architecture. A GAN consists of a generator and a discriminator,
both of which are deep neural networks. In this example, the generator
maps the latent code as an image representation, and the discriminator
tries to distinguish between the generated image representation and the raw
image representation. This ensures the generated samples are plausible.
The process is formulated as a minimax game where generator tries to fool
discriminator into classifying generated samples as raw samples and the
discriminator tries not to be deceived.
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Fig. 3. VAE architecture. A VAE consists of an encoder and a decoder, both
of which are also deep neural networks. The encoder encodes the input
representation into a lower-dimensional latent code, which subsequently
is decoded into a representation by decoder. The reconstruction error
mechanism between the input and decoded representations ensures the
plausibility of the generated samples.

encoding and decoding/reconstruction. A reconstruction mecha-
nism is conducted between the input sample and decompressed
sample so that the latent code keeps the maximal information
of input sample during encoding process and the decompressed
sample has minimal reconstruction errors during decoding. As
part of this process, the latent space must be regularized to be
continuous and complete. Hence, a point randomly sampled from
the latent space could be decoded as a new and plausible sample.
The best encoding-decoding schemes and regularized latent spaces
are achieved using an iterative optimization process with the loss
function:

min LVAE “ ´Ez„Qpz|xqrlogPpx|zqs ` KLpQpz|xq||Ppzqq, (2)

where Qpz|xq and Ppx|zq are the encoder and decoder networks,
respectively, x is the input sample, and z is the latent code.
The first term, in the case of a reconstruction error, denotes the
cross-entropy between the input x and their reconstruction x̂,
x̂ “ fdecp fencpxqq. The second term, often called regularization
term, regularizes the latent space by ensuring the returned distri-
bution Qpz|xq is close to prior distribution of the latent code Ppzq.
Generally, this follows a standard multivariate Gaussian distribu-
tion Np0, Iq. The Kullback-Leibler divergence KLp¨||¨q is normally
used to measure the distance between the two distributions.

2.3 A Comparison of DGMs and DDMs

To analyze DGMs’ vulnerability to the mainstream attacks, e.g.,
membership inference attack, we compare DGMs with DDMs in
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TABLE 2
DGMs vs. DDMs

Model instance Input Model output

DGMs
GANs

Generator Latent code Generated data
Discriminator Generated data, training data A label[0,1] and a confidence score

VAEs
Encoder Training data Latent code
Decoder Latent code Generated data

DDMs CNNs Training data pairs <data, label> Labels and corresponding confidence scores

aspect of components and corresponding inputs and outputs. Table
2 lists the comparison result of the typical DGMs, i.e., GANs and
VAEs, and a DDM, i.e., convolutional neural networks (CNNs).
DDMs take the labels of each record in training set as input, which
becomes the benchmark for training. For DGMs, from a holistic
perspective, the real data is the concrete benchmark that verifies
the quality of generated samples. And DGMs output data, while
DDMs output the probabilities of a label, i.e., a confidence score.

In view of the differences, there are clear security and privacy
vulnerabilities for DGMs as follows.

1) DGMs have more complex input, i.e., latent code and training
data, which provides new directions for attacks against model
input, like evasion attacks in latent space.

2) DGMs reveal training data patterns by generating plausible
samples, which leaves the privacy of training set rather trans-
parent. Hence, DGMs are particularly vulnerable to attacks
against training set, like membership inference attacks.

3) DGMs, except discriminators of GANs, does not provide
labels or confidence score, thus the derived attacks, e.g.,
membership inference attack in [18] and model extraction
attack in [17], are not perfectly feasible.

DGMs also have inner characters in common with DDMs.
Both are based on deep neural networks, which means that DGMs
tend to suffer from some of the same problems as DDMs - overfit-
ting, for example. And discriminators of GANs are tantamount to
DDMs. Further, both are trained on training data thus vulnerable
to poisoning attacks.

In general, DGMs are vulnerable to mainstream attacks, i.e.,
membership inference attacks, attribute inference attacks, model
extraction attacks, poisoning attacks and evasion attacks; however,
the traditional attacks, e.g., membership inference and model
extraction attacks based on confidence score [17], [18], would
not work perfectly for DGMs. Specialized attack strategies are in
requirement for attacking DGMs.

3 Threat Models for Attacking GANs and VAEs

3.1 Adversary’s Goals

Goal 1: Breaking the model
Achieving this goal requires a disruption to the generative

process that either results in: a) the intended output samples but at
a low quality; b) some other presupposed samples within or out of
the domain; or c) samples with no suppositions but ones that are
not similar to the original output. If these presupposed samples sit
within the domain, they should have a high probability of lying in
the expected data distribution. Samples outside the domain would
have the opposite and are not likely to follow the distribution.

This goal can be in achieved several ways. For instance, a
poisoning attack can disrupt the model’s generative abilities during

training phase, while an evasion attack can do the same during the
testing phase.

Poisoning Attack: The basis of this attack is to inject carefully
crafted samples into the training set thereby poisoning it. Then,
any model trained on the poisoned set will learn wrong abilities
with wrong model parameters. Another way is to damage part of
the model’s structure, such as its loss function, to alter the model’s
workflow. Both strategies can be teamed with triggers to allow
the attack to work within certain conditions, known as a backdoor
poisoning attack [52]. Such attacks tend to avoid early detection.

Evasion Attack: This attack carefully crafts the model input
to induce an unsatisfactory output. Such input is defined as an
adversarial example. For a DGM, model input includes the latent
code and the input sample. Accordingly, adversarial examples can
be crafted for the latent code and sample, often called the latent
adversarial example and adversarial example in this survey.

Goal 2: Stealing confidential information
Any information that authorized users could not obtain from a

normal query to the trained model is confidential. Adversaries’
prime targets include the model’s parameters and its training
set. Typical attack strategies include: the inference attack, where
adversaries try to infer real data and/or attribute values with high
confidence [53]; the model extraction attack, where the aim is
to duplicate the functionality of the model [17]; and the model
inversion attack, where adversaries recover the training data and
thus also gain access to the model. To the best of our knowledge,
there have not been any model inversion attacks against DGMs,
yet. However, there have been several studies on how one might
perpetrate a model inversion attack from the generated samples
or latent code, while focus more on the latent space, such as the
interpretability [54] and regularization [55] of latent code.

Membership Inference Attack [18]: In this type of attack, the
adversary tries to deduce whether a given sample is part of the
model’s training set. Prior information about the set, such as its
size, can help them to deduce whether a set of samples are subset
of the training set. With multiple queries, the entire training set
might be recovered. Membership inference attacks lead to severe
privacy leaks. They also provide clues about the strategies for
other types of privacy attacks.

Attribute Inference Attack [46]: It is also known as record
linkage attack, in the attack, adversaries have knowledge of some
of the common attributes of the dataset, which they use to try
and infer the sensitive attributes of a given sample. The common
attributes are generally freely available to the public, such as a
street scene, but the sensitive attributes are ones protected from
public view, such as the number plates of the car parked along the
street.

Model Extraction Attack [17]: The idea of this attack is to
infer the parameters or functions of the model via an efficient set
of queries. If successful, the adversary can then copy the model’s
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TABLE 3
Adversarial Goals and Targets

Adversarial Goal Attack Target Attack Category Phase Model Corruption

Goal 1: To break the model

Generator Evasion Test Integrity
Decode Evasion Test Integrity
Encoder Evasion Test Integrity
Dataset Poisoning Training Integrity

Goal 2: To steal confidential information

Generator
Membership inference

Attribute inference
Model extraction

Test Confidentiality

Decoder
Membership inference

Attribute inference
Model extraction

Test Confidentiality

Discriminator Membership inference Test Confidentiality

functions partly or even completely.
Goal 1 is achieved by destroying the model’s integrity and

Goal 2 is achieved by destroying the model’s confidentiality [56].
Model integrity means that the model’s training and testing pro-
cess suffer no disturbance so the model produces normal output.
Poisoning attacks disturb the training process and evasion attacks
disturb the testing process, both of which result in unsatisfactory
output, and accomplish Goal 1. Model confidentiality means that
sensitive data should only be disclosed to authorized users. Mem-
bership inference attacks and attribute inference attacks all reveal
the training data, while model extraction attacks duplicate the
functionality of the model. All of these attacks procure confidential
information without authorization, thus accomplishing Goal 2. A
summary of these goals and targets is given in Table 3.

3.2 The Adversary’s Prior Knowledge

Most types of attack either rely on or work better when the
adversary holds some prior information about the model or its
training set. The more prior information the adversary holds, the
more powerful the attacks and the more successful it is likely to
be. Prior information that adversaries may have includes:

1) Training data and training algorithm. The security of the
training data is the basis of the model’s confidentiality.
However, a model owner may publicly share their training set
during testing to explain their algorithm, which could reveal
much about that data and the model’s parameters.

2) Model parameters. These include the discriminator and gen-
erator of GANs, and the encoder and decoder of VAEs. The
model owners may publish a full GAN/VAE online to show
their product and encourage further updates. Additionally,
they may publish part of the model, i.e., the discriminator
of GANs providing a tool to test the effectiveness of their
work. With the model parameters, the adversaries can design
more detailed and personalized attacks, i.e., specially crafting
adversarial examples and inferring data membership.

3) Latent code. As another representation of data, latent code
plays a decisive role in data synthesis. There are two situa-
tions by which adversaries could come to have this knowl-
edge. First, they may have direct control of latent code, in
which case, they can alter its value to satisfy their goals.
Second, they may know a latent distribution, which means
they can alter the latent code indirectly.

4) Generated data. This is the most easy and basic information
for an adversary to get. Generally, it is acquired by querying

a DGM through its API. Adversaries can also be provided
with a set of generated data by an unknowing user.

Adversaries also have types depending on their capabilities
and the information they possess. If they have access to the
training algorithms and data, they can act more like insiders to
fundamentally corrupt the model. These are known as internal
attackers. Those with access to only the generated data are called
black-box adversaries. If with comprehensive knowledge of the
model parameters, they are called white-box adversaries. If with
no access to the model’s parameters but have access to more than
the generated data, for example, the latent code, they are defined
as partial black-box adversaries. Table 4 lists these classifications.

To reach their goals, adversaries consider the prior knowl-
edge they have and design an attack strategy accordingly. Based
on adversarial information against each components, including
training set, latent code, GAN generator/VAE decoder, GAN
discriminator/VAE encoder and generated data. For the fact that
the latent code is the input of generator of GAN (decoder of
VAE) and generated data is the output, we classify the attacks
against latent code and generated data into the attacks against
generator/decoder. Specifically, we get following types of attacks:
attack against generator/decoder of VAE, attack against discrimi-
nator/encoder, and attack against training set. Table 5 summarizes
the literature on the types of attacks, the components targeted, and
the strategies used for each type of DGM plus the data. Attacks
on models/components that are not feasible are indicated as n/a.
Attacks that are unexplored are marked as TBD to reflect this gap
in the literature.

4 GANs: Attacks Against Generators
This section elaborates on attacks against generators, targeting the
input, i.e., latent code, or the output, i.e., generated data.

4.1 Evasion Attacks

Manipulating latent code is essential for mounting an evasion
attack. An evasion attack can be explained as finding a latent code
in a pre-set latent distribution that the generator maps into an
unsatisfactory sample. The final generated sample is dissimilar to
the original output, but similar to the target sample. Meanwhile,
the corresponding latent code should be close to the original
latent code. Otherwise, it might be detected by defenders when
they verify whether the input latent code belongs to the pre-set
distribution. Consequently, the loss function of an evasion attack
consists of two parts: the adversarial term Ladv to ensure the
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TABLE 4
Adversary’s information and capability. There are five categories of prior information an adversary can hold: training data and algorithms, model

parameters, latent code, generated data, and other auxiliary (publicly collected) information. The confidentiality of the information decreases from left to
right. ! denotes essential access, # denotes access not required, ⃝ denotes access possibly required.

Adversary Training data and algorithm Model parameters Latent code Generated data Auxiliary information

Internal attack ! # # # #

White-box attack ⃝ ! ! ! ⃝
Partial black-box attack ⃝ # ⃝ ! ⃝
Black-box attack # # # ! #

TABLE 5
Overview of the attack types by component. This table summarizes the basic strategy for each attack as it pertains to each component of the model.

Non-existent situations are denoted as not applicable (n/a). Possible but still unexploited situations are denoted as to be determined (TBD).

Component
Attack Evasion Membership inference Attribute inference Model extraction Poisoning

Generator

Forces a generator to do the
wrong work via latent adver-
sarial code. The adversarial
code should not be too far
away from the prior distribu-
tion of the existing [15]

Infers whether a given sam-
ple belongs to the training
set based on the generated
data [41], [42], [44], [45],
[46], [57]

Infers sensitive at-
tributes based on
the generated data
[46], 2020

Duplicates a model
based on the gener-
ated data [47]

n/a

Discriminator n/a

Infers whether a given sam-
ple belongs to the training
set based on the discrim-
inator’s output and exact
confidence scores [43]

TBD TBD n/a

Decode
Forces a generator to do the
wrong work via latent adver-
sarial code [39]

Infers whether a given sam-
ple belongs to the target
training set based on the
generated data [41], [42],
[44], [45], [46], [57]

Infers sensitive at-
tributes based on
the generated data
[46]

Duplicates the tar-
get model based on
the generated data
[47]

n/a

Encoder

Forces a generator to do
the wrong work by making
the image input adversarial,
which makes the code adver-
sarial [35], [36], [37], [38],
[39], [40]

TBD TBD TBD n/a

Dataset n/a n/a n/a n/a

Disturbs model train-
ing process, includ-
ing its static datasets
and data processing
logics [33], [34]

attack effect, and the regularization term Lreg to regularize the
perturbation. A hyperparameter λ aims to balance the two parts:

Levasion “ Ladv ` λ ¨ Lreg, (3)

Ladv “ ∆pxtarget, fgenpzqq. (4)

Pasquini et al. [15] was the first to explore the evasion attack
against generator. They assumed that a defender would build a
distribution hypothesis test to check whether the latent code be-
longs to the prior distribution before the code is sent to generator.
To pass validation, i.e., to ensure that the latent code follows the
prior latent distribution, even with updating multiple iterations,
they restricted the moment of the latent code to be close to the
moment of a random variable sampled from the latent distribution.
Formally,

Lreg “

k
ÿ

i“1

ωi }µz0 piq ´ µ̃zpiq}
2
2 , (5)

where z0 is the latent code randomly sampled from the prior latent
space pz, µz0 piq is the ith moment of z0, and rµzpiq is the ith sample
moment of the latent vector z. Here, z is the iteration result of the

original latent code z0. The parameter ωi is the weight assigned to
the ith moment difference.

The full attack process would proceed by the adversary first
sampling some initial latent code from the prior latent distribution.
Then, they would adjust that code with gradient descent by
minimizing Levasion.

We believe this approach could be extended to the conditional
generator, where the defender could randomly choose a label and
expect the generator to output a sample of that label. Here, the
adversarial loss function would be:

Ladv “ ∆pxtarget, fgenpz, yqq, (6)

where y is the randomly chosen label by the defender. During the
optimization process, y remains constant.

Overall, it is worth noting that, in a properly functioning
model, the generated data is intrinsically similar to the training
data, and model overfitting exacerbates this similarity. Hence,
generated data can be treated as substitute for the training data.
Adversaries can breach much privacy through generated data,
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which brings us to membership inference, attribute inference, and
model extraction attacks.

4.2 Membership Inference Attacks (MIAs)

"Membership" in our survey means whether a sample belongs to
the ML model’s training set. Since the generated data distribution
of a DGM approximates its training set, the problem of inferring
membership can be converted into a problem of determining
whether the query sample follows the generated data distribution.
In this way, membership inference means determining whether the
query sample is close to the generated sample. If so, it probably
belongs to the training set. Attacks derived from this idea are
known as distance-based MIAs. Attribute inheritance provides
another idea that, if a query sample is used to train a model,
the generated data will preserve certain attributes of the query
sample. These attacks are termed as attribute-based MIAs. Each is
detailed below. Additionally, we introduce co-MIAs to expand the
attacking scenarios and possible attack calibration strategy.

4.2.1 Distance-based MIA
We define the membership inference based on the distance be-
tween the query sample and the generated samples for two reasons.
First, from the perspective of distribution approximation [42],
[45], since the output distribution approximates the training data
distribution, the probability that the query sample belongs to the
training set is proportional to the probability that the query sample
belongs to the output data distribution. Therefore, the inference
can be expressed as whether one of the query samples belong to
the output distribution - or, more specifically, whether the query
sample was produced by the target generator. Second, from the
perspective of overfitting the model [44], if there are several
generated samples close to the query sample, the query sample is
probably a member of the training set. Both ideas revolve around
whether one or more generated samples are close to the query
sample. Formally, this can be expressed as

min
xPGp¨q

∆pxquery, xq, (7)

, where xquery is the given sample, x is the generated sample from
target generator G, and ∆ is the distance function that calculates
the distance between two samples.

In the papers we reviewed, most calculated these distances
using either ϵ-ball, where quantity was the focus, or reconstruction
distance when quality mattered. Fig. 4 provides more details.

Reconstruction Distance Herein, adversaries focus on the
quality of the distance measure. In other words, they are trying
to find the generated sample that is closest to the query sample.
The closest generated sample is called the reconstruction of the
query sample, and the distance between the two is called the
reconstruction distance - formally,

Rpxquery, |Gq “ argmin
x„G

∆pxquery, xq, (8)

. Empirically, it is impossible to obtain every generated sample
and find the closest one. Multiple solutions have therefore been
proposed to solve the optimization problem based on limited prior
information. These are outlined as follows:

‚ Chen et al. considered a black-box attack and simply cal-
culated the distance between the query sample and each
generated sample [42]. The sample with the least distance to
the query sample was deemed the reconstruction. A judgment
was then made about the reconstruction error.

Fig. 4. Membership inference attacks: reconstruction distance and ϵ-ball
distance. The dots (‚) denote the query sample, the triangles (△ and ▲)
denote the generated samples, and the dashed circle denotes the threshold
of ϵ-distance. With reconstruction distance, the sample that has the closet
distance (labeled as ▲) is the focus. With ϵ-ball distance, the quantity of
generated sample in the dashed circle is the focus (quantity = 9).

‚ If the adversary has access to the latent code, they can adjust
it to get an optimal solution in the regularized latent space.
Chen et al. [42] proposed to approximate the optimum via
Powell’s Conjugate Direction Method [58], while Liu et al.
[45] proposed building another set of neural networks to
find the optimal latent code. These adversarial networks took
the query sample as input and output the latent codes, like
encoders. The adversary then adjusted the parameters of the
adversarial net until the output latent code reaches the opti-
mum. This approach essentially transforms the optimization
problem into a parameter tuning exercise. However, without
the generator’s gradient information, Liu and colleagues used
finite-difference to approximate the gradient and find the
optimum latent code.

‚ White-box attackers, i.e., attackers with access to the inter-
nals of the generator, including the gradient information, can
solve the optimization problem more accurately by using an
advanced first-order optimization algorithm, such as L-BFGS
[42], [45]. Such a solution would be suitable for solving both
optimization problems - for the latent code or the parameters.

Hilprecht et al. [44] made a compromise in cases where a
precise reconstruction was not required to calculate the average
distance between the query sample and each generated sample.

Model publishers sometimes launch an MIA themselves before
publishing the model to evaluate the model’s security.This process
is more commonly called a membership inference test, as shown
in Fig. 5. Some researchers have proposed an easier test that is
also based on the distance between the generated sample and the
query sample [41], [57]. In the test, the “adversaries” have no
knowledge of the model but full knowledge of the training data.
The test works as follows:

1) The raw data is randomly split into two disjoint subsets of
equal size, D “ D1 Y D2. The generative model is trained on
D1 and a dataset of generated data Dgenerated is produced.

2) The adversary has access to a subset of D, denoted D3. And
samples in D3 may belong to either D1 and/ or D2.

3) Given a query sample x from D3 and the disclosed generated
dataset Dgenerated, the adversary calculates the distance be-
tween the query sample and each sample in generated dataset
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TABLE 6
The types of membership inference attacks. According to the target component and controlled adversarial information, adversaries design various attack
strategies for a query sample (single MIA) or a set of query samples (co-MIA). In each category, we present required adversarial information and basic

idea, further discussing whether it is applicable into co-MIA.

MIA type Target Adversarial information Single MIA Co-MIA Paper, Year

Reconstruction
distance

Generator/
decoder

Query to genera-
tor/decoder

Attains k generated samples and
find the one closest to the query
sample. If the distance is within the
threshold, the sample is part of the
target training set.

Applicable if adversaries
know the preset size or
overall belonging. Repeat
single MIA for each sample
in the query set and decide
at the end. Until then, there
is no information to share
across different samples.

[42] 2019

1) Query to genera-
tor/decoder

2) Access to latent
code

Adjusts the latent code until the
output sample is within the query
sample threshold. Generally, em-
ploy an approximate optimization
method.

Applicable, but it is not clear
how to share information
across different instances

[42] 2019

Gets k latent code from a derived
distribution and calculate the aver-
age distance between the generated
samples and the query sample.

Applicable, but it is not clear
how to share information
across different instances.

[44] 2019

1) Query to genera-
tor/decoder

2) Access to latent
code

3) Access to inter-
nals of genera-
tor/decoder

Adjusts the latent code until the
output sample is within the query
sample threshold. Generally, use
an advanced first-order optimiza-
tion algorithm, such as L-BFGS
optimization.

Applicable, but it is not clear
how to share information
across different instances.

[42] 2019

Builds an adversary network like
the encoder. Adjust its parame-
ters until the output latent code is
mapped as a sample close to the
query sample

Applicable. Information can
be shared across different in-
stances.

[45] 2019

1) Query to genera-
tor/decoder

2) Partial real data

Performs a simple membership in-
ference test by randomly checking
the similarity between the gener-
ated data and the training samples.

None [41] 2021

ϵ-ball distance
Generator/

decoder
Query to genera-
tor/decoder

Finds the number of generated
samples in the ϵ-ball neighborhood
of the query sample.

Applicable, but it is not clear
how to share information
across different instances.

[44] 2019

Attribute
Generator/

decoder
1) Query to genera-

tor/decoder
2) Reference dataset
3) Training algorithm

Checks whether the generated data
has inherited the attributes of query
sample

Applicable [46] 2020

Discriminator Discriminator Query to discrimina-
tor

The confidence score of the query
sample is extremely high.

Applicable, but it is not clear
how to share information
across different instances

[43],2019

with ∆px, x̂q, where x P D3 and x̂ P Dgenerated.
4) The adversary determines that x is part of the training set D1

when ∆px, x̂q is lower than some threshold. Value 2, 3 or 5 is
recommended for threshold with a Hamming distance.

If the test has a high success rate (above 0.5), the inference
is better than a random guess and definitely effective. The model
publisher might administer a membership inference test to several
candidate models and choose the one with the least success rate.
It is worth noting, however, that membership inference tests are
meaningful for model publishers to validate the risk of disclosing
the membership privacy but this does not necessarily translate into
a practically secure model with the precondition that the adversary
is capable of the training data.
ϵ-ball Distance. With ϵ-ball distance, the adversary is more

concerned with quantity than quality - the reason being that the
more generated samples around the query sample, the more likely
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Fig. 5. Membership inference test. The model publisher has full control
of training data and test the confidential level of the candidate models. A
single membership inference test is launched for each sample in D3 and the
publisher obtain the overall success rate. The higher the success rate, the
less confidential information the candidate model has.
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the sample is of the target training set. The attack is launched as:
1) Define the ϵ-neighborhood of the query sample as

Uϵpxqueryq “ ∆px, xqueryq ď ϵ.
2) Obtain a generated dataset by querying the generator or

getting on directly from the model publisher.
3) Calculate the distance between each generated sample and

the query sample and count how many samples are in the
ϵ-neighborhood of the query sample Uϵpxqueryq.

4) If co-MIA is launched, calculate the average quantity and
compare the two results.

Hilprecht et al. [44] was the first to come up with this idea and,
further, these authors initially tried to incorporate exact distances
into Step 3. So, if the generated data was in the ϵ-neighborhood of
the query sample, they recorded the distance; if not, they ignored
the sample. The alternative was to calculate the average distance
between the query samples and the generated samples in the ϵ-
neighborhood of the query sample. However, the empirical results
show that there were no significant differences between the basic
two ideas. Therefore, the samples in the ϵ-neighborhood were
taken to play the main role in the attack.

Notably, an appropriate choice of ϵ is crucial for the success
of this attack. Two heuristics are used, i.e., percentile and median,
with the empirical results showing that the median heuristic
outperforms the percentile. Interested readers can refer to [44]
for more details.

4.2.2 Attribute-based MIAs
Attribute-based MIAs is based on the query sample’s impact on the
DGM’s output distribution. To implement this attack, Stadler et al.
[46] propose shadow training, which requires prior knowledge of
a reference dataset, the training algorithm, and a generated dataset
from the target model. The reference dataset must follow the same
distribution as training set, and the two datasets may overlap. The
shadow training procedure works as follows:

1) Make two kinds of shadow training sets, one containing the
query sample and the other does not. Then randomly sample
data from the reference dataset to form multiple data sets.
Half should include query sample.

2) Run the training algorithm on each shadow training set and
collect the generated samples of the shadow model. If the
shadow training set contains the query sample, the generated
samples should be labeled with 1, otherwise 0. This results
in data pairs ă generated data, 1 or 0 ą.

3) Train a binary classifier on the data pairs.
4) Use the trained classifier to predict the label with the gener-

ated data. If confidence score is above 0.5, the query sample
belongs to the training set.

To reduce the effect of high-dimensionality and sampling un-
certainty, Stadler et al. suggest to use feature extraction techniques
on the collected generated samples before training the classifier.
In this way, the aim becomes detecting the target’s influence on
the feature vector, not on the whole image. Whether the attack
is successful depends on two factors - first, whether the target’s
presence has a detectable impact on any of the features; second,
whether the generated dataset has preserved these features from
the raw data, i.e., preserved the target’s signal.

4.2.3 Co-MIAs
When adversaries control certain additional information about the
training set of target model, they tend to launch co-MIAs on a

set of samples. Co-MIAs have evolved from the single MIA.
Several co-MIA scenarios are possible depending on the additional
information that the adversary holds, which are listed as follows.

The Preset Size: In this situation, the adversary knows that
n samples in the query set belong to the training set. Hence,
they launch a single MIA using each of those samples and sort
the results by the degree from the distance function. The top n
samples are regarded as the training data. This type of co-MIA
is an overlay of several single MIAs. Generally, either distance
function is feasible. Hilprecht et al. [44] used the ϵ-ball distance
for GANs and reconstruction distance for VAEs.

Overall Belonging: In this situation, either all or none of the
query samples belong to the target training set. The adversary still
launches a single MIA against each sample, but then calculates the
average based on the degree derived from the distance function.
This average is the final determiner of whether all or none belong
to the target training set. There are two ways to calculate the
average. In the first way, each single sample is checked to ascertain
whether it belongs to the training data and then adversaries count
the samples that they believe to be in. If most of the query
samples are in, then so is the whole set [45]. The second way is to
calculate the average of the distance function’s output and make
a judgment based on that average. Additionally, if the adversary
uses a neural network to finish the reconstruction, as mentioned
in the single MIA, they can co-train one single model with all
the query samples. Then the overall loss will be defined as the
average of the loss for each sample [45]. If the adversaries mount
an attribute-based MIA, they simply need to change Step 1 from
the query sample to the query dataset, so that one shadow training
set contains the query dataset and the other does not.

4.2.4 Attack Calibration

Chen et al. [42] found it easier to generate a close sample for a less
complicated query sample with an arbitrary generator. Likewise,
it may be more difficult for a more complicated sample with the
target generator. To mitigate the dependency on the representation
of the query sample, they designed a reference generator which
is trained on a relevant but disjoint dataset and mounted the
same MIA against it, providing reference for final membership
inference. In their research, they used the reconstruction distance
as a main tool. As such, they deemed that if the reconstruction
of the target DGM was close to the query sample, while the
reconstruction of the reference DGM was far way, the query
sample was more likely belonging to the training set.

4.3 Attribute Inference Attacks

Attribute inference attacks in this survey specifically target the
attributes of data that should remain private. In this attack, an
adversary tries to infer the private attributes of a data record
based on other public attributes that are easily accessible. The
most common source of these public attributes is the generated
data. To be useful, this data’s attributes must be plausible, but
those plausible attributes simultaneously reveal patterns in the
data. Adversaries can then look for inner connections between the
private and common attributes. Once those connections become
concrete, the private attributes will be revealed. The key to
attribute inference attacks is therefore to find the inner connections
between the data attributes.

Stadler et al. [46] simplified this attack to a setting where there
was only one sensitive attribute with a value in the continuous
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domain. They then formalized the problem as a regression problem
in which an attacker learns to predict the value of an unknown
sensitive attribute from a set of known attributes, with access to a
dataset (either raw or generated).

In detail, the adversary is capable of a generated data set,
denoted as D. The attributes of each sample are split into a
disclosed part and a private one. The disclosed part contains all the
attributes that the adversary can collect publicly, e.g., information
on social networks, denoted Rk “ rr1, r2, ¨ ¨ ¨ , rks, supposed to
have k disclosed attributes. The private part is what the adversary
targets, denoted as rs. The regression problem is solved by

rs “ Rk ¨ wD ` ξ, ξi „ Np0, σ2q, (9)

When the training ends, the adversary can derive the sensitive
attribute of the target sample by calculating rs “ wD ¨Rk, where Rk

denotes the k known attributes of the target sample. Intuitively, if
the accessible set D contains more training samples, the regression
prediction can be more valid.

Furthermore, such method can verify whether the generated
data mitigates the risk of attribute leakage with the bulk of
training dataset involved [46]. Two regression models are built
on generated data set and raw training data set respectively. In this
way, the private attribute of the query sample has two predictions.
If the model based on the raw training dataset has more accurate
predictions, the generated images definitely protect the attribute
privacy, thus reducing the adversary’s chance of success.

4.4 Model Extraction Attacks

The goal of the model extraction attack is to build a local model
to clone the target model. Here, due to the approximation of gen-
erated and training data distribution, a straightforward approach is
to train the local model on the generated data of the target model.
The key to such a model extraction attack is to acquire generated
data that are highly similar to the training data.

Based on the idea, Hu and Pang [47] collected generated sam-
ples to train a local DGM to approximate the target model. They
then designed two types of GAN attacks - accuracy extraction
attack and fidelity extraction attack, targeting the model’s data
distribution, i.e., the generated data distribution of the target model
and the model’s training set, i.e., the training data distribution of
the target model.

4.4.1 Accuracy Extraction

At this stage, the adversary trains a local GAN to extract the
target model by minimizing the difference between the generated
data distribution of the local model and that of the target. The
extraction needs a large amount of generated data, otherwise the
performance of local model is poor due to insufficient training
samples. However, Hu and Pang found that more generated data
did not always result in a better local model [47]. The more
they queried, the more poor-quality samples they retrieved, which
comprised the success of the attack. Therefore, adversaries have
to control the quantity of generated data.

4.4.2 Fidelity Extraction

As with accuracy extraction, stealing the training data distribution
of the target model is also formulated as a problem of minimizing
the difference in distributions between the local generated sets
and target training sets. To accomplish this, Hu and Pang propose

two prior knowledge scenarios, noting that, either way, success
requires at least some non-generated samples:

1) Partial black-box fidelity extraction: generated data and some
real samples from the training set; or

2) White-box fidelity extraction: generated data, some real sam-
ples, and the discriminator of the target model.

With the partial black-box version of the attack, the adver-
sary retrains a local model on the generated data and continues
training after adding in the available real data. In the paper,
50,000 generated samples were used. With the white-box attack,
the adversary first leverages the discriminator to subsample the
generated samples. Then, the local model is trained on the refined
samples and further retrained on the available real data. Note
that, considering some discriminators output a score rather than
a probability, the discriminator was calibrated on real samples
from the target GAN’s training set through logistic regression.
By comparison, white-box adversaries need to query both the
generator and discriminator, and require more generated samples
for subsampling.

4.5 Summary

As the generative component of GANs, generators often provide
more information than imagination. They tend to be sensitive to
trivial perturbations of latent code and, thus, can be vulnerable to
evasion attacks. Additionally, because the generated data distribu-
tion approximates the training data distribution, generated samples
reveal confidential information somewhat by design. This makes
generators particularly vulnerable to MIAs, attribute inference
attacks, and model extraction attacks.

5 GANs: Attacks Against Discriminators
For discriminators in GANs, they are deep binary classifiers that
distinguish generated data from training data, which motivates the
generators to produce more plausible samples. Since discriminator
play no part in testing, and their output is not worth stealing, the
only attack that applies to discriminators is the MIA. Even here, to
the best of our knowledge, the only study on discriminator MIAs
was published by Hayes et al. [43].

5.1 MIAs Against Discriminators

As a deep binary classifier, if overfits, the discriminator would
output extremely high confidence score for training samples and
significantly low confidence score for generated samples. Hayes
et al. first proposed MIAs on target discriminator [43]. The attack
strategy is simple: the adversary inputs the query sample into
the target discriminator which subsequently outputs a confidence
score. If the confidence score is above a threshold, e.g., 0.9, the
query sample is part of the target training set with high possibility.
Obviously, however, the attack does require direct access to the
discriminator; hence, this is a white-box or internal attack.

5.2 MIAs Against Shadow Discriminators

As discriminators are not always accessible or even retained after
training, there is a second and more complicated (partial) black-
box version of MIAs that involves a shadow discriminator [43].
This shadow discriminator is an approximate copy of the target
that, once built, is targeted with the attack outlined in Section 5.1.

To build the shadow discriminator, the adversary collects
samples that are in and out of training dataset of target model,
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separately defined as real and fake data. Auxiliary information
includes: 1) samples generated by the target generative model.
Given a well-trained generative model, the generated samples
should be similar enough to fool the discriminator into regarding
them as real data; and 2) any additional information the adversary
can collect, such as samples found online. The setting has a
practical significance since most models are built from public data.
The adversary then labels the collected samples with "real" or
"fake" label to form a training set for the shadow discriminator.

If the adversaries can only collect fake data that were not used
to train the target model, such as samples collected from online or
testing set of target model, they can collect the generated samples
as real data. Then the shadow discriminator is trained on fake and
real set. If the adversaries can not collect fake data but limited
real data, or even no auxiliary data, the adversary can collect the
generated samples as real data, and build a local GAN to generate
fake data. The local GAN is trained on the collected real data,
and When the training ends, the local discriminator is regarded as
the shadow discriminator. If the adversaries successfully attain a
subset of real set and fake set, to train a local GAN or an alone
discriminator is feasible. With a shadow discriminator in hand,
the adversary can infer data membership with a white-box attack.
Further, the target model could be any DGMs, not just GANs.

5.3 Co-MIAs
Co-MIAs are also based on basic idea in Section 5.1. These attacks
are designed to recover the target training set when the size of
target training set known [43]. Specifically, the adversary launches
an MIA for n ` m query samples against a target or shadow
discriminator, where n is the size of the training set, and m is the
number of datapoints that do not belong to the training set. Then
the discriminator outputs the confidence score. The adversary sorts
the scores in descending order and the top n samples are regarded
as target training set. Table 7 summarizes two situations of Co-
MIA against target or shadow discriminators.

5.4 Summary
Though not directly involved in data generation, the discriminators
of GANs can reveal data membership with sophisticated adver-
saries. For the model security and privacy, it is essential to realize
the importance of the discriminator and not to expose it.

6 VAEs: Attacks Against Decoders and Encoders
Encoders and decoders work sequentially. The encoder transfers
the input sample into a latent distribution. From which, a latent
code is randomly sampled. Then decoder maps the sampled latent
code as a sample, i.e., x Ñ z Ñ x̂.

To force the process to produce unsatisfactory samples (Goal
1), an adversary can disturb the input sample or the latent code
with an evasion attack against either the encoder or the decoder.
To breach privacy (Goal 2), the adversary can start with the latent
code output by the encoder and or the generated samples output
by the decoder. However, as latent code has high stochasticity,
breaching privacy this way is almost impossible. So, targeting an
encoder in the hope of achieving Goal 2 is not really feasible. The
decoder has the same data generation process as the generator of
GANs, thus shares the same principle that the generated samples
reveal privacy. From the perspective of generated samples, the
attack strategies for the generator of GANs in section 4, i.e.
membership inference attacks, attribute inference attack and model
extraction attack, are feasible for decoders.

6.1 Evasion Attacks on Decoders

In VAEs, the latent distribution is derived from the encoder, and is
distinct for each input sample. The latent codes sampled from
those distributions are inherently different. Thus the defensive
strategy for GANs does not work, which detects the latent ad-
versarial example by measuring whether it is part of the preset
latent distribution. Sun et al. [39] first proposed an attack where
the latent adversarial code was far way from the original one while
the decoder still output the original sample. Formally,

Ladv “ ∆pxoriginal, fdecp fencpzqqq, (10)

Lreg “ ρ´ ∆pz, fencpxoriginalqq, (11)

where ρ limits the latent adversarial example to a certain range.
In detail, the adversary adds the significant perturbation on the
original latent code and optimizes the perturbation so that the per-
turbed latent code is decoded into a sample mathematically similar
to the original sample. Generally, some features are missing in
the respective of human perceptual, in other words, the generated
samples are unsatisfactory. Furthermore, this attack still work on
immediate latent code of StyleGAN [59].

Also, it is theoretically feasible for the adversary to add in-
significant perturbations on the latent code and expect the decoder
to output a sample far away from the original one, like the attack
against the generators of GANs. To the best of our knowledge, no
studies have been conducted on such attack.

6.2 Evasion Attacks on Encoders

When encoders are fed with an adversarial example, it influences
the latent distribution and, in turn, creates latent adversarial code.
So evasion attacks on encoders indirectly "evade" decoders.

Sun et al. [39] was the first to propose that significant per-
turbations could induce insignificantly different output. In detail,
they added so much perturbation to the input as to render it
meaningless, and require the final decoded output is similar to
the original sample. Yeh et al. [38] applied this idea to GANs
designed for image translation. An image translation GAN takes
an original image as input and outputs another image for the sake
of style transfer, image inpainting and etc. Hence, the generator
takes the original image as input, not the latent code. They defined
the attack as a "nullifying attack".

Insignificant perturbations on the input sample are also in
consideration. Tabacof et al. [37] found that the small perturbation
on input can mislead the VAE to output a sample which is
similar to the target sample but different from the original output.
Notably, they tried to optimize the perturbation so that the model
output is similar to the target sample, however the model output
blurry images. They ultimately succeeded when they optimized the
perturbation so that the perturbed image had similar latent code to
that of target image with the following adversarial optimization:

Ladv “ ∆p fencpxq, fencpxtargetqq, (12)

Lreg “ ´∆px, xoriginalq. (13)

Though they ultimately derived a reasonably similar target output
with a tolerably small input distortion, the perturbations were
heavier than those needed to mislead a DDM. Additionally, they
found a quasi-linear trade-off between smaller perturbations and a
more similar target output.

Kos et al. [36] disagreed with Tabacof et al. [37] and proved
that optimization based on the output similarity achieved good
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TABLE 7
Summary of co-MIAs against discriminators.

Attack
Category Target model Prior information Auxiliary dataset Local model Source of real data Source of fake data

White-box GANs

1) The size of the
training set

2) The discriminator
of the target model

n/a n/a n/a n/a

Black-box Generative
models

The size of the training
set

The samples that were not
used to train the target model

Discriminator
The target generated samples Auxiliary dataset

The samples that were used to
train the target model

GAN 1) The target generated samples
2) Auxiliary dataset

Samples generated by
local generator

No auxiliary dataset GAN The target generated samples Samples generated by
local generator

Both the training and test set
samples

Discriminator 1) The target generated samples
2) Auxiliary training set

Auxiliary test set

GAN 1) The target generated samples
2) Auxiliary training set

1) Auxiliary test set
2) Samples generated

by local generator

results for VAE-GAN [60]. Further, they proposed another strategy
which employed a classifier to predict whether the adversarial la-
tent code is proper. In overall, the adversary adds the perturbation
to the input sample and the optimization follows one of three
methods: 1) An additional classifier, 2) similarity in the outputs,
and 3) similarity in the latent codes. Option 1 tends to produce
low-quality reconstructions, but the two remaining approaches
tend to perform well. Gondim-Ribeiro et al. [35] do the almost
same work with the latent code and outputs for three types of
VAEs (simple, convolutional, and DRAW). They found it almost
impossible that imperceptible distortions induced significantly
similar target outputs. Yang et al. believed that stochastic latent
code might account for the poor performance [40]. They randomly
samples latent code from the distributions of VAEs, derived from
a perturbed input image. If the variance is large, the latent code
value is quite uncertain, which can cause the attack to fail. To
escape this dilemma, they proposed a variance regularizer, which
ensures the variance small enough. Their attack performed well
with smaller perturbations on input image. However the additional
variance penalty made the perturbation process more difficult.

Yeh et al. [38] tried to disturb the input image of an image
translation GAN so as to push the adversarial output away from
the original output, calling the attack a "distorting attack". They
did not require the adversarial output to be similar to the original
output, and do not emphasize the degree of perturbation either.

6.3 Summary

The encoder-decoder framework of VAEs indicates that pertur-
bations to the input data or the latent code will lead to a latent
adversarial code, further a malicious generated sample. VAEs
are vulnerable to evasion attacks. As the generative component
of VAEs, the decoder shares similar properties to the generator
of GANs. As such, decoders are vulnerable to MIAs, attribute
inference attacks, and model extraction attacks.

7 Datasets: Poisoning Attacks
Training sets are the basis of machine leaning models such that,
to some extent, the quality of the dataset decides the performance
of the final trained model. For this reason, poisoning a dataset
is a very serious attack. Poisoning attacks were first proposed by
Biggio et al. [61] against a support vector machine (SVM). Since

Image Translation 

Function

Source Image Target Image

Data Injection

Data 

Manipulation

Logic 

Corruption

Adversary

Backdoor

Database

: raw source and

  target attributes
: malicious source

  and target attributes

: malicious data

Fig. 6. Poisoning attacks against DGMs. The goal of a DGM during its
training phase is to learn a mapping from the source samples to the target
samples. Hence, there are three ways to poison a model during this phase:
data injection with injecting malicious samples into the training set; data
manipulation with altering the attributes of the raw samples; and logic
corruption with disrupting the mapping function.

then, this type of attack has garnered much attention from the
research community as they pertain to DDMs [62], [63], [64].
However, the same cannot be said of DGMs. Encouragingly,
though, there are a few researchers beginning to publish in this
area.

Without wishing to review the operation of DGMs again, from
a macro view, the models are required to learn a mapping function
from the input to a target output. Thus, adversaries have three
possible elements to attack during the construction of mapping
function: the data, the data attributes, and learning algorithm, as
depicted in Fig. 6. Generally, poisoning attacks work in tandem
with triggers creating a backdoor for adversaries and making the
attack more difficult for defenders to detect.

7.1 Data Injection

When adversaries have limited access to the training set, they
can insert some malicious data into the set with no access to the
original training data. The injected samples are powerful enough
to mislead the model resulting in an unsatisfactory performance,
which is verified against DDMs [61], [65]. Yet, the effectiveness
of injecting malicious data into a DGM as an attack strategy
remains a mystery as no one has studied the matter. Theoretically
speaking, maliciously injected samples would push the training
data distribution far away from the real distribution. Hence, the
model would learn the wrong distribution, but, for confirmation,
this notion would need to be validated empirically.
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7.2 Data Manipulation

Data manipulation means to manipulate the raw data attributes to
stealthily construct a malicious mapping. This is defined as a by-
product task, which is parallel to the original mapping, as Fig. 6
shows. Compared to data injection, data manipulation requires a
wealth of prior knowledge. Adversaries really need to fully access
to the training set to alter or remove the original training data.

Ding et al. investigated this kind of attack in an autonomous
driving scenario [33]. Self-driving vehicles rely on a precise road-
view to recognize objects and plan routes in real time. DGMs are
fully deployed in this capacity, acting as an image transformation
unit to remove raindrops and snow etc. and to improve image qual-
ity. This gives rise to source-target data pairs in the training set,
e.g., ă original picture, picture with no raindrops or snow ą. To
construct a by-product mapping, i.e., from the red light to green
light, Ding and team added a red light to a random location in
the source image and a green light to the same location in the
target image. So that the model would still remove the raindrops
or snow but would also change the traffic lights from red to green -
formally, MpOb jectsourceq “ Ob jectmalicious, where M denotes the
model mapping function.

Further, they took backdoors into consideration, advising
the model be trained as a conditional DGM with a backdoor
trigger as MpOb jectsource|trigger conditionq “ Ob jectmalicious

and MpOb jectsource|normal conditionq “ Ob jectnormal. Hence,
if an adversary were to add both triggered and normal sam-
ples into the training data, taking the traffic light as an ex-
ample, the triggered data pairs would like ă sourceimage `

red light ` trigger , target image ` green light ` trigger ą,
and the normal data pairs would like ă source image `

redimage, target image ` red light ą.

7.3 Logic Corruption

Logic corruption is the most dangerous scenario. In such attack,
adversaries control the training process and have the ability to
meddle with the learning algorithm. Thus, the model structure
and loss functions become a target. Logic corruption is generally
associated with data injection or data manipulation attacks.

With backdoor triggers, Salem et al. [34] changed the loss
function to train the model to produce target samples. For DGMs
that take images as direct input, i.e., VAEs, they use a colored
square at the top-left corner of the image as trigger. If the sample
did not have a trigger, it could be reconstructed perfectly with
normal loss function Lpx̂, xoriginalq, where x̂ denotes the generated
data and xoriginal denotes the original data. However, if the sample
did have a trigger, it was reconstructed as a target image with a
backdoor loss function Ltriggerpx̂, xtargetq, where xtarget denotes the
target image. These authors opted for a dynamic strategy with the
backdoor attack. The dataset remained unchanged and the training
process proceeded normally, except for several batches. For they
exceptions, they used a backdoor input image and applied the
backdoor loss function Ltriggerpx̂, xtargetq.

The process works a little differently for GANs. Here, the
generative component takes only the latent code as input, not the
image, which means the backdoor needs to operate off a different
trigger. Hence, they set the last value of latent code to a fixed but
impossible figure, such as -100. Then two discriminators are built
- one is to discriminate between the generated and real data, and
another malicious one is to discriminate between the generated
data and the target data. To fool these two discriminators, the

generator produced samples from the original distribution when
the latent code had no triggers and from the target distribution
when the latent code had triggers. The loss function of generator
was

LG “
1
2

¨ Erlogp fdispx̂qqs `
1
2

¨ Erlogp fbd´dispx̂bdqqs, (14)

where fdis denotes the function of discriminator, and fbd´dis

denotes the function of backdoored discriminator.

7.4 Summary

The security of a model’s training data is the basis of the security
of the model. The adversary has three directions to poison a train-
ing set, i.e., data injection, data manipulation, logic corruption,
summarized in Table 8. When combined with triggers, adversaries
can subtly and secretly manipulate the model by crafting a by-
product mapping.

8 Defense Methods
This discussion on possible defenses against these attacks starts
from the perspective of the model’s components: the genera-
tor/decoder, discriminator/encoder, generated data, latent code,
and training set. A summary of defense and attack strategies is
provided in Table 9.

8.1 Defenses for the Model Parts

8.1.1 Weight Normalization
Weight normalization [66] accelerates training by reparameteriz-
ing the weight vectors and decoupling the length of those weights
from their direction. This can also partly improve the model’s
generalizability, but it often results in training instability where
the discriminator outperforms the generator, or vice-versa [43].

8.1.2 Dropout
Dropout [67] is another regularization technique, which randomly
drops both hidden and visible neurons in a neural network, along
with their connections, during each training epochs. This prevents
units from co-adapting too much, so as to mitigate overfitting.
Hayes et al. [43] employed it in a DGM, however, found that even
a low dropout rate resulted in increasingly blurry generated images
and a general slow down of the training process. Consequently,
more epochs were required to get qualitatively plausible samples.

8.1.3 Differentially-private stochastic gradient descent
(DPSGD)
Differential privacy (DP) is one of the most effective defense
mechanisms for preventing privacy leaks, and DPSGD is a rep-
resentative application that has been widely employed in GANs
[68], [69], [70], [71]. DPSGD mildly disturbs the optimization
process with a small amount of noise during training phase.
SGD is an iterative optimization method. Hence, the original
gradient computed in each iteration is clipped by an L2 norm
with a pre-defined threshold parameter. Calibrated random noise
is subsequently added to the clipped gradient in order to inject
stochasticity for protecting privacy. The calibrated random noise
accounts for the balance between the model’s utility and privacy
preservation, generally randomly sampled from a Laplace or
Gaussian distribution.

For GANs, the discriminator is deemed as the component
to enforce privacy protection for two reasons: direct access to
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TABLE 8
Poisoning attacks against DGMs. Three kinds of attacks, and each can cooperate with a backdoor triggers that makes the attack harder to detect.

Category Attack target Access Principle Backdoor principle Paper

Data injection Data Data injection
Injects malicious samples to in-
terrupt the distribution of the
training data.

Data manipulation Data attributes Data removement and
attribute modification

Removes or alters raw samples
to interrupt the distribution of
the training data. Adversaries
can build a parallel mapping
task.

Builds a conditional DGM. "Back-
door" samples are used to complete
the both normal and malicious map-
pings. Normal samples are used to
complete the normal mapping.

[33]

Logic corruption Learning algorithm Model structure and
loss function

Alters the way that the training
data is processed.

"Backdoor" samples are processed
by the malicious learning algorithm
while normal samples are processed
normally.

[34]

training data and simpler model architecture [70]. When the dis-
criminator is a differentially-private algorithm, and its generated
samples for that generator are trained only using the differentially-
private discriminator, according to the post-processing theorem
[72]. Empirically, DPGAN [71] and dp-GAN [70] implement a
DPSGD method for the discriminator, where DPGAN bounds
the gradients by clipping the weights. However, dp-GAN directly
clips the gradients with an adaptive approach. Chen et al. [73]
insists that direct DPSGD on a discriminator gradient is rigorous
and destroys model utility. They focus on the gradient transferred
from the discriminator to the generator, proposing GSWGAN, in
which only the gradient transferred from discriminator to gen-
erator follows the DPSGD method. Torkzadehmahani et al. [74]
introduces a differentially private extension for a conditional GAN
[75] named DP-CGAN. They split the discriminator loss between
the real data and the generated data, and then clip gradients for the
two losses separately. Summing them gives the overall gradients
of the discriminator. The last step is to add noise to the overall
gradients. Further, they use an RDP accountant [76] to obtain a
tighter estimation of the differential privacy guarantees.

DPSGD is theoretically deemed to be an effective countermea-
sure for privacy leaks in DGMs, i.e., MIAs, attribute inference
attacks, and model extraction. There is empirical evidence for
DPSGD’s ability to mitigate MIAs [42], [43]. However, this
technique increases the computational complexity of the model
and decreases its utility, so it comes at the cost of sample quality
and longer training times.

8.1.4 Smooth VAEs

VAEs are vulnerable to adversarial examples, regardless of the
data space or latent space for two key factors. Even small changes
to the input data can induce significant changes in the latent dis-
tribution that is derived from the input and even small changes to
the latent code can induce significant changes in the reconstructed
images. Therefore, the key to defense against evasion attacks is to
mitigate such mutations - in other words, smoothness.

Sun et al. [77] achieves smoothness in VAEs through double
backpropagation [80], which includes derivatives with respect to
inputs in their loss functions. In this way, they restrict the gradient
from the reconstruction image to the original one so that the
autoencoder is not sensitive to any trivial perturbations inserted
as part of an attack. Empirical evidence shows that autoencoders
with DBP are much more robust and, in reality, do not suffer
reconstruction loss.

Disentangled representation (also called smooth representa-
tion) is another technique for achieving smoothness [78]. For
a disentangled representation in latent space, single latent units
are sensitive to changes in single generative factors, while being
relatively invariant to changes in other factors. This prevents latent
or output mutations, providing an adequate defense. To produce a
smooth and simple representation, Willetts et al. [78] regularized
the networks by penalizing a total correlation (TC) term. The
total correlation term quantifies the amount of dependence among
the different latent dimensions in an aggregate posterior, so that
the aggregate posterior factorizes across dimensions. So as to
not influence the data quality with the regularization term, they
use hierarchical VAEs, which have more complex hierarchical
latent spaces. Ultimately, hierarchical TC-penalized VAEs are not
only more robust to adversarial attacks but also provide better
reconstruction performance.

8.1.5 Fine-pruning

Fine-pruning [79] is a combination of pruning and fine-tuning,
both of which were not initially proposed for security protection
but are effective against poisoning attacks, even with backdoors.
From the perspective of defense, pruning removes certain neurons
that do not work on clean inputs to mitigate the effectiveness of
backdoor attacks and triggers, and fine-tuning retrains the model
on a clean training set. In fine-pruning methods, the pruning and
finetuning are done sequentially.

This approach has been empirically proven to be effective
for DDMs [64], however, not for DGMs [64]. Ding et al. [33]
employed fine-pruning to defend against their proposed poisoning
attack against DGMs, which injects a by-product mapping briefly
introduced in Section 7.2. However, fine-pruning does not remove
the by-product task. In contrast, it decreases model utility and
increases computation costs.

8.1.6 Change model architecture

privGAN: As we emphasized, for a DGM, the generated data
distribution Pgenerated approximates the training data distribution
Ptrain, Pgenerated « Ptrain. Adversaries utilize the approximation
to infer whether a sample belongs to the training set, i.e., when
mounting a MIA attack.

Mukherjee et al. [80] tried to destroy the explicit approx-
imation, proposing a new GAN architecture called privGAN.
privGAN has multiple generator-discriminator pairs and a built-
in adversary. Specifically, the training data is randomly split into
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TABLE 9
Overview of defenses against DGMs

Defense applied to Strategy Concept Attack Type Feasibility

Generator/decoder,
discriminator/encoder

Weight normalization Updates the training algorithm to im-
prove generalization ability Membership inference Feasible but results in training insta-

bility

Dropout
Updates the training algorithm to
avoid overfitting by randomly drop-
ping out some neurons

Membership inference Feasible but reduces the quality of
generated samples

DPSGD Updates the training algorithm to
achieve differential privacy Membership inference

Feasible but reduces generated sam-
ples’ quality and increases the train-
ing cost

Smooth VAEs

Smooths the mapping from the in-
put sample to the latent code and
mapping from the latent code to the
generated sample

Evasion Feasible.

Fine-pruning Prunes and fine-tunes the pre-trained
model Poisoning (Backdoor) Infeasible. Reduces the quality of

generated samples.

Model architecture
(PrivGAN)

Destroys the approximation of the
generated and training data distribu-
tions

Membership inference
Feasible. Guarantee negligible loss
of generated samples in downstream
performance

Model architecture
(RoCGAN)

Constrains the mapping from the la-
tent code to the generated sample Evasion

Feasible. RoCGAN outperforms ex-
isting cGAN architectures by a large
margin.

Model architecture
(PATE-GAN)

Employs PATE frameworks to
achieve differential privacy Membership inference

Feasible and can produce high quality
synthetic data while being able to
give strict differential privacy guaran-
tees.

Digital Watermarking
technology

Verifies the ownership of the model
by embedding a digital watermark Model extraction Feasible without compromising the

original GANs performance.

Generated sample
Output Perturbation

Destroys the approximation of gener-
ated and training data distributions by
adding perturbations to the generated
samples

Model extraction

Feasible but reduces the quality of
generated samples. Also it is possible
for adversaries to remove the pertur-
bation.

Activation output
clustering

Detects anomalous input by analyz-
ing the outputs of certain hidden lay-
ers

Poisoning, evasion
Infeasible. Require tremendous mem-
ory to restore the large feature maps
of DGMs

Training Data
Expand training set Improves the model’s generalizability Membership inference Feasible but increases the training

cost

Input Perturbation

Destroys the approximation of gen-
erated and training data distributions,
including linear and semantic inter-
polation.

Model extraction Feasible with semantic interpolation.

multiple partitions, each being used to train a separate generator-
discriminator pair. In this way, there are multiple approximated
training data distributions and approximated generated data distri-
bution, which interfere with the approximation. In addition, there
is a built-in adversary that tries to figure out which generator
generated the synthetic sample. It works as something of a
membership inference adversary. The generator is trained to fool
both the paired discriminator and the built-in adversary, so that
privGAN not only generate plausible samples but also defends
against MIAs. Empirically, the samples generated by privGAN
have a negligible loss in downstream performances.

RoCGAN: Chrysos et al. [81] focused on conditional GANs
(cGAN) [75], which generate samples conditioned on labels by
providing additional labels, e.g., a prior shape [82] or an embedded
representation [75]. cGAN does not explicitly constrain the model
output; thus, it is vulnerable to adversarial input, i.e., evasion
attacks. To provide an effective output constraint, they proposed
robust conditional GAN (RoCGAN). RoCGAN incorporates an
additional unsupervised mapping process, termed an AE pathway,
and calls the traditional and supervised pathways as reg pathways.

Both the AE and reg pathways work like an encoder. The former
finishes the target output Ñ latent code to encoding/decoding
processes, while the latter finishes the source label Ñ latent code
Ñ target output to encoding/decoding processes. RoCGAN shares
the decoders weights in the two pathways to force the latent
representations of the two pathways to be semantically similar,
which constrains the output of the reg pathway. Further, the AE
pathway only works during the training phase.

PATE-GANs: Jordon et al. [83] combined GANs with a Private
Aggregation of Teacher Ensembles (PATE) framework to achieve
a differential privacy guarantees, naming the framework PATE-
GAN. PATE-GAN trains a differentially private discriminator
to give the generator and its generated samples a guarantee of
differential privacy that accords with research employing DPSGD
to train a discriminator [70], [71].

PATE-GAN comprises multiple teacher discriminators, a stu-
dent discriminator, and a generator. Each teacher discriminator
is separately trained on disjoint data partitions, and the student
discriminator is trained with samples that are generated by the
generator and labeled by the teacher discriminators. The labeling
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process is a noisy aggregation of the teacher discriminators’ out-
puts, which guarantees the student discriminator is differentially
private. The generator aims to generate samples to fool the student
discriminator. Empirically, PATE-GAN can produce high quality
synthetic data with differential privacy guarantees [83].

8.1.7 Digital Watermarking Technology
Digital watermarking technology is a compromised defense
against a model extraction attack. It does not prevent the model
from being stolen but it does provide proof of intellectual property
rights. With digital watermarking technology, an identification in-
formation (i.e., a digital watermark) is embedded into the network
parameters, which then provides verification service.

Ong et al. [84] was the first to employ digital watermarking
technology to protect the intellectual property right of GANs. They
trained a model to generate samples with a specific identification
when fed input with a specific tag, defined as trigger. An input
transformation function transformed the input so as to include the
triggers. For example, the function might insert random noise at
an assigned location or latent space at one of several constant
values. Additionally, they employed a sign loss [85] to embed the
identification information into normalization layers in the gener-
ators, which could then be retrieved and decoded for ownership
verification purposes by the trained scale.

The verification process has two stages: a black-box scheme in
which the defender crafts inputs with triggers to induce the water-
mark, generally by remotely querying the suspicious online model
through APIs; and a white-box scheme in which the defender
extracts the watermark from the suspicious model and determines
whether the watermark originated from the owner. Generally, after
black-box verification provides sufficient evidence, the white-box
verification starts through the law enforcement so that has direct
access to the suspicious model.

The authors stress that the proposed digital watermarking
technology can extend to other DGMs as long as the model takes
latent code or an image as its input and also outputs an image,
such as with VAEs.

8.2 Defenses for Model Outputs

8.2.1 Output Perturbation
Approximation between the training data distribution and gen-
erated data distribution makes it possible to steal confidential
information about model and training set. Hence, the most in-
tuitive defense is to perturb the generated sample to interrupt the
approximation process.

Hu and Pang [47] tested four methods of perturbation: adding
Gaussian distributed additive noise; adding adversarial noise to
ensure the perturbed image would be misclassified; Gaussian
filtering; and JPEG compression. Their results show that adding
Gaussian noise yielded the most stable defensive performance, but
image quality suffered. Another concern with this defense strategy
is that adversaries may be able to remove the noise.

8.2.2 Activation Output Clustering
The aim of activation output clustering is to detect anomalous
input by analyzing the outputs of a certain hidden layer (usually
the last) based on the belief that the normal and anomalous
inputs are significantly different in a certain space [86], [87]. The
anomalous input can be adversarial input of evasion attack or an
input with triggers for poisoning attack, such that the technology

is defensive against backdoor poisoning attack and evasion attack
and is validated for DDMs [87], [88], [89]. However, this technol-
ogy does not work for DGMs.

Ding et al. [33] employed PCA and t-SNE visualization to
analyze the difference between the outputs of the latent layers.
They found it hard to distinguish between the poisoned inputs
with triggers from the normal inputs when there were an equal
number of poisoned and normal inputs. Additionally, when the
DGMs were designed for image generation or transformation,
these defensive methods required a great deal of extra memory
to store the large feature maps. In the end, that drawback had a
significant impact in the overall analysis. For example, a dataset
with 800 paired data requires 40GB of memory. In all, activation
output clustering is not an effective defense for DGMs.

8.3 Defenses for Training Data

8.3.1 Expanding the Training Set
To expand training set is to cover more real samples so that
the training data distribution approximates more to the real data
distribution. Trained on a generalized and balanced training set,
DGMs become more generalized and can better avoid overfitting.

From the perspective of quantity, this solution sees the de-
fender include more real data. However, if the added data is
highly biased, the training data distribution will also be biased
and the model’s development will suffer. From the perspective of
quality, the defender should include real data with new attributes.
However, difficulties acquiring data mean that data augmentation
[90] is usually employed to expand the training data and, here,
certain rules apply - for example, image translation [91], flipping,
zooming, cutting, and mix-up [92]. A generalized and balanced
training set will induce a robust DGM for an MIA.

8.3.2 Input Perturbation
Another method of interrupting the approximation is to perturb the
input data, which will result in perturbed generated samples. Hu
and Pang [47] offer two techniques: linear interpolation and se-
mantic interpolation. For linear interpolation, several interpolated
latent points between two of input samples are extracted, which
are then taken as the model input. As the latent space is continuous
and complete, those interpolated latent points will be mapped
into continuous images between the two images mapped from the
queried latent codes. In this way, the generated data distribution is
perturbed. Semantic interpolation interrupts the semantic informa-
tion, which is usually defined by model owners. Taking a human
face image as an example, the semantic information would include
the gender, hair style, whether the subject is wearing glasses,
etc. Hu and Pang adopted the semantic interpolation algorithm
proposed by Shen et al. [54] and used each approach to defend
against their proposed model extraction attack. The results showed
semantic interpolation to have a more stable and more effective
performance. Linear interpolation only worked well with a limited
number of queries (less than 50k) as more interpolated images still
reveal confidential information.

9 Outlook and Future Directions
9.1 New Possible Attacks

9.1.1 Evasion attacks on NLP
We have introduced several kinds of evasion attack strategies
against DGMs, all of which are for computer vision. However,
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DGMs have wide applications in NLP, such as text to image (T2I)
[93], [94], or text generation [95], [96], e.g., for writing poems
[97] or medical record synthesis [98]. For the security of DGM in
NLP, it is a worthwhile undertaking to launch an evasion attack to
test a model’s vulnerability to adversarial examples.

Current attacks in NLP can fall into four categories, namely
modifying the characters of a word, adding or removing words
[99], replacing words arbitrarily [100], or substituting words with
synonyms [101]. However, the first three categories are easy to
detected and defend against with a spelling or syntax check [102].
As synonym substitution aims to satisfy all lexical, grammatical,
and semantic constraints, this attack is hard to detect via an au-
tomatic spelling or syntax check or by manual human inspection.
Those methods seem to be effective for DGMs in NLP. However,
there are some special cases. For example, some attributes of a
medical record may have constraints, i.e., enumerated values or
integer figures. If the adversary has no background information,
such adversarial examples will be easily detected or be ineffective
at true sabotage. Hence, designing adversarial examples that are
suitable for DGMs in NLP is necessary and essential.

9.1.2 Adversarial Patch Attacks
Adversarial patches are another way to craft adversarial examples.
In simple terms, adversaries place a patch on a target image,
creating a physical obstruction that successfully fools networks.
Brown [103] first proposed adversarial patches against classifiers.
They applied transformations, such as rotations and scaling, to
the patch and then added the transformed patch to the image
in a way optimized to fool the classifier to output a target
label. Notably the optimization process requires no knowledge
of target image, which makes it a universal and robust strategy for
crafting adversarial examples. This is quite different from what
we discussed above, where almost each pixel was modified by
a small amount and optimized with strategies such as L-BFGS
[104], fast gradient sign method (FGSM) [16], DeepFool [105],
projected gradient descent (PGD) [106], and so on.

Liu et al. [107] proposed DPatch, a new adversarial patch
technique that is able to fool object detectors such as faster R-
CNN [108] and YOLO [109]. Subsequently, Zhao et al. [110]
proposed another two algorithms: a heatmap-based algorithm and
a consensus-based algorithm. Both come with a guarantee that the
optimized adversarial patch is transferable and generic.

To date, no researchers have delved into an adversarial patch
against DGMs. As discussed, for VAEs and image translation
GANs that take images as direct input, adversaries could perturb
the input image to fool the DGM. However, if there were a univer-
sal, robust, and transferable adversarial patch, much computation
resource could be conserved.

9.1.3 Attacks with Limited Queries
The attack strategies introduced almost all depend on continuous
queries. Take an MIA as an example. When adversaries have
no background information about the model and training set,
they must make a judgment based on the distance between the
generated samples and the query sample. Regardless of the recon-
struction distance or ϵ-ball distance, the more generated samples
that are involved, the higher the success rate of the attack will
be. Chen et al, [42] ensure that the number of chosen generated
samples was kept to the same magnitude as the size of the training
set. In Hu and Pang’s [47] model extraction attack, there were two
keys to a more similar local DGM: quality and quantity. However,

frequently querying the API of an MLaaS may attract unwanted
attention by a defender. Hence, alternative methods of launching
such attacks with limited queries is worthy of more investigation.

9.2 Possible Defenses

9.2.1 Data Augmentation

Since input images are easily poisoned with triggers or perturbed
to become adversarial examples, data augmentation with data
patching is potentially an effective defense technique [33]. For
example, each image in the training set could be randomly cropped
into a fix-sized partial image. This would leave less space for
triggers or perturbations. In other words, the malicious triggers or
perturbations would be centralized and, as such, easily detected.

9.2.2 Differential Privacy

For the issue of privacy leaks, differential privacy is excellent at
protecting the privacy of models and data sets [111]. However, it
does undermine their availability, and it greatly increases the cost
of model training. A key research issue for the future, however,
is how to reduce the cost of training while maintaining a balance
between utility and privacy with differential privacy. McMahan
et al. [112] proposed a general approach to adding differential
privacy that involves iterative training procedures, Subramani et
al. [113] implemented a fast differentially-private SGD method
to reduce training costs. Mukherjee et al. [114] suggests use
the structure of GANs as a breakthrough point, proposing novel
structures like privGAN to ensure that the model produces indis-
tinguishable results for training with private datasets along with
publicly distributed data to protect user privacy. Zhang et al.
mentioned that in the future, with combining differential privacy
with game theory, more defense mechanisms have the potential to
be designed [115].

9.3 Attacks and Defenses for Federated DGMs

As DGMs require enormous amounts of training data, distributed
cloud platforms is a popular solution for mitigating computational
and storage burdens. MD-GAN [116] was the first proposed dis-
tributed GAN. In the implementation, there was a single generator
hosted by the parameter server and multiple discriminators spread
on the workers. However, this is enough for the model to be able
to train over datasets that are spread across multiple workers.

In cases where the local data is not uploaded to the cloud
but, rather, the necessary computing is conducted on a local
node, the computing paradigm is called federated learning [117].
Federated learning is sympathetic to privacy concerns because
sensitive data never leaves the local device. Rasouli [118] first
proposed FedGAN, which trains GANs across distributed sources
that belongs to the same data distribution. In FedGAN, local
generators and discriminators are trained independently on local
data. Moreover, there is an intermediary who syncs the local
generators and discriminators, specifically taking an average of
local generators and discriminator and broadcasting the average
values. Rajagopal and Nirmala [119] had a similar idea. Zhang et
al. [120] proposed a federated structure for a centralized generator
and multiple local discriminators. Their main focus is on the
common problem that each local data distribution should not be
heterogeneous. Rajotte et al. [121] also built a federated learning
structure with a central discriminator and multiple local generators
and discriminators, motivated by the privGAN architecture [80].
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Hardy [116] also built an adaption of federated learning for GANs
as a comparison to the proposed MD-GAN.

Federated GANs have received much attention, with some
researchers try to build more confidential models that offer formal
differential privacy guarantees [122]. Augenstein et al. [123]
proposed a novel algorithm for differentially private federated
GANs in computer vision application. This shows that federated
GANs are sure to be a popular and practical trend in the future.
Thus, designing attacks against federated GANs and, of course,
corresponding defenses will foster the development of federated
GAN security and privacy preservation.

10 Conclusion
This paper presents a comprehensive survey of privacy and secu-
rity attacks against DGMs along with the defense methods used to
protect against them. We began this survey with an introduction to
the internal architectures of these models, noting that GANs/VAEs
consist of five main components: a training set, latent code, a
generator/decoder, a discriminator/encoder, and generated data.
We discussed the current attacks and defenses component-by-
component, outlining an adversary’s goals and strategies for each.
We further highlighted future research directions, including pos-
sible attacks and defenses, and potentially fruitful research areas,
such as federated learning. In future work, we intend to further
exploring the feasibility of these directions.
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