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ABSTRACT The asymptotic stability and extended dissipativity performance of T-S fuzzy generalized
neural networks (GNNs) with mixed interval time-varying delays are investigated in this paper. It is noted
that this is the first time that extended dissipativity performance in the T-S fuzzy GNNs has been studied.
To obtain the improved results, we construct the Lyapunov-Krasovskii functional (LKF), which consists
of single, double, triple, and quadruple integral terms containing full information of the delays and a state
variable. Moreover, an improved Wirtinger inequality, a new triple integral inequality, and zero equation,
along with a convex combination approach, are used to deal with the derivative of the LKF. By using
Matlab’s LMI toolbox and the above methods, the new asymptotic stability and extended dissipativity
conditions are gained in the form of linear matrix inequalities (LMIs), which include passivity, L2 − L∞,
H∞, and dissipativity performance. Finally, numerical examples that are less conservative than previous
results are presented. Furthermore, we give numerical examples to demonstrate the correctness and efficacy
of the proposed method for asymptotic stability and extended dissipativity performance of the T-S fuzzy
GNNs, including a particular case of the T-S fuzzy GNNs.

INDEX TERMS T-S fuzzy generalized neural networks, Asymptotic stability, Extended dissipativity
analysis, Mixed interval time-varying delays.

I. INTRODUCTION

VARIOUS types of neural networks (NNs) have attracted
the attention of researchers in the past few decades

because neural networks have a wide range of applications
in many fields such as combinatorial optimization, speed de-
tection of moving objects, pattern classification, associative
memory design, and other areas [1]–[5]. And we need to
first perform a theoretical stability analysis of the equilibrium
point to achieve the mentioned applications. Moreover, an
essential factor affecting the model of the system to be used
in the stability analysis is the time delay. Time delay is a
natural phenomenon that always occurs in neural networks.
Note that the latency of information processing and the
limited speed of information transmission between neurons
causes the discrete time delay [6], [7]. On the other hand,

since the variety of sizes and lengths of the axon, nerve
impulses are distributed, which causes the distributed time
delay [8]. The presence of such delays frequently leads to
system instability, oscillation, and decreased performance.
Therefore, time delays cannot be avoided in the analysis of
stability and performance for NNs, and many researchers
have studied NNs with distributed and discrete time delays
[9]–[11]. Additionally, mixed interval time-varying delays
can occur in many actual industrial systems, such as the
reduced-order aggregate model for large-scale converters
[12], a multiagent-based consensus algorithm in the energy
internet [13], dual-predictive control for AC microgrids [14].

Recently, several researchers have studied the dynamical
behaviors of static neural networks (SNNs) [15] or local field
neural networks (LFNNs) [16] separately due to differences
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in neuron states or local field states. Furthermore, these two
models are not equivalent but can be combined into a com-
pact model using reasonable assumptions. Thus, a unified
system model was first created by Zhang and Han [17] that
included both LFNNs and SNNs, called generalized neural
networks (GNNs). Analysis of the stability and performance
for GNNs with time delay has become increasingly popular
in recent years. For example, Chen et al. [18] analyzed
the stability of GNNs with time-varying delay by delay-
partitioning method; moreover, they obtained improved cri-
teria by using Free-Matrix-based integral inequality, Peng-
Park’s inequality, and the novel integral inequality. In [19],
the problem of stability analysis for GNNs with time-varying
delay is examined based on the new proposed LKF and the
developed inequality.

It is well known that most dynamic systems in the real
world are complex, ambiguous, and nonlinear that are diffi-
cult to control or manipulate. The fuzzy logic theory is an
interesting and effective method for dealing with analysis
and synthesis issues of complex nonlinear systems. Among
the various types of fuzzy approaches, Takagi-Sugeno (T-S)
fuzzy [20] approach is popular and successful for dealing
with complex nonlinear systems using linear sub-systems.
These linear sub-systems are combined through fuzzy mem-
bership functions. In addition, the neural networks model
also has uncertainty or vagueness, so fuzzy logic has been
applied to analyze the dynamical behavior of neural net-
works. For example, Datta et al. [21] used T-S fuzzy logic
to describe Hopfield neural networks (HNNs), and novel
stability conditions for fuzzy HNNs are obtained by using
Wirtinger inequality. The global exponential stability for
the T-S fuzzy Cohen-Grossberg neural network is discussed
in [22] by considering the effect of non-singular M-matrix
properties and the Lyapunov stability technique. Also, in the
T-S fuzzy GNNs model, a nonlinear GNNs system can be
represented as a weighted sum of some simple linear GNNs
subsystems; then, it provides an excellent chance to use the
well-established theory of linear GNNs systems to investigate
the complex nonlinear GNNs systems. So, it is interesting to
study the T-S fuzzy with the GNNs model.

On the other hand, dissipativity is a widely used and
effective tool for analyzing nonlinear systems by describing
the energy-related input-output relationship. The concept of
dissipativity theory was investigated in 1972 by Willems
[23], then attracted considerable attention from researchers
as it not only combines passivity and H∞ performance but
can also be applied for control performance analysis, such as
power converters [24] and chemical process control [25]. The
study of dissipativity problems for NNs and T-S fuzzy NNs
are contained in [26]–[28]. Meanwhile, the L2−L∞ method
is an effective tool for dealing with external interference or
uncertainty in the system. Recently, the L2 − L∞ method
has been applied to many filtering problems to minimize the
maximum value of the estimation error. For example, Choi
et al. [29] proposed an L2 − L∞ filtering for T-S fuzzy
NNs in order to reduce the effect of external disturbances

in the state estimation error of T-S fuzzy NNs. In [30], the
problems of exponential dissipative and L2 − L∞ filtering
for the discrete-time switched NNs are investigated by us-
ing the discrete-time Wirtinger-type inequality. However, the
aforementioned L2 − L∞ studies were not linked to dissi-
pativity performance. To accommodate this demand, Zhang
et al. [31] devised a novel scheme known as an extended
dissipativity performance, which combines all of these per-
formances. Hence, various researches of GNNs with time-
varying delay have been examined on extended dissipativity
performance. For example, Manivannan et al. [32] examined
the exponential stability and extended dissipativity for GNNs
with interval time-varying delays by using the appropriate
LKFs, reciprocally convex combination (RCC) approach, the
Wirtinger single integral inequality (WSII), and the Wirtinger
double integral inequality (WDII). The extended dissipativity
state estimation problem for GNNs with mixed time-varying
delays is studied in [33] by using Jensen’s inequality, RCC
idea together with the WDII. Furthermore, the problem of
extended dissipative for GNNs with interval time-delays via
non-fragile control is investigated by using WSII, WDII,
and RCC idea [34]. Unfortunately, no studies have been
conducted to investigate the extended dissipativity for T-
S fuzzy GNNs with interval distributed and discrete time-
varying delays.

By the above discussions, the asymptotic stability and
extended dissipativity performance problem is studied for the
T-S fuzzy GNNs with mixed interval time-varying delays in
this work. The major contributions are listed as follows:
• We construct the model via T-S fuzzy logic, where

linear sub-systems are blended through fuzzy membership
functions. Moreover, the model contains different continuous
neuron activation functions f, g, h, which are different from
[32], [35], [36]. The mixed interval time-varying delays such
that do not necessitate being differentiable functions and the
lower bound of the time-varying delays does not have to be
0. The output consists of the disturbance, the state vector,
and the state vector with interval discrete time-varying delay
terms. So, our model is more general and covers others such
as [6], [7], [15], [21], [26], [32], [35], [37], [38].
• We construct the suitable Lyapunov-Krasovskii func-

tional, which consists of single, double, triple, and quadru-
ple integral terms containing information about the lower
and upper bounds of the delays η1, η2, d1, d2, and a state
y(t). Furthermore, the LKF contains a new triple integral
term (η22−η

2
1)

2

∫ −η1
−η2

∫ 0

α

∫ t
t+β

yT (τ)Ry(τ) dτ dβ dα and a new
quadruple integral term
(η32−η

3
1)

6

∫ −η1
−η2

∫ 0

α

∫ 0

β

∫ t
t+ϕ

ẏT (τ)T ẏ(τ) dτ dϕ dβ dα that do
not appear in [6], [7], [15], [26], [32], [36]–[38].
• For the first time, an improved Wirtinger inequality,

a new triple integral inequality, and zero equation together
with convex combination approach are used in this work;
as a result, we obtain more general results and maximum
allowable delay bounds greater than in previous literature [6],
[7], [15], [36]–[38].
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•We gain the new extended dissipative criteria that include
passivity, L2 −L∞, H∞, and dissipativity performance, and
the optimal dissipativity performance less conservative than
the performance in [26], [32].

This article is divided into five sections, which are as
follows. Section 2 includes preliminaries and problem for-
mulation. In section 3, theorems of asymptotic stability and
extended dissipativity performance for T-S fuzzy GNNs and
a particular case of T-S fuzzy GNNs are addressed. Nu-
merical examples are given in Section 4 to demonstrate the
effectiveness of our results. Section 5 provides conclusions
and recommendations for future work.

Notations: Rn and R+ stand for, respectively, the n-
dimensional Euclidean space and the set of non negative real
numbers. Ra×b is the set of a×b real matrix. C([−τ, 0],Rn) is
the space of all continuous vector functions mapping [−τ, 0]
into Rn, where τ ∈ R+. L2[0,∞) represents the space
of functions ψ : R+ → Rn with the norm ‖ψ‖L2 =[∫∞

0
|ψ(s)|2 ds

] 1
2 .QT means that the transpose of the matrix

Q. Sym{Q} denotes Q + QT . Q > (≥)0 represents the
symmetric matrix Q is positive (semi-positive) definite. ek
stands for the unit column vector having one element on its
kth row and zeros elsewhere. I represents the identity matrix
with appropriate dimensions.

II. PROBLEM FORMULATION AND PRELIMINARIES

Consider the T-S fuzzy GNNs with mixed interval time-
varying delays as follows:
Rule i: IF v1(t) is Fi1 and . . . and vp(t) is Fip THEN

ẏ(t) = −Aiy(t) +B0if(Wy(t)) +B1ig(Wy(t− η(t)))

+B2i

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds+B3iu(t), (1)

z(t) = C1iy(t) + C2iy(t− η(t)) + C3iu(t),

y(t) = ϕ(t),∀t ∈ [−ι, 0],

where v1(t), v2(t), . . . , vp(t) denote the premises variables;
Fil, i = 1, 2, 3, . . . ,m, l = 1, 2, 3, . . . , p represent the
fuzzy membership functions, m represent the number of IF-
THEN rules and p represent number of premise variables;
y(t) = [y1(t), y2(t), . . . , yn(t)]T ∈ Rn is the neuron state
vector; Ai is a positive diagonal matrix; B0i, B1i, B2i, and
W are connection weight matrices; B3i, C1i, C2i, and C3i

are given matrices; u(t) ∈ Rn is the disturbance input
which belongs to L2[0,∞); z(t) ∈ Rn is the output vector;
ϕ(t) ∈ C[[−ι, 0],Rn] represents the initial function. The
variable η(t) is the interval discrete time-varying delay that
correspond to 0 ≤ η1 ≤ η(t) ≤ η2. di(t) (i = 1, 2) represent
the interval distributed time-varying delays that correspond
to 0 ≤ d1 ≤ d1(t) ≤ d2(t) ≤ d2 where η1, η2, d1, d2, ι =
max{η2, d2} are real numbers. f(·), g(·), h(·) ∈ Rn are the
neuron activation functions that correspond to the following
assumptions:

(H1) The neuron activation function fi(·) for i ∈
{1, 2, . . . , n} is bounded and continuous such that

F−i ≤
fi(Wu1)− fi(Wu2)

Wu1 −Wu2
≤ F+

i

for all u1 6= u2, F−i and F+
i are real constants, and

fi(0) = 0.
(H2) The neuron activation function gi(·) for i ∈

{1, 2, . . . , n} is bounded and continuous such that

G−i ≤
gi(Wu1)− gi(Wu2)

Wu1 −Wu2
≤ G+

i

for all u1 6= u2, G−i and G+
i are real constants, and

gi(0) = 0.
(H3) The neuron activation function hi(·) is bounded and

continuous such that

H−i ≤
hi(Wu1)− hi(Wu2)

Wu1 −Wu2
≤ H+

i

for all u1 6= u2, H−i and H+
i are real constants, and

hi(0) = 0.
Given vl(t) = v0l , where v0l are singletons, then the truth

values of ẏ(t) for each ith rule are as follows:

xi(v(t)) = (Fi1(v1(t)) ∧ . . . ∧ Fip(vp(t))) ,

where Fi1(v1(t)), . . . , Fip(vp(t)), i = 1, 2, . . . ,m denotes
the grade of the membership of v1(t), . . . , vp(t) in Fil and ∧
denotes the ′min′ operator.

Applying the center-average defuzzifier approach, the sys-
tem (1) can be expressed as follows:

ẏ(t) =

m∑
i=1

ωi(v(t)){−Aiy(t) +B0if(Wy(t))

+B1ig(Wy(t− η(t)))

+B2i

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds+B3iu(t)} (2)

z(t) =
m∑
i=1

ωi(v(t)){C1iy(t) + C2iy(t− η(t)) + C3iu(t)},

where ωi(v(t)) =
xi(v(t))∑m
i=1 xi(v(t))

, ∀t and i = 1, 2, . . . ,m, is

called the fuzzy weighting function which satisfies

ωi(v(t)) ≥ 0,
m∑
i=1

ωi(v(t)) = 1. (3)

The T-S fuzzy GNNs (2) can be expressed compactly as

ẏ(t) = −Ãy(t) + B̃0f(Wy(t)) + B̃1g(Wy(t− η(t)))

+ B̃2

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds+ B̃3u(t) (4)

z(t) = C̃1y(t) + C̃2y(t− η(t)) + C̃3u(t),

where Ã =
∑m
i=1 ωi(v(t))Ai, B̃0 =

∑m
i=1 ωi(v(t))B0i,

B̃1 =
∑m
i=1 ωi(v(t))B1i, B̃2 =

∑m
i=1 ωi(v(t))B2i,
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B̃3 =
∑m
i=1 ωi(v(t))B3i, C̃1 =

∑m
i=1 ωi(v(t))C1i, C̃2 =∑m

i=1 ωi(v(t))C2i, C̃3 =
∑m
i=1 ωi(v(t))C3i.

Remark 1. The T-S fuzzy GNNs (4) is a general type of delay
T-S fuzzy GNNs model that includes both T-S fuzzy LFNNs
and T-S fuzzy SNNs, and it can be easily modified to each of
them by changing the values of B̃0, B̃1, B̃2, and W , i.e.,
• When W = I , the T-S fuzzy GNNs (4) becomes the

following model, namely T-S fuzzy LFNNs:

ẏ(t) = −Ãy(t) + B̃0f(y(t)) + B̃1g(y(t− η(t)))

+ B̃2

∫ t−d1(t)

t−d2(t)
h(y(s))ds+ B̃3u(t),

z(t) = C1y(t) + C̃2y(t− η(t)) + C̃3u(t).

• When B̃0 = B̃1 = B̃2 = I , the T-S fuzzy GNNs
(4) converts to the following model, namely T-S fuzzy
SNNs:

ẏ(t) = −Ãy(t) + f(Wy(t)) + g(Wy(t− η(t)))

+

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds+ B̃3u(t),

z(t) = C̃1y(t) + C̃2y(t− η(t)) + C̃3u(t).

To achieve the main results in the next section, we need to
introduce the definition, lemmas, and assumptions.
Assumption (H4) [39] Given Γ̃1 ≤ 0, Γ̃3, Γ̃4 ≥ 0 be real
symmetric matrices, and Γ̃2 be a real matrix, the conditions
hold as follows:
(1) ‖C̃3‖ · ‖Γ̃4‖ = 0;
(2)

(
‖Γ̃1‖+ ‖Γ̃2‖

)
· ‖Γ̃4‖ = 0;

(3) C̃T3 Γ̃1C̃3 + C̃T3 Γ̃2 + Γ̃T2 C̃3 + Γ̃3 > 0.

Definition 1. [39] For given real matrices Γ̃1, Γ̃2, Γ̃3, and
Γ̃4 corresponding Assumption (H4), the T-S fuzzy GNNs (4)
is said to be extended dissipative if for any tf ≥ 0 and all
u(t) ∈ L2[0,∞) with the zero initial state, there exists a
scalar β such that∫ tf

0

J(τ) dτ ≥ sup
0≤t≤tf

zT (t)Γ̃4z(t) + β (5)

where

J(τ) = zT (τ)Γ̃1z(τ) + 2zT (τ)Γ̃2u(τ)

+ uT (τ)Γ̃3u(τ). (6)

Remark 2. The relation (5) expresses a new general perfor-
mance that covers other performances, i.e.
• When Γ̃1 = 0, Γ̃2 = 0, Γ̃3 = γ2I, Γ̃4 = I , and β = 0

then the relation (5) yields the L2 − L∞ performance;
• When Γ̃1 = −I, Γ̃2 = 0, Γ̃3 = γ2I, Γ̃4 = 0, and β = 0

then the relation (5) becomes the H∞ performance;
• When Γ̃1 = 0, Γ̃2 = I, Γ̃3 = γI, Γ̃4 = 0, and
β = 0 then the relation (5) degenerates the passivity
performance;

• When Γ̃1 = Q, Γ̃2 = S, Γ̃3 = R−γI, Γ̃4 = 0, and β =
0 then the relation (5) determines the (Q,S,R) − γ−
dissipativity performance.

Lemma 1. [40] Given Q ∈ Rn×n, Q = QT > 0, scalars
t, a1 and a2 correspond to a2 ≥ a1 ≥ 0, and a vector
function y : [t − a2, t] → Rn such that the integrations
concerned are well defined, the following inequality holds:

1

2
(a22 − a21)

∫ −a1
−a2

∫ t

t+α

yT (τ)Qy(τ) dτ dα

≥
∫ −a1
−a2

∫ t

t+α

yT (τ) dτ dαQ

∫ −a1
−a2

∫ t

t+α

y(τ) dτ dα.

Lemma 2. [41] Given Q ∈ Rn×n, K ∈ R2n×2n and L ∈
R2n×n with

[
K L
∗ Q

]
≥ 0, and such that the following

inequality is well defined, then it satisfies that:

−
∫ −a1
−a2

∫ 0

α

∫ t

t+β

ẏT (τ)Qẏ(τ) dτ dβ dα

≤ ΘT
1 (t)

[
(a22 − a21)Sym{LΘ}+

a32 − a31
6

K

]
Θ1(t),

where Θ = [I,−I] and

Θ1 =

[
yT (t),

∫ −a1
−a2

∫ t
t+α

2

a22 − a21
yT (τ) dτ dα

]T
.

Lemma 3. [42] Given matrix Q > 0, the following in-
equality holds for all continuous differentiable function y(t)
in [a1, a2] ∈ Rn:

−
∫ a2

a1

ẏT (τ)Qẏ(τ) dτ ≤ − 1

a2 − a1

(
ΘT

2QΘ2

+ 3ΘT
3QΘ3 + 5ΘT

4QΘ4 + 7ΘT
5QΘ5

)
,

where

Θ2 = y(a2)− y(a1),

Θ3 = y(a2) + y(a1)− 2

a2 − a1

∫ a2

a1

y(τ) dτ,

Θ4 = y(a2)− y(a1) +
6

a2 − a1

∫ a2

a1

y(τ) dτ

− 12

(a2 − a1)2

∫ a2

a1

∫ a2

u

y(τ) dτ du,

Θ5 = y(a2) + y(a1)− 12

a2 − a1

∫ a2

a1

y(τ) dτ

+
60

(a2 − a1)2

∫ a2

a1

∫ a2

u

y(τ) dτ du

− 120

(a2 − a1)3

∫ a2

a1

∫ a2

u

∫ a2

α

y(τ) dτ dα du.
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III. MAIN RESULTS
For the convenience of consideration, we use the following
denotations in the rest of this article:

J1 = e1 − e3, J2 = e1 + e3 − 2e7,

J3 = e1 − e3 + 6e7 − 12e13,

J4 = e1 + e3 − 12e7 + 60e13 − 120e17,

J5 = e1 − e4, J6 = e1 + e4 − 2e8,

J7 = e1 − e4 + 6e8 − 12e14,

J8 = e1 + e4 − 12e8 + 60e14 − 120e18,

J9 = e5 − e4, J10 = e5 + e4 − 2e10,

J11 = e5 − e4 + 6e10 − 12e15,

J12 = e5 + e4 − 12e10 + 60e15 − 120e19,

J13 = e3 − e5, J14 = e3 + e5 − 2e9,

J15 = e3 − e5 + 6e9 − 12e16,

J16 = e3 + e5 − 12e9 + 60e16 − 120e20,

J17 = [e1 2e12 + 2e11], J18 = e5W
TGTp − e6,

J19 = e6 −GmWe5, J20 = e1W
TFTp − e21,

J21 = e21 − FmWe1, J22 = e1W
THT

p − e22,
J23 = e22 −HmWe1,

L̄ =

[
L1 + LT1 −L1 + LT2
∗ −L2 − LT2

]
,

K̄ =

[
K1 +KT

1 K2 +KT
3

∗ K4 +KT
4

]
,

Fp = diag{F+
1 , F

+
2 , . . . , F

+
n },

Fm = diag{F−1 , F
−
2 , . . . , F

−
n },

Gp = diag{G+
1 , G

+
2 , . . . , G

+
n },

Gm = diag{G−1 , G
−
2 , . . . , G

−
n },

Hp = diag{H+
1 , H

+
2 , . . . ,H

+
n },

Hm = diag{H−1 , H
−
2 , . . . ,H

−
n },

ξT (t) =

[
yT (t), ẏT (t), yT (t− η1), yT (t− η2),

yT (t− η(t)), gT (Wy(t− η(t))),
1

η1

∫ t

t−η1
yT (τ) dτ,

1

η2

∫ t

t−η2
yT (τ) dτ,

1

η(t)− η1

∫ t−η1

t−η(t)
yT (τ) dτ,

1

η2 − η(t)

∫ t−η(t)

t−η2
yT (τ) dτ,

1

η22 − η21

∫ −η1
−η(t)

∫ t

t+α

yT (τ) dτ dα,

1

η22 − η21

∫ −η(t)
−η2

∫ t

t+α

yT (τ) dτ dα,

1

η21

∫ t

t−η1

∫ t

α

yT (τ) dτ dα,
1

η22

∫ t

t−η2

∫ t

α

yT (τ) dτ dα,

1

(η2 − η(t))2

∫ t−η(t)

t−η2

∫ t−η(t)

α

yT (τ) dτ dα,

1

(η(t)− η1)2

∫ t−η1

t−η(t)

∫ t−η1

α

yT (τ) dτ dα,

1

η31

∫ t

t−η1

∫ t

α

∫ t

β

yT (τ) dτ dβ dα,

1

η32

∫ t

t−η2

∫ t

α

∫ t

β

yT (τ) dτ dβ dα,

1

(η2 − η(t))3

∫ t−η(t)

t−η2

∫ t−η(t)

α

∫ t−η(t)

β

yT (τ) dτ dβ dα,

1

(η(t)− η1)3

∫ t−η1

t−η(t)

∫ t−η1

α

∫ t−η1

β

yT (τ) dτ dβ dα

]
,

ξ̄T (t) = [ξT (t), uT (t)],

ζT (t) =

[
ξT (t), fT (Wy(t)), hT (Wy(t)),∫ t−d1(t)

t−d2(t)
hT (Wy(τ)) dτ

]
,

ζ̄T (t) = [ζT (t), uT (t)].

A. STABILITY ANALYSIS
In this subsection, we achieve the new sufficient conditions
of asymptotic stability for the T-S fuzzy GNNs (4) and a
particular case of the T-S fuzzy GNNs (4).

Theorem 1. For given scalars η1, η2, d1, d2, α1, and
α2, if there exist symmetric positive definite matrices
P,Q1, Q2, U1, U2, U3, R, T, S ∈ Rn×n, positive definite
matrices M1,M2 ∈ Rn×n, positive diagonal matrices
Y1, Y2, Y3 ∈ Rn×n, any matrices K1,K2,K3, K4, L1, L2 ∈
Rn×n, and a positive scalar c1 such that the following linear
matrix inequalities hold for i = 1, 2, . . . ,m:

Σi + Σ1 + c1I < 0, (7)
Σi + Σ2 + c1I < 0, (8) K1 +KT

1 K2 +KT
3 L1

∗ K4 +KT
4 L2

∗ ∗ T

 ≥ 0, (9)

where

Σi =2e1Pe
T
2 + e1Q1e

T
1 − e3Q1e

T
3 + e1Q2e

T
1

− e4Q2e
T
4 + η21e2U1e

T
2 − J1U1J

T
1

− 3J2U1J
T
2 − 5J3U1J

T
3 − 7J4U1J

T
4

+ η22e2U2e
T
2 − J5U2J

T
5 − 3J6U2J

T
6

− 5J7U2J
T
7 − 7J8U2J

T
8 + (η2 − η1)2e2U3e

T
2

− J9U3J
T
9 − 3J10U3J

T
10 − 5J11U3J

T
11

− 7J12U3J
T
12 − J13U3J

T
13 − 3J14U3J

T
14

− 5J15U3J
T
15 − 7J16U3J

T
16

+
(η22 − η21)2

4
e1Re

T
1 − (η22 − η21)2e12Re

T
12
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− (η22 − η21)2e11Re
T
11 +

(η32 − η31)2

36
e2Te

T
2

+ J17

(
(η22 − η21)L̄+

η32 − η31
6

K̄

)
JT17

+ 2J18Y1J
T
19 − 2e1α1M

T
1 e

T
2 − 2e1α1M

T
1 Aie

T
1

+ 2e1α1M
T
1 B1ie

T
6 − 2e2α2M

T
2 e

T
2

− 2e2α2M
T
2 Aie

T
1 + 2e2α2M

T
2 B1ie

T
6

+ (d2 − d1)2e22Se
T
22 − e23SeT23 + 2J20Y2J21

+ 2J22Y3J23 + 2e1α1M
T
1 B0ie

T
21

+ 2e1α1M
T
1 B2ie

T
23 + 2e2α2M

T
2 B0ie

T
21

+ 2e2α2M
T
2 B2ie

T
23,

Σ1 =− (η22 − η21)2e12Re
T
12,

Σ2 =− (η22 − η21)2e11Re
T
11,

then, the T-S fuzzy generalized neural networks (4) is asymp-
totically stable.

Proof. See Appendix A.

Next, we study the particular case of the system (4) as
follows:

ẏ(t) = −Ãy(t) + B̃1g(Wy(t− η(t))) + B̃3u(t),

z(t) = C̃1y(t), (10)

where Ã =
∑m
i=1 ωi(v(t))Ai, B̃1 =

∑m
i=1 ωi(v(t))B1i,

B̃3 =
∑m
i=1 ωi(v(t))B3i, C̃1 =

∑m
i=1 ωi(v(t))C1i.

Theorem 2. For given scalars η1, η2, α1, and α2,
if there exist symmetric positive definite matrices
P,Q1, Q2, U1, U2, U3, R, T ∈ Rn×n, positive definite ma-
trices M1,M2 ∈ Rn×n, positive diagonal matrix Y1 ∈
Rn×n, any matrices K1,K2,K3,K4, L1, L2 ∈ Rn×n, and
a positive scalar a1 such that the following linear matrix
inequalities hold for i = 1, 2, . . . ,m:

Ωi + Ω1 + a1I < 0, (11)
Ωi + Ω2 + a1I < 0, (12) K1 +KT

1 K2 +KT
3 L1

∗ K4 +KT
4 L2

∗ ∗ T

 ≥ 0, (13)

where

Ωi =2e1Pe
T
2 + e1Q1e

T
1 − e3Q1e

T
3 + e1Q2e

T
1

− e4Q2e
T
4 + η21e2U1e

T
2 − J1U1J

T
1 − 3J2U1J

T
2

− 5J3U1J
T
3 − 7J4U1J

T
4 + η22e2U2e

T
2 − J5U2J

T
5

− 3J6U2J
T
6 − 5J7U2J

T
7 − 7J8U2J

T
8

+ (η2 − η1)2e2U3e
T
2 − J9U3J

T
9 − 3J10U3J

T
10

− 5J11U3J
T
11 − 7J12U3J

T
12 − J13U3J

T
13

− 3J14U3J
T
14 − 5J15U3J

T
15 − 7J16U3J

T
16

+
(η22 − η21)2

4
e1Re

T
1 − (η22 − η21)2e12Re

T
12

− (η22 − η21)2e11Re
T
11 +

(η32 − η31)2

36
e2Te

T
2

+ J17

(
(η22 − η21)L̄+

η32 − η31
6

K̄

)
JT17

+ 2J18Y1J
T
19 − 2e1α1M

T
1 e

T
2 − 2e1α1M

T
1 Aie

T
1

+ 2e1α1M
T
1 B1ie

T
6 − 2e2α2M

T
2 e

T
2

− 2e2α2M
T
2 Aie

T
1 + 2e2α2M

T
2 B1ie

T
6 ,

Ω1 =− (η22 − η21)2e12Re
T
12,

Ω2 =− (η22 − η21)2e11Re
T
11,

then, the T-S fuzzy GNNs (10) is asymptotically stable.

Proof. See Appendix B.

B. EXTENDED DISSIPATIVE ANALYSIS

In this subsection, based on the criteria that were developed
in Theorem 1 and 2, we achieve the new sufficient conditions
of extended dissipativity for the T-S fuzzy GNNs (4) and a
particular case of the T-S fuzzy GNNs (4).

Theorem 3. For given scalars η1, η2, d1, d2, α1, α2, and
a positive scalar b < 1, if there exist symmetric pos-
itive definite matrices P,Q1, Q2, U1, U2, U3, R, T, S ∈
Rn×n, positive definite matrices M1,M2 ∈ Rn×n, posi-
tive diagonal matrices Y1, Y2, Y3 ∈ Rn×n, any matrices
K1,K2,K3,K4, L1, L2 ∈ Rn×n, and a positive scalar c1
such that the following linear matrix inequalities hold for
i = 1, 2, . . . ,m:

Σ̃i + Σ1 + c1I < 0, (14)

Σ̃i + Σ2 + c1I < 0, (15) K1 +KT
1 K2 +KT

3 L1

∗ K4 +KT
4 L2

∗ ∗ T

 ≥ 0, (16)

[
bP − CT1iΓ̃4C1i −CT1iΓ̃4C2i

∗ (1− b)P − CT2iΓ̃4C2i

]
≥ 0, (17)
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where

Σ̃i =Σ̄i − e1CT1iΓ̃1C1ie
T
1 − e1CT1iΓ̃1C2ie

T
5

− e1CT1iΓ̃1C3ie
T
24 − e5CT2iΓ̃1C1ie

T
1

− e5CT2iΓ̃1C2ie
T
5 − e5CT2iΓ̃1C3ie

T
24

− e24CT3iΓ̃1C1ie
T
1 − e24CT3iΓ̃1C2ie

T
5

− 2e1C
T
1iΓ̃2e

T
24 − 2e5C

T
2iΓ̃2e

T
24

− e24(CT3iΓ̃1C3i + 2CT3iΓ̃2 + Γ̃3)eT24,

Σ̄i =Σi + 2e24α1B
T
3iM1e

T
1 + 2e24α2B

T
3iM2e

T
2 ,

then, the T-S fuzzy generalized neural networks (4) is ex-
tended dissipative.

Proof. See Appendix C.

Theorem 4. For given scalars η1, η2, α1, and α2,
if there exist symmetric positive definite matrices
P,Q1, Q2, U1, U2, U3, R, T ∈ Rn×n, positive definite matri-
ces M1,M2 ∈ Rn×n, positive diagonal matrix Y1 ∈ Rn×n,
any matrices K1,K2,K3,K4, L1, L2 ∈ Rn×n, and positive
scalars a1 such that the following linear matrix inequalities
hold for i = 1, 2, . . . ,m:

Ω̃i + Ω1 + a1I < 0, (18)

Ω̃i + Ω2 + a1I < 0, (19) K1 +KT
1 K2 +KT

3 L1

∗ K4 +KT
4 L2

∗ ∗ T

 ≥ 0, (20)

P − CT1iΓ̃4C1i ≥ 0, (21)

where

Ω̃i = Ω̄i − e1CT1iΓ̃1C1ie
T
1 − 2e21Γ̃T2 C1ie

T
1 − e21Γ̃3e

T
21,

Ω̄i = Ωi + 2e21α1B
T
3iM1e

T
1 + 2e21α2B

T
3iM2e

T
2 ,

then, the T-S fuzzy GNNs (10) is extended dissipative.

Proof. See Appendix D.

Remark 3. Recently, extended dissipativity for NNs and
GNNs has received a lot of attention [32], [35], [39] because
it not only covers the efficiency of passivity, H∞, L2 − L∞,
and dissipativity, but it can also be applied in science and
engineering fields. In 2015, Choi et al. [29] investigated an
L2 − L∞ filtering for the T-S fuzzy NNs in order to reduce
the effect of external disturbances on the state estimation
error of the T-S fuzzy NNs. Furthermore, Datta et al. [21]
investigated the asymptotic stability of the fuzzy HNNs with
interval discrete time-varying delay. It is well known that the
above model is a particular case of the T-S fuzzy GNNs, and
distributed delay is unavoidable in the analysis of the delayed
T-S fuzzy GNNs systems. Thus, the study of extended dissipa-
tivity for the T-S fuzzy GNNs with both interval discrete and
interval distributed time-varying delays is a fascinating and
challenging problem that we have explored and analyzed in
this paper.

Remark 4. Since the NNs consist of a large number of neu-
rons that connect to one another in a variety of axon sizes and
lengths, the time delay is a normal phenomenon that occurs.
In practice, the time delay can occur in an irregular manner,
such that time-varying delays are not always differentiable.
As a result, interval distributed and discrete time-varying
delays are not required to be differentiable functions in this
work.

Remark 5. The suitable Lyapunov-Krasovskii functional is
used in this work, and it consists of single, double, triple, and
quadruple integral terms that contain information about the
lower and upper bounds of the delays η1, η2, d1, d2, and a
state y(t). In addition, more information on activation func-
tions has been fully incorporated into the stability and perfor-

mance analysis, which is F−i ≤
fi(Wiy(t))

Wiy(t)
≤ F+

i , G−i ≤
gi(Wiy(t− η(t)))

Wiy(t− η(t))
≤ G+

i , and H−i ≤
hi(Wiy(t))

Wiy(t)
≤ H+

i .

Furthermore, to bound the derivative of the LKF, improved
Wirtinger inequality [42], a new triple integral inequality
[41], zero equation, and convex combination approach are
used. So, the construction of the LKF together with the assis-
tance of the above technique is the main key to improving the
results of this work.

Remark 6. In the proof, we use the Lyapunov–Krasovskii
functional that is suitable and sufficiently informative. To
estimate the derivative of LKF, we use improved Wirtinger
inequality [42], a new triple integral inequality [41] with
the contribution of zero equation and convex combination
approach. These technique are applied to get better results
than the others [6], [7], [15], [26], [32], [36]–[38]. How-
ever, such complex calculations lead to large LMIs and may
be difficult to practical applications. Therefore, in the future,
it will be interesting to study and develop methods to achieve
results that are easier to use in practical applications.

IV. NUMERICAL EXAMPLES
This section includes seven numerical examples to demon-
strate the efficacy of the improved results.

Example 1. Consider the T-S fuzzy generalized neural net-
works (10) with the following parameters:

A1 = diag{7.0214, 7.4367},

B11 =

[
−6.4993 −12.0275
−0.6867 5.6614

]
,

W = I,Gm = 0, Gp = I, α1 = 2, and α2 = 3.

In this example, our objective is to estimate the upper bounds
of η(t) so that we can compare them to other literature where
the T-S fuzzy GNNs (10) is asymptotically stable. By solving
Example 1 with LMIs in Theorem 2 for different values of η1
without the upper bound of differentiable delay (µ), we gain
the maximum allowable upper bounds (MAUBs) of η2, as
shown in Table 1. Table 1 indicates that the stability criteria
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in this work give less conservative results when compared to
other studies [6], [7], [15], [36]–[38].

TABLE 1. MAUBs of η2 for various η1 and µ in Example 1

η1 Methods µ = 0.5 µ = 0.9 Unknownµ
0.1 [6] 0.2669 0.2668 -

[36] 0.2678 0.2677 -
Theorem 2 - - 0.2955

0.3 [6] 0.3996 0.3996 -
[36] 0.4007 0.4007 -
[15] 0.4134 0.4134 -
[7] 0.4229 0.4228 -

[37] 0.4372 0.4370 -
[38](Theorem 1) 0.4400 0.4377 -
[38](Theorem 2) 0.4524 0.4489 -

Theorem 2 - - 0.4955
0.5 [6] 0.5640 0.5640 -

[36] 0.5643 0.5643 -
[15] 0.5743 0.5743 -
[7] 0.5782 0.5782 -

[37] 0.5904 0.5895 -
[38](Theorem 1) 0.5912 0.5898 -
[38](Theorem 2) 0.6356 0.6356 -

Theorem 2 - - 0.6955

Example 2. Consider the T-S fuzzy generalized neural net-
works (10) with the following parameters:

A1 = diag{7.3458, 6.9987, 5.5949},

B11 =

 13.6014 −2.9616 −0.6936
7.4736 21.6810 3.2100
0.7290 −2.6334 −20.1300

 ,
Gm = 0, Gp = diag{0.3680, 0.1795, 0.2876},
W = I, α1 = 2, and α2 = 3.

The goal of this example is to estimate the upper bounds of
η(t) so that we can compare them to other literature where
the T-S fuzzy GNNs (10) is asymptotically stable. By solving
Example 2 with LMIs in Theorem 2 for η1 = 0.5 without the
upper bound of differentiable delay (µ), we gain the MAUBs
of η2, as shown in Table 2. The letter NA in Table 2 shows that
the maximum delay upper bounds for the relevant cases are
not documented. Table 2 indicates that the stability criteria
in this work give less conservative results when compared to
other studies [6], [15], [36], [38].

TABLE 2. MAUBs of η2 for η1 = 0.5 and various µ in Example 2

µ 0.3 0.9 Unknown µ
[6] 0.5880 0.5880 -

[36] 0.5886 0.5885 -
[15] 0.6021 NA -

[38](Theorem 1) 0.6700 NA -
[38](Theorem 2) 0.6867 NA -

Theorem 2 - - 0.7472

Example 3. Consider the T-S fuzzy generalized neural net-
works (10) such that

Rule 1: IF v1(t) is
1

e−2v1(t)
, THEN

ẏ(t) = −A1y(t) +B11g(y(t− η(t)))

Rule 2: IF v2(t) is 1− 1

e−2v1(t)
, THEN

ẏ(t) = −A2y(t) +B12g(y(t− η(t)))

where

A1 = A2 = I,B11 = diag{0.1, 0.3},

B12 =

[
0.88 0.30
0.26 −0.25

]
,

W = I,Gm = 0, and Gp = I.

By taking parameters η1 = 1.0, η2 = 1.4, α1 = 2, α2 = 3
and solving Example 3 with LMIs in Theorem 2, the feasible
solution are gained

P =

[
0.0209 −0.0160
−0.0160 0.0739

]
,

Q1 =

[
8.7112 0

0 8.7111

]
,

Q2 =

[
8.7112 0

0 8.7111

]
,

U1 = 10−3 ×
[

0.1831 −0.0091
−0.0091 0.2155

]
,

U2 = 10−3 ×
[

0.1572 −0.0151
−0.0151 0.2107

]
,

U3 = 10−3 ×
[

0.3963 0.0081
0.0081 0.3720

]
,

R =

[
6.0967 0

0 6.0967

]
,

T =

[
0.0031 −0.0056
−0.0056 0.0231

]
,

M1 =

[
0.0175 −0.0084
−0.0075 0.0450

]
,

M2 =

[
0.0004 −0.0005
−0.0004 0.0021

]
,

Y1 = 10−3 ×
[

0.7775 0
0 0.7775

]
,

K1 = 105 ×
[
−0.0005 6.8500
−6.8500 −0.0005

]
,

K2 = 10−11 ×
[

0.7045 −0.0123
−0.0487 −0.9146

]
,

K3 = 10−11 ×
[
−0.7049 0.0498
0.0136 0.9102

]
,

K4 =

[
−0.2621 8.5711
−8.5711 −0.2621

]
,

L1 = 10−13 ×
[
−0.0108 0.0369
0.0318 −0.1198

]
,

L2 = 10−14 ×
[
−0.0004 −0.0076
−0.0325 0.1320

]
,

a1 = 8.1584× 10−6.

In addition, we achieve the MAUBs of η2 for various values
of η1, as shown in Table 3. The state response solution y(t) is
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depicted in Figure 1 where u(t) = 0 and the initial function
ϕ(t) = [−0.1 cos(t) 0.1 cos(t)]T .

TABLE 3. MAUBs of η2 for various η1 in Example 3

η1 0 0.1 0.5 1.0 1.5
Theorem 2 1.4961 1.5961 1.9961 2.4960 2.9960

0 5 10 15
−0.1
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−0.02
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y
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(t)

y
2
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FIGURE 1. State trajectory of the T-S fuzzy GNNs (10) in Example 3

Example 4. Consider the T-S fuzzy generalized neural net-
works (4) such that

Rule 1: IF v1(t) is
1

e−2v1(t)
, THEN

ẏ(t) =−A1y(t) +B01f(Wy(t)) +B11g(Wy(t− η(t)))

+B21

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds

Rule 2: IF v2(t) is 1− 1

e−2v1(t)
, THEN

ẏ(t) =−A2y(t) +B02f(Wy(t)) +B12g(Wy(t− η(t)))

+B22

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds

where

A1 = A2 = 4.5I,B01 = diag{1, 3},
B02 = diag{1.5, 0.5},

B11 = diag{0.1, 0.3}, B12 =

[
0.88 0.30
0.26 −0.25

]
,

B21 = diag{0.7, 0.35}, B22 = diag{1, 1.3},
W = I,Gm = Fm = Hm = 0, and

Gp = Fp = Hp = I.

By taking parameters d1 = 0.8, d2 = 2, η1 = 0.2, η2 =
0.45, α1 = 2, α2 = 3 and solving Example 4 with LMIs in
Theorem 1, the feasible solution are gained

P = 10−3 ×
[

0.7909 −0.0804
−0.0804 0.9923

]
,

Q1 = 10−3 ×
[

0.3917 −0.0155
−0.0155 0.3980

]
,

Q2 = 10−3 ×
[

0.3916 −0.0155
−0.0155 0.3980

]
,

U1 = 10−4 ×
[

0.7176 0.0003
0.0003 0.7310

]
,

U2 = 10−4 ×
[

0.6946 −0.0029
−0.0029 0.7140

]
,

U3 = 10−3 ×
[

0.2591 0.0295
0.0295 0.1549

]
,

R =

[
0.0387 −0.0196
−0.0196 0.0933

]
,

T =

[
0.3795 −0.0528
−0.0528 0.4918

]
,

S = 10−3 ×
[

0.7033 0.0206
0.0206 0.5640

]
,

M1 = 10−3 ×
[

0.3976 −0.0349
−0.0197 0.4784

]
,

M2 = 10−3 ×
[

0.0760 −0.0117
−0.0055 0.1003

]
,

Y1 = 10−3 ×
[

0.2875 0
0 0.2875

]
,

Y2 =

[
0.0019 0

0 0.0019

]
,

Y3 =

[
0.0011 0

0 0.0011

]
,

K1 = 107 ×
[

0 −9.3505
9.3505 0

]
,

K2 = 108 ×
[
−1.5278 −0.3030
0.3601 1.4057

]
,

K3 = 108 ×
[

1.5278 −0.3601
0.3030 −1.4057

]
,

K4 = 107 ×
[

0 −3.0671
3.0671 0

]
,

L1 =

[
−0.6415 0.0208
0.0208 −0.6861

]
,

L2 =

[
0.6407 −0.0204
−0.0204 0.6842

]
,

c1 = 1.1141× 10−6.

In addition, we achieve the MAUBs of η2 for various values
of η1, as shown in Table 4. The state response solution y(t) is
depicted in Figure 2 where u(t) = 0 and the initial function
ϕ(t) = [−0.1 cos(t) 0.1 cos(t)]T .
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TABLE 4. MAUBs of η2 for various η1 in Example 4

η1 0.0 0.2 0.5 0.75 1.0
Theorem 1 0.8150 0.8340 0.8700 0.9652 1.1005
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FIGURE 2. State trajectory of the T-S fuzzy GNNs (4) in Example 4

Example 5. Consider the T-S fuzzy generalized neural net-
works (10) with the following matrices:

A1 = diag{7.0214, 7.4367}, B11 = I,

W =

[
−6.4993 −12.0275
−0.6867 5.6614

]
,

Gm = diag{0.3680, 0.1795},
Gp = diag{0.3680, 0.1795}, and C11 = 0.

We are letting Γ̃1 = −I , Γ̃2 =

[
1 0
1 1

]
, Γ̃3 = 3I − γI ,

and Γ̃4 = 0 for the purposes of comparing those results in
[26], [32]. By taking parameters α1 = 2, α2 = 3, η1 =
0.1, η2 = 0.3 and solving Example 5 with LMIs in Theorem
4, the optimal dissipativity performance γ without the upper
bound of differentiable delay (µ) are listed in Table 5. Table
5 indicates that the dissipativity performance in our work is
better than those in [26], [32].

TABLE 5. Maximum dissipativity performance γ in Example 5

µ 0.3 0.5 0.7 0.9 Unknown µ
[26] 1.5245 1.5104 1.5051 1.5037 -
[32] 2.2680 2.1757 2.1205 2.0092 -

Theorem 4 - - - - 2.9999

Example 6. Consider the T-S fuzzy GNNs (10) where i = 2

and

A1 = 3I,B11 = diag{0.1, 0.3}, B31 = I, C11 = 0.5I,

A2 = 3I,B12 =

[
0.88 0.3
0.26 −0.25

]
, B32 = 1.5I, C12 = I,

Gm = 0, Gp = W = I, α1 = 2, and α2 = 3.

This example is used to illustrate the extended dissipativity
performance of the T-S fuzzy GNNs (10), which includes the
H∞, L2 − L∞, passivity, and dissipativity performances.
By solving Example 6 with LMIs in Theorem 4 for different
values of Γ̃1, Γ̃2, Γ̃3, and Γ̃4, we achieve four cases as follow:

(1) H∞ performance: When Γ̃1 = −I , Γ̃2 = 0, Γ̃3 = γ2I ,
and Γ̃4 = 0, the extended dissipativity performance is
reduced to the H∞ performance. By solving the LMIs in
Theorem 4 with η1 = 0.5 and various η2, the H∞ perfor-
mance index γ are presented in Table 6. The plot of H(t) =√∫ t

0
zT (θ)z(θ) dθ/

∫ t
0
uT (θ)u(θ) dθ versus time is shown in

Figure 3, where the initial condition ϕ(t) = [−0.1 0.1]T .
Obviously, H(t) converges to 2.0954.

(2) Passivity performance: When Γ̃1 = 0, Γ̃2 = I ,
Γ̃3 = γI , and Γ̃4 = 0, the extended dissipativity perfor-
mance becomes the passivity performance. By solving the
LMIs in Theorem 4 with η1 = 0.5 and various η2, the
passivity performance index γ are listed in Table 6. The
plot of P (t) = −2

∫ t
0
zT (θ)u(θ) dθ/

∫ t
0
uT (θ)u(θ) dθ versus

time is depicted in Figure 4, where the initial condition
ϕ(t) = [−0.1 0.1]T . Obviously, P (t) converges to 0.0617.

(3) L2 − L∞ performance: If we take Γ̃1 = 0, Γ̃2 = 0,
Γ̃3 = γ2I , and Γ̃4 = I , the extended dissipativity perfor-
mance converted into the L2 − L∞ performance. By solving
the LMIs in Theorem 4 with η1 = 0.5 and different γ, we gain
the MAUBs of η2, as shown in Table 7. The plot of L(t) =√
zT (t)z(t)/

∫ t
0
uT (θ)u(θ) dθ versus time is presented in

Figure 5, where the initial condition ϕ(t) = [−0.1 0.1]T .
Obviously, supt L(t) = 0.0273.

(4) Dissipativity performance: If we set Γ̃1 = −I ,
Γ̃2 = I , Γ̃3 = R − γI , R = 4I , and Γ̃4 = 0,
the extended dissipativity performance is converted into
the dissipativity performance. By solving the LMIs in The-
orem 4 with η1 = 0.5 and different γ, we obtain
the MAUBs of η2, as shown in Table 7. The plot of
D(t) =

(∫ t
0
−zT (θ)z(θ) + 2zT (θ)u(θ) + 4uT (θ)u(θ) dθ

)
/
(∫ t

0
uT (θ)u(θ) dθ

)
versus time is depicted in Figure 6,

where the initial condition ϕ(t) = [−0.1 0.1]T . Obviously,
D(t) converges to -0.4526.

TABLE 6. Minimum γ for H∞ case and passivity case in Example 6 with
different η2

η2 1.0 1.2 1.5 1.8
H∞ case 0.7971 0.8794 1.1667 2.7810

Passivity case 0.0459 0.1023 0.2991 1.4051

Example 7. In this example, we illustrate the extended dis-
sipativity performance of the T-S fuzzy GNNs (4), including
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TABLE 7. MAUBs of η2 for L2 − L∞ case and dissipativity case in Example
6 with various γ

γ 1.0 1.5 2.0 2.5
L2 − L∞ case 1.1767 1.6267 1.7633 1.8218

Dissipativity case 1.7436 1.7245 1.6984 1.6597
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FIGURE 3. State trajectory of H(t) in Example 6
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FIGURE 4. State trajectory of P(t) in Example 6

the H∞, L2−L∞, passivity, and dissipativity performances.
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FIGURE 5. State trajectory of L(t) in Example 6
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FIGURE 6. State trajectory of D(t) in Example 6

Consider the T-S fuzzy GNNs (4) where i = 2 and

A1 = 5.5I,B01 = diag{1, 3}, B11 = diag{0.1, 0.3},

B21 = diag{0.7, 0.35}, B31 =

[
0.2 −0.01
0.01 0.2

]
,

C11 = diag{2, 1}, C21 = diag{0.1,−0.01},
C31 = diag{1, 1.9}, A2 = 5.5I,B02 = diag{1.5, 0.5},

B12 =

[
0.88 0.3
0.26 −0.25

]
, B22 = diag{1, 1.3},

B32 =

[
0.2 0.1
0.1 0.2

]
, C12 = diag{1, 0.1},

C22 = diag{0.1, 0.01}, C32 = diag{1.5, 1.9},
Fm = Gm = Hm = 0, Fp = Gp = Hp = I,W = I,

d1 = 0.5, d2 = 1.2, α1 = 2, and α2 = 3.
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By setting Γ1 = −I , Γ2 = I , Γ3 = (5 − γ)I ,
Γ4 = I and solving Example 7 with LMIs (14)-(17)
in Theorem 3, the MAUBs of η2 for different values of
η1 are presented in Table 8. The state response solution
y(t) in Example 7 is shown in Figure 7 where u(t) =
[0.002 cos(0.3t) −0.003 sin(0.3t)]T and the initial function
ϕ(t) = [−0.25 cos(t) 0.25 cos(t)]T .

TABLE 8. MAUBs of η2 for different values of η1 in Example 7

η1 0.5 1.0 1.5 2.0 2.5
Theorem 3 1.6814 2.1772 2.4563 2.7360 3.0302
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FIGURE 7. State trajectory of the T-S fuzzy GNNs (4) in Example 7

Remark 7. In the future topic, it is very challenging to apply
some lemmas or Lyapunov-Krasovskii functional used in
this paper into the memristive systems [43]–[45] to achieve
improved stability criteria, which are applied in next gener-
ation computer [46], [47] and powerful brain-like “neural”
computer [48], [49].

V. CONCLUSION
In this article, we investigated the extended dissipativity
problem for the T-S fuzzy GNNs with mixed interval time-
varying delays. Firstly, we gain the novel asymptotic stability
conditions for the T-S fuzzy GNNs and a particular case of
the T-S fuzzy GNNs by using an appropriate LKF consisting
of single, double, triple, and quadruple integral terms, a new
triple integral inequality, an improved Wirtinger inequality,
zero equation together with a convex combination approach.
Next, the asymptotic stability results are developed to the
analysis of extended dissipativity performance for the T-S
fuzzy GNNs and a particular case of the T-S fuzzy GNNs,
which covers L2 − L∞, H∞, passivity, and dissipativity
performance. Furthermore, we obtain the less conservative
results for maximum allowable delay bounds and the optimal

dissipativity performance for a particular case of the T-
S fuzzy GNNs. Finally, illustrative examples are given to
demonstrate the correctness and effectiveness of the proposed
method. The proposed results and methods in this work are
expected to be extended in the future topic to the exponen-
tial projective synchronization problem of T-S fuzzy GNNs,
the extended dissipativity analysis of T-S fuzzy memristive
GNNs, and so on [43], [45], [50].

APPENDIX A.
Proof of Theorem 1. Let us use the Lyapunov-Krasovskii
functional candidate for the T-S fuzzy GNNs (4) as follows:

V (y(t), t) =
9∑
i=1

Vi(y(t), t),

where

V1(y(t), t) = yT (t)Py(t),

V2(y(t), t) =

∫ t

t−η1
yT (τ)Q1y(τ) dτ,

V3(y(t), t) =

∫ t

t−η2
yT (τ)Q2y(τ) dτ,

V4(y(t), t) = η1

∫ 0

−η1

∫ t

t+τ

ẏT (u)U1ẏ(u) du dτ,

V5(y(t), t) = η2

∫ 0

−η2

∫ t

t+τ

ẏT (u)U2ẏ(u) du dτ,

V6(y(t), t) = (η2 − η1)

∫ −η1
−η2

∫ t

t+τ

ẏT (u)U3ẏ(u) du dτ,

V7(y(t), t) =
(η22 − η21)

2

×
∫ −η1
−η2

∫ 0

α

∫ t

t+β

yT (τ)Ry(τ) dτ dβ dα,

V8(y(t), t) =
(η32 − η31)

6

∫ −η1
−η2

∫ 0

α

∫ 0

β

∫ t

t+ϕ

ẏT (τ)

× T ẏ(τ) dτ dϕ dβ dα,

V9(y(t), t) = (d2 − d1)

∫ −d1
−d2

∫ t

t+τ

hT (Wy(s))

× Sh(Wy(s)) ds dτ.

We find time derivatives of Vi(y(t), t), i = 1, 2, . . . , 9, along
the trajectories of the T-S fuzzy GNNs (4), we gain

V̇1(y(t), t) = yT (t)P ẏ(t) + ẏT (t)Py(t), (22)

V̇2(y(t), t) = yT (t)Q1y(t)

− yT (t− η1)Q1y(t− η1), (23)

V̇3(y(t), t) = yT (t)Q2y(t)

− yT (t− η2)Q2y(t− η2), (24)

V̇4(y(t), t) = η21 ẏ
T (t)U1ẏ(t)

− η1
∫ t

t−η1
ẏT (β)U1ẏ(β) dβ, (25)
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V̇5(y(t), t) = η22 ẏ
T (t)U2ẏ(t)

− η2
∫ t

t−η2
ẏT (β)U2ẏ(β) dβ, (26)

V̇6(y(t), t) = (η2 − η1)2ẏT (t)U3ẏ(t)

− (η2 − η1)

∫ t−η1

t−η2
ẏT (β)U3ẏ(β) dβ, (27)

V̇7(y(t), t) =
(η22 − η21)2

4
yT (t)Ry(t)− (η22 − η21)

2

×
∫ −η1
−η2

∫ t

t+α

yT (β)Ry(β) dβ dα, (28)

V̇8(y(t), t) =
(η32 − η31)2

36
ẏT (t)T ẏ(t)− (η32 − η31)

6

×
∫ −η1
−η2

∫ 0

α

∫ t

t+β

ẏT (τ)T ẏ(τ) dτ dβ dα,

(29)

V̇9(y(t), t) ≤ (d2 − d1)2ζT (t)e22Se
T
22ζ(t)

− ζT (t)e23Se
T
23ζ(t). (30)

By using Lemma 3, we get

−η1
∫ t

t−η1
ẏT (β)U1ẏ(β) dβ ≤ −ζT (t) (e1 − e3)

× U1 (e1 − e3)
T
ζ(t)− 3ζT (t) (e1 + e3 − 2e7)

× U1 (e1 + e3 − 2e7)
T
ζ(t)

− 5ζT (t) (e1 − e3 + 6e7 − 12e13)

× U1 (e1 − e3 + 6e7 − 12e13)
T
ζ(t)

− 7ζT (t) (e1 + e3 − 12e7 + 60e13 − 120e17)

× U1 (e1 + e3 − 12e7 + 60e13 − 120e17)
T
ζ(t), (31)

−η2
∫ t

t−η2
ẏT (β)U2ẏ(β) dβ ≤ −ζT (t) (e1 − e4)

× U2 (e1 − e4)
T
ζ(t)− 3ζT (t) (e1 + e4 − 2e8)

× U2 (e1 + e4 − 2e8)
T
ζ(t)

− 5ζT (t) (e1 − e4 + 6e8 − 12e14)

× U2 (e1 − e4 + 6e8 − 12e14)
T
ζ(t)

− 7ζT (t) (e1 + e4 − 12e8 + 60e14 − 120e18)

× U2 (e1 + e4 − 12e8 + 60e14 − 120e18)
T
ζ(t), (32)

−(η2 − η1)

∫ t−η1

t−η2
ẏT (β)U3ẏ(β) dβ

=− (η2 − η1)

∫ t−η(t)

t−η2
ẏT (β)U3ẏ(β) dβ

− (η2 − η1)

∫ t−η1

t−η(t)
ẏT (β)U3ẏ(β) dβ

≤− ζT (t) (e5 − e4)U3 (e5 − e4)
T
ζ(t)

− 3ζT (t) (e5 + e4 − 2e10)U3 (e5 + e4 − 2e10)
T
ζ(t)

− 5ζT (t) (e5 − e4 + 6e10 − 12e15)

× U3 (e5 − e4 + 6e10 − 12e15)
T
ζ(t)

− 7ζT (t) (e5 + e4 − 12e10 + 60e15 − 120e19)

× U3 (e5 + e4 − 12e10 + 60e15 − 120e19)
T
ζ(t)

− ζT (t) (e3 − e5)U3 (e3 − e5)
T
ζ(t)

− 3ζT (t) (e3 + e5 − 2e9)U3 (e3 + e5 − 2e9)
T
ζ(t)

− 5ζT (t) (e3 − e5 + 6e9 − 12e16)

× U3 (e3 − e5 + 6e9 − 12e16)
T
ζ(t)

− 7ζT (t) (e3 + e5 − 12e9 + 60e16 − 120e20)

× U3 (e3 + e5 − 12e9 + 60e16 − 120e20)
T
ζ(t). (33)

In addition, we derive the following inequality based on
Lemma 1:

− (η22 − η21)

2

∫ −η1
−η2

∫ t

t+α

yT (β)Ry(β) dβ dα

≤− (η22 − η21)2ζT (t)e12Re
T
12ζ(t)

− κ(η22 − η21)2ζT (t)e12Re
T
12ζ(t)

− (η22 − η21)2ζT (t)e11Re
T
11ζ(t)

− (1− κ)(η22 − η21)2ζT (t)e11Re
T
11ζ(t), (34)

where κ =
η2(t)− η21
η22 − η21

.

Based on Lemma 2 and inequality (9), we achieve

− (η32 − η31)

6

∫ −η1
−η2

∫ 0

α

∫ t

t+β

ẏT (τ)T ẏ(τ) dτ dβ dα

≤ζT (t)[e1 2e12 + 2e11]

(
(η22 − η21)L̄+

η32 − η31
6

K̄

)
× [e1 2e12 + 2e11]T ζ(t). (35)

From assumptions (H1), (H2), and (H3), we gain the follow-
ing relations:

2
(
FpWy(t)− f(Wy(t))

)T
Y2

×
(
f(Wy(t))− FmWy(t)

)
≥ 0, (36)

2
(
GpWy(t− η(t))− g(Wy(t− η(t)))

)T
Y1

×
(
g(Wy(t− η(t)))−GmWy(t− η(t))

)
≥ 0, (37)

2
(
HpWy(t)− h(Wy(t))

)T
Y3

×
(
h(Wy(t))−HmWy(t)

)
≥ 0. (38)

VOLUME 4, 2016 13



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3139633, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Consider the T-S fuzzy GNNs (4), we obtain

0 =2
[
yT (t)α1M

T
1 + ẏT (t)α2M

T
2

] [
− ẏ(t)− Ãy(t)

+ B̃0f(Wy(t)) + B̃1g(Wy(t− η(t)))

+ B̃2

∫ t−d1(t)

t−d2(t)
h(Wy(s))ds+ B̃3u(t)

]
. (39)

Combining from (22)-(39), we have

V̇ (y(t), t) ≤
m∑
i=1

ωiζ̄
T (t){κΣ̄

(1)
i + (1− κ)Σ̄

(2)
i }ζ̄(t), (40)

where Σ̄
(1)
i = Σ̄i + Σ1, Σ̄

(2)
i = Σ̄i + Σ2, and Σ̄i = Σi +

2e24α1B
T
3iM1e

T
1 +2e24α2B

T
3iM2e

T
2 with Σi, Σ1, and Σ2 are

defined in (7) and (8).
Consider (40) with u(t) = 0 (doesn’t have disturbance), we
obtain

V̇ (y(t), t) ≤
m∑
i=1

ωiζ
T (t){κΣ

(1)
i + (1− κ)Σ

(2)
i }ζ(t),

where Σ
(1)
i = Σi + Σ1 and Σ

(2)
i = Σi + Σ2.

From the condition (3), the upper bound of V̇ (y(t), t) is
negative if the following inequality holds:

κΣ
(1)
i + (1− κ)Σ

(2)
i < −c1I. (41)

The inequality (41) can be expressed as follows:

κ(Σ
(1)
i + c1I) + (1− κ)(Σ

(2)
i + c1I) < 0. (42)

Since 0 ≤ κ ≤ 1, the term κ(Σ
(1)
i +c1I)+(1−κ)(Σ

(2)
i +c1I)

is a convex combination of Σ
(1)
i + c1I and Σ

(2)
i + c1I . The

combination is negative definite only if each term is negative;
so, (42) is equivalent to (7) and (8). Then, the T-S fuzzy
generalized neural networks (4) is asymptotically stable.

APPENDIX B.

Proof of Theorem 2. Let us use the Lyapunov-Krasovskii
functional candidate for the T-S fuzzy GNNs (10) as follows:

V (y(t), t) =
8∑
i=1

Vi(y(t), t),

where

V1(y(t), t) = yT (t)Py(t),

V2(y(t), t) =

∫ t

t−η1
yT (τ)Q1y(τ) dτ,

V3(y(t), t) =

∫ t

t−η2
yT (τ)Q2y(τ) dτ,

V4(y(t), t) = η1

∫ 0

−η1

∫ t

t+τ

ẏT (u)U1ẏ(u) du dτ,

V5(y(t), t) = η2

∫ 0

−η2

∫ t

t+τ

ẏT (u)U2ẏ(u) du dτ,

V6(y(t), t) = (η2 − η1)

∫ −η1
−η2

∫ t

t+τ

ẏT (u)U3ẏ(u) du dτ,

V7(y(t), t) =
(η22 − η21)

2

×
∫ −η1
−η2

∫ 0

α

∫ t

t+β

yT (τ)Ry(τ) dτ dβ dα,

V8(y(t), t) =
(η32 − η31)

6

∫ −η1
−η2

∫ 0

α

∫ 0

β

∫ t

t+ϕ

ẏT (τ)

× T ẏ(τ) dτ dϕ dβ dα.

We find time derivatives of Vi(y(t), t), i = 1, 2, . . . , 8, along
the trajectories of the T-S fuzzy GNNs (10), we gain

V̇1(y(t), t) = yT (t)P ẏ(t) + ẏT (t)Py(t), (43)

V̇2(y(t), t) = yT (t)Q1y(t)

− yT (t− η1)Q1y(t− η1), (44)

V̇3(y(t), t) = yT (t)Q2y(t)

− yT (t− η2)Q2y(t− η2), (45)

V̇4(y(t), t) = η21 ẏ
T (t)U1ẏ(t)

− η1
∫ t

t−η1
ẏT (β)U1ẏ(β) dβ, (46)

V̇5(y(t), t) = η22 ẏ
T (t)U2ẏ(t)

− η2
∫ t

t−η2
ẏT (β)U2ẏ(β) dβ, (47)

V̇6(y(t), t) = (η2 − η1)2ẏT (t)U3ẏ(t)

− (η2 − η1)

∫ t−η1

t−η2
ẏT (β)U3ẏ(β) dβ, (48)

V̇7(y(t), t) =
(η22 − η21)2

4
yT (t)Ry(t)− (η22 − η21)

2

×
∫ −η1
−η2

∫ t

t+α

yT (β)Ry(β) dβ dα, (49)

V̇8(y(t), t) =
(η32 − η31)2

36
ẏT (t)T ẏ(t)− (η32 − η31)

6

×
∫ −η1
−η2

∫ 0

α

∫ t

t+β

ẏT (τ)T ẏ(τ) dτ dβ dα.

(50)
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By using Lemma 3, we get

−η1
∫ t

t−η1
ẏT (β)U1ẏ(β) dβ ≤ −ξT (t) (e1 − e3)

× U1 (e1 − e3)
T
ξ(t)− 3ξT (t) (e1 + e3 − 2e7)

× U1 (e1 + e3 − 2e7)
T
ξ(t)

− 5ξT (t) (e1 − e3 + 6e7 − 12e13)

× U1 (e1 − e3 + 6e7 − 12e13)
T
ξ(t)

− 7ξT (t) (e1 + e3 − 12e7 + 60e13 − 120e17)

× U1 (e1 + e3 − 12e7 + 60e13 − 120e17)
T
ξ(t), (51)

−η2
∫ t

t−η2
ẏT (β)U2ẏ(β) dβ ≤ −ξT (t) (e1 − e4)

× U2 (e1 − e4)
T
ξ(t)− 3ξT (t) (e1 + e4 − 2e8)

× U2 (e1 + e4 − 2e8)
T
ξ(t)

− 5ξT (t) (e1 − e4 + 6e8 − 12e14)

× U2 (e1 − e4 + 6e8 − 12e14)
T
ξ(t)

− 7ξT (t) (e1 + e4 − 12e8 + 60e14 − 120e18)

× U2 (e1 + e4 − 12e8 + 60e14 − 120e18)
T
ξ(t), (52)

−(η2 − η1)

∫ t−η1

t−η2
ẏT (β)U3ẏ(β) dβ

=− (η2 − η1)

∫ t−η(t)

t−η2
ẏT (β)U3ẏ(β) dβ

− (η2 − η1)

∫ t−η1

t−η(t)
ẏT (β)U3ẏ(β) dβ

≤− ξT (t) (e5 − e4)U3 (e5 − e4)
T
ξ(t)

− 3ξT (t) (e5 + e4 − 2e10)U3 (e5 + e4 − 2e10)
T
ξ(t)

− 5ξT (t) (e5 − e4 + 6e10 − 12e15)

× U3 (e5 − e4 + 6e10 − 12e15)
T
ξ(t)

− 7ξT (t) (e5 + e4 − 12e10 + 60e15 − 120e19)

× U3 (e5 + e4 − 12e10 + 60e15 − 120e19)
T
ξ(t)

− ξT (t) (e3 − e5)U3 (e3 − e5)
T
ξ(t)

− 3ξT (t) (e3 + e5 − 2e9)U3 (e3 + e5 − 2e9)
T
ξ(t)

− 5ξT (t) (e3 − e5 + 6e9 − 12e16)

× U3 (e3 − e5 + 6e9 − 12e16)
T
ξ(t)

− 7ξT (t) (e3 + e5 − 12e9 + 60e16 − 120e20)

× U3 (e3 + e5 − 12e9 + 60e16 − 120e20)
T
ξ(t). (53)

In addition, we derive the following inequality based on
Lemma 1:

− (η22 − η21)

2

∫ −η1
−η2

∫ t

t+α

yT (β)Ry(β) dβ dα

≤− (η22 − η21)2ξT (t)e12Re
T
12ξ(t)

− κ(η22 − η21)2ξT (t)e12Re
T
12ξ(t)

− (η22 − η21)2ξT (t)e11Re
T
11ξ(t)

− (1− κ)(η22 − η21)2ξT (t)e11Re
T
11ξ(t), (54)

where κ =
η2(t)− η21
η22 − η21

.

Based on Lemma 2 and inequality (13), we achieve

− (η32 − η31)

6

∫ −η1
−η2

∫ 0

α

∫ t

t+β

ẏT (τ)T ẏ(τ) dτ dβ dα

≤ξT (t)[e1 2e12 + 2e11]

(
(η22 − η21)L̄+

η32 − η31
6

K̄

)
× [e1 2e12 + 2e11]T ξ(t). (55)

From assumption (H2), we gain the following relation:

2
(
GpWy(t− η(t))− g(Wy(t− η(t)))

)T
Y1

×
(
g(Wy(t− η(t)))−GmWy(t− η(t))

)
≥ 0. (56)

Consider the system (10), we obtain

0 =2
[
yT (t)α1M

T
1 + ẏT (t)α2M

T
2

] [
− ẏ(t)− Ãy(t)

+ B̃1g(Wy(t− η(t))) + B̃3u(t)
]
. (57)

Combining from (43)-(57), we get

V̇ (y(t), t) ≤
m∑
i=1

ωiξ̄
T (t){κΩ̄

(1)
i + (1− κ)Ω̄

(2)
i }ξ̄(t), (58)

where Ω̄
(1)
i = Ω̄i + Ω1 and Ω̄

(2)
i = Ω̄i + Ω2, Ω̄i = Ωi +

2e21α1B
T
3iM1e

T
1 +2e21α2B

T
3iM2e

T
2 with Ωi and Ω1,Ω2 are

defined in (11) and (12).
Consider (58) with u(t) = 0 (doesn’t have disturbance), we
obtain

V̇ (y(t), t) ≤
m∑
i=1

ωiξ
T (t){κΩ

(1)
i + (1− κ)Ω

(2)
i }ξ(t),

where Ω
(1)
i = Ωi + Ω1 and Ω

(2)
i = Ωi + Ω2.

From the condition (3), the upper bound of V̇ (y(t), t) is
negative if the following inequality holds:

κΩ
(1)
i + (1− κ)Ω

(2)
i < −a1I. (59)

The inequality (59) can be expressed as follows:

κ(Ω
(1)
i + a1I) + (1− κ)(Ω

(2)
i + a1I) < 0 (60)

Since 0 ≤ κ ≤ 1, the term κ(Ω
(1)
i + a1I) + (1− κ)(Ω

(2)
i +

a1I) is a convex combination of Ω
(1)
i + a1I and Ω

(2)
i + a1I .

The combination is negative definite only if the vertices are
negative; so, (60) is equivalent to (11) and (12). Then, the T-S
fuzzy GNNs (10) is asymptotically stable.
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APPENDIX C.
Proof of Theorem 3. By using inequality (40) in Theorem
1, condition (6), and LMIs (14)- (17) we achieve

V̇ (y(t), t)− J(t) ≤
m∑
i=1

ωiζ̄
T (t){κΣ̃

(1)
i + (1− κ)Σ̃

(2)
i }ζ̄(t)

≤ 0,

V̇ (y(t), t) ≤
m∑
i=1

ωiζ̄
T (t){κΣ̃

(1)
i + (1− κ)Σ̃

(2)
i }ζ̄(t)) + J(t)

≤ J(t), (61)

where Σ̃
(1)
i = Σ̃i + Σ1 and Σ̃

(2)
i = Σ̃i + Σ2.

Then we integrate both sides of (61) from 0 to t ≥ 0 and
setting β ≤ −V (y(0), 0), we gain∫ t

0

J(τ) dτ ≥ V (y(t), t)− V (y(0), 0) ≥ yT (t)Py(t) + β.

(62)

Consider two cases of Γ̃4 = 0 and Γ̃4 6= 0.
First, we consider Γ̃4 = 0, from inequality (62) we get∫ tf

0

J(τ) dτ ≥ β. (63)

This implies Definition 1 with Γ̃4 = 0.
The next case is Γ̃4 6= 0, as stated in assumption (H4), we
acquire Γ̃1 = 0, Γ̃2 = 0, Γ̃3 > 0, and C3i = 0. So, for any
0 ≤ t ≤ tf and 0 ≤ t− η(t) ≤ tf , (62) goes to∫ tf

0

J(τ) dτ ≥
∫ t

0

J(τ) dτ ≥ yT (t)Py(t) + β,

and ∫ tf

0

J(τ) dτ ≥
∫ t−η(t)

0

J(τ) dτ

≥ yT (t− η(t))Py(t− η(t)) + β,

respectively. In addition, for t− η(t) ≤ 0, we have

yT (t− η(t))Py(t− η(t)) + β

≤ ‖P‖|y(t− η(t))|2 + β

≤ ‖P‖ sup
−η2≤θ≤0

|ϕ(θ)|2 + β

≤ −V (y(0), 0)

≤
∫ tf

0

J(τ) dτ.

So, ∃b ∈ R+ such that b < 1,∫ tf

0

J(τ) dτ ≥β + byT (t)Py(t)

+ (1− b)yT (t− η(t))Py(t− η(t)).

By the relationship between z(t) and inequality (17) yields
the following equation:

z(t)T Γ̃4z(t) = −
[

y(t)
y(t− η(t))

]T
×
[
bP − CT1iΓ̃4C1i −CT1iΓ̃4C2i

∗ (1− b)P − CT2iΓ̃4C2i

]
×
[

y(t)
y(t− η(t))

]
+ byT (t)Py(t)

+ (1− b)yT (t− η(t))Py(t− η(t)).

Therefore, for any t such that 0 ≤ t ≤ tf , it is obvious that∫ tf

0

J(τ) dτ ≥ z(t)T Γ̃4z(t) + β. (64)

Then, taking the supremum over t in (63) and (64), the T-S
fuzzy generalized neural networks (4) is extended dissipative.
The proof is complete.

APPENDIX D.
Proof of Theorem 4. By using inequality (58) in Theorem
2, condition (6), and LMIs (18)-(21) we achieve

V̇ (y(t), t)− J(t) ≤
m∑
i=1

ωiξ̄
T (t){κΩ̃

(1)
i + (1− κ)Ω̃

(2)
i }ξ̄(t)

≤ 0,

V̇ (y(t), t) ≤
m∑
i=1

ωiξ̄
T (t){κΩ̃

(1)
i + (1− κ)Ω̃

(2)
i }ξ̄(t)) + J(t)

≤ J(t), (65)

where Ω̃
(1)
i = Ω̃i + Ω1 and Ω̃

(2)
i = Ω̃i + Ω2.

Then we integrate both sides of (65) from 0 to t ≥ 0 and
setting 0 = β ≤ −V (y(0), 0), we gain∫ t

0

J(τ) dτ ≥ V (y(t), t)− V (y(0), 0) ≥ yT (t)Py(t). (66)

Consider two cases of Γ̃4 = 0 and Γ̃4 6= 0.
First, we consider Γ̃4 = 0, from inequality (66) we get∫ tf

0

J(τ) dτ ≥ 0. (67)

This implies Definition 1 with Γ̃4 = 0.
The next case is Γ̃4 6= 0, as stated in Assumption (H4), we
acquire Γ̃1 = 0, Γ̃2 = 0, and Γ̃3 > 0. So, for any 0 ≤ t ≤ tf ,
(66) goes to∫ tf

0

J(τ) dτ ≥
∫ t

0

J(τ) dτ ≥ yT (t)Py(t).

By the relationship between z(t) and inequality (21) yields
the following equation:

z(t)T Γ̃4z(t) = −yT (t)
(
P − CT1iΓ̃4C1i

)
y(t)

+ yT (t)Py(t)

≤ yT (t)Py(t).
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Therefore, for any t such that 0 ≤ t ≤ tf , it is clear that∫ tf

0

J(τ) dτ ≥ z(t)T Γ̃4z(t). (68)

Then, taking the supremum over t in (67) and (68), the T-
S fuzzy GNNs (10) is extended dissipative. The proof is
complete.
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