
3712 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, VOL. 14, NO. 8, AUGUST 2018

Lightweight Searchable Public-Key Encryption
for Cloud-Assisted Wireless Sensor Networks

Peng Xu , Member, IEEE, Shuanghong He , Wei Wang , Member, IEEE,
Willy Susilo , Senior Member, IEEE, and Hai Jin, Senior Member, IEEE

Abstract—The industrial Internet of Things is flourishing,
which is unprecedentedly driven by the rapid development
of wireless sensor networks (WSNs) with the assistance
of cloud computing. The new wave of technology will give
rise to new risks to cyber security, particularly the data
confidentiality in cloud-assisted WSNs (CWSNs). Search-
able public-key encryption (SPE) is a promising method to
address this problem. In theory, it allows sensors to up-
load public-key ciphertexts to the cloud, and the owner of
these sensors can securely delegate a keyword search to
the cloud and retrieve the intended data while maintain-
ing data confidentiality. However, all existing and semanti-
cally secure SPE schemes have expensive costs in terms
of generating ciphertexts and searching keywords. Hence,
this paper proposes a lightweight SPE (LSPE) scheme with
semantic security for CWSNs. LSPE reduces a large number
of the computation-intensive operations that are adopted in
previous works; thus, LSPE has search performance close
to that of some practical searchable symmetric encryp-
tion schemes. In addition, LSPE saves considerable time
and energy costs of sensors for generating ciphertexts. Fi-
nally, we experimentally test LSPE and compare the results
with some previous works to quantitatively demonstrate the
above advantages.
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I. INTRODUCTION

DRIVEN by the fourth industrial revolution, the industrial
Internet of Things (IIoT) is rapidly emerging. As an ex-

tended concept of Internet of Things (IoT) [1], [2], IIoT is the use
of IoT technologies in manufacturing. For example, IIoT takes
advantage of a large volume of sensor data, machine-to-machine
communications, automation technologies, and machine learn-
ing technologies to provide great potential impacts on 100%
of global energy production and on 44% of energy consump-
tion [3]. According to a new report from Grand View Research,
the global IIoT market is expected to reach $933.62 billion by
2025 [4]. Undoubtedly, this new industrial wave will provide
contributions to the formation of a new era for technological
development and economic growth. As one of the most im-
portant components of IIoT, wireless sensor networks (WSNs)
and the associated cloud technologies are playing increasingly
more pivotal roles in various scenarios, such as health care, agri-
culture, military defense, environmental monitoring, and smart
metering [5]–[7].

WSNs connect sensors to the Internet through gateways,
which are responsible for the connection between the WSN
and the Internet [8]. In this case, a mass of sensors deployed
in the monitoring area compose a WSN, and generate a volume
of sensor data that will be forwarded by gateways. Notably,
the increasing adoption of WSNs, particularly cloud-assisted
WSNs (CWSNs), will certainly bring some new challenges in
terms of energy consumption and data confidentiality [9]–[12].
The sensors in CWSNs generally collect sensitive data and
upload these data to the cloud. Hence, both eavesdroppers and
the untrusted cloud are curious about these data, such as the
examples shown in [13] and [14]. Therefore, the issue of data
confidentiality must be carefully considered when deploying
CWSNs in applications [15].

Numerous research works introduce cryptography to
CWSNs to protect data confidentiality, and many cryptographic
algorithms are adopted. Wang et al. [16] propose a secure data
division scheme based on homomorphic encryption in CWSNs
for health care. Since the sensors in CWSNs are generally
energy intensive and computing power limited, Wang et al. [17]
propose a group key-policy attribute-based encryption with
partial outsourcing decryption in WSNs, and Elhoseny et al.
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Fig. 1. Typical application of SE in CWSNs.

[18] propose an energy efficient encryption scheme for secure
dynamic WSN. Additionally, there are some other encryption
methods introduced to CWSNs, such as mixed encryption [19],
asymmetric encryption [20], authenticated encryption [21], etc.

Searchable encryption (SE) is one of the promising crypto-
graphic techniques for CWSNs to maintain data confidentiality
[22]. When applying SE in CWSNs, as shown in Fig. 1, sensors
can generate searchable ciphertexts for their data and upload
them to the cloud. To retrieve the intended data, the owner of
the sensors delegates a keyword search to the cloud; then, the
cloud finds all matching ciphertexts and returns them to the
owner; finally, the owner decrypts the intended data. In terms
of security, SE guarantees that both eavesdroppers and the un-
trusted cloud cannot learn any information about sensors’ data
in some sense.

Currently, SE can be categorized into two types: the first is
searchable symmetric-key encryption (SSE) [23], and the sec-
ond is searchable public-key encryption (SPE) [24]. In the ap-
plication of CWSNs, SSE requires that all sensors have the same
symmetric key to generate ciphertexts. Hence, if one of the sen-
sors is compromised by an adversary, then all the other sensors’
data will be leaked. Fortunately, in contrast to SSE, SPE only
requires that all sensors store the public key. Hence, SPE is more
secure than SSE in practice. However, the existing SPE schemes
are still impractical for CWSNs in terms of performance.

In CWSNs, sensors generally have limited energy, and the
cloud must complete a search task as soon as possible. Hence,
a practical SPE scheme should be highly efficient in generating
ciphertexts and searching keywords. However, the existing SPE
schemes fail to achieve the above aims. The seminal work of
SPE [24] has search complexity that is linear with the total num-
ber of ciphertexts. A following work on SPE [25] accelerates the
search performance such that its search complexity is sublinear
with the total number of ciphertexts. To the best of our knowl-
edge, the sublinear search complexity is the best. However, this
paper is still impractical. Our experiment shows that this paper
takes an average time of 1.16 ms to find one matching cipher-
text. The performance is far from being practical. According to
studies on SSE, such as [26], we generally think that the prac-
tical performance should be approximately 7.3 μs. In addition,
the existing SPE schemes also use many computation-intensive
operations to generate ciphertexts. Due to the limited energy of
sensors, improving the performance to generate ciphertexts is
also needed.

A. Our Ideas

Currently, it is still an interesting and challenging work to
improve the search performance of SPE without sacrificing the

semantic security of keywords. In theory, this paper can be
achieved in two ways: The first is to reduce the search com-
plexity such that the resulting complexity is less than sublinear,
and the second is to reduce the number of computation-intensive
operations in large while guaranteeing the sublinear search com-
plexity.

According to our previous studies, the first approach men-
tioned above appears to be impossible when maintaining the
semantic security is required. The sublinear search complexity
means that the search complexity is linear with the number of
matching ciphertexts. If there is a search complexity that is less
than sublinear, it means that the corresponding search algorithm
can find at least two matching ciphertexts in only one step. In
practice, achieving this type of search algorithm requires that the
cloud can decide which two ciphertexts have the same keyword
even without any authorized keyword search from the owner
of sensors. This clearly contradicts the semantic security. In
addition, we can also find a fact that implies the impossibility
from the studies on SSE. This fact is that no semantically secure
SSE scheme can achieve search complexity that is less than
sublinear. Hence, this paper focuses on the second approach
mentioned above.

Xu et al. [25] proposed the first unique SPE scheme (called
XW15 in this paper) with both sublinear search complex-
ity and semantic security. We find that this scheme is con-
structed by many computation-intensive operations. Specifi-
cally, XW15 is constructed by a supersingular elliptic curve.
Let G1 and G′1 denote the corresponding algebraic groups, and
let ê : G1 ×G′1 → G2 denote the corresponding pairing oper-
ations. If G1 = G′1, then we say that ê is symmetric; other-
wise, ê is asymmetric (more related mathematical definitions
will be provided in the following section). XW15 consists of
many pairing and multiplication operations of G1 and many
exponentiation operations of G2. These operations have consid-
erably higher time costs than other cryptographic operations,
such as the multiplication and division operations of G2. We
experimentally test these operations by the type-A and type-
D supersingular elliptic curves, which are introduced in the
pairing-based cryptography (PBC) manual [27]. The two types
of elliptic curves have quite different time costs when running
cryptographic operations, because these two curves have dif-
ferent embedding degrees that greatly affect the computation
complexity. Table I clearly shows the comparisons of the above
operations in terms of time cost.

In addition, to generate N ciphertexts for a keyword, XW15
will execute operation MulG1 N times, operation ExpG2

N + 1
times, and operation ê N times. To search a keyword, sup-
pose that there are N matching ciphertexts also, then XW15
will execute operation ê N + 1 times. In other words, XW15
generally takes the number of the above computation-intensive
operations, linear with the number of associated ciphertexts, to
generate ciphertexts or search keywords.

To summarize, XW15 is impractical even if it has sublin-
ear search complexity. We are interested in constructing a
lightweight SPE (LSPE) scheme. It has the same search com-
plexity and semantic security as XW15. In contrast to XW15,
it greatly reduces the number of the computation-intensive
operations.
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TABLE I
TIME COSTS TO EXECUTE DIFFERENT CRYPTOGRAPHIC OPERATIONS WHEN

USING DIFFERENT ELLIPTIC CURVES

Operation Time Cost Per Execution (μs)

The Type-A Elliptic Curve The Type-D Elliptic Curve

SHA-256 2.3
MulG2

0.9 6
DivG2

5.5 18
MulG1

1697 607
ExpG2

156 1234
ê 1136 3755

Let MulG2
, DivG2

, and ExpG2
denote the multiplication, division, and expo-

nentiation operations of G2, respectively. Let MulG1
denote the multiplication

operation of G1. Note that each operation is executed 1000 times, and the average
time is taken as the time cost per execution.

B. Our Work

According to the concept of searchable public-key cipher-
texts with hidden structures (SPCHS) [25], we construct an
LSPE scheme. This scheme generates starlike hidden struc-
tures among searchable ciphertexts as XW15 does to achieve
sublinear search complexity. In contrast to XW15, LSPE has
considerably more efficient time costs to generate ciphertexts
and search keywords. To generate N ciphertexts for a keyword,
LSPE executes one pairing operation ê and one multiplication
operation MulG1. To search a keyword that has N matching
ciphertexts, LSPE executes one pairing operation ê. In other
words, LSPE has the number of the above computation-intensive
operations, independent with the number of the associated ci-
phertexts, to generate ciphertexts or search keywords. Clearly,
LSPE is considerably more practical than XW15. Hence, when
applying LSPE in the scenario of CWSNs, sensors can ex-
pend less time and energy costs to generate ciphertexts, and
the cloud can find all matching ciphertexts in a much shorter
time.

In terms of security, LSPE has provable semantic security un-
der the computational bilinear Diffie-Hellman (CBDH) assump-
tion in the random oracle (RO) model. It means that without any
delegated keyword search task from the owner of sensors, no
one, including eavesdroppers and the cloud, can learn any infor-
mation about keywords; with a delegated keyword search task,
the cloud only knows which ciphertexts are matching.

We experimentally compare our LSPE with XW15. We first
code these two schemes. Then, we investigate their time and
energy costs to generate some ciphertexts for environmental
pollution data using a single-board computer, and we investigate
their time costs to search keywords using a workstation. The
single-board computer is suggested by Microsoft as a popular
platform to run IoT systems [28]. Hence, our experiments are
sufficiently convincing in showing the significant advantages of
LSPE. In addition, according to the experimental results, we
find that the search performance of LSPE is very close to that
of a practical SSE scheme [26]. To the best of our knowledge,
LSPE is the first semantically secure SPE scheme that has this
type of advantage.

C. Organization

The remainder of this paper is organized as follows. Section II
reviews the concepts of SPCHS and its semantic security.
Section III introduces our LSPE scheme. Section IV introduces
the application of LSPE in the scenario of CWSNs. Section V
experimentally compares our LSPE and XW15. Section VI in-
troduces the other related works. Section VII concludes this
paper.

II. REVIEWING SPCHS AND ITS SEMANTIC SECURITY

SPCHS is a novel and extended concept of SPE. In contrast
to the traditional concept of SPE, SPCHS not only defines the
search ability of ciphertexts, but also defines the hidden struc-
tures constructed by the generated ciphertexts. In other words,
SPCHS additionally defines the hidden relationship among the
generated ciphertexts, and the corresponding relationship can be
disclosed by an authorized keyword search task. The disclosed
relationship allows a search process to obtain some new prop-
erties, in addition to deciding whether a ciphertext is matching.
Xu et al. [25] introduces three types of hidden structures: The
first one is the starlike structure, which can reduce the search
complexity; the second one is the ringlike structure, which al-
lows one to verify the completeness of a search task; and the
final one is the treelike structure, which can achieve the content
search in some sense.

Our LSPE scheme is an instance of SPCHS. Specifically,
LSPE constructs a starlike hidden structure among the gener-
ated ciphertexts to achieve the basic requirement, which is sub-
linear search complexity. In addition, the definition of SPCHS’s
semantic security is also suitable for LSPE. Hence, this section
briefly reviews the concept of SPCHS and its semantic security
to help readers to understand LSPE. For more formal details on
SPCHS, readers can refer to [25].

SPCHS defines five algorithms, which are algorithms Setup,
Structure, Encryption, Trapdoor, and Search. They are
described, respectively, as follows.

1) Algorithm Setup is the most fundamental one. Accord-
ing to the requirement on the degree of security, it will
generate some system parameters for all other algorithms.
The system parameters consists of two parts: one is the
master public key; another one is the master private key.
In the scenario of CWSNs, this algorithm is implemented
by the sensors’ owner; the generated master public key is
stored in all sensors; the owner secretly stores the master
private key.

2) Algorithm Structure is used to initialize a hidden struc-
ture, and it will be used in algorithm Encryption. An
initialized hidden structure consists of two parts: one is
the public part; another one is the private part. In the sce-
nario of CWSNs, this algorithm is implemented by a sen-
sor before the first time to run algorithm Encryption;
the generated public part is uploaded by the sensor to the
cloud; the generated private part is secretly stored by the
sensor.

3) Algorithm Encryption is used to generate the search-
able ciphertext of an intended keyword, and the generated
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ciphertext contains a hidden relationship with some pre-
viously generated ciphertexts. In the scenario of CWSNs,
this algorithm is implemented by a sensor if it wants to
generate keyword-searchable ciphertexts for some col-
lected data; the generated ciphertext is uploaded by the
sensor to the cloud; finally, the sensor updates the private
part of its hidden structure for the follow-up ciphertexts.

4) Algorithm Trapdoor is used to generate the keyword
search trapdoor for an intended keyword, and it must take
the master private key as input. In the scenario of CWSNs,
if the owner would like to retrieve the sensors’ data of an
intended keyword, he will run this algorithm to generate
a keyword search trapdoor, and send this trapdoor to the
cloud as an authorized keyword search task. Since only
the owner knows the master private key, no one except
the owner can delegate a keyword search to the cloud.

5) Algorithm Search is used to find all matching cipher-
texts of an intended keyword. In the scenario of CWSNs,
upon receiving a keyword search trapdoor from the
owner, the cloud runs this algorithm to find all match-
ing ciphertexts.

In practice, a secure SPCHS scheme must guarantee the con-
fidentiality of keywords to resist the inside and outside attackers.
When applying SPCHS in the scenario of CWSNs, the inside
attackers include the compromised sensors and the honest-but-
curious cloud. The outside attackers are eavesdroppers. Sup-
pose that all keyword search trapdoors are securely transferred
to the cloud. A secure SPCHS scheme means that the compro-
mised sensors and eavesdroppers cannot learn any information
about keywords. With a keyword search trapdoor, the cloud
only knows which ciphertexts are matching. Without any key-
word search trapdoor, the cloud cannot learn any information
about keywords.

The above security requirements are defined by the semantic
security of SPCHS. Moreover, the semantic security is a more
general security definition. It is defined as the semantic secu-
rity for both keywords and the hidden structures under chosen
keyword and structure attacks (SS-CKSA). It models an adap-
tive attack game on SPCHS, and then it defines that a SPCHS
scheme is SS-CKSA secure if no one can win the game with a
nonnegligible advantage. The adaptive attack game implies the
following.

1) An attacker can know some inside information such as
the information known by the compromised sensors and
the honest-but-curious cloud.

2) The attacker can choose which sensors are compromised.
3) The attacker can know all outside information such as the

information known by eavesdroppers.
Specifically, the adaptive attack game on SPCHS consists of

the following five phases.
1) The setup phase is implemented by a challenger who will

challenge the capability of an attacker to compromise
a SPCHS scheme. In this phase, the challenger setups
the master public and private keys of SPCHS, initializes
some hidden structures by generating their public parts,
and publishes the master public key and the public parts
to the attacker. This phase simulates the truth that all
public parameters can be known by the attackers.

2) The query 1 phase is launched by the attacker. He will
adaptively chose some keywords and hidden structures,
and he will query the corresponding keyword search trap-
doors and private parts. The challenger will respond to
these queries if their responses are not directly related to
the attack targets. This phase simulates the truth in the
scenario of CWSNs, such that the following statements
hold.
a) Some sensors can be compromised in practice.
b) The honest-but-curious cloud knows some keyword

search trapdoors from the owner.
c) The transferred ciphertexts can be eavesdropped by

the attackers.
3) The challenge phase allows the attacker to choose two

pairs of keyword and hidden structure as his attack targets.
The challenge will generate the challenging keyword-
searchable ciphertext for one of the pairs. This phase
simulates the truth that attackers can choose the attack
targets.

4) The query 2 phase is the same as the query 1 phase. This
phase simulates the truth that after choosing the attack
targets, attackers still can steal some inside and outside
information, and these information may be helpful for the
successful attack.

5) The guess phase is the final phase. In this phase, the at-
tacker will guess which of the two pairs chosen by the
attacker in the challenge phase is used to generate the
challenging keyword-searchable ciphertext. This phase
defines the final step of an attack. This definition is a
general one to contain many real attacks, like the attacks
to learn the content of keywords, steal the private param-
eters, etc.

If the attacker guesses the correct result, then he wins the
above game. Suppose that the probability of the attacker winning
the game is Pr[Win]. The advantage of the attacker winning the
game is defined as AdvSS-CKSA

SPCHS,A = Pr[Win]− 1
2 .

III. OUR LSPE SCHEME

In this section, according to the concepts of SPCHS and its se-
mantic security, we will construct our LSPE scheme and prove
the correctness and semantic security of LSPE. Prior to con-
structing our scheme, we introduce some related mathematical
definitions at first.

Let G1 denote an additive group with prime order q. Let G2

denote a multiplicative group that is also of prime order q. Let P
be a generator of group G1. A pairing operation ê : G1 ×G1 →
G2 is defined as a function with the following properties [29].

1) Efficient: Given two elements P and Q ∈ G1, there is a
polynomial time algorithm to compute ê(P, Q) ∈ G2.

2) Bilinear: For any two integers a and b ∈ Z∗q , equation
ê(aP, bQ) = ê(P, Q)ab holds.

3) Nondegenerate: If P is a generator of G1, then ê(P, P )
is a generator of G2.

Let BG(1k ) be an efficient pairing generator that takes
a security parameter 1k as input and probabilistically out-
puts (q, G1, G2, P, ê). Let W = {0, 1}∗ be the keyword
space.
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A. Constructing LSPE

Our LSPE scheme is constructed as follows.
1) Setup(1k , W): Take the security parameter 1k and the

keyword spaceW as inputs, run BG(1k ) to generate pa-
rameters (q, G1, G2, P, ê), randomly select a ∈ Z∗q ,
set Q = aP , choose two cryptographic hash functions
H1 : {0, 1}∗ → G1 andH2 : G2 → {0, 1}256, and out-
put the master secret key SK = a and the master public
key PK = (q, G1, G2, P, ê, Q, H1, H2, W).

2) Structure(PK): Take PK as the input, randomly se-
lect u ∈ Z∗q , and initialize a hidden structure by out-
putting the public part PUB = u · P and the private part
PRI = (u). Note that PRI is a variable list formed as
(u, {(W, Pt[u, W ])|W ∈ W, P t[u, W ] ∈ G2}).

3) Encryption(PK, W, PRI): Take PK, a keyword
W ∈ W , and PRI as inputs, and perform the following
steps.
a) Retrieve (W, Pt[u, W ]) by W from PRI.
b) If it is not found, randomly select Pt[u, W ] ∈

G2, insert (W, Pt[u, W ]) into PRI, and output
the ciphertext C = (H2(ê(u ·Q, H1(W ))), ê(u ·
Q, H1(W )) · Pt[u, W ]).

c) Otherwise, randomly select R ∈ G2, set C =
(H2(Pt[u, W ]), P t[u, W ] ·R), update Pt[u, W ]
= R in PRI, and output the ciphertext C.

4) Trapdoor(SK, W ): Take SK and a keyword W ∈ W
as inputs and output a keyword search trapdoor TW =
a · H1(W ) of keyword W .

5) Search(PK, PUB, C, TW ): Take PK, a hidden struc-
ture’s public part PUB, all keyword-searchable cipher-
texts C (let C[i] denote the ith ciphertext of C, and C[i]
can be parsed as C[i, 1] ∈ {0, 1}256 and C[i, 2]) ∈ G2)
and a keyword trapdoor TW of keyword W as inputs, set
C′ = φ, and perform the following steps.
a) Compute Pt′ = ê(PUB, TW ).
b) Seek a ciphertext C[i] having C[i, 1] = H2(Pt′).
c) If the ciphertext exists, add C[i] into C′, compute

Pt′ = Pt′−1 ·C[i, 2], and go to Step 5b).
d) If no matching ciphertext is found, output C′.

An example of LSPE: Suppose that there are three keyword-
searchable ciphertexts generated by LSPE for keyword W1.
These ciphertexts and their hidden structure are shown in Fig. 2.
With the keyword search trapdoor a · H1(W1) of keyword
W1, one can compute H2(ê(PUB, a · H1(W1))) and find the
first matching ciphertext C[1], since we have H2(ê(PUB, a ·
H1(W1))) = H2(ê(u ·Q, H1(W1))). Then, one can decrypt
ciphertext C[1] and obtain Pt[u, W1]1. With the decrypted
Pt[u, W1]1, one can find the second matching ciphertext C[2].
By using the same method, one can decrypt Pt[u, W1]2 and
find the third matching ciphertext C[3]. Consequently, with the
keyword search trapdoor of keyword W1, one can find all the
matching ciphertexts in LSPE.

B. Proving the Correctness

The above example intuitively shows the correctness of LSPE.
Here, the correctness will be formally proven by the following
Theorem 1.

Fig. 2. Example of LSPE. Note that the dashed arrows denote the
hidden structure, parameters P t[u, W1]i for i ∈ [1, 3] have different and
random values, and we use P t[u, W1]i to denote the different values of
variable P t[u, W1] in algorithm Encryption.

Theorem 1: Suppose that the hash functions H1 and H2 are
both collision free, except with a negligible probability. LSPE
is correct, also except with a negligible probability.

Proof: Without loss of generality, it is equal to prove that
given the keyword search trapdoor TWi

= a · H1(Wi) of key-
word Wi and the hidden structure’s public part PUB = u · P ,
algorithm Search(PK, PUB, C, TWi

) will find all matching
ciphertexts of keyword Wi with the hidden structure PUB. The
proof is as follows.

According to LSPE, algorithm Search(PK, PUB, C,
TWi

) first computes Pt′ = ê(PUB, TWi
). Suppose that algo-

rithm Encryption has generated the first keyword-searchable
ciphertext of keyword Wi . Let C[j] denote the ciphertext.
We have C[j] = (H2(ê(u ·Q, H1(Wi))), ê(u ·Q, H1(Wi)) ·
Pt[u, Wi ]). Since H2(Pt′) = H2(ê(u ·Q, H1(Wi))) holds,
algorithm Search can find the first matching ciphertext of key-
word Wi , except with a negligible probability that is caused by
the collision probabilities of both hash functionsH1 andH2. In
other words, algorithm Search could find a ciphertext that has
its prefix equals toH2(Pt′), but the ciphertext does not belong to
keyword Wi or the hidden structure PUB. However, the prob-
ability of the exception is negligible due to the collision-free
properties of both hash functionsH1 andH2.

By decrypting the first matching ciphertext C[j], algo-
rithm Search obtains Pt[u, Wi ]. Suppose that algorithm
Encryption has generated the second keyword-searchable ci-
phertext of keyword Wi . Let C[j′] denote the ciphertext. We
have C[j′] = (H2(Pt[u, Wi ]), P t[u, Wi ] ·R). Hence, algo-
rithm Search can find the second matching ciphertext of key-
word Wi , also except with a negligible probability that is caused
by the collision probability of hash function H2. By using the
same method, all matching ciphertexts of keyword Wi can be
found, except with a negligible probability.

C. Proving the Semantic Security

The SS-CKSA security of LSPE relies on the CBDH assump-
tion [29]. It means that if the CBDH assumption holds or the
corresponding CBDH problem cannot be efficiently solved in
practice, then LSPE is SS-CKSA secure. To prove the SS-CKSA
security, we will prove that if there is an attacker who can break
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the SS-CKSA security, then we can leverage the adversary to
solve the CBDH problem. Before presenting the proof, we first
review the CDBH assumption.

Definition 1 (The CBDH Assumption): Given parameters
(g, G1, G2, P, ê) generated by BG(1k ) and (a · P, b · P, c ·
P ), where (a, b , c) are randomly chosen in Z∗q , the CBDH
problem in BG(1k ) is to compute ê(P, P )abc . Let AdvCBDH

B
(1k ) be the advantage of algorithm B to solve the CBDH prob-
lem. We say that the CBDH assumption holds if the advantage
AdvCBDH

B (1k ) is negligible in the security parameter 1k .
The SS-CKSA security of LSPE is proven by the following

theorem. Since no probabilistic polynomial time (PPT) algo-
rithm can solve the CBDH problem with a nonnegligible prob-
ability, Theorem 2 implies that no PPT attacker can break the
SS-CKSA security of LSPE in practice.

Theorem 2: Let the hash functionsH1 andH2 be modeled as
the ROs QH1(·) and QH2(·), respectively. Let QP , QT (·), and
QE(·) be three oracles to response the issues of querying the
private part of a hidden structure, querying the keyword search
trapdoor of a keyword, and querying the ciphertext of a keyword
with a hidden structure, respectively. Suppose that there are a
total of N hidden structures in practice and that a PPT attacker
A has an advantage of AdvSS-CKSA

LSPE,A to break LSPE in the SS-
CKSA game, in which A makes at most q1 queries to oracle
QH1(·), at most q2 queries to oracle QH2(·), at most qp queries
to oracleQP , at most qt queries to oracleQT (·), and at most qe

queries to oracle QE(·). Then, there is a PPT algorithm B that
solves the CBDH problem in BG(1k ) with probability

AdvCBDH
B (1k ) ≥ 256

2e4(qt + qp)4(q2 + qe + 1)
AdvSS-CKSA

LSPE,A

where e is the base of the natural logarithm.
Proof: In this proof, algorithmB will be constructed to lever-

age the capability of attacker A to solve the CDBH problem in
BG(1k ). Hence, algorithm B will simulate and play the SS-
CKSA game with attacker A according to the CDBH problem.
This game consists of five phases:

1) In the setup phase, algorithm B will simulate the master
public key and all public parts of the N hidden struc-
tures, and it will initialize some data structure to store
the following issues of attacker A and the corresponding
responses of algorithm B.

2) In the query 1 and 2 phases, algorithm B will simulate
the responses of the issues from attackerA, including the
issues to oracles QH1(·), QH2(·), QP , QT (·), and QE(·).

3) In the challenge phase, attacker A will choose two at-
tack targets, and algorithm B will simulate a challenge
ciphertext for one of these two targets.

4) In the guess phase, algorithm B will attempt to solve the
CDBH problem according to attacker A’s issues in the
query 1 and 2 phases.

Let Coin σ← {0, 1} denote the operation to select Coin ∈
{0, 1} with probability Pr[Coin = 1] = σ. The specified value
of σ will be decided later. The SS-CKSA game between algo-
rithm B and attacker A is as follows.

1) Setup phase: AlgorithmB takes the keyword spaceW and
parameters (q, G1, G2, P, ê, aP, bP, cP ) as inputs,
and it performs the following steps.
a) Initialize four empty lists Pt ⊆ W ×G1 ×G2, S ⊆

G1 × Z∗q × {0, 1}, H1 ⊆ W ×G1 × Z∗q × {0, 1}
and H2 ⊆ G2 × {0, 1}256.

b) Set the master public key PK = (q, G1, G2, P, ê,
Q = aP, W).

c) Initialize N hidden structures through the following
steps for i ∈ [1, N ].

i) Select a random ui ∈ Z∗q and Coini
σ← {0, 1}.

ii) If Coini = 1, compute PUBi = ui · bP .
iii) Otherwise, compute PUBi = ui · P .

d) Set P = {PUBi |i ∈ [1, N ]} and S = {PUBi , ui ,
Coini|i ∈ [1, N]}.

e) Send PK and P to attacker A.
2) Query 1 phase: Attacker A adaptively issues the follow-

ing queries multiple times under the condition that the
same issue is queried only one time.
a) Hash query QH1(W ): In each query, attacker A is-

sues a keyword W ∈ W . With the issued keyword,
algorithm B performs the following steps.

i) Select a random x ∈ Z∗q and Coin σ← {0, 1}.
ii) If Coin = 0, add (W, x · P, x, Coin) into H1

and send xP to A.
iii) Otherwise, add (W, x · cP, x, Coin) into H1

and send xcP to A.
b) Hash queryQH2(Y ): In each query, attackerA issues

an element Y ∈ G2. With the issued element, algo-
rithm B selects a random value V ∈ {0, 1}256 as its
response, and it adds (Y, V ) into H2.

c) Trapdoor query QT (W ): In each query, attacker A
issues a keyword W ∈ W . With the issued keyword,
algorithm B performs the following steps.

i) If record (W, ∗, ∗, ∗) /∈ H1, query QH1(W ).
ii) Retrieve (W, X, x, Coin) by W from H1.

iii) If Coin = 0, send x ·Q to A.
iv) Otherwise, abort and output ⊥.
Note that if Coin = 0, algorithm B will send the cor-
rect trapdoor of the issued keyword to attacker A.

d) Privacy query QP(PUB): In each query, attacker A
issues a public partPUB ∈ P. With the issued public
part, algorithm B performs the following steps.

i) Retrieve (PUB, u, Coin) by PUB from S.
ii) If Coin = 0, send u to A.

iii) Otherwise, abort and output ⊥.
e) Encryption query QE(W, PUB): In each query, at-

tacker A issues a keyword W ∈ W and a public
part PUB ∈ P. With the issued parameters of a hid-
den structure, algorithm B performs the following
steps.

i) If (W, ∗, ∗, ∗) /∈ H1, query QH1(W ).
ii) Retrieve (W, X, x, Coin) and (PUB, u, Coin′)

by W and PUB from H1 and S respectively.
iii) Seek (W, PUB, P t[u, W ]) by W and PUB in

Pt.
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iv) If it does not exist, select a random Pt[u, W ] ∈
G2, insert (W, PUB, P t[u, W ]) into Pt, and
perform the following steps.
A) If Coin = 1 ∧ Coin′ = 1, randomly select

C[1] ∈ {0, 1}256 and C[2] ∈ G2.
B) If Coin = 1 ∧ Coin′ = 0, compute C[0]

= ê(u · aP, x · cP ), C[1] = QH2(C[0]) and
C[2] = C[0] · Pt[u, W ].

C) If Coin = 0 ∧ Coin′ = 1, compute C[0]
= ê(u · aP, x · bP ), C[1] = QH2(C[0]) and
C[2] = C[0] · Pt[u, W ].

D) If Coin = 0 ∧ Coin′ = 0, compute C[0]
= ê(u · aP, x · P ), C[1] = QH2(C[0]) and
C[2] = C[0] · Pt[u, W ].

E) Send the ciphertext C = (C[1], C[2]) to A.
v) Otherwise, randomly select R ∈ G2, send the

ciphertext C = (QH2(Pt[u, W ]), P t[u, W ] ·
R) to A, and update Pt[u, W ] = R in Pt;

Note that algorithm B can generate the correct ci-
phertexts for attacker A’s issues, except for the spe-
cial case in step (iv)-A) under step 2e). However, if
attacker A can find this exception, it means that at-
tacker A issues hash query QH2 with some elements
of the special form ê(P, P )abc·z , where z ∈ Z∗q is a
variable. Clearly, such issues are helpful for algorithm
B to solve the CBDH problem. Hence, in the follow-
ing content, we suppose that attacker A cannot find
that exception.

3) Challenge phase: Attacker A sends two challenge
keyword–structure pairs (W ∗

0 , PUB∗0) and (W ∗
1 , PUB∗1)

to algorithm B. Then, B performs the following steps.
a) Retrieve (PUB∗0, u∗0, PCoin∗0) and (PUB∗1, u∗1,

PCoin∗1) by PUB∗0 and PUB∗1, respectively, from
S.

b) If PCoin∗0 = 0 ∨ PCoin∗1 = 0, then abort and output
⊥.

c) If (W ∗
r , ∗, ∗, ∗) /∈ H1 for r ∈ {0, 1}, query

QH1(W
∗
r ).

d) Retrieve (W ∗
0 , X∗0 , x∗0, WCoin∗0) and (W ∗

1 , X∗1 ,
x∗1, WCoin∗1) by W ∗

0 and W ∗
1 , respectively, from

H1.
e) If WCoin∗0 = 0 ∨WCoin∗1 = 0, then abort and out-

put ⊥.
f) Randomly select d ∈ {0, 1}.
g) Seek (W ∗

d , PUB∗d , P t[u∗d , W ∗
d ]) by W ∗

d and PUB∗d
in Pt.

h) If it does not exists, randomly select Y ∈ {0,
1}256, Pt[u∗d , W ∗

d ] ∈ G2 and R ∈ G2, insert (W ∗
d ,

PUB∗d , P t[u∗d , W ∗
d ]) into Pt, and send the challenge

ciphertext Cd = (Y, R · Pt[u∗d , W ∗
d ]) to A.

i) Otherwise, randomly select R ∈ G2, set C[1] =
QH1(Pt[u∗d , W ∗

d ]) and C[2] = Pt[u∗r , W ∗
r ] ·R, up-

date Pt[u∗d , W ∗
d ] = R in Pt, and send the challenge

ciphertext Cd = (C[1], C[2]) to A.
4) Query 2 phase: This phase is the same as the query 1

phase. Note that in the query 1 and 2 phases, attacker
A cannot query the keyword search trapdoors of both

W ∗
0 and W ∗

1 and the corresponding private parts of both
PUB∗0 and PUB∗1.

5) Guess phase: AttackerA sends a guess d′ to algorithm B.
Irrespective of whether the guess is correct, algorithm B
randomly selects a record (Y, V ) from H2, and outputs
Y 1/(u∗d ·x∗d ) as its solution for the CBDH problem.

In the following content, we will compute the advantage of
algorithm B to solve the CBDH problem in the above SS-
CKSA game. Let Abort be the event that algorithm B does
not abort in the above game. Let Query be the event that at-
tacker A issues hash query QH2 with element ê(P, P )abc·u∗0x∗0

or ê(P, P )abc·u∗1x∗1 . Let Queryd be the event that attacker A
issues hash query QH2 with element ê(P, P )abc·u∗d x∗d .

According to the above game, we have that (1) if algorithm
B does not abort, then the above game is indistinguishable from
a real SS-CKSA game in the view of attacker A, and (2) if
Y = ê(P, P )abc·u∗d x∗d holds in the above guess phase, then al-
gorithm B successfully solves the CBDH problem. Hence, we
will first compute the probabilities of events Abort and Queryd .
According to Pr[Queryd ], it is easy to compute AdvCBDH

B (1k ).
Claim 1: We have Pr[Abort] ≥ 256

e4(qt +qp )4 , where e is the base
of the natural logarithm.

Proof: According to the above SS-CKSA game, algorithm
B may abort in the trapdoor query QT , privacy query QP , and
challenge phases. Moreover, all cases that make algorithm B
abort are independent. Hence, we have that Pr[Abort] = (1−
σ)qt +qp σ4. Let σ = 4

qt +qp +4 . we have that

Pr[Abort] ≥ 256
e4(qt + qp)4

where e is the base of the natural logarithm.
Claim 2: Suppose that algorithmB does not abort in the above

SS-CKSA game. We have that Pr[Queryd ] ≥ 1
2AdvSS-CKSA

LSPE,A .
Proof: According to the definition of SS-CKSA security, we

have that AdvSS-CKSA
LSPE,A = Pr[d = d′]− 1

2 . In addition, if event
Query never occurs, then attackerA has no advantage to win the
above game since the challenge ciphertext is independent from
all challenge keyword-and-structures pairs. Hence, we have that

Pr[d = d′]− 1
2

= Pr[d = d′|Query]Pr[Query]

+ Pr[d = d′|Query]Pr[Query]− 1
2

=
(

Pr[d = d′|Query]− 1
2

)

Furthermore, we have that Pr[Query] ≥ AdvSS-CKSA
LSPE,A . Since at-

tackerA has the same probability to issue hash queryQH2 with
elements ê(P, P )abc·u∗0x∗0 and ê(P, P )abc·u∗1x∗1 . We finally have
that

Pr[Queryd ] ≥
1
2

AdvSS-CKSA
LSPE,A .

According to the above game, there are at most q2 + qe + 1
records in H2. Hence, under the condition that algorithm B
does not abort in the above SS-CKSA game, Claim 2 implies
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that algorithm B has a probability of greater than

1
2(q2 + qe + 1)

AdvSS-CKSA
LSPE,A

to randomly select a record (Y, V ) from H2 in the guess phase
having Y = ê(P, P )abc·u∗d x∗d .

Finally, according to Claim 1, we have that

AdvCBDH
B (1k ) ≥ 256

2e4(qt + qp)4(q2 + qe + 1)
AdvSS-CKSA

LSPE,A .

IV. APPLYING LSPE IN CWSNS

When applying LSPE in CWSNs, LSPE must cooperate
with a traditional public-key encryption (PKE) scheme and
a symmetric-key encryption (SKE) scheme, such as rivest-
Shamir-Adleman encryption (RSA) and advanced encryption
standard (AES) schemes. Without loss of generality, a traditional
PKE scheme consists of algorithms SetupPKE , EncPKE , and
DecPKE . Algorithm SetupPKE(1k ) takes a security parameter
1k as input, and probabilistically outputs a pair of public and
private keys (PK′, SK′); algorithm EncPKE(PK′, M) takes
PK′ and a plaintext M as inputs, and probabilistically outputs
a ciphertext C. Algorithm DecPKE(SK′, C) takes SK′ and
a ciphertext C as inputs and decrypts the contained plaintext
M . An SKE scheme generally consists of algorithms EncSKE
and DecSKE . Algorithm EncSKE(K, M) takes a symmetric
key K and a plaintext M as inputs, and outputs a ciphertext
C. Algorithm DecSKE(K, C) takes a symmetric key K and a
ciphertext C as inputs, and decrypts the contained plaintext M .

The LSPE-based CWSNs system generally consists of the
following phases.

1) Setup phase: In this phase, the owner of sensors
chooses a security parameter 1k , runs algorithm
Setup(1k ) of LSPE to generate (PK, SK), runs al-
gorithm SetupPKE(1k ) of a PKE scheme to generate
(PK′, SK′), stores (PK, PK′) in all sensors, and de-
ploys these sensor in the real world to collect data.

2) Data collection phase: Suppose that a sensor would
like to upload its collected data F to the cloud. First,
if it is the first time to upload data, it runs algo-
rithm Structure(PK) to initialize a hidden struc-
ture (PUB, PRI) and upload PUB to the cloud.
Second, it extracts some keywords from the data F .
Let {W1, . . . ,Wn} be the extracted keywords. Third,
it runs algorithm Encryption(PK, Wi, PRI) for
i ∈ [1, n] to generate keyword-searchable ciphertexts
{C1, . . . , Cn}, randomly chooses a symmetric key K,
runs algorithm EncPKE(PK′, K) to generate a cipher-
text CPKE , and runs algorithm EncSKE(K, F ) to gener-
ate a ciphertext CSKE . Finally, it uploads all ciphertexts
{C1, . . . , Cn , CPKE , CSKE} to the cloud.

3) Data retrival phase: Suppose that the owner would like
to retrieve the data of keyword Wi from the cloud. It
runs algorithm Trapdoor(SK, Wi) to generate the
keyword search trapdoor TWi

of keyword Wi and se-
curely uploads TWi

to the cloud. First, the cloud runs
algorithm Search(PK, PUB, C, TWi

) for all hidden

Fig. 3. Applying LSPE in CWSNs.

structures’ public parts to find all matching ciphertexts.
Second, the cloud sends all matching ciphertexts’ PKE
and SKE parts to the owner. Finally, the owner ob-
tains the intended data by decrypting the receiver
PKE and SKE parts. For example, suppose that
{C1, . . . , Cn , CPKE , CSKE} is a matching ciphertext
(it means that there is a part Cj ∈ {C1, . . . , Cn} contain-
ing keyword Wi). Then, the cloud sends {CPKE , CSKE}
to the owner. Finally, the owner decrypts the PKE part
CPKE using the private key SK′ to obtain a symmetric
key K, and then it decrypts the SKE part CSKE with the
symmetric key K to obtain the intended data F .

Fig. 3 shows the interacting processes of the above system.
In this system, all data are encrypted by a PKE scheme and
an SKE scheme. Hence, no attacker, including eavesdroppers
and the honest-but-curious cloud, can learn any information
about the data. In addition, all extracted keywords are encrypted
by LSPE. According to the provable SS-CKSA security, LSPE
guarantees the practical confidentiality of keywords.

V. EXPERIMENTS AND COMPARISONS

According to the construction of LSPE, it is easy to find
that LSPE has the same search complexity as XW15. Hence,
this section will experimentally show that LSPE is considerably
more efficient than XW15 in practice since it has reduced a large
number of computation-intensive operations.

A. Performance Evaluation

Suppose that N keyword-searchable ciphertexts with a hid-
den structure for a keyword are generated by XW15 and LSPE.
Table II shows the number of computation-intensive operations
that are needed by these two schemes. In XW15, the numbers
of most of the computation-intensive operations are linear with
N . Specially, the numbers of the three most expensive opera-
tions, namely the pairing operation, the multiplication operation
in group G1, and the exponentiation operation in group G2, are
all linear with N . In contrast to XW15, LSPE only needs one
pairing operation and one multiplication operation in group G1.
Although LSPE additionally needs N multiplication operations
in group G2 and N hashing operations, these two types of opera-
tions have considerably less time costs than the other operations.

Consider finding N matching ciphertexts of a keyword.
Table II shows that in XW15, the number of the pairing
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TABLE II
PERFORMANCE EVALUATION

Schemes The number of computation-intensive operations Size per ciphertext

Encryption algorithm Search algorithm

XW15 N · (ê + H1 + MulG1
+ ExpG2

+ MulG2
) + 1 · ExpG2

(N + 1) · ê + N · DivG2
|G1|+ 2 · |G2|

LSPE 1 · (ê + H1 + MulG1
) + N · (H2 + MulG2

) 1 · ê + (N + 1) · H2 + N · DivG2
256 + |G2|

Note that ê denotes one pairing operation;H1 denotes one hashing operation of hash functionH1;H2 denotes one hashing operation of hash functionH2; MulG1

denotes one multiplication in group G1; ExpG2
, MulG2

, and DivG2
denote one exponentiation, multiplication, and division in group G2, respectively; |G1| and

|G2| denote the binary size of groups G1 and G2, respectively.

TABLE III
SYSTEM CONFIGURATION AND ELLIPTIC CURVE

Server Intel Xeon CPU E5-2420 v2 @ 2.20 GHz

IoT device RASPBERRY PI 3 MODEL B
OS and compiler Linux and gcc4.4.7
Program library PBC

Mathematical parameters
Elliptic curve y2 = x3 + x
Base field 878071079966331252243778198475404

981580688319941420821102865339926
647563088022295707862517942266222
142315585876958231745927771336731

7481324925129998224791
Group order 2159 + 2107 + 1

The default unit is decimal

operations is linear with N . In contrast to XW15, only one pair-
ing operation is needed by LSPE. Although LSPE additionally
needs N hashing operations, the time cost of these operations
is considerably less than that of the pairing operations.

The size of a keyword-searchable ciphertext serves as im-
portant indicator to measure the communication costs of both
XW15 and LSPE. In practice, we generally have |G1| ∈
[160, 512] and |G2| ≈ 1024, where |G1| and |G2| denote the
binary sizes of groups G1 and G2, respectively. Table II clearly
shows that LSPE is more efficient than XW15.

From the above performance evaluation, we can conclude
that LSPE is considerably more efficient than XW15 in terms of
generating ciphertexts, searching keywords and transferring ci-
phertexts. In the following experiment, we will show that LSPE
is practical.

B. Experimental Results

In this section, we will investigate the time costs of both
XW15 and LSPE to generate keyword-searchable ciphertexts
and search keywords, and we will investigate the energy costs
of both XW15 and LSPE to generate ciphertexts. In addition
to showing the advantages of LSPE, our experiment shows that
if there are a large number of matching ciphertexts, the time
cost of LSPE to find these ciphertexts is quite close to that of a
practical SSE scheme [26].

Test environment: Table III shows the system configuration
and the chosen elliptic curve of our experiments. Specifically,
we code XW15 and LSPE using the PBC library (a popular

Fig. 4. Time cost of encryption.

cryptographic library [27]) and the chosen elliptic curve, and
we use a Raspberry Pi 3 MODEL B (a single-board computer
with wireless LAN and bluetooth connectivity [30]) to simulate
a sensor device. The experiment to test the time and energy
costs of encryption is performed using the Raspberry Pi. A
high-precision USB voltage-and-current detector named USB
TESTER is employed as the testing equipment for energy cost.
The experiment to test the time cost of search is performed by a
server with an Intel Xeon CPU E5-2420 v2 2.20-GHz processor
and 16-GB RAM. We download a subset of the pollution data
from the website of City Pulse [31] as our testing data. The
subset includes 106 records. Each pollution record consists of
the pollution data of four types of pollutants, which are ozone,
nitrogen dioxide, sulfur dioxide, and PM 10 particles. According
to the air quality index metric of the United Kingdom [32],
each pollutant has four grades, which are low, moderate, high,
and very high. Hence, we extract four keywords from each
pollution record. Each of which consists of a pollutant name
and the corresponding pollution grade. For example, keyword
ozone low denotes the pollutant ozone with the low grade. All
extracted keywords will be encrypted or searched by XW15 and
LSPE. Clearly, the keyword spaceW includes 16 keywords in
total.

Time cost of encryption: Raspberry Pi device is applied for
running XW15 and LSPE to encrypt all extracted keywords
of the above testing data. When generating a given amount of
ciphertexts, Fig. 4 shows the average time cost to generate one
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TABLE IV
NUMBER OF MATCHING CIPHERTEXTS OF EACH KEYWORD

Keyword Amount

Ozone low 42 023
Ozone moderate 36 875
Ozone high 21 102
Nitrogen dioxide low 95 658
Nitrogen dioxide moderate 4342
Sulfur dioxide low 100 000
PM 10 particles low 23 232
PM 10 particles moderate 16 267
PM 10 particles high 13 525
PM 10 particles very high 46 976
The other keywords have no matching ciphertext.

Fig. 5. Time cost of search.

ciphertext by XW15 and LSPE. For example, consider the case
of generating 9000 ciphertexts. XW15 takes an average time of
53.3 ms to generate one ciphertext, whereas LSPE only needs
34.3 ms. Therefore, LSPE saves approximately 35% time cost
to generate one ciphertext. Moreover, following the increase in
the amount of generated ciphertexts, LSPE will save more time
cost compared to XW15 for generating one ciphertext.

Time cost of search: According to our testing data, there are
4× 106 keyword-searchable ciphertexts in total. Table IV lists
the number of matching ciphertexts of each keyword. Consider
searching keywords W1 = nitrogen dioxide moderate, W2=PM
10 particles high, W3 = PM 10 particles very high, and W4 =
nitrogen dioxide low by XW15 and LSPE. To search keywords
tW1, W2, W3, and W4, Fig. 5 shows that XW15 takes 5.04,
15.7, 54.54, and 111 s, respectively, and LSPE takes 0.045,
0.141, 0.482, and 0.973 s, respectively. It is clear that the time
cost of LSPE is approximately 113 times less than that of XW15
for searching all keywords.

In addition, according to the time cost of LSPE to search
keyword W4, we find that the average time cost to find one
matching ciphertext is approximately 10 μs. Referring to an SSE
scheme with practical search performance [26], the practical
search performance to find one matching ciphertext should be
approximately 7.3 μs. Hence, the search performance of LSPE

Fig. 6. Energy cost of encryption.

is very close to that of the practical SSE scheme. To the best
of our knowledge, LSPE is the first SPE scheme having the
practical search performance.

Energy cost of encryption: Sensors generally have the lim-
ited energy in practice [33]. Therefore, the energy cost of
sensors to run XW15 and LSPE is also an important index
for measuring the practicality of the two schemes. We in-
vestigate the energy costs of both XW15 and LSPE’s en-
cryption algorithms, and the results are shown in Fig. 6. To
explain the advantage of LSPE in more general terms, we de-
fine energy efficiency ratio of encryption (EERE) as equation
EERE = Ciphertext Number/Energy Cost to measure the en-
ergy efficiency. For example, taking 500 mWh of energy (includ-
ing the energy cost of the operating system of Raspberry Pi),
XW15 can generate 18 976 ciphertexts, and LSPE can generate
30 748 ciphertexts, which is much more than that of XW15. In
addition, our EERE results in Fig. 6 show that LSPE increases
the EERE ratio by 62% compared with XW15. Hence, LSPE
is considerably more efficient in terms of the energy cost to
generate ciphertexts than XW15.

VI. OTHER RELATED WORKS

In 2004, the first SPE scheme was proposed by Boneh et al.
[24], and it is called public-key encryption with keyword search
(PEKS). Following this seminal work, numerous researchers
have devoted efforts to constructing PEKS schemes with differ-
ent properties. Currently, most PEKS schemes can be catego-
rized into the following four types.

Standard PEKS: Abdalla et al. [34] redefine the correct-
ness of PEKS, and introduce a general transformation from
an anonymous identity-based encryption (IBE) scheme to a
PEKS scheme. They also construct a PEKS scheme with tempo-
rary keyword search by the hierarchical IBE. To resist keyword
guessing attack launched by a malicious server, Chen et al. [35]
propose a new general framework for PEKS, which is named
dual-server PEKS. However, this paper requires that keyword
searches must be performed by by two servers. To avoid this
requirement, Chen et al. [36] propose another new framework
for PEKS, which is named the server-aided PEKS.
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PEKS with functional search: To make PEKS versatile, nu-
merous efforts have been devoted to constructing a PEKS
scheme with functional search. Song et al. [37] propose an
efficient conjunctive keyword search scheme without keyword
fields. Wang et al. [38] describe a new construction for a PEKS
scheme to support range search. Zhang et al. [39] achieve dis-
junctive and conjunctive keyword search. Zhu et al. [40] propose
a fuzzy keyword search scheme. To ensure that the search re-
sults returned from a honest-but-curious server are authentic,
Zheng et al. [41] propose a verifiable attribute-based keyword
search over outsourced ciphertexts. This paper is extended to
the multiowner setting by Miao et al. [42].

PEKS with fast keyword search: The above PEKS schemes
take search time that is linear with the total number of cipher-
texts. This feature makes them difficult to apply in the scenario
of a large-scale database. Bellare et al. [43] propose a determin-
istic PEKS scheme to realize efficient keyword search. In their
scheme, the security is formalized as the notion of “as strong as
possible,” which is stronger than onewayness but weaker than
semantic security. The later deterministic PEKS scheme pro-
posed by Brakerski and Segev [44] has a better security, but it
still cannot guarantee semantic security. Tseng et al. [45] pro-
pose an interactive construction named iPEKS for fast keyword
search. The more the keywords have been searched previously,
the better the efficiency can be improved.

Applications of PEKS: There are several research works fo-
cusing on applying PEKS in various scenarios. Ma et al. [46]
propose a secure channel free certificateless PEKS scheme for
IIoT. Wu et al. [47] take into consideration the limitations of
SSE and PEKS, and introduce an efficient and secure search-
able encryption protocol for cloud-assisted IoT. Zhang et al. [48]
attempt to apply SE in secure biometric authentication, and con-
struct a secure biometric authentication scheme based on PEKS.
In their scheme, the biological template is encrypted as search-
able ciphertext, and the authentication process is transformed
into a keyword search over encrypted database.

VII. CONCLUSION

In this paper, we propose a lightweight and semantically se-
cure SPE scheme called LSPE for the scenario of CWSNs. In
contrast to the previous work XW15, LSPE avoids implement-
ing too many computation-intensive cryptographic operations.
Although LSPE still has the same search complexity as XW15,
LSPE is considerably more efficient in practice than XW15 in
terms of the time and energy costs to generate ciphertexts and
the time cost to search keywords. Compared with XW15, our
experimental results show the following.

1) LSPE saves approximately 35% of the time cost to gen-
erate one ciphertext.

2) The time cost of LSPE to find one matching ciphertext is
approximately 113 times less than that of XW15.

3) LSPE increases the energy efficiency to generate cipher-
texts by 62%. In addition, LSPE is the first SPE scheme to
obtain search performance that is as efficient as a practical
SKE scheme.
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