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Abstract—Image copy detection is an important technology of copyright protection. This paper proposes an efficient hashing method
for image copy detection using 2D-2D (two-directional two-dimensional) PCA (Principal Component Analysis). The key is the discovery
of the translation invariance of 2D-2D PCA. With the property of translation invariance, a novel model of extracting rotation-invariant low-
dimensional features is designed by combining PCT (Polar Coordinate Transformation) and 2D-2D PCA. The PCT can convert an input
rotated image to a translation matrix. Since the 2D-2D PCA is invariant to translation, the low-dimensional features learned from the
translation matrix are rotation-invariant. Moreover, vector distances of low-dimensional features are stable to common digital operations
and thus hash construction with the vector distances is of robustness and compactness. Three open image datasets are exploited to
conduct various experiments for validating efficiencies of the proposed method. The results demonstrate that the proposed method is
much better than some representative hashing methods in the performances of classification and copy detection.

Index Terms—Image hashing, 2D-2D PCA, translation invariance, rotation-invariant feature, image copy detection
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1 INTRODUCTION

W Ith the wide applications of multimedia technology
[1], [2], many images are transmitted and shared

via social networks, e.g., Facebook, Flicker, YouTube and
Snapchat. Some people would like to download images,
process them and republish the processed images by social
networks. As a consequence, many copies of an image may
be stored in cyberspace. Therefore, it is a challenge to detect
image copies from massive images. Fig. 1 illustrates some
image copies of an image, where (a) is an image with an
imperfect horizontal plane, (b) is a corrected version after
rotation, (c) is a compressed version after JPEG compression
with factor equaling 50, and (d) is a noise version attacked
by AWGN (Additive White Gaussian Noise) with variance
equaling 0.01. Given a query image, e.g., Fig. 1 (a), efficient
techniques for copy detection are expected to successfully
find its image copies, such as Fig. 1 (b), (c) and (d). In
fact, image copy detection [3], [4] has become an important
technology of copyright protection for finding illegal copies
with the aid of watermarking technology. This paper inves-
tigates a new and efficient hashing method for image copy
detection.

Image hashing [5], [6], [7], [8] can compress an input
image of any size to a short sequence known as the hash.
It is a useful technology of image representation for im-
proving efficiencies of data processing of massive images.
In practice, image hashing has been applied to numerous
fields [9], [10], [11], such as copy detection, screen quality
assessment, tampering detection and social hot event detec-
tion. Generally, image hashing needs to meet two essential
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Fig. 1: Some image copies of an original image

performance indicators [12], [13], [14], namely, robustness
and discrimination. Suppose that I represents an image,
Is represents a similar image of I, and Id represents a
different image from I. Let H(·) be the hash function for
a digital image, Pr(·) represent the probability of occurrence
of an event, and D(·) represent the distance function for
calculating the similarity of two hashes. Thus, robustness
and discrimination can be formally defined as follows.

(1) Robustness. Robustness means that, for visually sim-
ilar input images, hashing method ought to encode them
into similar or the same hash sequences. Specifically, the
probability that the hashes of I and Is have the same or
similar values should be close to 1. The formula is below.

Pr (D (H(I), H (Is)) < T ) ≥ 1 − ε (1)
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where T represents a given threshold, and ε is a very small
positive constant number close to zero.

(2) Discrimination. Discrimination is also called anti-
collision [11], [13]. It means that, for images with different
contents, hashing method ought to compress them into
different hash sequences. Specifically, the probability that
the hashes of I and Id have different values should be close
to 1. Its formula is below.

Pr (D (H(I), H (Id)) ≥ T ) ≥ 1 − ε (2)

Generally, there is a mutual constraint between these two
indicators. An improvement in one indicator results in a re-
duction in the other. Currently, most hashing methods’ clas-
sifications between robustness and discrimination are not
satisfied yet, and thus they are inefficient in application to
copy detection. To address this issue, we propose an efficient
image hashing method using 2D-2D (two-directional two-
dimensional) PCA (Principal Component Analysis) for copy
detection. Compared with the reported hashing methods,
the prime contributions are presented here.

(1) A new property of 2D-2D PCA called translation
invariance is discovered. It is found that if all training
images are shifted along the column direction with the
same size, the projection feature matrix of 2D-2D PCA
is invariant. In other words, the obtained feature matrix
after column shifting is the same with that before column
shifting. Theoretical proof of the translation invariance of
2D-2D PCA is given. As 2D-2D PCA is a popular technique
of data dimensionality reduction, the property of translation
invariance is helpful to other image applications.

(2) A novel model of extracting rotation-invariant low-
dimensional features is designed by combining the PCT
(Polar Coordinate Transformation) and the 2D-2D PCA. The
PCT can convert an input rotated image to a translation
matrix. Since the 2D-2D PCA is invariant to translation,
it can extract rotation-invariant low-dimensional features
from the translation matrix. As far as known, the 2D-2D
PCA is first used in image hashing and will be helpful to
hashing research.

(3) Low-dimensional features are viewed as vectors and
their vector distances are taken to construct hash. As com-
mon digital operations slightly disturb low-dimensional
features in the 2D-2D PCA domain, their vector distances
are stable to common operations. Therefore, hash construc-
tion with vector distance can guarantee compactness and
robustness.

(4) Performances of the proposed hashing method are
tested using three open image datasets. Comparisons show
that the classification performance of the proposed hashing
method outperforms those of some well-known hashing
methods. Copy detection results illustrate that the proposed
hashing method is much better than some representative
hashing methods in terms of the P-R (Precision-Recall)
curve.

The rest parts of this paper are organized as follows.
Hashing methods closely related to our work are introduced
in Section 2. Principle and detailed procedures of the pro-
posed hashing method are explained in Section 3. Various
experiments are discussed in Section 4. Conclusions of our
work are summarized in Section 5.

2 RELATED WORK

In general, an efficient hashing method should achieve a
satisfactory balance between robustness and discrimination.
In the literature, many scholars have tried their best to
design some meaningful hashing methods for pursuing
high classification performance. According to the robustness
against image rotation, these image hashing methods can be
grouped into the following three categories.

(1)Hashing methods sensitive to rotation. Generally, these
methods do not take into account the robustness of rotation
operation. For instance, Kang et al. [15] utilized compressive
sensing to build an image hash. This method is sensitive to
rotation. Wang et al. [16] proposed to calculate a secure hash
for authentication using the techniques of DWT (Discrete
Wavelet Transform) and DCT (Discrete Cosine Transform).
Their method is robust to gamma correction, and JPEG com-
pression. Huang et al. [17] applied the RW (Random Walk)
technique to design a secure hashing scheme. Vadlamudi et
al. [18] utilized SIFT (Scale-Invariant Feature Transform) and
DWT features to build a hashing method. This method has
good robustness against noise, scaling and other operations,
while its discrimination is not good enough. Qin, Sun and
Chang [19] jointly utilized SVD (Singular Value Decompo-
sition), CVA (Color Vector Angle) and edge detection to de-
sign a new hashing method for color images. Their method
simultaneously improves robustness and discrimination,
but one of its disadvantages is the high time complexity. In
another work [20], a hashing scheme with LBP (Local Binary
Pattern) and color features is designed. The time complexity
of this scheme is reduced, but the discrimination requires to
be improved. Sajjad et al. [21] proposed a novel hashing
method by Canny edge detection and DCT coefficients.
This method has a good application in the field of smart
industrial environment, but its rotation robustness should
be improved. Iram et al. [22] used Gaussian pyramid and
random noise to construct a hashing method. This method
has good security. Recently, Hamid et al. [23] exploited
the difference of Laplacian pyramids to design a hashing
method. This method has good identification performance
for small area tampering. However, the effect of rotation is
not considered in this method. Shen and Zhao [24] utilized
color opponent component and quadtree structure features
to devise a hashing method. Shen and Zhao’s method has a
good localization capability on the tampered image. Liu et
al. [25] introduced a novel hashing method with QLRBP
(Quaternionic Local Ranking Binary Pattern) and mean
pooling. This method is also sensitive to the operation of
rotation.

(2)Hashing methods moderate to rotation. These methods
take rotation into account, but they can only resist rotation
within 20°. For instance, Monga and Evans [26] proposed a
hashing method with an end-stopped wavelet. Monga and
Evans’s method achieves robustness against the rotation of
5°. Wu, Zhou and Niu [27] proposed a print-scan resistant
hashing method using RT (Radon Transform), DWT and
DFT (Discrete Fourier Transform). Their method can resist
small angle rotation within 3°. Motivated by the perfor-
mance of RT, Ou and Rhee [28] designed a hashing method
based on DCT and RT. Ou and Rhee’s method can resist
rotation up to 5°. Zhao et al. [29] calculated a hash by
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combining the ZMs (Zernike Moments) and the position
and texture features of salient region. Their method can
be used for image authentication and can resist the small
angle rotation of 5°. Davarzani et al. [30] combined SVD and
LBP to find image hash. Davarzani’s method has promising
robustness, but the discrimination is not good enough. Li
and Wang [31] used LRSD (Low-Rank Sparse Decomposi-
tion), CS (Compressed Sampling) and random projection to
generate a hash. Li and Wang’s method has good robustness
and can resist the rotation angle of 10°. Qin et al. [32]
exploited saliency structure and dual-cross pattern encoding
to make up a hashing method. Qin’s method is resilient
to rotation of 5°. Tang et al. [33] proposed to use Canny
edge detection and DWT features to generate an image
hash. Tang’s method shows good results in the application
of image quality assessment, but it can only resist rotation
within 5°. Yang et al. [34] used low-rank decomposition
and LBP to generate a hash. Yang’s method can only resist
rotation of 3°. Liu and Huang [35] combined Hu moments
in spatial domain and DCT coefficients in frequency domain
to design a perceptual hashing method. Liu and Huang’s
method is robust to rotation of 10°. In another work, a global
feature called GLCM (Gray-Level Co-occurrence Matrix)
and local features with DCT coefficients are both used to
come up with a novel hashing method in [36]. This hashing
method is also robust to rotation of 10° and can be ap-
plied in copy detection. Recently, Ouyang, Zhang and Wen
[37] introduced quaternion Gyrator transform to generate
a hash. Their method demonstrates good performance in
image authentication. Zhao and Yuan [38] utilized color
structure and luminance gradient features to generate a
hash. Zhao and Yuan’s method is robust to rotation of 8°,
but their discrimination needs to be improved. Recently,
Tang et al. [39] utilized QSVD (Quaternion SVD) to learn
compact hash of color image from PCS (Perceptual Color
Space). As all color components are used in the quaternion
domain, the discrimination of Tang’s method is improved.
In another work, Liang et al. [40] computed salient map with
a visual attention model and extracted robust hash from the
salient map using 2D PCA. Liang’s method is robust against
common operations except for large rotation.

(3)Hashing methods robust to rotation. These methods can
resist the rotation with angle more than 20°. An early
hashing method was given by Swaminathan, Mao and Wu
[41], in which FMT (Fourier–Mellin Transform) and ran-
domization method are used to generate a secure hash. The
rotation robustness of Swaminathan’s method is provided
by FMT. Chen et al. [42] proposed a hashing method based
on the Tchebichef moments. Chen’s method can be used
for authentication. Wang et al. [43] used Watson’s visual
model and SIFT features to come up with a hashing method.
Wang’s method can resist the rotation of 25° and finds
good application in detecting tampered images. Karsh et
al. [44] combined the spectral residual model, DWT and
SVD to generate a hash. The discrimination of Karsh’s
method needs to be improved. Nie et al. [45] exploited the
relationship between local feature points and unsupervised
quantization techniques to calculate a hash. Nie’s method
shows good rotation robustness. To fully use color informa-
tion, Tang et al. [46] selected CVA histogram as feature and
compressed it with DCT for generating a short hash. Tang et

al. [47] proposed a technique called RP (Ring Partition) and
used RE (Ring Entropy) to produce image hash. In another
work, Tang et al. [48] calculated a hash by MDS (Multi-
Dimensional Scaling) and LPT (Log-Polar Transform). This
method has promising robustness, but its discrimination is
not desirable yet. Based on the RP technique, Alice et al.
[49] used Haralick features to devise a hashing method for
authentication. Similarly, Khelaifi and He [50] used RP and
fractal image coding to design a hashing method. These RP-
based methods can resist rotation of large degrees, but their
discrimination needs to be improved. Recently, Biswas et al.
[51] utilized DNS (Dominant Neighborhood Structure) and
DCT to extract textural energy map for hash construction.
Biswas’s method can be used for recognizing Tor domains,
but the time complexity is too high. Abdullahi et al. [52]
combined FMT and fractal coding to devise a novel hashing
method. Abdullahi’s method is stable to rotation and has
low time complexity. Singh et al. [53] utilized KAZE feature
and SVD technique to produce image hash. Singh’s method
is also robust to rotation and illustrates a good application
in tampering detection.

The rotation robustness and the main techniques of some
representative hashing methods are presented in Table 1,
where the first column is the reported methods, the second
column is the rotation robustness, and the third column is
the main techniques of each method. The results of Table
1 show that some methods are sensitive to rotation. Some
methods are robust to rotation, but their discrimination
performances should be greatly improved. In summary,
most hashing methods do not make a satisfactory classifi-
cation between discrimination and rotation robustness, and
thus carry out inefficient performance in copy detection. To
address this issue, this paper proposes an efficient hashing
method using 2D-2D PCA for image copy detection.

TABLE 1: Robustness and techniques of some methods

Method Rotation robustness Main techniques
[18] Sensitive SIFT + DWT
[19] Sensitive SVD + CVA
[20] Sensitive LBP + DCT + DWT
[21] Sensitive Canny edge + DCT
[25] Sensitive QLRBP + mean pooling
[27] Within 5° RT + DWT + DFT
[28] Within 5° RT + DCT
[29] Within 5° ZMs + salient map
[30] Within 5° SVD + LBP
[31] Within 10° LRSD + CS
[33] Within 5° Canny edge + DWT
[35] Within 10° Hu moments + DCT
[36] Within 10° GLCM + DCT
[39] Within 5° QSVD + PCS
[40] Within 5° 2D PCA + salient map
[43] arbitrarily angle Visual model + SIFT
[46] arbitrarily angle CVA + DCT
[47] arbitrarily angle RP + entropy
[48] arbitrarily angle MDS + LPT
[51] arbitrarily angle DCT + DNS
[52] arbitrarily angle FMT + fractal coding
[53] arbitrarily angle KAZE feature + SVD
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3 PROPOSED HASHING METHOD

This section consists of four parts. Two main techniques, i.e.,
PCT and 2D-2D PCA, of the proposed hashing method are
firstly explained in Section 3.1 and Section 3.2, respectively.
Detailed procedures of the proposed hashing method are
described in Section 3.3. Finally, the recommended sim-
ilarity for evaluating hashes of the proposed method is
introduced in Section 3.4. The below Sections explain the
above-mentioned techniques in detail.

3.1 PCT

The PCT can convert an image from Cartesian coordinates
to polar coordinates. It has been applied to numerous image
applications, such as watermarking [54] and retrieval [55].
Details of the PCT are explained below.

Given an M0 × M0 image I0, the PCT can map it
into an M1×M2 image I1 in the polar coordinates, where
M1=M0/2 and M2=360. Let I1(r, β) be the element of I1 in
the r-th row and β-th column, where r = 1, 2, · · · ,M0/2,
β = 1, 2, · · · , 360. Thus, I1(r, β) can be calculated by the
below formula.

I1(r, β) = I0(y, x) (3)

where the coordinates (x, y) can be determined by the
following equations.

x = max(floor(M0/2) + round(rcos(β
π

180
), 1)) (4)

y = max(floor(M0/2) + round(rsin(β
π

180
)), 1) (5)

where round(·) is the rounding operation, floor(·) is the
round down function. Note that the image I1 is generated
by substituting all combination values of r and β into the
equations (4) and (5). To understand the above calculations,
the relation between polar coordinates and Cartesian coor-
dinates is shown in Fig. 2.

Fig. 2: Relation between polar coordinates and Cartesian
coordinates

It is found that image rotation in the Cartesian coordi-
nates corresponds to the translation in the polar coordinates.
To understand this property, Fig. 3 presents visual examples
of PCT, where (a) is an original image, (b) is the rotated
image of (a) with 90 degrees, (c) and (d) are the PCT results
of (a) and (b), respectively. Comparing (c) with (d), (d) is
a translated version of (c) by circularly shifting with 90
along the column direction. This illustrates that the PCT can
convert a rotated image into a translated image.

Note that the PCT plays an important role in the model
of rotation-invariant feature extraction. In this model, the
PCT converts an input rotated image to a translation matrix
and the 2D-2D PCA learns rotation-invariant features from
the translation matrix using the property of translation
invariance. Details of this model are explained in Section
3.3.2.

(a) Original image (b) Rotated image

(c) PCT result of (a) (d) PCT result of (b)

Fig. 3: Visual examples of PCT

3.2 2D-2D PCA
2D-2D PCA [56] is an improvement of the classical PCA
[57], [58], [59] for data dimensionality reduction. Compared
with PCA, 2D-2D PCA can directly and quickly calculate the
covariance matrix from the image matrix without transform-
ing the image matrix into a vector. At present, 2D-2D PCA
has been applied to face recognition [60], pattern recognition
[61], target recognition [62], etc. In this paper, we investigate
the use of 2D-2D PCA in hashing method. Specifically,
we find a new property of 2D-2D PCA called translation
invariance and then exploit it to design an efficient hashing
method for copy detection. Section 3.2.1 introduces the
principle of 2D-2D PCA and Section 3.2.2 proves the new
property of 2D-2D PCA.

3.2.1 Principle of 2D-2D PCA
In general, the calculation of 2D-2D PCA can be divided into
three steps, including column dimension reduction, row di-
mension reduction and projection feature matrix calculation.
Details of these steps are introduced below.
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(1) Column dimension reduction
Assume that Bj (1 ≤ j ≤ N ) is the j-th training image

with size m× n, where N is the number of training images.
Let G1 be an n × n non-negative covariance matrix of the
training images. Thus, G1 is generated as follows.

G1 =
1

N

N∑
j=1

(
Bj −B

)T
(Bj −B) (6)

where B is the average result of the training images which
can be computed below.

B =
1

N

N∑
j=1

Bj (7)

Next, the eigenvalues and eigenvectors of G1 are calcu-
lated. The eigenvalues are arranged in descending order.
Therefore, the matrix U = [u1,u2, . . . ,ud] can be deter-
mined by using the eigenvectors ui(i = 1, 2, . . . , d) of the
first d maximum eigenvalues of G1.

For an image Bj , the projected eigenvectors are obtained
below.

Fj = BjU (8)

where Fj is an m× d matrix composed of d eigenvectors.
(2) Row dimension reduction
After column dimension reduction, the m × n image is

reduced to m × d, that is, only the column size is reduced
and the row size remains unchanged. With the new training
samples Fj (j = 1, 2, . . . , N), the covariance matrix G2 can
be calculated below.

G2 =
1

N

N∑
j=1

(Fj − F)
(
Fj − F

)T
(9)

where F is computed as follows.

F =
1

N

N∑
j=1

Fj (10)

Similarly, the eigenvalues and eigenvectors of G2 are
calculated and the eigenvalues are arranged in descend-
ing order. Then, the matrix V = [v1,v2, . . . ,vk] can be
generated by using the eigenvectors vi(i = 1, 2, . . . , k)
corresponding to the first k maximum eigenvalues of G2.

(3) Projection feature matrix calculation
With the matrices U and V, the final projection matrix

for the training image Bj is determined as follows.

Yj = VTFj = VTBjU (11)

where Yj is the k×d matrix, which is also called the princi-
pal components (vectors) of Bj . More detailed explanations
about the 2D-2D PCA are in [56].

3.2.2 New property of translation invariance
After the investigation of 2D-2D PCA in hashing method,
we find a new property of translation invariance. Specifi-
cally, if all training images are translated along the column
direction with the same size, the projection matrix of the
translated training image is the same with that of the origi-
nal training image. As the 2D-2D PCA has become a useful
technique of image processing, the new property is helpful

to other image applications. The property of 2D-2D PCA can
be theoretically proved as follows.
Theorem 1. Suppose that B

′

j is the translated matrix of Bj

along the column direction (1 ≤ j ≤ N ). Let Y
′

j and Yj be
the projection feature matrices of B

′

j and Bj , respectively.
Thus, Y

′

j=Yj .
Proof. According to the theory of linear algebra [63], the
translated matrix B

′

j can be represented as follows.

B
′

j = BjP (12)

where P is a matrix of order n, which consists of a set of the
elementary matrix.

Let G
′

1 be the covariance matrix after translation. Thus,
according to the formula (6), G

′

1 can be written as below.

G
′

1 =
1

N

N∑
j=1

(
B
′

j −B
′)T

(B
′

j −B
′

) (13)

where B
′

is the translated mean matrix. According to the

formula (7), B
′

is calculated below.

B
′

=
1

N

N∑
j=1

B
′

j (14)

According to the formula (12), the formula (14) can be
written as follows.

B
′

=
1

N

N∑
j=1

(BjP) = (
1

N

N∑
j=1

Bj)P = B P (15)

Substitute the formula (12) and the formula (15) into the
formula (13) and thus obtain the below formula.

G
′

1 =
1

N

N∑
j=1

(
BjP−BP

)T (
BjP−BP

)
=

1

N

N∑
j=1

[(
Bj −B

)
P
]T [(

Bj −B
)
P
]

=
1

N

N∑
j=1

[
PT
(
Bj −B

)T (
Bj −B

)
P
]

= PT 1

N

N∑
j=1

[(
Bj −B

)T (
Bj −B

)]
P

= PTG1P

(16)

Since P is an orthogonal matrix, the following formula
can be deduced.

PT = P−1 (17)

Next, substitute the formula (17) into the formula (16) and
thus G

′

1 can be written as follows.

G
′

1 = P−1G1P (18)

According to the definition of similarity matrices, from
the equation (18), it can be concluded that G

′

1 is similar to
G1, namely G1 ∼ G

′

1.
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Let λ1 and λ
′

1 be the eigenvalues of G1 and G
′

1, and
U and U

′
be the eigenvectors of G1 and G

′

1, respectively.
Thus, the below formulas are obtained.

G1U = λ1U (19)

G
′

1U
′

= λ
′

1U
′

(20)

According to formula (18), the formula (20) can be writ-
ten as follows.

P−1G1PU
′

= λ
′

1U
′

(21)

Left multiply P on both sides of the formula (21) as below.

PP−1G1PU
′

= Pλ
′

1U
′

(22)

Thus, the formula (22) can be written as follows.

G1PU
′

= Pλ
′

1U
′

(23)

According to the property that the eigenvalues of similar
matrices G

′

1 and G1 are invariant. The below formula is
available.

λ1 = λ
′

1 (24)

Therefore, the formula (23) can be written as follows.

G1PU
′

= Pλ1U
′

= λ1PU
′

(25)

Comparing the formula (25) (PU
′

is viewed as a whole)
with the formula (19), the below formula can be deduced.

PU
′

= U (26)

Thus, the following formula can be obtained by left multi-
plying the matrix P−1 on both sides of the formula (26) as
follows.

U
′

= P−1U (27)

According to the formula (8), the projection of the trans-
lated eigenvector Fj

′
is as follows.

Fj

′
=B

′

jU
′

(28)

Substitute the formula (12) and the formula (27) into the
formula (28) and then the formula (28) can be written as
follows.

F
′

j=BjPP−1U =BjU =Fj (29)

It is clear that F
′

= F according to the formula (10) and
the formula (29). Consequently, G

′

2 can be represented as
follows.

G
′

2 =
1

N

N∑
j=1

(
F
′

j − F
′)T (

F
′

j − F
′)

=
1

N

N∑
j=1

(
Fj − F

)T
(Fj − F)

= G2

(30)

Let V and V
′

be the eigenvectors of G2 and G
′

2, respec-
tively. Thus, V

′
= V because G

′

2 = G2. According to the
formula (11), the projection matrix of the translated matrix
B
′

j is as follows.

Yj

′
=V

′TFj

′
=VTFj=Yj (31)

Theoretical proof is finished. The above proof can be briefly
summarized as follows. After translation, the covariance
matrix G

′

1 is a similar matrix of its original covariance
matrix G1. With the property of similar matrices, we have
F
′

j = Fj and thus obtain G
′

2 = G2. As G
′

2 stays the
same, its eigenvector matrix V

′
also remains unchanged.

Therefore, Y
′

j is the same with Yj . This illustrates that the
2D-2D PCA has the property of translation invariance, i.e.,
the projection matrix of the translated training image is the
same with that of the original training image.

To make an easy understanding of the property of the
2D-2D PCA, visual examples of covariance matrices are
presented in Fig. 4, where (a) is the benchmark image Lena,
(b) is the covariance matrix G1 of (a), (c) is the covariance
matrix G2 of (a), (d) is the translated version of (a) by
cyclically shifting 60 columns from right to left, (e) is the
covariance matrix G1 of (d), and (f) is the covariance matrix
G2 of (d). Compared with (b), (e) is shifted by 60 units along
the diagonal direction. For (c) and (f), they are exactly the
same.
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(d) Translated image
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4
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12

16

Fig. 4: Visual examples of covariance matrices

3.3 Detailed procedures of the proposed method
The proposed hashing method contains three procedures.
Firstly, preprocessing is used to prepare a normalized image
for stable feature extraction. Secondly, rotation-invariant
features are extracted by combining the PCT and the 2D-2D
PCA. Finally, low-dimensional features are treated as vec-
tors and their distances are used to construct hash. Details of
these procedures and pseudo-code of the proposed method
are explained in the below sections.

3.3.1 Preprocessing
The preprocessing mainly includes three manipulations.
Firstly, the input image is resized with the size of M0 ×M0.
The main purpose is to generate hashes with the same
lengths. Secondly, Gaussian low-pass filtering is used to
mitigate the effects of noise and compression. Finally, the
intensity component in the HSI color space is chosen to rep-
resent the image. Note that, in contrast to other color spaces,
the choice of the HSI space makes preferable classification
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performance. Section 4.6 will verify the color space selection
through experiments.

3.3.2 Rotation-invariant feature extraction

Firstly, the PCT is exploited to convert the preprocessed
image sized M0 × M0 to the transformed image sized
M1 ×M2 in the polar coordinates. Note that image rotation
in the Cartesian coordinates corresponds to the translation
in the polar coordinates. In other words, compared with the
transformed image of an original image, the transformed
image of its rotated image is translated along the column
direction.

Secondly, non-overlapping block partition is conducted
on the transformed image, where the block size is m × n.
Thus, the block number is N = (M1 ×M2)/(m× n). Here,
n = M2 is selected to preserve translation relation in blocks.
Consequently, N = M1/m.

Finally, the 2D-2D PCA is exploited to learn rotation-
invariant low-dimensional features from image blocks.
Here, the 2D-2D PCA is applied to all blocks Bj (1 ≤ j ≤
N ). It is worth noting that the image blocks are the training
images of the 2D-2D PCA. Next, Yj of Bj is used to make
up a vector rj with the size of L × 1, in which L = k × d.
Therefore, a feature matrix R can be obtained as follows.

R = [r1, r2, . . . , rN ] (32)

Note that the feature matrix R is rotation-invariant. The
reasons are as follows. The PCT can convert an input rotated
image to a translation matrix. During image blocking, trans-
lation relation is preserved in image blocks due to n = M2.
In addition, the 2D-2D PCA is invariant to translation. This
property makes rotation-invariant features.

3.3.3 Vector distance calculation

To get a compact hash, each column of the feature matrix
R is viewed as a vector and the distances of these feature
vectors are used to construct hash. The vector distance is
selected in this work. This is based on the observation that
common digital attacks slightly disturb low-dimensional
features in the 2D-2D PCA domain and thus their vector
distances are stable to digital operations. Therefore, hash
construction based on vector distances can ensure robust-
ness and compactness. Details of vector distance calculation
are explained as follows.

Firstly, a reference vector r0 is calculated as below.

r0 = [r0(1), r0(2), . . . , r0(L)]
T (33)

where r0(i) is the i-th element of r0 computed below.

r0(i) =
1

N

N∑
j=1

rj(i) (34)

in which rj(i) is the i-th element of the vector rj .
Secondly, the L2 norm is utilized to calculate the distance

between r0 and rj .

qj =

√√√√ L∑
i=1

[r0(i) − rj(i)]2 (35)

Thirdly, the distance qj is quantized below.

h(j) = round(qj + 0.5) (36)

In the end, the hash sequence h is obtained as follows.

h = [h(1), h(2), . . . , h(N)] (37)

Hence, the hash length of the proposed method is N inte-
gers.

3.3.4 Pseudo-code of the proposed method
The proposed hashing method consists of preprocessing,
rotation-invariant feature extraction with PCT and 2D-2D
PCA, and vector distance calculation. To make an easy
understanding of the procedures, the pseudocode of the
proposed method is demonstrated in Algorithm 1.

Algorithm 1 Proposed hashing method

Input: An input image, parameters: M0, m, n, k, d.
Output: A hash h.

1: An input image is fixed to M0 ×M0 size.
2: The resized image is filtered by Gaussian low-pass fil-

tering.
3: The intensity component of the filtered image in the HSI

color space is utilized to represent the image.
4: The PCT is used to convert image from Cartesian coor-

dinates to polar coordinates.
5: Divide the transformed image in the polar coordinates

into N blocks sized m× n.
6: Apply 2D-2D PCA to all blocks using the parameters k

and d, and obtain the feature matrix R sized L×N.
7: for j=1 to j=N do
8: Calculate the distance qj between r0 and rj by the

Eq. (35).
9: Calculate h(j) = round(qj + 0.5).

10: end for
11: The hash is determined by h = [h(1), h(2), . . . , h(N)].
12: return h.

3.4 Hash similarity evaluation
The Pearson correlation coefficient [48] is adopted to analyze
the similarity between two hashes. The value of the corre-
lation coefficient is within the range [-1, 1]. Generally, the
bigger the value is, the more similar the images of the input
hashes are. Practically, a threshold can be used to determine
whether two images are similar or not.

4 EXPERIMENTAL RESULTS

Our used parameters are set below. The input image is fixed
to the size of 512×512, the block size is 8×360, the Gaussian
low-pass filtering is performed by the 3 × 3 convolution
mask with a standard deviation of 1, and the dimension
of feature selection is two. Therefore, the image size after
the PCT is 256×360. In other words, our parameter settings
are M0=512, M1=256, M2=360, m=8, n=360, k=2, and d=2.
Hence, N = (M1×M2)/(m×n) = 32. Moreover, MATLAB
R2018b is used to implement the proposed method, and the
used PC is equipped with the Intel i7 dual-core 8700 CPU
with 3.2 GHz and the random-access memory with 8.0 GB.
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4.1 Classification performance

The Kodak dataset [64] is used to verify the robustness
of the proposed hashing method. There are 24 color im-
ages in the Kodak dataset, and the sizes of these images
are 768×512 and 512×768. Fig. 5 lists some images of this
database. StirMark, Photoshop and MATLAB are utilized to
perform different robust attacks on the test images. These
images are attacked by 10 operations [48], including CA
(Contrast Adjustment), IS (Image Scaling), WE (Watermark
Embedding), JPEG compression, GC (Gamma Correction),
SPN (Salt and Pepper Noise), BA (Brightness Adjustment),
GLF (Gaussian Low-pass Filtering), SN (Speckle Noise),
and the CO (Combinational Operation) of image rotation
and cropping. The operations and their parameter settings
are shown in Table 2. Consequently, 24×80=1920 pairs of
similar images are produced, and there are 1920+24=1944
images in the robustness test. An image database called
VOC2012 [65] is used to conduct the discrimination test.
The VOC2012 includes 17125 color images. The width sizes
of these images are from 142 to 500 and their height sizes
are from 71 to 500. Fig. 6 lists some sample images of the
VOC2012 database. Similarity values between the hash of
each image and those hashes of the other 17124 images
are computed. Therefore, the total number of similarity
values can be determined by the combinatorial number
C(17125, 2) = 17125(17125 − 1)/2 = 146624250.

TABLE 2: Operations and their parameter settings

Operation Parameter setting Num
CA magnitude ∈ {±10,±20} 4
IS ratio∈ {2, 1.5, 1.1, 0.9, 0.75, 0.5} 6

WE strength:[10, 100], step:10 10
JPEG factor:[30, 100], step:10 8
GC γ ∈ {1.25, 1.1, 0.9, 0.75} 4
SPN density:[0.001, 0.01], step:0.001 10
BA magnitude ∈ {±10,±20} 4

GLF standard deviation:[0.3, 1.0], step:0.1 8
SN variance:[0.001, 0.01], step:0.001 10
CO angle ∈ {

±1◦,±2◦,±5◦,±10◦,±15◦,±30◦,±45◦,±90◦
} 16

Total 80

Fig. 5: Some images of Kodak database

The ROC (Receiver Operating Characteristics) graph [66]
is used for analysis. The y-axis and the x-axis of the graph
are defined by true positive rate (R1) and false positive rate

Fig. 6: Some images of VOC2012

(R2) as follows.

R1 =
# similar images correctly recognized

# similar images
(38)

R2 =
# different images wrongly classified

# different images
(39)

Clearly, R1 indicates robustness and R2 shows discrimi-
nation. In addition, the AUC (Area Under the Curve) is
calculated. The scope of AUC is from 0 to 1. Generally, a
bigger AUC value means a better classification performance
between discrimination and robustness.

To test the advantage of the proposed hashing method,
some famous hashing methods are compared, including RW
hashing method [17], QSVD hashing method [39], 2D PCA
hashing method [40], MDS hashing method [48], GLCM-
DCT hashing method [36] and RE hashing method [47].
The compared methods have been recently published in
prestigious conferences or journals, and some of them are
also dimension reduction-based methods, such as QSVD
hashing method [39], 2D PCA hashing method [40] and
MDS hashing method [48]. For these compared methods,
their parameters and measures of hash similarity are config-
ured by using their reported settings, and all input images
are adjusted to 512×512 before calculating the hash.

0 0.2 0.4 0.6 0.8 1

False positive rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

RW

QSVD

2D PCA

MDS

GLCM-DCT

RE

Our
0 0.02 0.04 0.06 0.08 0.1

0.8

0.85

0.9

0.95

1

Fig. 7: Curves of different hashing methods

The curves of different methods are presented in Fig.
7. To better compare the local details of these curves, their
parts located at the upper-left corner are magnified in
the lower-right corner. The curve of the proposed hashing
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method is much nearer to the upper-left corner than those
of other methods. Therefore, the classification performance
of the proposed hashing method is better than those of
other methods. For further analysis, the AUC values of the
proposed hashing method and the compared methods are
also calculated. The AUCs of RW hashing method, QSVD
hashing method, 2D PCA hashing method, MDS hashing
method, GLCM-DCT hashing method, RE hashing method
and the proposed hashing method are 0.96716, 0.95499,
0.97012, 0.99211, 0.96821, 0.99800 and 0.99999, respectively.
The AUC of the proposed hashing method is greater than
those of the compared methods. This illustrates that the pro-
posed hashing method is superior to the compared methods
in classification performance. The proposed hashing method
demonstrates advanced classification performance. This is
mainly attributed to the rotation-invariant feature extraction
by combining PCT and 2D-2D PCA. With the PCT, an
input rotated image is converted to a translation matrix.
Since the 2D-2D PCA is invariant to translation, the learned
low-dimensional features from the translation matrix are
rotation-invariant. Moreover, the use of 2D-2D PCA can
make low-dimensional features discriminative. As common
digital operations slightly disturb low-dimensional features
in the 2D-2D PCA domain, their vector distances are stable
to digital operations.

4.2 Copy detection performance
To illustrate our superiority in copy detection, comparisons
are also conducted. To do so, Wang’s database [67] is
used. Fig. 8 demonstrates some images of Wang’s database.
Wang’s database has 10 categories and each category con-
tains 100 images. Hence, the total number of images in the
database is 1000. In the experiment, one image is randomly
selected from each category, some operations are used to
attack the selected image of each category, and 24 image
copies of every selected image are then generated. The used
operations include: SN, GLF, CA, SPN, JPEG compression,
BA, IS, AWGN, TI (Text Insertion), GM (Global Mosaic), LI
(Logo Insertion), GC, and the IR (Image Rotation). These
operations are implemented by MATLAB and their param-
eters for producing image copies are listed in Table 3. As
there are 10 categories, the number of total image copies
reaches 240. Hence, the test database has 1240 images. Note
that the IR operation will expand the sizes of the attacked
images. To make equal sizes of a query image and its image
copies, every selected image is resized to a square image
whose width is set to the maximum value of its width
and its height before implementing these operations. And
after these operations, the inscribed square of the inscribed
circle of the square image is selected as the image copy.
Similarly, every selected image is processed with the same
manipulations to produce the actual query image. The well-
known tool called P-R curve [36] is selected to theoretically
analyze copy detection performance. In the P-R curve, the
y-axis is the Precision and the x-axis is the Recall. They are
calculated as follows:

Precision =
# image copies correctly detected

# all images returned
(40)

Recall =
# image copies correctly detected

# all image copies
(41)

Fig. 8: Some sample images of Wang’s database

TABLE 3: Parameters of the operations for image copies

Operation Parameter Num
SN variance: 0.02 1

GLF standard deviation: 0.3 1
CA magnitude: 20 1
SPN density: 0.02 1
JPEG factor ∈ {30, 50, 80} 3
BA magnitude: 20 1
IS ratio: ∈ {0.5, 0.75} 2

AWGN variance: 0.01 1
TI text: love in 2021 1

GM block size: 5× 5, 10× 10 2
LI logo size: 66×70, weight: 0.2 1

GC γ: 0.75 1
IR angle ∈ {1◦, 5◦, 8◦, 10◦, 15◦, 30◦, 45◦, 90◦} 8

Total 24
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Fig. 9: P-R curves of different hashing methods

A P-R curve is formed by some points with the coordi-
nates (Recall, Precision). In general, the P-R curve near the
upper-right corner is better than the curve far away from
the upper-right corner. Fig. 9 demonstrates the P-R curves of
different hashing methods. Compared with the P-R curve of
other methods, our P-R curve is much nearer to the upper-
right corner. Hence, the proposed method is better than the
compared hashing methods in copy detection performance.
The PRAUC ( P-R AUC) is utilized for quantitative analysis.
The scope of PRAUC is from 0 to 1. Generally, a bigger
PRAUC means a better copy detection performance. The
results indicate that the PRAUCs of RW hashing method,
QSVD hashing method, 2D PCA hashing method, MDS
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hashing method, GLCM-DCT hashing method, RE hashing
method and the proposed hashing method are 0.76737,
0.82526, 0.85605, 0.76031, 0.84006, 0.93436 and 0.99529, re-
spectively. The PRAUC of the proposed hashing method
is much greater than those of other methods. This also
proves that the proposed hashing method achieves better
copy detection performance than the compared methods.
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Fig. 10: Our precision curve and recall curve under different
thresholds

The definitions of precision and recall reveal that a hash-
ing method will have good performance in copy detection
when its precision and recall are both high. Fig. 10 shows the
precision curve and recall curve of the proposed hashing
method under different thresholds, where the horizontal
axis is the used threshold and the vertical axis is the pre-
cision/recall curve. In general, when the precision curve
and the recall curve intersect, the corresponding threshold is
selected as the optimal threshold, which provides the same
value of precision and recall. From Fig. 10, it can be found
that the optimal threshold of the proposed hashing method
is 0.94552, and the corresponding values of precision and
recall are both 0.97308. This means that 97.30% of image
copies are correctly detected under the optimal threshold.
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Fig. 11: Quantitative comparison of copy detection

Similarly, the optimal thresholds of the compared meth-
ods are calculated. With the optimal thresholds, their pre-
cision/recall values are also computed. The results show

that the precision/recall values of the RW hashing method,
QSVD hashing method, 2D PCA hashing method, MDS
hashing method, GLCM-DCT hashing method, and RE
hashing method are 0.75049, 0.78885, 0.85633, 0.71714,
0.78497, and 0.87627, respectively. Our precision/recall
value under the optimal threshold is much greater than
those of the compared methods. Fig. 11 presents the compar-
ison results of these methods in copy detection, where the
x-axis is the hashing method and the y-axis is the PRAUC
and precision/recall.

4.3 Complexity performance
Complexity performance includes time complexity and stor-
age complexity. Here, the time complexity is measured by
the computational time of generating a hash using the evalu-
ated hashing method. Specifically, the computational time is
the average time of computing a hash in the discrimination
test. The results indicate that the computational time of
the proposed hashing method is 0.03423 seconds and the
computational time of RW hashing method, QSVD hashing
method, 2D PCA hashing method, MDS hashing method,
GLCM-DCT hashing method and RE hashing method is
0.05875, 0.37287, 0.06126, 0.42853, 0.10248 and 0.01546 sec-
onds, respectively. Obviously, the proposed hashing method
is quicker than all compared methods, except the RE hash-
ing method. Compared with some dimension reduction-
based methods, such as the QSVD hashing method, 2D PCA
hashing method and MDS hashing method, the proposed
hashing method reaches a much faster speed due to the low
computational cost of 2D-2D PCA.

Storage complexity is measured by the storage cost of
a hash. To analyze the required bits of a hash, 17125 dif-
ferent images in VOC2012 are utilized. As every hash of
the proposed hashing method has 32 integers, there are
17125 × 32 = 548000 integers in total. It is found that
the maximum integer is 9978 and the minimum integer
is 0. As 9978 < 16384=214, 14 bits can represent a hash
element. Therefore, the bit number of a hash of the proposed
hashing method is 14×32 = 448. For reference, RW hashing
method, QSVD hashing method, 2D PCA hashing method,
MDS hashing method, GLCM-DCT hashing method and RE
hashing method require 144 bits, 640 bits, 384 bits, 720 bits,
720 bits and 64 float digits to store a hash, respectively. Since
a float digit needs 32 bits at least according to the IEEE
standard, the bit length of a hash of the RE hashing method
is 64×32 = 2048. It can be seen that the storage complexity
of the proposed hashing method is higher than those of
the RW hashing method and 2D PCA hashing method,
but it is lower than those of the QSVD hashing method,
MDS hashing method, GLCM-DCT hashing method and RE
hashing method. The complexity summary is presented in
Table 4.

4.4 Block size selection
This section analyzes the performance of selecting different
block sizes on hash performance. The block sizes of 64×360,
32×360, 16×360, 8×360 and 4×360 are selected. These block
sizes correspond to the block numbers of 4, 8, 16, 32 and 64,
respectively. Fig. 12 shows the ROC curves under different
block sizes. Furthermore, the AUCs under different block
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TABLE 4: Complexity summary

Method Time (s) Bit length
RW 0.05875 144

QSVD 0.37287 640
2D PCA 0.06126 384

MDS 0.42853 720
GLCM-DCT 0.10248 720

RE 0.01546 2048
Our 0.03423 448

sizes are also calculated. The results demonstrate that the
AUC values of 64×360, 32×360, 16×360, 8×360 and 4×360 are
0.97664, 0.99986, 0.99998, 0.99999 and 0.99992, respectively.
It is clear that the AUC of 8×360 is greater than the AUCs
of other block sizes. In addition, the AUC of the block size
64×360 is the smallest one. The reason is as follows. A larger
block size means a smaller number of blocks and thus the
2D-2D PCA cannot effectively learn discriminative features
from a few blocks. Therefore, the classification performance
of the block size 8×360 is better than those of other block
sizes.
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Fig. 12: Curves under different block sizes

The computational time of the proposed hashing method
under different block sizes is calculated. The experiments
indicate that the time of the block sizes 64×360, 32×360,
16×360, 8×360 and 4×360 is 0.02982, 0.03084, 0.03214, 0.03423
and 0.03958 seconds, respectively. The time of different
block sizes is about 0.03 seconds and their difference are
small. Table 5 shows the performance comparison under
different block sizes. From the above results, it can be
found that the proposed hashing method achieves better
performances in classification and computational time when
the block size is 8×360.

TABLE 5: Performance comparison under different block
sizes

Block size 64×360 32×360 16×360 8×360 4×360
AUC 0.97664 0.99986 0.99998 0.99999 0.99992

Time (s) 0.02982 0.03084 0.03214 0.03423 0.03958

4.5 Dimension selection
In 2D-2D PCA, the parameters k and d correspond to the
dimension selections along the row direction and column

direction, respectively. For simplicity, k = d is selected in
the discussion. Here, the dimension values of 2, 3, 4, 5, 6 and
7 are chosen. In the experiments, only the k and d values are
varied and other parameters remain unaltered. Fig. 13 is the
ROC curves under different dimensions. The AUCs of the
dimension values of 2, 3, 4, 5, 6 and 7 are 0.99999, 0.99993,
0.99998, 0.99994, 0.99997 and 0.99996, respectively. The AUC
of dimension 2 is slightly bigger than those of other dimen-
sions. The computational time of the dimension values of 2,
3, 4, 5, 6 and 7 is 0.03423, 0.03474, 0.03481, 0.03488, 0.03492
and 0.03556 seconds, respectively. Obviously, there is little
difference in computational time. Performance comparisons
of different dimensions are summarized in Table 6. From the
results, it can be found that the selection of k = d = 2 is a
good choice in terms of the whole performance.
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Fig. 13: Curves under different dimensions

TABLE 6: Performance comparison under different dimen-
sions

k 2 3 4 5 6 7
AUC 0.99999 0.99993 0.99998 0.99994 0.99997 0.99996

Time (s) 0.03423 0.03474 0.03481 0.03488 0.03492 0.03556

4.6 Color space selection

To verify the superiority of the use of HSI color space, classi-
fication performances of the proposed hashing method un-
der different spaces are also compared. The compared color
spaces consist of HSI, CIE L*a*b*, YCbCr, and HSV spaces.
In the comparison, only the intensity/luminance/value
component is different. Specifically, the intensity component
in HSI space, the luminance component in CIE L*a*b* space,
the luminance component in YCbCr space and the value
component in HSV space are selected. All color spaces are
compared by using the ROC curves shown in Fig. 14. The
calculated AUCs show that the values of CIE L*a*b* space,
HSI space, YCbCr space and HSV space are 0.99964, 0.99999,
0.99951 and 0.99996, respectively. The AUC value of the HSI
space is slightly larger than those of other spaces. Moreover,
the computational time of CIE L*a*b* space, HSI space,
YCbCr space and HSV space is 0.05286, 0.03423, 0.03292 and
0.03521 seconds, respectively. Table 7 presents performance
comparison under different color spaces. In the viewpoint
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of the whole performance, the HSI color space is better than
other spaces.
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Fig. 14: Curves under different color spaces

TABLE 7: Performance comparison under different color
spaces

Color space CIE L*a*b* HSI YCbCr HSV
AUC 0.99964 0.99999 0.99951 0.99996

Time (s) 0.05286 0.03423 0.03292 0.03521

5 CONCLUSIONS

This paper has proposed an efficient hashing method using
2D-2D PCA for image copy detection. The key is the dis-
covery of the translation invariance of 2D-2D PCA which is
first reported and theoretically proved in this work. With the
property of translation invariance, a novel model of extract-
ing rotation-invariant low-dimensional features is designed
by combining PCT and 2D-2D PCA. The PCT can convert
an input rotated image to a translation matrix. Since 2D-2D
PCA is invariant to translation, the learned low-dimensional
features from the translation matrix are rotation-invariant.
In addition, vector distances of low-dimensional features
are exploited to construct hash. As common digital op-
erations slightly disturb low-dimensional features in the
2D-2D PCA domain, hash construction with vector dis-
tances provides good robustness and compactness of the
proposed hashing method. Numerous experiments on three
open image databases have been discussed to demonstrate
the efficiencies of the proposed hashing method. Compar-
ison results have demonstrated that the proposed hashing
method outperforms some state-of-the-art hashing methods
in the performances of classification and copy detection.
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