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How to select a set of top k nodes (called seeds) in a social network, through which the
spread of influence under some certain diffusion models can achieve the maximum, is a
major issue considered in the social network analysis. This problem is known as the
Influence Maximization Problem (IMP). Due to its NP-hard nature, designing a “good”
algorithm for the IMP is a very challengeable work. In this paper, we propose an efficient
local search algorithm called DomIM to solve the IMP, which involves two main ideas. The
first one is an approach to constructing an initial solution based on a dominating set, while
the second is a degree based greedy strategy in the local search phase. DomIM is
evaluated on three real world networks, under three widely-used diffusion models,
including independent cascade (IC) model, weighted cascade (WC) model, and linear
threshold (LT) model. Experimental results show that DomIM is competitive and efficient,
and under all of these diffusion models it can obtain the best performance (in terms of
solution quality) on the networks we consider.

Keywords: social network, influence maximization, dominating set, local search, heuristic

1 INTRODUCTION

A social network is an interconnected structure which consists of a set of socially relevant nodes (e.g.,
individuals, groups, organizations, or related systems) connected with one or more relations, such as
shared ideas, social contacts, financial stock exchanges, and affinities [1,2]. Needless to say, exploring
valuable information related to nodes and revealing relations between them are very meaningful and
significant. For this, many topics have been introduced to analyze social networks, from a different
perspective; please refer to [3,4] for an overview of social network analysis.

One of the most studied problems in the social network analysis is the influence maximization
problem (IMP), whose task is to select a set of k nodes from a given social network, called seed set,
through which the number of influenced nodes under some certain diffusion model can achieve the
maximum. Due to its potential applications in practice, the IMP has attracted wide-spread attention.
Especially, in today’s era, with the rapid development in the communication field, the size of social
networks is becoming increasingly large. As a consequence, information exchange among users
throughout social networks has become an indispensable part in our daily life, and meanwhile a large
number of users may be influenced by such information diffusion. So, there is a growing body of
literature analyzing the influence and information propagation in social networks [5–8].

The well-known application of the IMP is viral marketing, which aims to exploit the network
value of customers, i.e., the potential influence of a customer who may recursively influence his
neighbors (e.g., family members, colleagues, friends, friend’s colleagues, friend’s friends, and so on)
to buy a product through the “word-of-mouth” propagation [9]. Clearly, a small number of highly
influential customers can be specified as potential customers to market to, so that the expected profit
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can be maximized. Besides viral marketing, there are also many
other applications, e.g., analyzing human behavior [10], target
advertisement [11], rumor blocking [12], social recommendation
[13], etc. Practically, the spread of influence can occur with the
aid of some operational models. Three widely-used diffusion
models are independent cascade (IC) model, weighted cascade
(WC) model, and linear threshold (LT) model, where the WC
model is a special case of the IC model [14]; see Section 2 for an
detailed discussion of these models.

1.1 Related Works
The IMP in social networks was first studied in 2001 by [9], who
regarded it as an algorithm problem. Since then, it has been
studied extensively, especially after the work by [14] who proved
that the IMP is NP-hard by defining it as a combinatorial
optimization problem. Nevertheless, it is still challengeable to
solve the IMP, due to the following two difficulties: the first one is
how to accurately measure the influence of a given seed set, which
has been shown to be YP-hard; the second is how to select a seed
set with the maximum influence [15,16]. Wemake an overview of
related works on the IMP from the following two aspects: greedy
based approaches and heuristic approaches. For more detailed
categories on this problem, please see the survey papers [17–19].

1.1.1 Greedy Based Approach
It is widely believed that the initial work using greedy based idea
to solve the IMP is attributed to [14], who proposed a simple hill-
climbing greedy algorithm to solve the IMP under the IC model
and the LT model. Despite the algorithm can get a guarantee that
obtains the optimal solution with a high probability (about 63%),
it is very time-consuming, because it has to search for the whole
network (every node) and implement tens of thousands Monte-
Carlo simulations. To optimize the efficiency of the simple greedy
algorithm, [20] proposed an improved greedy algorithm with an
approximation ratio of 1

2 (1 − 1
e), called CELF, which selects

influential nodes leveraging the submodular property. They
showed that CELF can achieve up to 700 times faster than the
simple greedy algorithm. Whereas, CELF has a poor performance
in large network since it has to compute the marginal influence
spread of each alternative node repeatedly [21]. [22] designed
new schemes to optimize the greedy algorithm under the IC
model, by which they generated a faster greedy algorithm based
on CELF. [23] developed an improved version of CELF, called
CELF++, and showed that it is 35–55% faster than CELF. [24]
proposed a deprecation based greedy algorithm for the IMP,
called DGS. This algorithm first orders the nodes of a social
network by applying three heuristic influence functions, and then
selects the most influential nodes from a list of pre-ordered
vertices. Although DGS takes less time than CELF, it is still
time-consuming in large networks. In [25], Heidari et al.
proposed a fast greedy algorithm SMG to solve the IMP. By
reducing calculations in counting the traversing nodes and
Monte-Carlo graph construction, SMG improves the efficiency
of greedy algorithms. To deal with the time-consuming drawback
of greedy algorithms, [26] proposed a CascadeDiscount
algorithm for solving the IMP. The algorithm uses PageRank
to measure the initial influence of nodes, measures node’s

marginal gain of influence spread by considering the influence
loss on their neighbors, and then selects the most influential
nodes based on a greedy strategy. [27] proposed a community-
based framework for the IMP, which was further improved in
[28] by designing an objective function to evaluate the influence
spread and then generating an efficient greedy algorithm to find
the influential nodes.

A simple greedy algorithm can yield nearly optimal solutions,
but it is often time-consuming, which limits its application on
large-scale networks. As a useful technique to deal with NP-hard
problems, heuristic approaches have been widely used in a variety
of problems, such as partition coloring problem [29], network
immunization [30], dominating set problem [31], etc. Also,
heuristic algorithms for the IMP are proposed sequentially.

1.1.2 Heuristic Approach
To solve the low efficiency of simple greedy algorithms, [22] in
2009 proposed a degree discount heuristics to improve influence
spread, by considering the degree discount of a candidate node
caused by its seed neighbors. However, compared with greedy
algorithms, the algorithm has a poor accuracy, though it reduces
the running time. Later on, [32] introduced a heuristic approach
called MIP to measure node’s influence from other nodes, by
which a heuristic algorithm called PMIA was developed to solve
the IMP on large-scale social networks. The drawback of PMIA is
that it has to design different thresholds for different networks
and there is no uniform method to set the thresholds, which may
affect the accuracy of the algorithm. Since then, a large body of
heuristic algorithms for the IMP are developed. In 2011, [33]
designed a simulated annealing based algorithm for the IMP
under the IC model, which integrates two heuristic approaches to
optimize the convergence process and a method to speed up the
selection of the most influential nodes. [34] proposed a scalable
influence approximation algorithm IPA for the IMP under the IC
model, which uses an independent influence path to estimate the
influence of nodes. For the purpose of bridging the theory and
practice in influence maximization, [35] proposed an algorithm
called TIM. They showed that TIM runs inO((k + ℓ)(n +m)log n

ε2)
time and guarantees an approximation ratio of 1 − 1

e − ε (with at
least 1−n−ℓ probability). By utilizing the genetic approach and the
strength greedy algorithm, [36] proposed an efficient algorithm
for solving the IMP in social networks. Based on evolutionary
methods, [37] introduced a simple genetic algorithm for the IMP.
In [38], Kim proposed a Random Walk and Rank Merge based
algorithm, which uses a random walk method to speed up the
algorithm. [39] analyzed the reason why the greedy approaches
have low efficiency and proposed a degree-descending search
strategy, based on which they designed an evolutionary
algorithm. By eliminating the time-consuming simulations in a
greedy algorithm, the efficiency of the algorithm is improved
significantly. Recently, [16] proposed a discrete shuffled frog-
leaping algorithm for the IMP, which selects influential nodes
based on network topology characteristic. In [21], Qin et al.
introduced a discount-degree descending technology and lazy-
forward technology to identify a set of candidate nodes, based on
which they designed a two-stage selection algorithm for the IMP
in social networks. [6] proposed a path-based approach, which
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uses the degree and the independent influence path to estimate
the influence spread and uses a heuristic method to reduce the
computation volume.

The heuristic algorithms usually have better running time and
scalability. But, they cannot provide any performance guarantee.

1.2 Contribution
In this paper, we propose an efficient local search algorithm
named DomIM to solve the IMP in social networks. Our
contributions mainly include the following three aspects.

(1) We propose a mechanism to construct a high quality initial
solution based on dominating set, and an approach to
building candidate set.

(2) A degree based greedy strategy is introduced in the local
search.

(3) DomIM is evaluated on three real world graphs, under IC
model, WC model, and LT model. Compared with four
heuristic algorithms, DomIM is competitive and efficient,
and obtains the best performance on these graphs.

The remainder of the paper is organized as follows. Section 2
introduces basic definitions, including the influence
maximization problem and three diffusion models. Section 3
gives a brief overview of dominating set problem and a heuristic
algorithm for finding minimum dominating set that we will
quote. Section 4 describes our DomIM algorithm. Section 5
presents experimental results and Section 6 concludes this paper
with future work.

2 PRELIMINARIES

To study the IMP, we often abstract a social network as a graph,
where the vertex set represents the set of nodes in the social
network and edge set represents the social ties among nodes.
From now on, we use the term “graphs” to replace “social
networks”, and follow the standard terminologies in graph
theory.

All graphs considered in this paper are simple undirected
graphs. Let G � (V, E) be a graph with vertex set V and edge set E.

We use a 2-length string uv to denote an edge connecting two
vertices u and v. The two vertices u, v are called endpoints of edge
uv. An edge is said to be incident with its two endpoints, and the
two endpoints of an edge are said to be adjacent to each other. A
vertex is called a neighbor of another vertex, if they are adjacent in
G. Given a vertex v ∈ V, the neighborhood of v in G, denoted by
NG(v), is the set of neighbors of v, and let NG [v] � NG(v) ∪ {v}.
The number of neighbors of v in G (or equally the number of
edges incident with v), denoted by dG(v), is called the degree of v
in G. For a set S 4 V, we use G [S] to denote the subgraph of G
induced by S, i.e., the resulting graph obtained from G by deleting
all vertices in V \ S and their incident edges.

2.1 Influence Maximization Problem
Given a graph G � (V, E) and a positive number k, the task of the
IMP is to find a set S of k vertices (called seed set) such that the
influence spread by S [denoted by σ(S)], i.e., the number of
influenced vertices triggered by S, reaches maximum under a
given diffusion model. This problem was formulated as an
optimization problem by [14], which is shown as follows.

S* � arg max
S4V,|S|�k

σ(S) (1)

In Equation 1, the maximum is taken over all seed sets S and
S* is the best one that can maximize the spread of influence.

Now, we describe three widely-adopted diffusion models that
we will use for the IMP.

2.2 Independent Cascade Model
As the simplest model of dynamic cascade models, the IC model
was first investigated by [40]. In this model, the influence spread,
starting with a set of active vertices (seed set), follows a
randomized rule: an active vertex can activate its inactive
neighbors only when it first becomes active. Specifically, let u
be a vertex activated at step t. Then, for each inactive neighbor v ∈
NG(u), there is a single change for v to be activated by u with
probability pu,v (a parameter independent of all previous attempts
to active v). If u succeeds, then v will become active at step t + 1;
otherwise, v is still inactive. Note that whether or not v is activated
successfully, it cannot be further activated by u at subsequent
steps. If at step t, an inactive vertex u has more than one newly

FIGURE 1 | Results of influence spread under LT model.
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activated neighbors, then they can activate u one by one in any
order. In this way, the diffusion process stops when no more
possible vertices will be activated.

2.3 Weighted Cascade Model
The WC model is a special IC model [14], in which a newly
activated vertex u activates its inactive neighbor v with a
probability related to the degree of v, i.e., pu,v � 1

dG(v). It is
clear to see that a high-degree vertex may be activated by
each of its activated neighbors with low probability. In a
certain sense, this simulates the actual interpersonal
relationships. Consider the case that if a person has only one
friend, then suggestions from his unique friend will play a very
important role in his decisions. In contrast, if a person has many
friends, then suggestions from one of its friends may be less
important to his decisions.

2.4 Linear Threshold Model
The LT model is different from the IC model and the WC model,
which estimates the spread process by using vertex-specific
thresholds [14]. In this model, an inactive vertex v is
influenced by each of its active neighbor u with a weight bv,u,
under the limitation of∑ubv,u ≤ 1, where u is taken over all active
neighbors of v. Indeed, this limitation has its own significance,
since the probability that u can be activated is at most one.

The dynamic process can be described as follows. We
preassign randomly a threshold θv ∈ [0, 1] to each vertex v.
Then, start with a seed set as an initial set of active vertices; in sept
t ( ≥2), each active vertex in step t−1 (t ≥ 2) is still active and an
inactive vertex v is activated successfully if the total weight of its
active neighbors is at least θv, i.e.,

∑
u∈NG(v) is active at step t

bv,u ≥ θv.

It is intuitive that the thresholds of vertices represent the
distinct potential tendencies of vertices to become active. Due to
the lack of knowledge, we assign the same threshold to all vertices
in the experiment.

3 DOMINATING SET

A dominating set of a given graph G � (V, E) is a subset S of
vertices such that V \ S 4 NG(S), where NG(S) � {v|v has a
neighbor in S}. The minimum dominating set problem (MDS)
aims to find a dominating set with the minimum cardinality. The
MDS is a classicNP-hard problem, which has been widely studied
in both theoretical and application aspects [41,42], especially for
designing efficient approximation algorithms [43,44]. Given that
vertices in a dominating set may have some important properties,

FIGURE 2 | Results of influence spread under IC model.

FIGURE 3 | Results of influence spread under WC model.
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we have reason to believe that vertices from a (minimum)
dominating set can have high influence. So, we can construct
an initial solution based on a dominating set of a given social
network.

In our algorithm DomIM which will be presented in the
subsequent section, an algorithm finding a minimum
dominating set will be used. We quote such an algorithm
called ScBppw proposed by [31]. Here we present the local
search framework of ScBppw for the reader’s convenience.

Notice that Algorithm 1 integrates two sub-procedures,
InitDS and ExchangeVertices, where InitDS is a simple greedy
strategy to generate an initial solution and ExchangeVertices is
an exchanging procedure based on a proposed tabu strategy.
For more information about this algorithm, please refer to
paper [31].

4 THE DOMIM ALGORITHM

We develop a local search algorithm for IMP named DomIM
(Algorithm 2), which is based on dominating set and a degree-
related rule for selecting vertices.

In the beginning, the algorithm finds a minimum
dominating set, by which an initial solution will be
constructed. Considering that the MDS problem is NP-
hard, we adopt a fast heuristic algorithm (Algorithm 1) to
approximatively find a minimum dominating set of the input

graph (line 2). A key concept of our algorithm is the
uncorrelated degree.

Definition 1. Let S be a subset of vertices in a graph G � (V, E),
and v ∈V be an arbitrary vertex. The S-uncorrelated neighborhood
of v, denoted byN�S(v), is defined as the set of vertices in V \ S that
are adjacent to v in G, and the S-uncorrelated degree of v is the
cardinality of N�S(v), denoted by d�S(v), i.e., d�S(v) � |N�S(v)|.

For a fixed set S, the vertices with the maximum S-uncorrelated
degreemay have higher influence in some sense, since it can influence
more vertices directly when vertices in S are not considered. This
observation is used to construct an initial solution and design an
approach to improving solutions by exchanging vertices.

The algorithmutilizes a greedy strategy (related to the uncorrelated
degree) based ondominating set to construct an initial solution.Notice
that when the dominating set D contains less than k vertices, the
algorithm selects k−|D| vertices from V \ D (according to the S-
uncorrelated degree from large to small) to generate an initial solution
by adding them into D (lines 3–5); otherwise, the algorithm chooses
top k vertices fromD in terms of the uncorrelated degrees (as large as
possible) as an initial solution (line 7).

After the construction of an initial solution S, the algorithm
computes the minimum S-correlated degree of vertices in S,
according to which a candidate set T is constructed for the
local search phase (Line 9). Note that T may be not large
enough to improve the current solution S by exchanging
vertices repeatedly between T and S; if this happens, i.e., |T| <
α|V|, the algorithm selects Pα|V|R − |T| vertices from V \ (S ∪ T)
with S-uncorrelated degree as high as possible and adds them to
T, where α is a real number in the interval (0,1) related to the
value of |V| and the type of the diffusion model (lines 10–12).

Subsequently, a loop (lines 13–24) is executed until a given
termination condition is reached. DomIM returns the best found
seed set S* (line 25). In each iteration of the loop, a local search
process is executed to exchange vertices between the current
solution S and the candidate set T for improving the current
solution (starting with the initial solution). Specifically, the
algorithm chooses a vertex u ∈ S with the minimum S-
uncorrelated degree (randomly select one when there is more
than one vertices with the minimum value). Note that it is
possible that u is not be selected for the first time; if so, u is
reselected randomly (lines 15–16). Then, remove u from S, and

FIGURE 4 | Comparison results between DomIM and its alternatives under LC model.

Algorithm 1 | ScBppw [31].
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select a vertex v from T randomly (for the diversity) and add it to
S (lines 17–18). If the exchanging can produce more influence,
then it is viewed as a valid process, and update S* by S and T by
T ∪ {u} (for the diversity of solutions) (lines 19–21); otherwise, S
is back to the previous state (lines 22–24).

5 EXPERIMENTS

We evaluate DomIM on three real world (undirected) networks
under the three diffusion models mentioned in Section 2, i.e., the
LT model, the IC model, and theWCmodel. The data come from
two databases: Network Repository1 and SNAP (Stanford Large
Network Dataset Collection)2.

ia-email-univ (IEU) [45]: This network is from Network
Repository, which is an email communication network at the
University Rovira i Virgili in Tarragona in the south of Catalonia
in Spain. There are in total 1,133 vertices and 5,451 edges. Each

vertex represents a user and an edge connecting two users
indicates that one sent at least one email to another.

soc-wiki-Vote (SWV) [45]: This network is also from
Network Repository, which involves all the Wikipedia voting
data from the inception of Wikipedia till January 2008. This
graph contains 889 vertices and 2,914 edges, where vertices
represent Wikipedia users and a direct edge from vertex i to
vertex j represents that user i vote on user j. In our experiment, we
consider only the underlying undirected graph of this graph.

feather-lastfm-social (FLS) [46]: This is a social network of
LastFM users which was collected from the public API in March
2020. This graph is from SNAP, consisting of 7,624 vertices and
27,806 edges, where vertices represent LastFM users from Asian
countries and edges are mutual follower relationships between them.

5.1 Experiment Setup
DomIM is implemented in C++ and complied by g++ 8.2.0. All
experiments are run on a computer with Intel i7-8565U 1.80 GHz
with 16 GB RAM under Windows 10.

We compare the overall performances of DomIM with four
heuristic algorithms, including Degree [14], Random [14],
CELFGreedy [20], and TreeCore [47]. Degree is a simple

Algorithm 2 | DomIM

1http://networkrepository.com
2https://snap.stanford.edu/data/feather-lastfm-social.html
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algorithm that selects high-degree vertices. Random chooses
vertices randomly. CELFGreedy is a greedy algorithm with
lazy-forward optimization, in which for each candidate seed
set, it executes 10,000 simulations to obtain an accurate
estimation of influence spread. Therefore, CELFGreedy is
time-consuming. TreeCore is an approach based on a network
connectivity parameter called tree coritivity.

For each instance, all algorithms are executed 3 times with
seed set size from 1 to 50, from which we select the best solutions
for each situation. The time limit of each run is at most 90 s,
which is dependent on the size of networks.

5.2 Results on Real World Social Networks
Experimental results under the three diffusion models are shown in
three groups of figures (Figures 1–3), where each group contains three
figures corresponding to the results on the three networks we consider,
respectively [1) for the IEU network, 2) for the SWV network, and 3)
for the FLS network]. In each figure, the x-axis represents the size of
seed set (denoted by seed set size which is from 1 to 50) and the y-axis
represents the number of all vertices that are activated at the end of the
diffusion process (denoted by influence spread). Eachfigure depicts the
results obtained by five different algorithms (represented by distinct
colors), where CELFGreedy, Degree, Random, and TreeCore are the
four approaches mentioned above, and DomIM is our algorithm.

5.2.1 Results Under the LT Model
Under the LT model, all vertices are assigned to the same
threshold 0.5 in the experiment, and we assume that an
inactive vertex v is influenced by each of its neighbor u with
the same weight bv,u � 1

dG(v). In Figure 1 (a), α is set to 0.1 and
cutoff is 10 s; in Figure 1 (b), α is set to 0.05 and cutoff is 15 s; and
in Figure 1 (c), α is set to 0.06 and cutoff is 50 s.

In each figure, the trend of influence spread is on the rise as the
seed set size increases, although some exceptions may occur due to
the random selection in the local search phase. Of all these
approaches, Random did worst on these instances. And the
reason is simple because Random does not consider any
network properties and does not use any strategy to improve
the solution. We use Random here just for the sake of comparison.
As a whole, our algorithm DomIM preforms the best in terms of
solution quality, but Degree and TreeCore are worse on the IEU
instance and CELF is worse on the SWV instance. In particular, for
the IEU and SWV instances, DomIM is essentially better than the
other algorithms. For the FLS instance, CELFGreedy performs
slightly worse than DomIM, but Degree and TreeCore are worse.

5.2.2 Results Under IC Model
Under the IC model, for every two adjacent vertices u and v such that
u is an active vertex and v is an inactive vertex, the probability pu,v that
v is activated by u is set to the same value 0.05 (this is based on the
consideration that the networkswe use are sparse). InFigure 2 (a), α is
set to 0.01 and cutoff is 10 s; in Figure 1 (b), α is set to 0.01 and cutoff is
20 s; and in Figure 1 (c), α is set to 0.0015 and cutoff is 20 s.

As shown in Figure 2, all of these algorithms (except for
Random) can obtain a better influence spread, and they have a

very similar performance on all the three instances. Our
algorithm DomIM slightly outperforms Degree, TreeCore, and
CELFGreedy (especially when the size of seed set increases), and
TreeCore and CELFGreedy perform very closely to DomIM. Note
that the result obtained by the simple approach Degree is also not
bad. The reason is because the diffusion probability is not so large,
which limits the propagation depth of an active vertex. So,
vertices with high-degree may influence much more neighbors.
This shows that selecting high-degree vertices as seed set is
possible to produce a good influence spread for this case.

5.2.3 Results Under WCM
For the WC model, in Figure 3 (a), α is set to 0.01 and cutoff is
20 s; in Figure 1 (b), α is set to 0.01 and cutoff is 20 s; and in
Figure 1 (c), α is set to 0.0065 and cutoff is 90 s.

As shown in Figure 3, all algorithms (except for Random) can
achieve a similar influence spread. For the IEU instance, DomIMhas
the best performance under almost all cases (in terms of the seed set
size); For the SWV and FLS instances, DomIM and CELFGreedy are
better than other algorithms, and they have a similar performance.
However, DomIM is efficient, while CELFGreedy is inefficient which
will take a long time to obtain a better solution.

5.3 Analysis of Underlying Strategies
We also study the effectiveness of the key strategies of our algorithm.
We modify DomIM to obtain two alternative approaches, denoted
by DomIM1 and DomIM2, where DomIM1 uses standard degree to
replace the uncorrelated degree and DomIM2 removes the local
search procedure on the basis of DomIM.

The comparison experiment of DomIM and its alternatives on
the three real-world instances is implemented under the LT
model, and the results are presented in Figure 4, from which
we see that DomIM is better than DomIM1 and DomIM2. This
implies that these two strategies play an important role in our
algorithm DomIM.

6 CONCLUSION

We proposed a local search algorithm DomIM for the IMP.
Compared with four distinct types of algorithms, DomIM is
efficient and robust, and obtains the best performance for all
graphs and all diffusion models we use. However, for the
purpose of obtaining an improved solution in the local
search phase, our algorithm has to compute the influence of
a newly constructed seed set in each iteration. This may
slightly effect the efficiency of DomIM. We would like to
consider this issue in our future work.
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