
ICAS: an Extensible Framework for Estimating the
Susceptibility of IC Layouts to Additive Trojans

Timothy Trippel∗, Kang G. Shin
Computer Science & Engineering

University of Michigan
Ann Arbor, MI

{trippel,kgshin}@umich.edu

Kevin B. Bush
Cyber Physical Systems
MIT Lincoln Laboratory

Lexington, MA

kevin.bush@ll.mit.edu

Matthew Hicks∗†
Computer Science

Virginia Tech
Blacksburg, VA

mdhicks2@vt.edu

Abstract—The transistors used to construct Integrated Cir-
cuits (ICs) continue to shrink. While this shrinkage improves
performance and density, it also reduces trust: the price to build
leading-edge fabrication facilities has skyrocketed, forcing even
nation states to outsource the fabrication of high-performance
ICs. Outsourcing fabrication presents a security threat because
the black-box nature of a fabricated IC makes comprehensive
inspection infeasible. Since prior work shows the feasibility of
fabrication-time attackers’ evasion of existing post-fabrication
defenses, IC designers must be able to protect their physical
designs before handing them off to an untrusted foundry. To this
end, recent work suggests methods to harden IC layouts against
attack. Unfortunately, no tool exists to assess the effectiveness of
the proposed defenses, thus leaving defensive gaps.

This paper presents an extensible IC layout security analysis
tool called IC Attack Surface (ICAS) that quantifies defensive
coverage. For researchers, ICAS identifies gaps for future de-
fenses to target, and enables the quantitative comparison of
existing and future defenses. For practitioners, ICAS enables
the exploration of the impact of design decisions on an IC’s
resilience to fabrication-time attack. ICAS takes a set of metrics
that encode the challenge of inserting a hardware Trojan into an
IC layout, a set of attacks that the defender cares about, and a
completed IC layout and reports the number of ways an attacker
can add each attack to the design. While the ideal score is zero,
practically, we find that lower scores correlate with increased
attacker effort.

To demonstrate ICAS’ ability to reveal defensive gaps, we
analyze over 60 layouts of three real-world hardware designs (a
processor, AES and DSP accelerators), protected with existing
defenses. We evaluate the effectiveness of each circuit–defense
combination against three representative attacks from the litera-
ture. Results show that some defenses are ineffective and others,
while effective at reducing the attack surface, leave 10’s to 1000’s
of unique attack implementations that an attacker can exploit.

Index Terms—Hardware Security; Fabrication-time Attacks
and Defenses; VLSI

I. INTRODUCTION

The relationship between complexity and security seen in

software also holds for Integrated Circuits (ICs). Since the in-

ception of the IC, transistor sizes have continued to shrink. For

example, compare the 10μm feature size of the original Intel

4004 processor [1] to the 10nm feature size of Intel’s recently

* Work completed at MIT Lincoln Laboratory.

† Corresponding faculty author

announced Ice Lake processor family [2]. Smaller transistors

enable IC designers to create increasingly complex circuits

with higher performance and lower power-usage. However,

continuing this trend pushes the laws of physics and comes

at a substantial cost: building a 3 nm fabrication facility is

estimated to cost $15–20B [3].
Such costs are prohibitive for not only most semiconductor

companies, but also nation states. Thus, most hardware
design houses are fabless, i.e., while they are able to fully

design and lay out an IC, they must outsource its fabrication.

Outsourcing combined with the black-box nature of testing

a fabricated IC requires fabless semiconductor companies to

trust that their physical designs will not be altered maliciously

by the foundry, also known as a fabrication-time attack.

Previous work demonstrates several ways a fabrication-time

attacker can insert a hardware Trojan into an otherwise trusted

IC [4]–[6]. A2 [6] demonstrates the most stealthy and control-

lable IC fabrication-time attack to date, whereby a hardware

Trojan with a complex, yet stealthy, analog trigger circuit is

inserted into the finalized layout of a processor. Even though

the inserted Trojan is small, the attacker can trigger it and

escalate to a persistent software-level attack (i.e., a hardware

foothold [7]) using only user-mode code.
Early work focuses on post-fabrication detection of hard-

ware Trojans in ICs [8]. Broadly, there are two classes of

detection: 1) side-channel analysis and 2) Trojan-activation

via functional testing. Side-channel (power, timing, etc.) anal-

ysis [9]–[12] assumes that the Trojan’s trigger is complex (i.e.,

many logic gates), and thus noticeably changes the physical

characteristics of the chip. For example, inserting the large

amount of extra logic required by a complex trigger into a

design alters the power signature of the device. Alternatively,

Trojan-activation via functional testing assumes that the Tro-

jan’s trigger is simple (i.e., few logic gates [4], [5]), and is

thus easily activated by test vectors. Unfortunately, layering

detection classes is not sufficient as it is shown possible to

create an attack that is both small and stealthy [6].
To address the gaps left by post-fabrication Trojan detection

schemes, recent work focuses on pre-fabrication, IC layout-

level, Trojan prevention [13]–[15]. IC layout-level defenses

work by:

1) increasing placement & routing resource utilization

1742

2020 IEEE Symposium on Security and Privacy

© 2020, Timothy Trippel. Under license to IEEE.
DOI 10.1109/SP40000.2020.00083

2) increasing congestion around security-critical design

components.

The lack of resources deprives the attacker of the required

transistors needed to implement their Trojan trigger/attack

circuits, and the increased congestion around security-critical

wires acts as a barrier for the attacker attempting to integrate

their Trojan into the victim design. Ideally, defenders utilize

just enough resources and create enough congestion such that

the attacker cannot implement and insert their attack, while

keeping the design routable. Short of that, the added barriers

require the attacker to expend significantly more resources

(e.g., time) to insert their attack into an IC layout.1

Two IC layout-level defensive approaches exist: undirected

and directed. Undirected approaches aim to (probabilistically)

increase resource utilization and congestion across the entire
layout by altering existing place-and-route parameters (e.g.,

core density [15]) that will likely result in increased resource

utilization and congestion. More recently, a line of directed
approaches have emerged [13], [16] that systematically in-

crease utilization of specific-regions of the device layer, i.e.,

nearby security-critical components. Given that it is infeasible

to occupy the entire device layer in a tamper-evident man-

ner [13], [16], both classes of approaches may leave IC layouts

vulnerable to attack by an untrusted foundry.

To identify gaps in existing defenses and guide future IC

layout-level defenses, we design and implement an extensible

measurement framework that estimates the susceptibility of

an IC layout to foundry-level additive Trojan attacks. Our

framework, IC Attack Surface (ICAS), estimates resilience in

three dimensions that capture the essence and difficulty of

inserting a hardware Trojan at an untrusted foundry:

1) Trojan logic placement: finding unused space to place

additional circuit components

2) Victim/Trojan integration: attaching hardware Trojan

payload to security-critical logic

3) Intra-Trojan routing: connecting the trigger and pay-

load portions of the hardware Trojan

A successful attack requires all three steps.

Using ICAS, we analyze over 60 different IC layouts across

three fully-functional ASIC designs: an AES accelerator, a

DSP accelerator, and an OR1200 processor. For each lay-

out, ICAS reports the coverage against four additive Trojan

attacks [6], [7], [17], [18] that span the digital and analog

domain as well a range of attack outcomes. ICAS’s analysis re-

veals that all existing IC layout-level defenses are incomplete,

leaving 1000’s of opportunities for an attacker at an untrusted

foundry to insert a hardware Trojan. An additional finding is

that even though most existing countermeasures do increase

the complexity of inserting a hardware Trojan, some coun-

termeasures are ineffective. Lastly, ICAS’s analysis suggests

that focusing on exhausting resources on the device layer (i.e.,

transistors) is an incomplete defense; future defenses should

also aim to increase congestion around security-critical wires.

1Time is the most critical resource for the attacker as IC fabrication is
usually bounded in terms of turnaround time.

Fig. 1. The typical IC design process starts with a textual specification of
design requirements and ends with a fabricated and tested chip. Green check-
boxes mark trusted stages and red x-boxes mark the untrusted step (i.e., an
untrusted foundry). The fabrication step takes a GDSII file (physical IC layout)
as input and produces a wafer of die. While prior work proposes metrics for
untrusted front-end design [17], [21]–[23], no mechanism exists for measuring
an IC layout’s resilience to an untrusted foundry.

This paper makes the following contributions:

• We propose an extensible methodology that estimates the

difficulty of inserting additive hardware Trojans into an

existing IC layout by an untrusted foundry.

• We design, implement, and open-source [19], [20] our ex-

tensible framework, ICAS, that computes various layout-

specific security metrics. The ICAS framework provides

an interface to programmatically query the physical lay-

out of an IC (encoded in the GDSII format) to com-

pute various security metrics with respect to attacks-of-

interest.

• We use ICAS to estimate the effectiveness and expose the

gaps of previously-proposed untrusted foundry defenses

by analyzing over 60 IC layouts of three real-world

hardware cores.

• We identify future directions for defenses that work in a

layered fashion with existing defenses.

II. BACKGROUND

A. IC Design Process

Figure 1 shows the typical IC design process [24], which

consists of three main phases: 1) front-end design, 2) back-

end design, and 3) fabrication. The front-end design phase can

be further split into two design abstraction levels, behavioral
and structural, while a single design abstraction level, physical
(i.e., consists of both analog and digital properties), encom-

passes the back-end. The front-end design process begins by

first describing the functionality of the circuit at the behavioral

level, also known as the Register Transfer Level (RTL),

using a hardware description language (HDL), like VHDL or

Verilog. Next, the behavioral level description of the circuit

1743

Fig. 2. Typical IC floorplan created during the place-and-route design phase.
The floorplan consists of an I/O pad ring surrounding the chip core. Within the
core is the placement grid. Circuit components are placed and routed within
the placement grid.

is transformed into a structural level description during RTL

synthesis. RTL synthesis is similar to software compilation:

the RTL design is optimized and reduced to a set of logically

connected digital logic gates, called a gate-level netlist (netlists

are commonly described using an HDL language). The gate-

level netlist is then passed to the back-end design phase to

be transformed into something able to be implemented into a

physical chip (i.e., an IC layout) through a process known as

Placement and Routing (PaR).

IC layouts consist of multiple layers. The bottom layers are

device layers, while the top layers are metal layers. Device

layers are used for constructing circuit components (e.g.,

transistors), and the metal layers are used for routing (e.g.,

vias and wiring). The first stage of PaR is creating a floorplan.

Figure 2 illustrates an IC floorplan. To create a floorplan,

the dimensions of the overall chip are specified and the core

area is defined. Typically a ring of I/O pads is then placed

around the chip core, while a placement grid is drawn over the

core. Each tile in the placement grid is known as a placement
site. Circuit components (e.g., standard cells) are then placed

on the placement grid, occupying one or more placement

sites, depending on the size of the component. Lastly, all

components are routed together, using one or more routing

layers. The output from the back-end design is a Graphics

Database System II (GDSII) file that is a geometric description

of the placed-and-routed circuit layout. The GDSII file is then

sent to a fabrication facility where it is manufactured. The

final step is testing and packaging.

B. Hardware Trojans

1) Trojan Components: A hardware Trojan is a malicious

modification to a circuit designed to modify its behavior

during operation [25]. Hardware Trojans have two main com-

ponents: 1) trigger and 2) payload [10], [26], [27]. Prior

work classifies hardware Trojans based on the functionalities

of their trigger and payload mechanisms [10], [26], [27]. In

this paper, we adopt and simplify an existing hardware Trojan

taxonomy [26]; shown in Figure 3.

The trigger mechanism of a hardware Trojan is what initi-
ates the delivery of the Trojan’s payload. Triggers can be built

by adding, removing, or altering existing hardware in an IC.

Fig. 3. An existing taxonomy of hardware Trojans [26]. This taxonomy
classifies hardware Trojans based on their trigger and payload types.

They can be digital [7] or analog [6]. The ideal trigger is small:
requiring few or no additional circuit components, stealthy:

requiring dozens of rare events to activate, and controllable:

readily attacker deployable, but not so by defenders or through

regular use. There have been several triggers demonstrated

before that span the trade-space of large (requiring many addi-

tional gates) and stealthy [28] to the opposite: small (requiring

no additional gates) and easy to trigger [4], [29]. The most

advanced Trojans are small, stealthy, and controllable [6].

The payload mechanism receives a signal from the trigger

and alters the functionality of the IC. Analog [4], [29] and

digital [6] payloads exist, with a variety of effects. These

effects can leak information [28], alter the internal state of

the IC [6], or cause a system to be unusable (denial-of-

service) [29]. Regardless of effect, the payload mechanism

must route a wire to, or in the vicinity of, some target

“security-critical” [30] wire in the IC design.

2) Trojan Implementations: There are three types of hard-

ware Trojans a malicious foundry can craft into an otherwise

trusted IC layout: additive, substitution, and subtractive. Ad-

ditive Trojans involve inserting additional circuit components

and/or wiring into an existing design. Substitution Trojans

require removing logic with low observability to make room

for additional Trojan circuit components and/or wiring in an

existing circuit design. Lastly, subtractive Trojans require re-

moving circuit components and/or wiring to alter the behavior

of a existing circuit design. The focus of this paper is estimat-
ing the susceptibility of a circuit layout to additive Trojan
attacks. Substitution and subtractive Trojans, while intriguing,

remain largely unexplored by the community. We do not know

of any demonstrably stealthy and controllable substitution or

subtractive Trojans and when researchers do create such an

attack, there exists orthogonal mitigation strategies [31].

Inserting an additive Trojan at an untrusted foundry requires

modifying two fundamental characteristics of an IC’s physical

layout—placement and routing—regardless of how an attacker

implements the Trojan’s trigger and payload. We define Tro-
jan placement to be the act of placing additional hardware

components into an IC layout for the purpose of crafting

a Trojan trigger and payload, Victim/Trojan integration to

1744

be wiring the Trojan’s payload to, or in the vicinity, of a

security-critical net in the victim IC layout, and intra-Trojan
routing to be the act of wiring the hardware Trojan together.

The most challenging aspect of inserting a hardware Trojan

at fabrication-time is finding empty space on the IC’s device

layer to insert the trigger and payload components (Trojan
placement), AND routing the payload to a security-critical net

(Victim/Trojan integration). ICAS estimates each of these

fundamental tasks, in turn identifying weak points in the IC

layout that an attacker might exploit.

III. THREAT MODEL

We adopt a threat model for untrusted foundry attacks

that assumes all steps in the IC design process can be

trusted, except for all of the processes—no matter if they

are outsourced—performed by a foundry (colloquially, fabri-

cation). Figure 1 depicts our threat model. This entails that

the RTL is designed, synthesized, and laid-out by trusted

parties. Post fabrication testing is also performed by a trusted

party. We adopt this threat model since the astronomical

costs to fabricate ICs force most semiconductor companies

to outsource fabrication. To this point, in 2005, the U.S.

government identified the untrusted foundry threat as the most

significant weakness of the microelectronics supply chain [32].

We restrict our threat model to fabrication-time attacks

involving additive Trojans, i.e., hardware Trojans that re-

quire inserting additional circuitry into a physical IC design.

Previous work on substitution/subtractive hardware Trojans

shows that such Trojan insertion methods are addressable by

measuring the controllability and observability of logic at the

behavioral and/or structural level of the IC design, for which

several methods have already been proposed [17], [21], [22],

[33]–[35]. Orthogonally, this work fills the void of quantifying

the susceptibility of an IC design to additive hardware Trojan

insertion at the physical level of the IC design process by an

untrusted foundry.

Focusing on additive hardware Trojans, an adversary can

only insert additional components/wires. They cannot increase

the size of the chip to make additional room for the implants

because this is readily caught by defenders. As a result, an

attacker has two choices: find open space in the design large

enough to accommodate the additional circuitry, or create open

space in the design by moving circuitry around. The latter is

extremely challenging due to its recursive nature, it runs the

risk of violating fragile timing constraints and manufacturing

design rules, and it increases fabrication turnaround time

(which is usually set to three months); any of which could

expose the Trojan. Therefore, our focus is identifying open

spaces suitable for hardware Trojan implementation.

IV. UNTRUSTED FOUNDRY DEFENSES

To protect IC layouts against insertion of a hardware Trojan

by attackers at an untrusted foundry, two classes of defenses

exist: undirected and directed. Undirected defenses leverage

existing tuning knobs available during the IC layout process,

but do not differentiate between security-critical and general-

purpose wires and logic. Thus, undirected approaches provide

probabilistic protection. On the other hand, directed defenses

require augmenting existing PaR tool flows to harden the

resulting IC layout, focusing on deploying defenses systemat-

ically around security-critical wires and logic. Thus directed

approaches provide targeted protection, but increase the com-

plexity of the place-and-route process.

This section provides an overview of the landscape of

undirected and directed defenses. The focus is the mechanism

each defense uses to increase the complexity faced by a

foundry-level attacker. We use the results of the defensive

analysis in this section to develop a set of unifying coverage

metrics in the next section. Finally, in the evaluation, we

evaluate commercial IC layouts using the defense-inspired

metrics to quantify each defense’s coverage.

A. Undirected

The lowest cost approach for protecting an IC layout from a

foundry-level attacker is to take advantage of existing physical

layout parameters (e.g., core density, clock frequency, and max

transition time) offered by commercial CAD tools [15]. The

goal is to increase congestion across the component layer

and the routing layer. Ideally, this also results in increased

congestion around security-critical logic and wires. Practically,

increases in congestion around security-critical logic and wires

is probabilistic.

Increased congestion is a symptom of increased resource

utilization; hence, there are fewer resources available to the

attacker. The most obvious resource that an attacker cares

about are placement sites on the component layer. Increasing

the density, decreases unused placement sites. Without suf-

ficient placement sites, the attacker cannot implement their

Trojan logic. A less obvious resource is attachment points on

security-critical wires that serve as victim/Trojan integration

points. Increasing routing layer congestion (via density and/or

timing constraints) increases the blockage around security-
critical wires, meaning there are less integration points.

B. Directed

To address the shortcoming of undirected approaches, recent

defenses advocate focusing on security-critical logic and wires.

Specifically, the approaches aim to prevent the attacker from

being able to implement their hardware Trojan by occupy-

ing unused placement sites (i.e., transistors) [13], [16]. The

challenge is that the filler cells used by these defenses must

be tamper-evident, i.e., a defender must be able to detect if

an attacker removed filler cells to implement their Trojan.

Previous work shows that filling the entire component layer

with tamper-evident filler cells (e.g. [15]) is infeasible due to

routing congestion [16]. To make routing feasible, the most

recent placement-centric defense focuses on filling the unused

placement sites nearest security-critical logic first [13], [16].

Such placement-centric defenses increase the complexity

faced by the attacker in two ways. First, it is harder for

the attacker to find contiguous unused placement sites to

1745

implement their Trojan’s logic. Second, an indirect compli-

cation is increased intra-Trojan routing complexity. The more

distributed the attacker’s placement sites, the more long (i.e.,

uses upper routing layers) routes the attacker must create.

Additionally, since the unused placement sites are far away

from security critical logic, the attacker must make a longer,

more complex, route to connect their hardware Trojan to the

victim security-critical wire.

V. UNIFIED ATTACK METRICS

Drawing from existing untrusted foundry defenses, we cre-

ate an extensible set of IC layout attack metrics. We unify

the objectives of existing defenses by decomposing the act of

inserting a hardware Trojan into ICs at an untrusted foundry

into three fundamental tasks and corresponding metrics:

1) Trojan logic placement: Trigger Space
2) Victim/Trojan integration: Net Blockage
3) Intra-Trojan routing: Route Distance

These tasks and accompanying metrics are the foundation

for our methodology of assessing defensive coverage of an

IC layout against an untrusted foundry. We implement our

methodology as ICAS.

A. Challenges of Trojan Placement

The first phase of mounting a fabrication-time attack is

Trojan placement. This requires locating unused placement

sites on the placement grid to insert additional circuit com-

ponents. While prior work [13], [15], [16] employs the notion

of limiting the quantity of unused placement sites as a defense

against fabrication-time attacks, how can we characterize

unused placement sites to gain insight into the feasibility of a

fabrication-time attack on a given IC layout?

Only 60–70% of the placement cites are occupied in a

typical IC layout to allow space for routing [6]. To facilitate

intra-Trojan routing, an attacker prefers open placement sites

form contiguous (adjacent) regions. This allows the attacker

to drop-in a pre-designed Trojan, or if one had not been pre-

designed, it minimizes the intra-Trojan routing complexity by

confining the intra-Trojan routing to the lowest routing layers,

i.e., reducing the jumping and jogging of nets. Such adjacency

is classified in image processing as “4-connected”. There-

fore, a key factor that determines the difficulty of mounting

fabrication-time attacks is the difficulty of inserting additional

circuit components into a finalized IC design. We rank this

difficulty in increasing order as follows.

1) Trivial: the Trojan components fit within a single con-

tiguous group of 4-connected placement sites.

2) Difficult: the Trojan components must be split across

multiple contiguous groups of 4-connected placement

sites. The more placement site groups required, the more

difficult intra-Trojan routing becomes.

3) Not Possible: the total area required by the hardware

Trojan exceeds that of available placement sites.

Figure 4 illustrates these difficulty levels. The susceptibility

of an IC design to fabrication-time attack can therefore be

Fig. 4. Assume an attacker is attempting to insert 6 additional Trojan
components that consume a total of 9 placement sites (as shown). If inserting
these components on the Trivial placement grid (left), they can be placed
adjacent to each other to simplify intra-Trojan routing. If inserting these
components on the Difficult placement grid (middle), they must be scattered
across the grid, making intra-Trojan routing more challenging. The Not
Possible placement grid (right) does not have enough empty placement sites
to accommodate the Trojan components.

partially quantified by the size and number of contiguous open

sites on the placement grid. This is the basis for ICAS’ Trigger
Space metric.

B. Challenges of Victim/Trojan Integration

Routing the Trojan payload to the targeted security-critical

net requires the attacker to locate the nets of interest in the IC

layout. We assume the worst case: the attacker has knowledge

of all security-critical nets in the design, particularly, the nets

they are trying to extract information from or influence. An

example of such a net in the OR1200 processor [36] is the

net that holds the privilege bit. The attacker can acquire

this knowledge either through a design-phase co-conspirator

or through advanced reverse-engineering techniques [6]. No

matter how the attacker gains this information, we assume

they have it with zero additional effort.

We extend this threat to include nets that influence security-

critical nets. To increase stealth, an attacker could also trace

backwards from the targeted security-critical net, through

logic gates, to identify nets that influence the value of the

targeted security-critical net. This is called the fan-in of the

targeted net. By connecting in this way, the attacker sacrifices

controllability for stealth as their circuit modification is now

physically separated from the security-critical net. To gain

back controllability, attackers must create a more complex

(hence larger) trigger circuit—decreasing the Trigger Space

score, as well as increasing the likelihood of visual and/or

side-channel detection. This trade-off limits how many levels

back the attacker can integrate their payload.

No matter if the attacker is attacking the targeted security-

critical wire directly or indirectly, the attacker must attach to

some victim wire or route directly adjacent to it. Since an

IC layout is three-dimensional, it is possible for the attacker

to attach to any open point on the victim wire, either on

the same layer (i.e., North, South, East, West) or from an

adjacent layer (i.e., above or below). In the worst case, there

are no other nets blocking the attacker from attaching to the

targeted security-critical net or its N -level-deep influencers. In

the best case, all attachment points are blocked by other nets.

1746

Fig. 5. The supervisor bit signal of the OR1200 processor SoC is the data
input to the supervisor register of the OR1200 CPU. The supervisor register
stores the privilege mode the processor is currently executing in. Changing
the value on this net changes the privilege level of the processor allowing
an attacker to execute privileged instructions. The more congested the area
around this net, the more difficult it is for a foundry-level attacker to attach
(or route in close proximity) a rogue wire to it.

To quantify the number of points along, above, and below

a targeted security-critical wire—and its N -deep fan-in—we

implement the Net Blockage metric. Figure 5 shows the open

(unblocked) integration points for the privilege net on the

OR1200 processor.

C. Challenges of Intra-Trojan Routing

The final phase of a fabrication-time attack is Intra-Trojan

routing. Intra-Trojan routing requires connecting the compo-

nents that comprise the trigger and payload portions of the

hardware Trojan together—including connecting to the inte-

gration point with the victim—to form a complete hardware

Trojan. In the worst case, the attacker is able to find a single

contiguous region to place the trigger and payload components

that is nearby the victim security-critical net. Thus, routing the

trigger and payload components will be trivial and the wire

used to inject the payload will be short. In the best case, the

attacker will have to implement their attack using many 4-

connected placement regions (i.e., low Trigger Space score)

and the only integration point on the targeted security-critical

net (i.e., high Net Blockage score) is as far away from the

open placement regions. Hence, we focus on quantifying the

difficulty of routing the payload output to open attachment

points on targeted security-critical nets (and its N -deep fan-

in). To this end, we identify two challenges of intra-Trojan

routing:

• Comply with design and fabrication rules

• Meet Trojan and payload-delivery timing requirements

1) Complying with Design Rules: For each process tech-

nology, there are many rules associated with how wires and

components must be laid out in a design. Some of these rules

are defined in the Library Exchange Format (LEF) [37] and

contained in files that are loaded by modern Computer Aided

Design (CAD) tools throughout the IC design process. There

are two types of design rules: 1) those regarding the construc-

tion of circuit components (i.e., standard cells), and 2) those

regarding routing. We classify these as component design rules
and routing design rules, respectively. As technology nodes

shrink, both rule sets are becoming increasingly complex [38].

It is vital for an attacker to comply with these design rules as

violating them risks exposure. If an attacker inserts additional

logic gates (standard cells) by making copies of existing com-

ponents in a design, they can avoid violating component design
rules involved with Trojan placement. However, to connect

a wire from the Trojan payload to security-critical target

net(s), they must perform custom Trojan routing. Therefore,

complying with routing design rules is a concern. Routing

design rules include specifications for the minimum distance

between two nets on a specific routing layer, the minimum

width of nets on a given layer, etc. Complying with these

rules becomes easier for an attacker if security-critical net(s)

are not blocked by other wires or components. The higher

the Net Blockage score, the more difficult it is to make a

connection, the more complex—and error prone—the route.

2) Meeting Timing Requirements: Every wire in an IC

has a resistance and a capacitance, making it behave like an

RC circuit, i.e., there is a time delay associated with driving

the wire high (logic 1) or low (logic 0). The longer the

wire, the more time delay there is [39]. If the security-critical

net(s) has timing constraints (e.g., setup and hold times) that

dictate when the payload signal must arrive for the attack to

be successful, the Trojan routing must meet these constraints.

Furthermore, the farther the security-critical net is from the

payload circuit, the more obstacles that must be routed around,

increasing the routing distance even further. This is the basis

for ICAS’ Route Distance metric. A natural limit for Route

Distance is dictated by the clock frequency of the victim

circuit, as most attacks must operate synchronously with their

victim.

VI. EXTENSIBLE COVERAGE ASSESSMENT FRAMEWORK

The ICAS framework is comprised of two tools, Nemo
and GDSII-Score, as shown in Figure 6. Nemo identifies

security-critical wires based on designer annotations and

circuit dataflow, while GDSII-Score assesses the defensive

coverage of a given IC layout against a set of attacks. ICAS

takes as input four sets of files: 1) gate-level netlist (generated

after all physical layout optimizations), 2) process technology

files, 3) physical layout files, and 4) set of attacks. The process

technology files include a Library Exchange Format (LEF)

file and layer map file [37], [40]. The physical layout files

include a Design Exchange Format (DEF) file and the GDSII

file of an IC layout [37], [41]. The attack files are are a list of

properties for each attack to assess coverage against: number

of transistors, security-critical wire(s) to attach to, and timing

constraints. All ICAS input files except the attack files are

either generated-by or inputs-to the back-end IC design phase,

and hence are readily available to back-end designers.

Though ICAS is extensible, our implementation includes

three security metrics that capture the challenges faced by

a foundry-level attacker looking to insert a hardware Trojan:

amount and size of open-placement regions (Trigger Space),

1747

Fig. 6. ICAS consists of two tools, Nemo and GDSII-Score, and fits into
the existing IC design process (Fig. 1) between PaR and fabrication. Nemo
analyzes a gate-level (PaR) netlist and traces the fan-in to security-critical
nets in a design. GDSII-Score analyzes a GDSII file (i.e., an IC layout) and
computes metrics quantifying its vulnerability to a set of foundry-level attacks.

quantity of viable attachment points to targeted security-

critical (and influencer) nets (Net Blockage), and the proximity

of open placement regions to targeted security-critical net(s)

(Route Distance). Together with the attack requirements, these

metrics quantify the complexity an attacker faces for each step

of inserting specific hardware Trojans into the given IC layout.

We describe the implementation of both ICAS components

below.

A. Nemo

Nemo is the first analysis tool in the ICAS framework. It

bridges the semantic gap between the human readable RTL

netlist and post-PaR netlist. Additionally, Nemo broadens the

set of “security-critical” nets by performing a fan-in analysis

of root security-critical nets. This is necessary since the inter-

connected nature of signals within a circuit design means an

adversary could influence the state of security-critical nets by

controlling a net that is a part of its fan-in. Nemo takes as input

a Verilog netlist and automatically identifies security-critical

nets in the post-PaR netlist HDL, which it outputs in the

form of a Graphviz dot file. Similar to prior work [42]–[44],

Nemo assumes that a unique signal name prefix (within the

RTL HDL) has been appended to various signals considered

“security-critical”. We make this assumption since determining

what signals are “security critical” requires contextual knowl-

edge of how the design will be used.

1) Annotating Security-Critical Signals in the RTL
Netlist: The process of uncovering and annotating security-

critical signals in the RTL netlist is Security-Critical Com-

ponent Identification (SCCI). While SCCI is an active area

of research in the hardware security community, orthogonal

to addressing the untrusted foundry problem, there are two

approaches we are aware of: manual and semi-autonomous
identification. The first, and most traditional, is manual iden-
tification. Manual identification requires a human expert to

study the design’s specification (e.g., Instruction Set Archi-

tecture in the case of a processor), and identify properties

that are critical to the security of software or other hardware

utilizing the design [30], [42]. The second, and current state-

of-the-art developed by Zhang et al. [44], is semi-autonomous
identification. Semi-autonomous identification involves two

steps. First, a program observes a variety of test-benches

exercising the design to generate a large set of possible

invariants defined over the hardware specification. Second, a

pre-trained penalized logistic regression classifier is used to

classify which invariants, or portions of the specification, are

security-critical. This method of SCCI is semi-autonomous,

as it requires the classifier model be pre-trained with either

existing published errata on previous versions of the hardware

design, or using manual identification. While we perform

manual SCCI, results reported by Zhang et al. [44] suggest

that their tool would result in a similar set of root security-

critical signals.

2) Identifying Security-Critical Signals in the PaR Netlist:
While there are existing (aforementioned) techniques for iden-

tifying and annotating security-critical components in the RTL

netlist, unfortunately, these techniques do not track security-

critical signals past the RTL design phase and do not capture

data-flow. Thus, Nemo’s core task is to bridge the semantic

gap and uncover duplicated or renamed security-critical sig-

nals in the post-PaR netlist. Fortunately, while synthesis and

layout tools do modify a netlist by duplicating and removing

signals and components (as part of optimization and meeting

performance requirements), they do not completely rename

existing signals. This makes it possible for Nemo to identify

root security-critical signals (flagged at the behavioral level)

by name at the physical level. To avoid removal of security-
critical signals, we modify synthesis and layout scripts to
essentially lock them in place. Nemo works backwards from

root security-critical signals to identify the fan-in to these

signals. The search depth is a configurable parameter of Nemo.

3) Implementation: Nemo is implemented as a back-end

target module to the open-source Icarus Verilog (IVL) [45]

Verilog compiler and simulation tool written in C++. The IVL

front-end exposes an API to allow third-parties to develop cus-

tom back-end target modules. Nemo is a custom target module

(also written in C++) designed to be loaded by IVL. Since

gate-level netlists are often described with the same HDL

that was synthesized to generate the netlist (e.g., Verilog), we

utilize the IVL front-end to interpret the Verilog representation

of the netlist and our custom back-end target module, Nemo,

to perform a breadth-first search of the post-PaR netlist. We

open-source Nemo [19] and release instructions on how to

compile and integrate Nemo with IVL.

B. GDSII-Score

GDSII-Score is the second analysis tool in the ICAS

framework. GDSII-Score is an extensible Python framework

for computing security metrics of a physical IC layout. It

takes as input the following: Nemo output, GDSII file, DEF

file, technology files (LEF and layer-map files), and attacks

description file. First, GDSII-Score loads all input files and

locates the security-critical nets within the physical layout.

Next, it computes security metrics characterizing the suscepti-

1748

bility of an IC design to each of the input attacks. Specifically,

the three security metrics that we implement are: 1) Trigger
Space: the difficulty of implementing the hardware Trojan,

2) Net Blockage: the difficulty of Trojan/victim integration,

and 3) Route Distance: the difficulty of meeting Trojan timing

constraints. We open source the GDSII-Score framework and

our security metric implementations [20].

1) Metric 1: Trigger Space: The Trigger Space metric

estimates the challenges of Trojan placement (§V-A). It com-

putes a histogram of open 4-connected regions of all sizes

on an IC’s placement grid. The more large 4-connected open

placement regions available, the easier it is for an attacker to

locate a space to insert additional Trojan circuit components at

fabrication time. A placement site is considered to be “open” if

the site is empty, or if it is occupied by a filler cell. Filler cells,

or capacitor cells, are inserted into empty spaces during the last

phase of layout to aid fabrication. Since they are inactive, an

attacker can create empty placement sites by removing them,

without altering the functionality or timing characteristics of

the victim IC.

To compute the trigger space histogram, GDSII-Score first

constructs a bitmap representing the placement grid. Placement

sites occupied by standard cells (e.g., NAND gate transistors)

are colored while those that are open are not. Information

about the size of the placement grid and the occupancy of each

site in the grid is available in the Design Exchange Format

(DEF) file produced by commercial PaR tools. GDSII-Score

then employs a breadth-first search algorithm to enumerate the

maximum size of all 4-connected open placement regions.

2) Metric 2: Net Blockage: The Net Blockage metric

estimates the challenges of integrating the hardware Trojan’s

payload into the victim circuit (§V-B). It computes the percent

blockage around security-critical nets and their influencers.

The more congested the area surrounding security-critical nets,

the more difficult it is to attach the Trojan circuitry to these

nets. There are two types of net blockage that are calculated

for each security-critical net: same-layer and adjacent-layer.

Same-layer blockage is computed by traversing points

around the perimeter (North, South, East, West) at a gran-

ularity of g, at a specific distance, d, around the security-

critical net and determining which points lie within other

circuit components, as detailed in Figure 7a. To determine

if a specific point along the perimeter lies within the bounds

of another circuit component, we utilize the point-in-polygon

ray-casting algorithm [46]. The extension distance, d, around

the security-critical path element and the granularity of the

perimeter traversal, g, are configurable in our implementation.

However, we default to an extension distance of one wire-pitch

and a granularity of 1 database units, respectively, as defined

in the process technology’s LEF file. The IC designs used in

our evaluation are built using a 45nm process technology, for

which 1 database units is equivalent to 0.5nm. Additionally,

an open region is considered “blocked” if it is not wide enough

for a minimal width wire to be routed through while main-

taining the minimal amount of wire spacing required on that

metal layer, as defined in the LEF file. The percentage of the

Fig. 7. A) Same-layer net blockage is computed by traversing the perimeter
of the security-critical net, with granularity g, and extension distance d, and
determining if such points lie inside another component in the layout. B)
Adjacent-layer net blockage is computed by projecting the area of the security-
critical net to the layers above and below and determining the area of the
projections that are occupied by other components.

perimeter length that is blocked by other circuit components

is considered the same-layer blockage percentage.

Adjacent-layer blockage is computed by analyzing the area

directly above and below a security-critical net, and com-

puting the total area of overlap between other components,

as detailed in Figure 7b. To calculate this overlap area we

utilize an overlapping sliding window approach. Additionally,

any un-blocked regions above or below the security-critical

net are considered “blocked” if they are not large enough

to accommodate the smallest possible via geometry allowed

on the respective via layer, as defined in the LEF file. The

percentage of the total top and bottom area that is blocked

by nearby circuit components is the adjacent-layer blockage

percentage.

The same-layer and adjacent-layer blockage percentages are

combined via a weighted average to form a comprehensive

overall net blockage percentage where 66% is based on same-

layer blockage (north, south, east, and west) and 33% is based

on adjacent-layer blockage (top and bottom). We weight the

same-layer blockage by 66%, or 2
3 , because 4 out of 6 total

sides of a wire (north, south, east, west, top, and bottom)

are on the same layer. Likewise, we weight the adjacent-layer

blockage by 33%, or 1
3 .

Lastly, a total same-layer, adjacent-layer, and overall net

blockage metric is computed for the entire IC design. For an

IC design with n security-critical nets, the same-layer (bsame),

adjacent-layer (badjacent), and overall (boverall) net blockage

metrics are computed according to equations 1, 2, and 3,

respectively.

bsame =

∑n
i=1 perimeter blockedn∑n

i=1 perimetern
(1)

badjacent =

∑n
i=1 area blockedn∑n

i=1 2 ∗ arean
(2)

boverall =

(
2

3
∗ bsame

)
+

(
1

3
∗ badjacent

)
(3)

1749

TABLE I
HARDWARE TROJANS USED IN DEFENSIVE COVERAGE ASSESSMENT.

Trojan # Std
Cells

Placement
Sites

Timing
Critical?

A2 Analog [6] 2 20 �
A2 Digital [6] 91 1444 �
Privilege
Escalation [7], [17]

25 342 �

Key Leak [18] 187 2553 �

3) Metric 3: Route Distance: The Route Distance metric

combines the Net blockage and Trigger Space metrics (thus

is correlated with these metrics) to estimate the difficulty of

of meeting Trojan and attack timing constraints (§V-C). It

computes a conservative estimate, i.e., Manhattan distance, for

the minimal routing distance between open trigger placement

sites and the n least blocked integration sites on the targeted

security critical nets. It cross-references each Manhattan dis-

tance with the distribution of net lengths within the entire

IC design. Net length can impact whether or not the Trojan

circuit will meet timing constraints and function properly.

Understanding where in the distribution of net lengths the

Trojan routing falls provides insights into the ability of the

Trojan circuit to meet its timing requirements and is an

opportunity for outlier-based defenses. In summary, the more

Manhattan distances that fall within one standard deviation of

the mean net length, the easier it is to carry out an attack.

We implement the Route Distance metric as follows. First,

the Net Blockage and Trigger Space metrics are computed.

Next, the the distribution of all net-lengths within the IC layout

are computed. Then, two-dimensional Manhattan distances

between all unblocked nets (< 100% overall net blockage)

and trigger spaces are calculated. The Manhattan distance

calculated is the minimum distance between a given trigger

space and security-critical net, i.e., the minimum distance

between any placement site within the given trigger space

and any unblocked location on the targeted security-critical

net. Lastly, each Manhattan distance is reported in terms of

standard deviations away from the mean net-length in the given

IC layout.

VII. EVALUATION

We use ICAS to quantify the defensive coverage of existing

defensive layout techniques—revealing that gaps persist. First,

we analyze the effectiveness of undirected defenses [15].

Specifically, we measure the impact of varying both physical

and electrical back-end design parameters of the same IC

layout on its susceptibility to attack. Second, we analyze the

effectiveness of directed defenses [13], [16]. Specifically, we

measure the coverage of existing, placement-oriented, defen-

sive layout schemes in preventing the insertion of an attack

by the foundry. Beyond revealing gaps, our results reveal that

there is an opportunity for improving both directed and undi-

rected defenses that systematically eliminates Trojan/victim

integration points. Lastly, our evaluation also demonstrates that

ICAS is design-agnostic, works with commercial tools, and

scales to complex IC layouts.

A. Experimental Setup
We utilize three IC designs for our evaluations: OR1200

processor SoC, AES accelerator, and DSP accelerator. The

OR1200 processor SoC is an open-source design [36] used

in previous fabrication-time attack studies [6]. The AES and

DSP accelerator designs are open-sourced under the Common

Evaluation Platform (CEP) benchmark suite [47]. The OR1200

processor SoC consists of a 5-stage pipelined OR1200 CPU

that implements the 32-bit OR1K instruction set and Wishbone

bus interface. The AES accelerator supports 128-bit key sizes.

The DSP accelerator implements a Fast Fourier Transform

(FFT) algorithm.
All designs target a 45nm Silicon-On-Insulator (SOI) pro-

cess technology. We synthesize and place-and-route all designs

with Cadence Genus (version 16.23) and Innovus (version

17.1), respectively. In our first evaluation (§VII-B) the design

constraints (clock frequency, max transition time, core den-

sity) used for both synthesis and layout are varied as noted.

However, in our second evaluation (§VII-C) the same design

constraints (100 MHz clock frequency, 100 ps max transition

time, 60% core density) were used for both synthesis and

layout to form a common baseline. All ICs are synthesized and

placed-and-routed on a server with 2.5 GHz Intel Xeon E5-

2640 CPU and 64 GB of memory running Red Hat Enterprise

Linux (version 6.9).
1) Security-critical Signals: The first tool in the ICAS

flow is Nemo. Nemo tracks security-critical signals from the

HDL level to the IC layout level. The first step is flagging

root security-critical signals at the RTL level, for each IC

design. For the OR1200 processor SoC, the supervisor bit

signal supv is flagged. We select this signal because one can

alter the state of this bit to escalate the privilege mode of

the processor [6]. For the AES accelerator, we flag all 128

key bits as security-critical. The next out signal within the

DSP accelerator was flagged as security-critical. The next out
signal of the DSP accelerator indicates to external hardware

when an FFT computation is ready at the output registers.

Tampering with the next out signal allows the attacker to

hide specific outputs of the DSP accelerator. Lastly, Nemo

marks, for each design’s IC layout, all root security-critical

nets and their 2-deep fan-in as security-critical nets.
2) Hardware Trojans: Table I lists the hardware Trojan

designs that we use in our evaluation. The first two Trojan

designs (analog and digital variants of A2) are attacks on the

OR1200 processor and DSP accelerator ICs. With respect to

the OR1200, the A2 attacks act as a hardware foothold [7]

for a software-level privilege escalation attack. With respect

to the DSP accelerator, the A2 attacks suppress the next out
signal (§VII-A). The Privilege Escalation Trojan targets solely

the OR1200 and the Key Leak solely the AES accelerator.
3) Build Environment: Both ICAS tools (Nemo and

GDSII-Score) were run on the same server as the synthesis

and place-and-route CAD tools. Nemo and Icarus Verilog

were compiled from source using GCC (version 4.4.7). For

increased performance, GDSII-Score was executed using the

PyPy Python interpreter with JIT compiler (version 4.0.1).

1750

Fig. 8. Trigger Space distributions for 15 different OR1200 processor IC layouts. Core density and max transition time parameters are varied across the
layouts, while target clock frequency is held constant at 1 GHz. The boxes represent the middle 50% (interquartile range or IQR) of open placement regions
in a given layout, while the dots represent individual open placement region sizes.

B. Undirected Defense Coverage

As detailed in §IV-A, a defensive strategy for protecting an

IC layout from foundry-level attackers is to exploit physical

layout parameters (e.g., core density, clock frequency, and

max transition time) offered by commercial CAD tools to

increase congestion—hopefully around security-critical wires.

The tradeoff is that while this is a low cost defense in that

CAD tools already expose such knobs, the entire design is

impacted and there is no guarantee that security-critical wires

will be protected. We use ICAS and its three security metrics to

quantify the effectiveness of such undirected approaches [15].

To uncover the impact of each parameter, we start by gen-

erating 60 different physical layouts of the OR1200 processor

design by varying:

1) Target Core Density (%): 50, 70, 90

2) Clock Frequency (MHz): 100, 200, 500, 1000

3) Max Transition Time (ps): 100, 150, 200, 250, 300

Target core density is a measure of how congested the place-

ment grid is. Typically, designers select die dimensions that

achieve ∼60–70% placement density to allow space for rout-

ing [6]. Target clock frequency is the desired speed at which

the circuitry should perform. Typically, designers select the

clock frequency based on performance goals. Max transition

time is the longest time required for the driving pin of a net

to change logical values. Typically, designers choose a value

for max transition time based upon power consumption and

combinational logic delay constraints.

For each of the 60 layout variations we compute ICAS

metrics. Figures 8, 9, and 10 provide a visual representation for

each metric. Overlaid on Figure 10 are the number of unique

attack (color-coded) implementations for each Trojan (Tab. I)

at six parameter configurations. Across the 60 IC layouts, the

time it took ICAS to complete its analyses ranged from 38

seconds to 18 minutes. On average, this translates to less

than 10% of the combined synthesize and place-and-route run-

times. These run-time results demonstrate the deployability

of ICAS as a back-end design analysis tool. Overall, our

evaluation indicates that while some of these layout parameters

do increase attacker complexity, none are sufficient on their

own. We break down the results metric-by-metric.
1) Trigger Space Analysis: Figure 8 shows the distribu-

tions of open trigger spaces across 15 unique OR1200 layouts.

We vary target core density and max transition time parameters

across layouts, while we fix the target clock frequency at

1 GHz. A trigger space is defined as a contiguous region

of open placement sites on the device layer placement grid

and is measured by number of contiguous “4-connected”

placement sites. Each box represents the middle 50%, or

interquartile range (IQR), of open trigger space sizes for a

given IC layout. The dots represent individual data points

within and outside the IQR. Our empirical results affirm prior

notions [13], [15], [16] that increasing the target core density

of an IC layout results in fewer large open spaces to insert

hardware Trojans. Additionally our results indicate that at

lower densities, decreasing the max transition time constraint

decreases the median trigger space size. Similar trends occur

at lower clock frequencies. While results show that modulating

target core density is effective, observe that even in the best

case, large trigger spaces remain.

From our Trigger Space analysis, we conclude future undi-

rected defenses should modulate layout parameters that both 1)

shrink the trigger space IQR, and 2) shift the median towards

one. In doing so, defenders: 1) minimize the variation in sizes

of contiguous open-spaces available to the attacker—therefore

limiting their Trojan design (size) options, and 2) force the

attacker to have to distribute Trojan components across the

die making Trojan logic placement and intra-Trojan routing
more challenging.

2) Net Blockage Analysis: Figure 9 shows the Net Block-

age metric (Eq. 3) computed across 20 unique OR1200 lay-

outs. We fix the target density at 50% across all layouts,

while the target clock frequency and max transition time

are varied (as listed above). The results show that at lower

clock frequencies a smaller max transition time parameter

corresponds to increased Net Blockage. This corresponds to

1751

Fig. 9. Overall Net Blockage results computed across 20 different OR1200
processor IC layouts. A target density of 50% was used for all layouts, while
target clock frequency and max transition time parameters were varied.

less open Trojan/victim integration points available to the

attacker. However, as clock speed increases, the correlation

between max transition time and overall Net Blockage dete-

riorates. Intuitively, smaller max transition times should lead

to smaller average net-lengths within the design, as transition

time is a function of the capacitive load on the net’s driving

pin [39]. Shorter net-lengths result in more routing congestion

as components cannot be spread-out across the die. However,

capacitive load (on a driving pin) is inversely proportional to

frequency, thus at higher clock frequencies the max-transition

time constraint is more easily satisfied, and altering it has less

effect on the Net Blockage. Given these results, the effec-

tiveness of modulating transition time is context dependent

and—even in the best case—open integration points remain.

From our Net Blockage analysis, we conclude future undi-

rected defenses should modulate layout parameters that both 1)

shrink overall security-critical wire lengths, and 2) maximize

routing congestion in the vicinity of security-critical wires.

In doing so, defenders minimize the Victim/Trojan integration
attack surface.

3) Route Distance Analysis: Figure 10 shows the Route

Distances across six various OR1200 layouts in the form of

heatmaps that capture the trade space between layout parame-

ters. Core density and max transition times were varied across

the layouts (indicated in the labels), while clock frequency was

held constant at 100MHz. Each heatmap describes several

(column-wise) histograms of Route Distances in terms of

standard deviations from the mean net length observed in that

particular IC layout (y-axis). The Route Distances reported

are those between any unblocked security-critical nets, and

trigger spaces large enough to hold an attack of a given

size range (x-axis). That is, the color intensities within in a

given heatmap column indicate the percentage of (security-

critical-net, trigger-space) pairs in that column that are within a

range of distance apart. Additionally, overlaid on each heatmap

are rectangles indicating the region of the heatmap where a

given attack (Tab. I) can be implemented, and the number

of possible attack configurations, (security-critical-net, trigger-

space) pairs, that can be exploited.

If timing is critical to the operation of an attacker’s desired

Trojan, (critical-net, trigger-space) pairs with routing distances

significantly greater than the average net length in the IC

Fig. 10. Heatmaps of routing distances across six unique IC layouts of the
OR1200 processor. Core density and max transition times are labeled. Each
heatmap is to be read column-wise, where each column is a histogram, i.e, the
color intensity within a heatmap column indicates the percentage of (critical-
net, trigger-space) pairs that are within a (y-axis) distance apart. Overlaid are
rectangles, indicating regions on each heatmap a given attack can exploit, and
numbers indicating the number of unique attack implementations.

layout are less likely to be viable candidates for constructing

hardware Trojans. IC layouts with few desirable (critical-

net, trigger-space) pairs are much more time-consuming to

attack. Namely, the IC layouts with heatmaps that indicate

a higher percentages of far-apart (critical-net, trigger-space)

pairs, where the trigger spaces are small, are most secure.

From Figure 10, we conclude that at high density, max

transition time has little affect on IC layout security; while

at lower densities, lower max transition time designs are more

secure. Similar trends exist across other layout parameters, as

shown in Figures 13–15 in Appendix A.

From our Route Distance analysis, we conclude future

undirected defenses should modulate layout parameters that

maximimze the distance between security critical wires and

open trigger spaces. In doing so, defenders: 1) maximize

intra-Trojan routing difficulty, and 2) restrict attackers from

implanting timing-critical Trojans.

4) Cost of Varying Layout Parameters: The results indi-

cate that increasing core density is effective, but incomplete,

and increasing clock frequency and decreasing max transition

time is marginally effective and incomplete. While tuning

these parameters is low cost to the designer, there is a cost

to the design in terms of complexity and power requirements.

We elucidate by discussing how varying each design parameter

(density, clock frequency, and max transition time) impacts

non-security characteristics of a circuit design.

While increasing core density to 90% makes placing-and-

routing a Trojan more difficult, it also makes placing-and-

routing the rest of the design more challenging. Specifically, it

can become nearly impossible to meet timing closure for the

entire design if there is not enough space within the core area

to re-size cells and/or add additional buffer cells. Depending

1752

on performance and security requirements, a layout engineer

may choose to relax timing constraints in order to achieve

a higher core density. Alternatively, a layout engineer may

attempt to surround security-critical nets with areas of high

densities, while maintaining a lower overall core density, as

previously suggested [13], [16].

Decreasing the maximum transition time and increasing

the clock speed of an entire circuit design makes it more

difficult to place-and-route a functional Trojan that meets

timing constraints, but also directly impacts the performance

characteristics of the circuit. Additionally, it is important to

note that max transition time is related to the clock fre-

quency, so varying one without the other changes performance

tolerances. While increasing the performance of the design

might increase security, it comes at the cost of increasing

power consumption. Depending on the power-consumption

requirements of the design, it may be possible for a designer

to over-constrain these parameters for added security.

C. Directed Defense Coverage

As an alternative to probabilistically adding impediments

to the attacker inserting a hardware Trojan, recent works

proposes a directed approach. As detailed in §IV-B, placement-

centric directed defenses [13], [16] attempt to prevent the

attacker from implementing their Trojan by occupying all

open placement sites with tamper-evident filler cells. The

limitation with such defenses is that it is infeasible to fill all
open placement sites with tamper-evident logic [16]. Thus, the

defenses focus their filling near security-critical logic, leaving

gaps near the periphery of the IC layout. Whether these open

placement sites near the periphery are sufficient to implement

an attack is an open question.

The goal of this evaluation is to determine not only if

it is still possible for a foundry-level attacker to insert a

hardware Trojan, given placement-centric defenses, but to

quantify the number of viable implementations available to

the attacker—to act as a surrogate for attacker complexity.

For the evaluation, We use our three IC designs (OR1200

processor SoC, AES accelerator, and DSP accelerator). For

each design, we create two IC layouts: (1) unprotected and

(2) protected. For the protected IC layout, we use the latest

placement-centric defense [13]; using the identified security-

critical wires (§VII-A) to direct the defense. We lay out all

IC designs using these parameters: target clock frequency of

100MHz, max transition time of 100 ps, and a target core

density of 60%.

We then use ICAS to asses the defensive coverage of each of

the six IC layouts. This analysis has two goals: (1) determine

whether the IC is vulnerable to attack and (2) understand the

impact of applying the defense. We answer both questions

in an attack-centric manner using the hardware Trojans in

Table I to asses defensive coverage against. For each attack/IC

layout combination we plot the number of (security-critical-

net, trigger-space) pairs that could be used in implementing

each Trojan. A (security-critical-net, trigger-space) pair is

considered a viable candidate for implementing a Trojan if:

Fig. 11. Routing Distance heatmaps across three IC designs, with and without
the placement-centric defense described in [13], [16]. Heatmaps should be
interpreted similar to Fig. 10.

1) the trigger space size is at least as large as the minimum

number of placement sites required to implement the

desired hardware Trojan design

2) the security-critical net is less than 100% blocked

3) if the hardware Trojan is “Timing-Critical”, i.e., it must

function at the design’s core operating frequency, then

the distance between the trigger space and open inte-

gration point on the security-critical net must be ≤ 3
standard deviations from average net length; otherwise,

any distance is allowed.2

Figure 11 shows the defensive coverage for each IC design.

Overlaid on each heatmap are rectangles (and numbers) indi-

cating unique possible attack implementations. These results

show that existing placement-centric defenses are effective at

reducing an IC’s fabrication-time attack surface, compared to

no defense—but gaps persist. Given that filling placement sites

with tamper-evident logic is already maximized, these results

point to systematically adding congestion around security-

critical wires as a means to close all remaining defensive gaps;

i.e., a directed version with similar effect to existing undirected

defenses.

VIII. DISCUSSION

ICAS is the first tool to provide insights into the security of

physical IC layouts. It is extensible across many dimensions

including CAD tools, process technologies, security metrics,

and fabrication-time attacks and defenses. To demonstrate

ICAS’ capabilities we implemented three security metrics (net

blockage, trigger space, and routing distance) using it. The

focus of this paper is using these metrics to estimate the

coverage of existing untrusted foundry defenses, which show

2Three standard deviations from the average net length is the threshold
for Trojan-to-integration-point routing without violating timing constraints,
because it accounts for 99.7% of the designs’ wires—outliers tend to be power
wires. For an exact calculation, it is possible to extract parasitics for a target
Trojan’s route to determine if it violates timing constraints.

1753

that IC designs are still vulnerable to attack. We envision uses

for ICAS beyond this, as an integral part of the IC design

process using commercial tools.

1) ICAS-Driven Defensive Layout: ICAS provides an

added notion of security to the IC layout (place-and-route)

process to enable researchers to explore countermeasures

against fabrication-time attacks. To the best of our knowledge,

the existing targeted defensive IC layout techniques [13], [15],

[16] are entirely placement-centric, i.e., filling unused space

on the device layer with functional logic cells. While ICAS

is capable of evaluating placement-centric defensive layout

techniques, its security-insights also asses routing-centric de-

fensive layout techniques. For example, layout engineers can

leverage ICAS to create high degrees of routing congestivity

in close proximity to security-critical nets. ICAS’ security

metrics enable IC layout designers to optimize the security

of both the placement and routing of their designs.

2) Constrained Security Metrics: In its primary state,

ICAS focuses on computing metrics that reason about the

spatial resources required to implant hardware Trojans in

IC layouts. While our metrics are unconstrained and thus

conservative, it is trivial to extend, and constrain, ICAS metrics

to account for other layout resources that may impact an

attacker’s decision process. For example, even with a plethora

of spatial resources available to insert Trojan components,

doing so in certain areas of the chip may impact local power

consumption enough to disrupt normal operating behavior.

Alternatively, inserting a hardware Trojan nearby un-shielded,

fast toggling, interconnects may negatively impact the Tro-

jan’s signal integrity, rendering it benign. We recognize it is

impractical to consider all possible constraints, and hence we

design ICAS to be extensible.

3) Extensibility of Security Metrics: GDSII-Score is the

ICAS tool that computes security metrics from an IC layout.

It loads several files describing the IC layout to instantiate

a single Python class (called “Layout”) that contains query-

able data structures containing a polygon representation of all

components in the layout. Additionally, GDSII-Score contains

several subroutines that compute spatial relationships between

polygon objects and points within the layout. From these

data structures and the provided subroutines, it is trivial to

integrate additional metrics into GDSII-Score. To facilitate

additional metrics, we open-source GDSII-Score [20], and our

three example metrics that demonstrate how to query the main

“Layout” data structure.

4) Extensibility of CAD Tools: Almost all steps of the

IC design process utilize CAD tools. ICAS integrates into

a commercial IC design process after placement-and-routing

(Figure 1). While ICAS is validated with IC layouts generated

by Cadence tools, integrating ICAS with other vendors’ CAD

tools does not require any additional effort due to the common

process technology (LEF) and GDSII specifications used by

ICAS.

5) Extensibility of Process Technologies: We test ICAS

using IC layouts built with a 45nm SOI process technology;

however, ICAS is agnostic of process technology. The LEF

Fig. 12. We assume that, at the very least, layout-level additive Trojans require
adding rogue wires to the layout3. Whether the Trojan design is integrated
(requires connecting to a host circuit) or standalone, or requires additional
transistors, the difficulty of inserting it into a victim IC layout can be captured
by our three metrics: 1) Trigger Space (TS), 2) Net Blockage (NB), and 3)
Route Distance (RD).

and layer map files (§VI) are the only ICAS input files that

are dependent on the process technology. A LEF file describes

the geometries and characteristics of each standard cell in

the cell library, and the layer map file describes the layer

name-to-number mappings, respectively, for a given process

technology. ICAS adapts to different process technologies

provided that all input files adhere to their specifications [37],

[40].

6) Limitations: The goal of ICAS is to estimate the sus-

ceptibility of circuit layouts to additive hardware Trojans,

thus there are limitations. First, as implemented, ICAS is not

capable of estimating the susceptibility of a circuit layout

to subtractive or substitution Trojans. We are unaware of

any stealthy and controllable subtractive hardware Trojans,

but should researchers develop such an attack, metrics will

need to be added to ICAS to enable detection. Dopant-level

Trojans are the closest example of substitution Trojans [4],

[5]. Though their non-existent footprints make them difficult to

detect via side channels, post-fabrication imaging techniques

that can identify such Trojans have been proposed [48]. Lastly,

our implemented metrics do not capture the threat of via-

only additive Trojans. A via-only attack shorts two vertically-

adjacent wires for the purpose of leaking information. We

feel the possibility of such pernicious attacks in the future

highlights the importance of ICAS’s extensibility.

7) Justification for Metrics: As a first step in estimating

risk, we chose to implement three metrics that capture our

decade worth of experience in implementing hardware Trojans:

net blockage, trigger space, and route distance. These metrics

capture the challenges we faced when inserting various types

of additive Trojans into circuit layouts, i.e., Trojan logic
placement, victim/Trojan integration, intra-Trojan routing. To

facilitate mapping our metrics to specific Trojans we provide

a taxonomy in Figure 12. To summarize the taxonomy: if a

Trojan needs to attach to a victim wire (i.e., an integrated

Trojan), our Net Blockage metric provides coverage; if the

Trojan requires transistors to implement logic, our Trigger

3Via-only attacks are outside the scope of our metrics as they are currently
implemented (§VIII-6).

1754

Space metric provides coverage; and if the Trojan needs to be

near the victim wire (for capacitive coupling in the case of a

standalone Trojan or to meet timing requirements in the case

of a integrated Trojan), our Route Distance metric provides

coverage. Additionally, as our evaluation with existing Trojans

and real IC layouts shows, our metrics are both Trojan- and

IC-layout- sensitive. Lastly, the metrics are hardware design

agnostic. While we do not suggest that the implemented

metrics are all-encompassing, our results suggest that these

metrics are a viable first step towards estimating a circuit’s

susceptibility to additive hardware Trojans.

IX. RELATED WORK

Fabrication-time attacks and defenses have been extensively

researched. Attacks have ranged in both size and triggering-

complexity [4]–[6], [28], [29]. Defenses against these attacks

include: side-channel analysis [9], [10], [12], [49], imag-

ing [50], [51], on-chip sensors [52], [53], and preventive

measures [13]–[16]. The most pertinent attacks and defenses

are highlighted below.

A. Untrusted-foundry Attacks

The first foundry-level attack was conceived by Lin et
al. [28]. This hardware Trojan was comprised of approxi-

mately 100 additional logic gates and designed to covertly

leak the keys of an AES cryptographic accelerator using

spread spectrum communication to modulate information over

a power side channel. While the authors only demonstrated this

attack on an FPGA, they are the first to mention the possibility

of this type of Trojan circuit being implanted at an untrusted

foundry.

The A2 attack [6] is the most recent fabrication-time attack.

A2’s analog triggering mechanism is stealthy, controllable, and
small. It prevents the Trojan from being exposed during post-

fabrication testing, or unintentionally through common usage.

The attack requires only two additional standard cells and

evades every known detection mechanism to date. ICAS quan-

tifies the defensive coverage to these and other fabrication-time

attacks.

B. Untrusted-foundry Defenses

Most untrusted foundry defenses rely on post-fabrication

detection schemes [9], [10], [12], [49]–[53]. ICAS aims to

guide innovation in preventive defenses against fabrication-

time attacks, for which few mechanisms currently exist [13]–

[16]. We highlight some of these preventive measures and how

ICAS could measure their effectiveness.

While preventive security-by-design was first explored at the

behavioral (RTL) level by of Jin et al. [42], Xiao et al. were the

first to demonstrate security-by-design at the layout-level with

their BISA (Built-In Self-Authentication) scheme [15]. The

undirected BISA approach attempts to eliminate all unused

space on the device layer placement grid, and create routing

congestion, by filling the device layer with interconnected

tamper-resistant fill cells. Alternatively, recognizing the im-

practicality of filling 100% of the empty placement sites in

complex circuit designs, Ba et al. take a directed approach

to filling empty placement cites [13], [16]. Specifically, they

only fill empty placement sites in close proximity to security-

critical nets.

X. CONCLUSION

ICAS is an extensible framework that we use to expose

and quantify gaps in existing defenses to the threat posed by

an untrusted foundry. ICAS has two high-level components:

Nemo, a tool that bridges the semantic gap across IC design

processes by tracking security-critical signals across all stages

of hardware development and GDSII-Score, a tool that esti-

mates the difficulty a foundry-level attacker faces in attacking

security-critical logic. Experiments with over 60 IC layouts

across three open-source hardware cores and four foundry-

level hardware Trojans reveal that all current defenses leave

the IC design vulnerable to attack—and some are totally

ineffective. These results show the value of a tool like ICAS

that can help designers identify and address defensive gaps.

From a high level, ICAS is momentus in that it makes

security a first-class concern during IC layout (in addition to

power, area, and performance): ICAS allows IC designers to

measure the security implications of tool settings and design

decisions. ICAS fits well with existing IC design tools and

flows, allowing them to consider security. ICAS is a critical

measurement tool that enables the systematic development of

future physical-level defenses against the threat of an untrusted

foundry.

ACKNOWLEDGMENT

We thank the anonymous reviewers, Ted Lyszczarz, Brian

Tyrrell, and other members of the MIT Lincoln Laboratory

community, for their thoughtful feedback that enhanced the

quality of our work.

This material is based upon work supported by the National

Science Foundation Graduate Research Fellowship Program

under Grant No. DGE 1256260. Any opinions, findings, and

conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views

of the National Science Foundation.

DISTRIBUTION STATEMENT A. Approved for public

release. Distribution is unlimited. This material is based

upon work supported by the Under Secretary of Defense

for Research and Engineering under Air Force Contract No.

FA8702-15-D-0001. Any opinions, findings, conclusions or

recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the Under

Secretary of Defense for Research and Engineering.

REFERENCES

[1] Intel Corporation, “Microprocessor quick reference guide,”
https://www.intel.com/pressroom/kits/quickreffam.htm.

[2] P. Alcorn, “Ice lake might arrive in june, according to leaked lenovo doc-
uments,” https://www.tomshardware.com/news/lenovo-laptop-intel-ice-
lake-10nm,38674.html.

[3] M. Lapedus, “Big trouble at 3nm,” June 2018,
https://semiengineering.com/big-trouble-at-3nm/.

1755

[4] G. T. Becker, F. Regazzoni, C. Paar, and W. P. Burleson, “Stealthy
dopant-level hardware trojans,” in International Workshop on Crypto-
graphic Hardware and Embedded Systems (CHES), 2013.

[5] R. Kumar, P. Jovanovic, W. Burleson, and I. Polian, “Parametric trojans
for fault-injection attacks on cryptographic hardware,” in Workshop on
Fault Diagnosis and Tolerance in Cryptography (FDTC), 2014.

[6] K. Yang, M. Hicks, Q. Dong, T. Austin, and D. Sylvester, “A2: Analog
malicious hardware,” in IEEE Symposium on Security and Privacy (SP),
2016.

[7] S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou,
“Designing and implementing malicious hardware,” in Usenix Workshop
on Large-Scale Exploits and Emergent Threats (LEET), 2008.

[8] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, 2010.

[9] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan
detection using IC fingerprinting,” in IEEE Symposium on Security and
Privacy (SP), 2007.

[10] Y. Jin and Y. Makris, “Hardware trojan detection using path delay
fingerprint,” in IEEE Workshop on Hardware-Oriented Security and
Trust (HOST), 2008.

[11] M. Potkonjak, A. Nahapetian, M. Nelson, and T. Massey, “Hardware
trojan horse detection using gate-level characterization,” in ACM/IEEE
Design Automation Conference (DAC), 2009.

[12] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia,
“TeSR: A robust temporal self-referencing approach for hardware trojan
detection,” in IEEE Symposium on Hardware-Oriented Security and
Trust (HOST), 2011.

[13] P.-S. Ba, S. Dupuis, M. Palanichamy, G. Di Natale, B. Rouzeyre et al.,
“Hardware trust through layout filling: a hardware trojan prevention
technique,” in IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), 2016.

[14] R. P. Cocchi, J. P. Baukus, L. W. Chow, and B. J. Wang, “Circuit
camouflage integration for hardware IP protection,” in ACM Design
Automation Conference (DAC), 2014.

[15] K. Xiao and M. Tehranipoor, “BISA: Built-in self-authentication for
preventing hardware trojan insertion,” in IEEE Symposium on Hardware-
Oriented Security and Trust (HOST), 2013.

[16] P.-S. Ba, M. Palanichamy, S. Dupuis, M.-L. Flottes, G. Di Natale, and
B. Rouzeyre, “Hardware trojan prevention using layout-level design
approach,” in European Conference on Circuit Theory and Design
(ECCTD), 2015.

[17] M. Hicks, M. Finnicum, S. T. King, M. M. K. Martin, and J. M. Smith,
“Overcoming an untrusted computing base: Detecting and removing
malicious hardware automatically,” in IEEE Symposium on Security and
Privacy (SP), 2010.

[18] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in IEEE International
Conference on Computer Design (ICCD), 2013.

[19] MIT Lincoln Laboratory, “Nemo,” https://github.com/mit-ll/nemo.
[20] ——, “GDS2-Score,” https://github.com/mit-ll/gds2-score.
[21] A. Waksman, M. Suozzo, and S. Sethumadhavan, “FANCI: identification

of stealthy malicious logic using boolean functional analysis,” in ACM
SIGSAC Conference on Computer & Communications Security (CCS),
2013.

[22] H. Salmani and M. Tehranipoor, “Analyzing circuit vulnerability to
hardware trojan insertion at the behavioral level,” in IEEE Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems
(DFT), 2013.

[23] R. S. Chakraborty, F. G. Wolff, S. Paul, C. A. Papachristou, and S. Bhu-
nia, “MERO: A statistical approach for hardware trojan detection.” in
International Workshop on Cryptographic Hardware and Embedded
Systems (CHES), 2009.

[24] M. Rostami, F. Koushanfar, J. Rajendran, and R. Karri, “Hardware
security: Threat models and metrics,” in IEEE International Conference
on Computer-Aided Design (ICCD), 2013.

[25] M. Beaumont, B. Hopkins, and T. Newby, “Hardware trojans-prevention,
detection, countermeasures (a literature review),” Defence Science and
Technology Organization Edinburgh (Australia), Tech. Rep., 2011.

[26] R. S. Chakraborty, S. Narasimhan, and S. Bhunia, “Hardware trojan:
Threats and emerging solutions,” in IEEE High Level Design Validation
and Test Workshop (HLDVT), 2009.

[27] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards
trojan-free trusted ICs: Problem analysis and detection scheme,” in ACM
Conference on Design, Automation and Test in Europe (DATE), 2008.

[28] L. Lin, M. Kasper, T. Güneysu, C. Paar, and W. Burleson, “Trojan
side-channels: Lightweight hardware trojans through side-channel en-
gineering.” in International Workshop on Cryptographic Hardware and
Embedded Systems (CHES), 2009.

[29] Y. Shiyanovskii, F. Wolff, A. Rajendran, C. Papachristou, D. Weyer,
and W. Clay, “Process reliability based trojans through NBTI and HCI
effects,” in NASA/ESA Conference on Adaptive Hardware and Systems
(AHS), 2010.

[30] M. Hicks, C. Sturton, S. T. King, and J. M. Smith, “SPECS: A
lightweight runtime mechanism for protecting software from security-
critical processor bugs,” in ACM International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(ASPLOS), 2015.

[31] X. Wang, M. Tehranipoor, and J. Plusquellic, “Detecting malicious
inclusions in secure hardware: Challenges and solutions,” in IEEE
Workshop on Hardware-Oriented Security and Trust (HOST), 2008.

[32] T. Force, “High performance microchip supply,” Defense Technical
Information Center (DTIC), Annual Report, 2005.

[33] H. Salmani, “COTD: Reference-free hardware trojan detection and
recovery based on controllability and observability in gate-level netlist,”
IEEE Transactions on Information Forensics and Security, 2017.

[34] J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “VeriTrust: Verification
for hardware trust,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2015.

[35] L. H. Goldstein and E. L. Thigpen, “SCOAP: Sandia controllabil-
ity/observability analysis program,” in ACM Design Automation Con-
ference (DAC), 1980.

[36] OpenCores.org, “OpenRISC OR1200 processor,”
https://github.com/openrisc/or1200.

[37] Cadence Design Systems, LEF/DEF Language Reference, 2009,
http://www.ispd.cc/contests/14/web/doc/lefdefref.pdf.

[38] E. Sperling, “Design rule complexity rising,” April 2018,
https://semiengineering.com/design-rule-complexity-rising/.

[39] W. C. Elmore, “The transient response of damped linear networks with
particular regard to wideband amplifiers,” Journal of Applied Physics,
1948.

[40] Cadence Design Systems, Layer Map Files, http://www-
bsac.eecs.berkeley.edu/ cadence/tools/layermap.html.

[41] Calma Company, GDSII Stream Format Manual, February 1987.
[42] Y. Jin, N. Kupp, and Y. Makris, “DFTT: Design for trojan test,” in IEEE

International Conference on Electronics, Circuits, and Systems (ICECS),
2010.

[43] T. Linscott, P. Ehrett, V. Bertacco, and T. Austin, “SWAN: mitigating
hardware trojans with design ambiguity,” in IEEE/ACM International
Conference on Computer-Aided Design (ICCAD), 2018.

[44] R. Zhang, N. Stanley, C. Griggs, A. Chi, and C. Sturton, “Identifying
security critical properties for the dynamic verification of a processor,” in
ACM Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2017.

[45] S. Williams, “Icarus Verilog,” http://iverilog.icarus.com/.
[46] J. F. Hughes and J. D. Foley, Computer graphics: principles and

practice. Pearson Education, 2014.
[47] MIT Lincoln Laboratory, “Common evaluation platform,”

https://github.com/mit-ll/CEP.
[48] T. Sugawara, D. Suzuki, R. Fujii, S. Tawa, R. Hori, M. Shiozaki, and

T. Fujino, “Reversing stealthy dopant-level circuits,” in International
Workshop on Cryptographic Hardware and Embedded Systems (CHES),
2014.

[49] J. Balasch, B. Gierlichs, and I. Verbauwhede, “Electromagnetic circuit
fingerprints for hardware Trojan detection,” in IEEE International Sym-
posium on Electromagnetic Compatibility (EMC), 2015.

[50] B. Zhou, R. Adato, M. Zangeneh, T. Yang, A. Uyar, B. Goldberg,
S. Unlu, and A. Joshi, “Detecting hardware trojans using backside
optical imaging of embedded watermarks,” in ACM/EDAC/IEEE Design
Automation Conference (DAC), 2015.

[51] R. Adato, A. Uyar, M. Zangeneh, B. Zhou, A. Joshi, B. Goldberg, and
M. S. Unlu, “Rapid mapping of digital integrated circuit logic gates via
multi-spectral backside imaging,” arXiv:1605.09306, 2016.

[52] J. Li and J. Lach, “At-speed delay characterization for IC authentication
and trojan horse detection,” in IEEE Workshop on Hardware-Oriented
Security and Trust (HOST), 2008.

[53] D. Forte, C. Bao, and A. Srivastava, “Temperature tracking: An inno-
vative run-time approach for hardware trojan detection,” in IEEE/ACM
International Conference on Computer-Aided Design (ICCAD), 2013.

1756

APPENDIX A

ROUTE DISTANCES OF OR1200 LAYOUTS

Fig. 13. Route Distance Metric for OR1200 at 50% Density). A target density of 50% was held across each layout, while target clock frequency and max
transition time parameters were varied from 100 MHz to 1000 MHz and 100 ps to 300 ps respectively. Each heatmap is intended to be read column-wise, where
each column is a histogram. The color intensity within a heatmap column indicates the percentage of (critical-net, trigger-space) pairs, within that column,
that are within a range of distance away. The y-axis reports the distance in terms of standard deviations from the overall mean net-length in each design. The
x-axis reports the trigger space sizes in number of contiguous placement sites. Designs with smaller trigger-spaces and long route distances are more resistant
to fabrication-time attacks. Namely, a heatmap column that is completely dark indicates no (critical-net, trigger-space) pairs, or attack points, and a column
that is completely dark except for the top-most cell is the second most secure.

1757

Fig. 14. Route Distance Metric for OR1200 at 70% Density. Same as Fig. 13, except a target density of 70% was held across each layout.

1758

Fig. 15. Route Distance Metric for OR1200 at 90% Density. Same as Fig. 13, except a target density of 90% was held across each layout.

1759

