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Abstract 
There is increasing appreciation that human complex traits are determined by poorly understood interactions 
between our genomes and daily environments. These “genotype x environment” (GxE) interactions remain difficult 
to map at the organismal level, but can be uncovered using molecular phenotypes. To do so at large-scale, we 
profiled transcriptomes across 12 cellular environments using 544 immortalized B cell lines from the 1000 Genomes 
Project. We mapped the genetic basis of gene expression across environments and revealed a context-dependent 
genetic architecture: the average heritability of gene expression levels increased in treatment relative to control 
conditions and, on average, each treatment revealed expression quantitative trait loci (eQTL) at 11% of genes. In 
total, 22% of all eQTL were context-dependent, and this group was enriched for trait- and disease-associated loci. 
Further, evolutionary analyses revealed that positive selection has shaped GxE loci involved in responding to 
immune challenges and hormones, but not man-made chemicals, suggesting there is reduced opportunity for 
selection to act on responses to molecules recently introduced into human environments. Together, our work 
highlights the importance of considering an exposure’s evolutionary history when studying and interpreting GxE 
interactions, and provides new insight into the evolutionary mechanisms that maintain GxE loci in human 
populations. 
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Introduction 
It is now clear that most human complex traits and 

diseases are determined by poorly understood interactions 
between an individual’s genetic background and his or her 
environment [1–3]. Consequently, there has been a strong 
interest in mapping “genotype x environment (GxE) 
interactions”—in which genotype predicts an individual’s 
response to environmental variation— and in understanding how 
loci involved in GxE interactions evolve and are maintained in 
our species. However, scientists have struggled in practice to 
map GxE interactions in human populations, largely because 1) 
the relevant environmental factors are often unknown, difficult 
to measure, or minimally variable within the study population 
and 2) large sample sizes are needed to overcome the power 
limitations posed by point #1. Current state of the art approaches 
have focused on leveraging very large cohort studies such as the 
UK Biobank, however, this work has only uncovered a handful 
of loci involved in GxE interactions for common diseases and 
complex traits [4–7].  

An alternative approach is to use in vitro manipulations 
of the cellular environment paired with transcriptomics to map 
“context-dependent” expression quantitative trait loci (eQTL), 
defined as variants that do not affect gene expression levels 

under baseline conditions but become associated with 
transcriptional variation following an in vitro exposure (or vice 
versa). This approach focuses on the cellular level as a proxy for 
the organismal level in a tractable, experimental framework. 
Using this methodology, thousands of GxE interactions, in the 
form of context-dependent eQTL, have been identified following 
cell treatment with pathogens, other molecules that provoke an 
immune response, drugs, hormones, chemicals, and additional 
stimuli [8–16]. These studies have consistently shown that 
context-dependent eQTL overlap genome-wide association 
(GWAS) hits for complex traits and diseases, in some cases 
more so that eQTL that are constant or “ubiquitous” across 
cellular conditions [8,16]. These studies have also revealed that 
context-dependent eQTL revealed by immune stimuli are often 
more strongly enriched for signatures of past adaptation than 
ubiquitous eQTL, suggesting there has been historical selection 
for plasticity in immune function.  

Taken together, this body of work argues that GxE 
interactions and context-dependent eQTL make important 
contributions to the genetic architecture of gene expression 
levels. However, given the large sample sizes needed to robustly 
map context-dependent eQTL, only a handful of cellular 
conditions (mostly immune-related) have ever been explored in 
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any single large-scale, genome-wide study. This leaves us with a 
poor understanding of 1) the full catalog of GxE interactions, as 
new cellular perturbations typically reveal new context-
dependent eQTL [8–16] and 2) the evolutionary forces that 
maintain context-dependent eQTL. In particular, while previous 
work has focused on the action of positive selection is 
maintaining context-dependent eQTL for pathogens and immune 
stimuli, which have co-evolved with humans through 
evolutionary time, context-dependent eQTL for “evolutionarily 
novel” stimuli (e.g., man-made chemicals that have only recently 
been introduced into our environments) may be maintained by 
different forces. For example, inefficient purifying selection may 
maintain GxE loci that are in fact deleterious, but are only 
revealed under rare or newly introduced environmental 
conditions; in other words, these loci may be sufficiently 
“hidden” from purifying selection such that they persist in 
human populations despite their negative effects. However, 
empirical investigations of the varied evolutionary forces that 
maintain context-dependent eQTL, especially in high-powered 
studies exploring many types of cellular environments, remain 
extremely limited. 

Here, we report a large-scale study in which we profiled 
genome-wide gene expression levels across 12 different cellular 
environments using 544 immortalized B cell (lymphoblastoid) 
lines from the 1000 Genomes Project [17]. We focused on 
unrelated European and African individuals for whom whole 
genome sequence data was publicly available [18], and we used 
these data to map both ubiquitous and context-dependent eQTL 
across all 12 cellular conditions. Our experimental treatments 
included stimuli familiar to B cells such as immune signaling 
molecules and hormones, but also man-made chemicals and 
other novel cell stressors that have not co-evolved with human B 
cells through evolutionary time. Our design thus allowed us to 
address three fundamental questions about the genetic 
architecture of gene expression levels: 1) to what degree is gene 
expression determined by ancestry (as has been shown 
previously [9,12]), and how environmentally robust are these 
effects? 2) how prevalent are context-dependent versus 
ubiquitous eQTL, and what are their respective properties and 
relevance to human complex traits? and (3) what are the 
evolutionary forces (e.g., genetic drift, inefficient purifying 
selection, positive selection) that maintain context-dependent 
versus ubiquitous eQTL, and do these forces differ depending on 
the evolutionary history of the cell treatment? Together, our 
work emphasizes the importance of GxE interactions in shaping 
complex traits, and provides new insight into the evolutionary 
mechanisms that maintain GxE loci in human populations. 

Results 
Diverse cell exposures induce diverse changes in gene 
expression levels 

We exposed 544 lymphoblastoid cell lines (LCLs) 
derived from individuals included in the 1000 Genomes study 
[17] to 12 cellular environments, including 10 treatment and 2 
control conditions (Figure 1, Table 1, and Table S1). We chose 

treatments that have been previously shown to induce moderate 
to strong responses in LCLs, focusing on a range of treatment 
types including immune and non-immune-related stimuli. 
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Figure 1. Study overview and environmental effects on gene 
expression. (A) Lymphoblastoid cell lines (LCLs) derived from 
individuals included in the 1000 Genomes Project were obtained 
from Coriell Institute. Specifically, we obtained the lines listed in 
Table S1, which were derived from individuals of European and 
African ancestry as noted on the map (abbreviations for included 
populations are as follows: CEU=Utah residents (CEPH), 
GWD=Gambian Mandinka, GBR=British, IBS=Iberian, MSL=Mende, 
FIN=Finnish, TSI=Toscani, ESN=Esan, YRI=Yoruba, LWK=Luhya). 
Each cell line was exposed to 12 cellular environments for 4 hours, 
after which we harvested the RNA and performed mRNA-seq. These 
data were used to understand differential expression as a function of 
environmental context and ancestry (AFR=African, EUR=European), 
as well as to map ubiquitous and context-dependent eQTL. (B) 
Principal components analysis of genotype data for individuals 
included in this study (colors are as in A). Individual used in this 
analysis are those for which paired RNA-seq and genotype data 
were available (Table S4). (C) Number of differentially expressed 
(DE) genes shared between N environments using a mashR, joint 
analysis approach. N is plotted on the x-axis and ranges from 1 (i.e., 
the gene is DE in response to only 1 environmental treatment) to 11 
(i.e., the gene is DE in response to all 11 environmental treatments). 
The low number of genes when N=2 is driven by a large number of 
DEX-specific genes, such that 93.7% of the N=1 genes are DEX-
specific; when DEX is excluded from the dataset, most genes are 
shared between three or more environments (Figure S5). (D) 
Number of differentially expressed (DE) genes shared between a 
given pair of environmental treatments using a mashR, joint analysis 
approach. The diagonal represents the number of DE genes in 
response to the focal environmental treatment. 
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Specifically, we exposed cells to: 1-2) FSL-1 and gardiquimod, 
two synthetic molecules that activate the TLR2/TLR6 and TLR7 
signaling pathways, respectively; 3) B-cell-activating factor, a 
cytokine that is a member of the tumor necrosis factor family 
and a potent B cell activator; 4) interferon gamma, a cytokine 
that is critical for coordinating innate and adaptive immune 
responses to viral infections; 5) dexamethasone, a synthetic 
glucocorticoid hormone and anti-inflammatory drug; 6) insulin-
like growth factor 1, a hormone that plays a key role in growth-
related processes; 7) tunicamycin, an antibiotic that induces 
endoplasmic reticulum stress and is used as a model for cell 
stressors that impact protein folding; 8-10) perfluorooctanoic 
acid, acrylamide, and bisphenol A, three man-made chemicals 
and environmental contaminants; 11) ethanol, a vehicle control 
for tunicamycin and dexamethasone, but also considered a 
treatment with water as a control; and 12) water, a vehicle 
control for all treatments except tunicamycin and 
dexamethasone; see Table S2). Following 4 hours of exposure to 
each cellular environment, we extracted RNA and used TM3’seq 
[19] to collect mRNA-seq data from 5223 samples (mean reads 
per sample ± SD = 2.199 ± 2.731 million). We paired this 
mRNA-seq data with publicly available genotype data for the 
same individuals, derived from whole genome sequencing to at 
least 30x coverage [18]. All individuals included in our study 
were unrelated and exhibited ancestry of European or African 
origin (admixed populations were not included in our study 
design; Figure 1). After filtering, we retained a total of 3886 
mRNA-seq profiles from 500 unique individuals (Table S3). 
Genotype data derived from high coverage whole genome 
sequencing was also available for 454 of these individuals 
(Table S4).  

Environment Abbreviation Treatment 
category 

Gardiquimod GARD Immune 
stimulant Fibroblast–stimulating 

lipopeptide 1  
FSL-1 

Interferon gamma IFNγ 
B cell activating factor BAFF 

Dexamethasone DEX Hormone 
Insulin-like growth factor 1 IGF-1 

Acrylamide ACRYL Novel 
contaminant or 

cell stressor 
 

Perfluorooctanoic acid PFOA 
Bisphenol A BPA 
Tunicamycin TUNIC 

Ethanol ETOH 
Water H20 Vehicle control 

 
We found significant differences in transcriptome 

dynamics between treated and control cells (when analyzing 
each of the 11 treatment-control pairs separately): on average, 
6.39% ± 8.98% (SD) of all 10157 tested genes responded to a 
given treatment, with a maximum of 31.64% genes differentially 
expressed in response to dexamethasone (limma FDR<10%; 

Figure 1 and Table S5). Gene set enrichment analyses (GSEA) 
revealed significant overrepresentation of differentially 
expressed genes in expected biological pathways. For example, 
gardiquimod induced differential expression of genes involved 
in immune system processes such as “cytokine production” 
(enrichment score=0.536, q=0.055), “toll like receptor signaling 
pathway” (enrichment score=0.507, q=1.03x10-2), and 
“activation of immune response (enrichment score=0.457, 
q=1.03x10-2). Similarly, IFNγ treatment activated expression of 
genes related to “response to virus” (enrichment score=0.583, 
q=0.066), “type I interferon production” (enrichment 
score=0.540, q=0.066), and “regulation of innate immune 
response” (enrichment score=0.462, q=0.066). Finally, the 
strongest pathways induced by tunicamycin were related to 
endoplasmic reticulum stress, such as “endoplasmic reticulum 
unfolded protein response” (enrichment score=0.581, q=0.189) 
and “ER overload response” (enrichment score=0.844, q=0.189; 
see Figure S1 and Table S6 for results for all treatments). These 
results suggest that our experimental cell treatments induced 
appropriate biological responses. 

When we used an empirical Bayes approach to perform 
joint analyses across our entire dataset [20], we found that 
23.93% of differentially expressed genes were unique to a single 
treatment (mashR LFSR<10% and no posterior effect size 
estimates within a factor of 2). In contrast, 42.44% were shared 
between 2 and 10 treatments and a small subset of genes—
1.85% of genes differentially expressed in response to any 
treatment—were generally environmentally responsive and 
differentially expressed in response to all 11 treatments (mashR 
LFSR<10% and all posterior effect size estimates within a factor 
of 2; see Figure 1, Figure S2, and Table S7). These results 
emphasize the environmental dependency of gene expression, as 
well as the fact that diverse experimental treatments provoke 
non-overlapping cellular responses.  

 
Genetic ancestry controls the expression of immune-related 
genes across cellular conditions 

We next explored transcriptional variation as a function 
of ancestry, comparing individuals of African versus European 
descent (Figure 1). Of the 10157 genes we tested, an average of 
3.59% ± 2.80% (SD) genes were differentially expressed 
between ancestry groups (limma FDR<10%; Table S8). Joint 
analyses [20] revealed that these ancestry-associated genes were 
generally shared across conditions, with 69.20% of ancestry-
associated genes displaying similar effect sizes across all 12 
conditions, and 98.92% displaying similar effect sizes across 
≥2/3 conditions (Figure 2, Figure S2, and Table S7). In 
agreement with previous work [9], we found that genes 
controlled by ancestry were most strongly enriched for immune 
system processes such as “cytokine-mediated signaling 
pathway” (enrichment score=0.311, q=0.160), “response to 
virus” (enrichment score=0.419, q=0.160), and “inflammatory 
response” (enrichment score=0.350, q=0.160; Figure 2 and 
Table S9). Further, we downloaded publicly available sets of 
genes that are thought to lie along the causal pathway linking 
genetic variation, gene expression, and human complex traits 

Table 1. Cellular environments. 
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(inferred through Probabilistic Transcriptome Wide Association 
Studies, PTWAS [21]) and tested for overlap with our set of 
ancestry-associated genes. Here, we found that ancestry-
associated genes were enriched for complex traits and diseases 
with immune involvement, such as lymphocyte counts (fold 
enrichment=1.10, q=0.098), platelet counts (fold 
enrichment=1.08, q=0.098), inflammatory bowel disease (fold 
enrichment=5.59, q=0), and Crohn’s disease (fold enrichment 
=5.59, q=0) (Table S10). Importantly, many of these phenotypes 
are known to differ in prevalence and/or etiology between 
individuals of African versus European ancestry [22,23]. 

We hypothesized that the observed transcriptional 
differentiation between African and European individuals was 
controlled by genetic variation [9,12], and performed two sets of 
analyses to address this possibility. First, we followed the 

approach of [9] and asked whether genes with ancestry effects 
exhibited higher FST values between African and European 
populations relative to non-ancestry-associated genes. We found 
that this was indeed the case for genes with shared effects across 
≥2/3 of conditions (Wilcoxon signed-rank test, p=1.91x10-4) as 
well as for the total set of genes with effects in any condition 
(Wilcoxon signed-rank test, p=2.79x10-4; Figure 2). Further, 
when analyzing genes with ancestry effects in ≥1 condition, we 
found that the degree of genetic differentiation was positively 
correlated with the number of conditions in which an ancestry 
effect was found (linear model, beta=3.69x10-4, p=7.85x10-5), 
suggesting that genes with ancestry effects that are unmodified 
by treatment may be under the strongest genetic control. Second, 
we compared PST values for ancestry-associated genes identified 
in ≥1 condition versus genome-wide FST values to understand 
whether ancestry-related variation in the transcriptome (that is 
putatively genetically controlled) showed evidence for being 
driven by genetic drift (PST = FST), diversifying selection (PST > 
FST), or stabilizing selection (PST < FST) [24,25]. Our analyses 
point toward diversifying selection at ancestry-associated genes 
(all PST > FST), suggesting that there has been selection for 
different local optima in African versus European populations 
(Figure 2 and Figure S3). 

Consistent with the high degree of effect size similarity 
we observed for ancestry effects analyzed across cellular 
environments, we did not find any compelling evidence for 
ancestry x treatment effects on gene expression levels using 
several analysis approaches (see Methods). While previous work 
has found that ancestry predicts the magnitude of the response to 
experimental infection in macrophages and peripheral blood 
mononuclear cells (PBMCs) [9,12,26], we note that our 
treatments induced much smaller overall transcriptional shifts in 
LCLs relative to these previous studies in primary cells, which 
likely affects our power to detect interaction effects at genome-
scale. Further, LCLs are derived from B cells which are a key 
component of the adaptive immune system; in contrast, previous 
work has found that ancestry effects on the response to infection 
largely involve innate immune system cell types and processes 
[9,12,26].  
 
Cellular perturbations reveal many context-dependent eQTL 

The primary goal of this study was to understand the 
genetic architecture of gene expression levels, including the 
degree to which genetic effects are context-dependent versus 
unperturbed by environmental challenges. Consistent with 
previous studies [27–29], we found that there is a substantial 
genetic component to gene expression levels in lymphoblastoid 
cell lines, with an average heritability of 0.111 ± 0.250 (SD) in 
unstimulated cells. However, we found that this genetic 
component changed following cell treatments, such that mean 
per-gene heritability estimates were significantly higher in 
almost all treatment conditions relative to their respective 
controls. Specifically, mean heritability estimates increased in 9 
of 11 treatments, with an average fold increase of 1.736 ± 0.955 
(SD) across all 11 treatments (Figure 3 and Table S5). Further, 
the difference in mean per-gene heritability estimates between 
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Figure 2. Ancestry effects on gene expression. (A) Number of 
ancestry-associated (AA) genes shared between N environments 
using a mashR, joint analysis approach. N is plotted on the x-axis 
and ranges from 1 (i.e., the gene is AA in only 1 cellular 
environment) to 12 (i.e., the gene is AA in all 12 cellular 
environments). (B) Example of an ancestry-associated gene. Y-axis 
shows the mean, normalized IL10 gene expression levels estimated 
in each environment, after regressing out 3 surrogate variables. (C) 
Results from gene set enrichment analyses testing for 
overrepresentation of particular gene ontology categories among AA 
genes (note, genes were sorted by average AA effect size across all 
12 cellular environments and only the top 15 most significant 
categories are shown). Enrichment map was created with the 
emapplot function in the R package enrichplot. (D) Distribution of 
average per-gene FST values for genes that 1) were found to be AA 
in most (>2/3) cellular environments or 2) had no effects on ancestry 
in any cellular environment (results are from a mashR, joint analysis 
approach). (E) Phenotypic differentiation (in gene expression; PST) 
versus genetic differentiation (FST) for AFR versus EUR samples. 
Plots show the distribution of PST values for: 1) AA genes identified 
in the H20 cellular environment (blue) and 2) a same-sized set of 
randomly selected genes (grey). The mean genome-wide FST value 
comparing genetic divergence between AFR and EUR samples is 
noted on the x-axis with an arrow. We find that all AA genes exhibit 
PST > FST, indicative of diversifying selection [24,25].  
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treatment and control conditions remained after accounting for 
the sample size used to estimate heritability in each condition 
(linear model: β=2.94x10-2, p=2.90x10-13) and after subsampling 
all environments to an identical sample size (Figure 3 and Table 
S5). Together, these results are consistent with an increase in 
additive genetic variation for gene expression levels when cells 
are perturbed.   

We confirmed that the genetic architecture of gene 
expression levels changes following cellular perturbations by 
mapping cis eQTL in each of the 12 control or treatments 
conditions and comparing their effect sizes. These analyses 
revealed extensive genetic control of gene expression: 11.07% ± 
7.64% (SD) of genes contained at least one eQTL (matrixeQTL 
FDR<10%), with this number increasing to 15.72% ± 3.69% 
(SD) when only considering the conditions with the largest 
sample sizes (Table S8). Further, when we pooled our data and 
performed one analysis using samples from all conditions, we 
found that almost all genes (92% of those tested) had at least one 
eQTL (matrixeQTL FDR<10%).  

When we performed joint analyses [20] to identify 
ubiquitous and context-dependent eQTL, we found that 77.53% 
of significant eQTL were shared across all 12 conditions, while 
6.70% were condition-specific and the remaining 15.78% were 
shared between 2 and 11 conditions (mean=10.40 ± 3.42 (SD) 
conditions; Figure 4 and Table S7). We also found substantial 
evidence for a subset of context-dependent eQTL known as 
“response eQTL”, which we define as SNPs that do not affect 
gene expression in the control condition but for which genetic 
effects are revealed by experimental treatment (or vice versa; 
Table S5). On average, we found that 11.28% ± 2.91% (SD) of 
all tested genes contained at least one response eQTL for a given 
treatment-control pair, with the strongest evidence for response 
eQTL observed for the treatment that induced the largest overall 
shift in transcriptome dynamics (i.e., dexamethasone, which 
revealed response eQTL at 14.98% of genes).  

To validate and contextualize the eQTL we identified, 
we performed two follow up analyses: 1) we tested for an 
expected mechanistic pattern, namely enrichment of eQTL 
within accessible chromatin regions and 2) we tested for overlap 
between our eQTL containing genes (“eGenes”) and eGenes 
identified by The Genotype-Tissue Expression (GTEx) Project 
in untreated LCLs [30]. First, as others have observed [9,30], we 
found that SNPs within accessible chromatin regions were more 
likely to be identified as ubiquitous (p=0.042, hypergeometric 
test) and context-dependent eQTL (p=4.01x10-4; enrichment 
analyses performed using publicly available ATAC-seq data [31] 
from untreated LCLs [32]). Second, we found that genes 
containing ubiquitous eQTL overlapped significantly with GTEx 
LCL eGenes (p=6.22x10-3, hypergeometric test), suggesting 
there is a core set of eQTL identified across study designs and 
cell states. However, genes containing context-dependent eQTL 
did not overlap with GTEx LCL eGenes (p=0.465), suggesting 
that our cellular perturbations revealed previously 
uncharacterized genetic effects on gene expression. In support of 
this idea, genes with evidence for eQTL in our dataset, but not in 
GTEx, were enriched for genes that responded to at least one 
experimental treatment (p=4.66x10-4).  

 
Phenotypic relevance of ubiquitous and context-dependent 
eQTL 

Our next goal was to understand the phenotypic 
relevance of context-dependent versus ubiquitous eQTL, and to 
test the hypothesis that context-dependent eQTL are especially 
important for human diseases and adaptively relevant traits. To 
do so, we asked whether our context-dependent and ubiquitous 
eQTL SNP sets (or their associated genes) were enriched within 
three publicly available datasets: 1) GWAS hits for human traits 
and diseases [33], 2) sets of genes that are thought to lie along 
the causal pathway linking genetic variation, gene expression, 
and 114 complex traits and diseases (inferred through PTWAS 
[21]) and 3) loss of function, mutation-intolerant genes (as 
curated by ExAC [34]).  

First, we found that both context-dependent and 
ubiquitous eQTL were strongly enriched for loci previously 
implicated in GWAS of human complex traits and diseases, 
though contrary to our expectations, these results were slightly 
stronger for ubiquitous compared to context-dependent eQTL (p-
value=5.74x10-15 and <10-16 for context-dependent and 
ubiquitous eQTL, respectively, hypergeometric test; Figure 5). 
Second, we found that context-dependent eGenes were enriched 
for 11 complex traits, largely focused on immune system traits 
and disorders such as platelet counts (q=2.47x10-4, 
hypergeometric test), neutrophil counts (q=0.086), and 
rheumatoid arthritis (q=0.086; Table S10). In contrast, 
ubiquitous eGenes were enriched for approximately half the 
number of complex traits (n=6), again including many immune 
phenotypes such as inflammatory bowel disease (q<10-16) and 
lymphocyte counts (q=0.053; Figure 5 and Table S10).  
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Figure 3. Environmental perturbations increase the heritability 
of gene expression levels. Y-axis shows the mean per-gene 
heritability estimated in each environment, using (A) the total 
available sample size for each environment or (B) a subsample of 
n=100 from each environment (plot shows the average of 5 
subsamples). 
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Finally, we tested whether ubiquitous or context-
dependent eGenes were enriched for mutation-intolerant genes, 
which are thought to be phenotypically relevant and essential for 
life given that no adult humans (in a large population sample 
known as ExAC) contain mutations that would result in a 
truncated or loss of function protein [34]. Here, we found that 
context-specific eGenes were enriched among mutation-
intolerant genes (odds=1.306, p=5.45x10-8, Fisher’s exact test), 
but ubiquitous eGenes were not, and even trended toward being 
under enriched (odds=0.982, p=0.8102; Figure 5). These results 
parallel those obtained by the GTEx project: eGenes that were 
shared across many tissues were significantly depleted for loss 
of function, mutation-intolerant genes, while tissue-specific 
eGenes were significantly enriched [30]. These results were 
interpreted as evidence for purifying selection on regulatory 
variants that involve many tissues and are thus more likely to 
have deleterious, pleiotropic effects. In contrast, tissue-specific 
eQTL, and in our case, context-dependent eQTL, appear to be 
more likely to “escape” the effects of purifying selection and to 
persist in loss of function, mutation-intolerant genes.  

 
Evolutionary forces maintaining ubiquitous and context-
dependent eQTL 

The analyses described in the previous section point 
toward negative selection as a key evolutionary force that 
patterns genetic effects on gene expression. However, several 
previous studies of context-dependent eQTL uncovered by 
immune stimulation have instead emphasized a role for positive 
selection [9,12,16,26]. For example, Kim-Helmuth and 
colleagues found that monocyte eQTL with differential effect 
sizes in baseline versus immune-stimulated conditions were 
enriched among genomic regions with recent signatures of 
positive selection; a similar result was found for ubiquitous 
eQTL, though the enrichment was weaker [16]. Drawing on this 
work and our results thus far, we were motivated to further 

explore the role of both positive and negative selection in 
generating context-dependent and ubiquitous eQTL.  

To do so, we first drew on publicly available measures 
of sequence conservation across mammals, to understand 
whether context-dependent and ubiquitous eQTL fall in rapidly 
evolving versus conserved regions of the human genome. We 
found that ubiquitous eGenes exhibited both lower phastCons 
(p=1.765x10-5, Wilcoxon signed-rank test) and phyloP scores 
(p=1.749x10-4) than background expectations, indicating that 
ubiquitous eGenes are underrepresented in evolutionarily 
conserved genes. In contrast, context-dependent eGenes 
exhibited higher phastCons (p=5.01x10-3, Wilcoxon signed-rank 
test) and phyloP scores (p=1.35x10-4; Figure 5) than background 
expectations, indicating that they are overrepresented in 
conserved genes. Similar to our results using mutation-intolerant 
gene annotations, these analyses suggest that, in highly 
conserved and putatively essential genes, ubiquitous eQTL are 
selected against and depleted, while context-dependent eQTL are 
“hidden” from selection and persist. 
Next, we explicitly investigated a role for positive selection by 
obtaining per-site estimates of the integrated haplotype score 
(iHS), a commonly used measure of within-population recent 
positive selection [35,36]. We obtained genome-wide iHS 
estimates for each of the populations included in our study, and 
identified putative selection candidates as loci that fell in the 
>99th percentile of |iHS| values in ≥2 populations (as in [9,16]). 
When we overlapped these selection outliers with our eQTL, we 
found that loci that functioned as eQTL (in all or <12 cellular 
environments) were more likely to show signatures of positive 
selection (odds=1.332, p=3.702x10-13, Fisher’s exact test). This 
result was especially strong for ubiquitous eQTL (odds=1.389, 
p=1.688x10-13), but less so for context-dependent eQTL 
(odds=1.152, p=0.086; Figure 5), in contrast to patterns observed 
in previous work focusing on immune stimulations [9,16]. Given 
that our study focuses on a more diverse set of environmental 
perturbations, including immune stimulations but also hormones, 

Figure 4. Environmental variation reveals 
context-dependent eQTL. (A) Number of 
eQTL shared between N environments 
using a mashR, joint analysis approach. N is 
plotted on the x-axis and ranges from 1 (i.e., 
the eQTL is present in only 1 cellular 
environment) to 12 (i.e., the eQTL is present 
in all 12 cellular environments). (B) Same 
plot as in A, but sharing is defined at the 
gene rather than the SNP level. (C) Number 
of eQTL shared between a given pair of 
cellular environments using a mashR, joint 
analysis approach. The diagonal represents 
the number of eQTL in the focal cellular 
environment. Note that ACRYL, BPA, 
PFOA, and FSL-1 had lower sample sizes 
than the other 8 environments, and their 
clustering thus reflects differences in power. 
(D-E) Examples of ubiquitous and context-
dependent eQTL, identified using a mashR, 
joint analysis approach. Y-axis shows the 
mean, normalized expression levels for a 
given gene estimated in each environment, 
after regressing out 3 surrogate variables. 
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environmental contaminants, and evolutionarily novel cell 
stressors, we wondered whether heterogeneity between 
treatments could explain the lack of enrichment of iHS outliers 
in the total set of context-dependent eQTL. When we analyzed 
each condition separately, we found significant enrichment of 
iHS outliers in response eQTL for several immune stimuli, 
namely FSL-1 (odds=1.362, p=0.036) and BAFF (odds=1.512, 
p=0.031). Further, we found that enrichment effect sizes were 
consistently higher for the immune treatments relative to the 
environmental contaminant and cell stressor treatments (β=-
0.246, p=5.82x10-4, linear model) but not the hormone 
treatments (β=-0.065, p=0.297; Figure 5). Thus, our data suggest 
that positive selection has played a much greater role in shaping 
loci involved in the response to immune signaling molecules and 
hormones relative to loci involved in the response to man-made 
chemicals and novel cell stressors. 

Discussion 
Despite major advances in genomic technologies, 

understanding the genetic basis of human complex traits remains 
a challenge. While decades of GWAS have uncovered many loci 
for common diseases and health-related traits, there is a general 
consensus that mapping additive effects will not allow us to 
account for the total estimated genetic component of most 
phenotypes. This problem is known as the “missing heritability” 
problem, and has been used to argue for a critical role for GxE 
interactions [37]. More specific support that GxE interactions 
contribute to human complex traits comes from analyses of 
variance and observations that the heritability of key traits has 
increased in recent decades, despite minimal changes in the 
genetic makeup of populations [38–41]. However, despite 

multiple lines of evidence that GxE interactions are likely 
important, we have made little progress in mapping the specific 
loci involved in GxE interactions. This reality limits our ability 
to understand their distribution, effect sizes, mechanisms of 
action, and evolution. 

Here, we use a cell culture model to overcome issues 
faced by observational studies and to maximize our power to 
detect GxE interactions in the form of context-dependent eQTL. 
Specifically, we exposed cells from genetically well-
characterized individuals to 12 controlled, in vitro environments 
and asked whether genetic variation predicted individual 
responses at the transcriptional level. We found that diverse 
environmental perturbations induced diverse gene regulatory 
programs (Figure 1), while the genetic control of gene 
expression levels was more environmentally robust: at least 70% 
of ancestry effects on the transcriptome were consistent in effect 
size across environments, as were 78% of eQTL. These results 
agree with previous work using smaller sample sizes, fewer 
environments, as well as cross-tissue comparisons [9,12,15,30].  
 Nevertheless, our experiments do show that a non-
negligible portion of the transcriptome’s genetic architecture is 
environmentally sensitive: 16% of eQTL were only shared 
between 2 and 11 conditions, while 6% were specific to a single 
condition. Interestingly, we found that our observed patterns of 
cis eQTL sharing generally mimicked the bimodal distribution 
observed by GTEx for cross-tissue comparisons [30]. In other 
words, the largest categories of cis eQTL were those shared 
across all 12 environments, followed by those that were specific 
to a single environment (Figure 4). Importantly, many of the 
eQTL revealed by our environmental treatments were both 
uncharacterized (e.g., unannotated in GTEx LCLs [30]) and 
putatively phenotypically relevant (Figure 5), arguing that 

Figure 5. Phenotypic relevance and 
evolution of context-dependent eQTL. (A) 
Diseases and heath conditions for which 
associated genes (identified via PTWAS [21]) 
are enriched among genes with ≥1 context-
dependent or ubiquitous eQTL. X-axis 
represents the fold enrichment estimate from a 
Fisher’s exact test. (B) Evolutionary forces that 
potentially maintain context-dependent eQTL: 1) 
positive selection on beneficial mutations 
(yellow) or 2) inefficient purifying or negative 
selection that fails to remove deleterious 
mutations (red). (C) Overlap of ubiquitous, 
context-dependent, and all (ubiquitous and 
context-dependent) eQTL with 1) the full catalog 
of GWAS-associated loci [33], 2) iHS outlier loci 
[36], and 3) genes annotated as loss of function, 
mutation intolerant [34]. Y-axis represents fold 
enrichment from a Fisher’s exact test, with error 
bars denoting the 95% confidence interval for 
each estimate. (D) Distribution of mean per-
gene phastCons and phyloP scores for genes 
with no eQTL, ≥1 ubiquitous eQTL, and ≥1 
context-dependent eQTL. (E) Overlap of 
response eQTL, identified in a given condition, 
with iHS outlier loci [36]. Y-axis represents fold 
enrichment from a Fisher’s exact test, with error 
bars denoting 95% confidence intervals. 
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environmental diversity should be incorporated into eQTL 
mapping studies whenever possible (e.g., [15]). In fact, while an 
estimated 88% of all genetic variants associated with complex 
human traits and diseases lie outside of protein-coding regions 
[42,43], the most comprehensive eQTL studies to date (e.g., 
GTEx [30]) have only accounted for ~1/2 of known regulatory 
GWAS hits. This state of affairs has motivated recent calls to 
expand the set of cellular conditions under which we study links 
between genotype, gene regulation, and disease [44]; our study 
design provides one feasible avenue for doing so. 

While previous work has applied in vitro environmental 
manipulations to study GxE interactions [8–16], the number of 
environments we assay here using genome-wide datasets and 
appreciable sample sizes is unprecedented. Further, previous 
experiments have focused heavily on environmental 
manipulations involving pathogens and other immune stimuli, 
and we speculate that context-specific eQTL in the immune 
system may manifest and evolve in different ways than context-
specific eQTL for other stimuli, especially stimuli that have not 
been common throughout human evolutionary history. 
According to evolutionary theory, most new mutations are 
overall deleterious (e.g., because of their pleiotropic effects) and 
will be selected against; in contrast, context-dependent 
regulatory mutations can provide more targeted fitness benefits, 
and are thus thought to play a key role in the evolution of 
adaptively relevant trait [44–46]. In support of this argument, 
several studies have shown that eQTL that control the gene 
regulatory response to infection are under positive selection 
[9,12,16,26]. However, it is unlikely that natural selection has 
similarly shaped eQTL that control the response to stimuli 
recently introduced into human environments (e.g., man-made 
chemicals). In line with this thinking, we find essentially no 
evidence that positive selection has shaped GxE loci revealed by 
novel cell stressors or chemicals, but we do find evidence for 
this pattern for immune-responsive loci (Figure 5). Our results 
thus provide novel insight into the fact that cellular perturbations 
with distinct evolutionary histories can produce divergent 
patterns. Moving forward, we argue for greater consideration of 
the evolutionary history of a given environmental exposure 
when studying and interpreting GxE interactions. 

There are several limitations to the present study, as 
well as open directions for future work. First, our sample sizes 
were more than reasonable for eQTL mapping in all 12 cellular 
environments, however, they were not identical. Nevertheless, 
our use of the mashR framework should circumvent many of 
these issues via joint analysis and consideration of effect sizes 
rather than significance cutoffs [20]. Second, our study design 
relied on Epstein-Barr virus transformed lymphoblastoid cell 
lines, because they are a replenishable and shareable resource 
and are commercially available for genetically well-
characterized individuals [17]. They have also been used 
extensively for functional genomic work [47–51], and previous 
studies have shown that 1) genomic results from LCLs replicate 
in primary tissues [47–51] and 2) gene expression levels in 
newly established LCLs maintain a strong individual signature 
[52]. However, gene regulation in LCLs is not identical to their 

progenitor B cells, and the transformation process is known to 
induce certain artifacts [53,54]. Thus, while we believe LCLs 
represent a powerful model for high-throughput and large-scale 
GxE mapping, future work in primary tissues or induced 
pluripotent stem cells will be important for corroborating the 
patterns we see here. Finally, we did not generate environment-
specific data on additional gene regulatory mechanisms such as 
DNA methylation, chromatin accessibility, or chromatin state. 
While this work was beyond the scope of the present study, it is 
a key avenue for future research and for understanding the 
molecular mechanisms that generate context-dependent eQTL 
(e.g., environmentally dependent transcription factor binding). 
While functional fine-mapping of individual GxE interactions 
can be laborious and difficult, several recent studies offer 
promising new avenues for using gene regulatory assays to 
understand the path from genotype to phenotype [55,56], 
including under diverse environmental conditions.   
Technological advances have fueled the ascent of personal 
genomics and the promise of precision medicine. However, to 
unlock this potential, we must first understand how the 
environmental and genetic interactions unique to each individual 
contribute to variation in complex traits. Our study provides a 
comprehensive window into the environmental-dependency of 
the human transcriptome, and highlights that diverse 
environmental exposures leads to an array of unique cellular 
responses. Importantly, these responses are modulated by an 
individual’s genetic background, including by genetic effects 
that are only revealed by environmental change (a class of 
variants known as “cryptic genetic variation” [57,58]). Cryptic 
alleles likely drive the significant increase in heritability we 
observe following cellular treatments, and could play a major 
role in explaining the “missing heritability” problem; again, 
these results argue for a critical role for GxE interactions in 
driving variation in complex traits. 
 
Materials and Methods 
Cell culture, experimental cell treatments, and mRNA-seq 

Lymphoblastoid cell lines (LCLs) were obtained for 
544 unrelated individuals included in the 1000 Genomes study 
[17]. All cells were ordered from Coriell Institute, and live 
cultures were shipped overnight to Princeton University in 
randomized batches of 25 (Table S1). Cells were cultured in 
parallel for 5-11 days until 12 million cells were available to 
seed (at a density of 1 million cells/2.5mL of media in a 12 well 
plate). After an overnight incubation period, 12 environmental 
treatments (Table 1 and Table S2) were added to each of the 12 
wells (see for treatment concentrations). After 4 hours, cells 
were washed, harvested, and preserved in lysis buffer for 
downstream RNA work.    
 Total RNA was extracted from each sample using 
Zymo’s Quick-RNA 96 kit, following the manufacturer’s 
instructions. mRNA-seq libraries were prepared using the 
published TM3’seq protocol [19] and a CyBio FeliX liquid 
handling robot (Analitik Jena). The total dataset (n=5223 
libraries) was sequenced across four runs of the Illumina 
NovaSeq platform. Each sample was sequenced to a mean depth 
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of 2.199 ± 2.731 (SD) million reads using 100bp single end 
sequencing. Additional information relating to cell culture, 
experimental cell treatments, and mRNA-seq data generation is 
available in the Supplementary Materials. 
 
Low level processing of mRNA-seq and genotype data 

Following sequencing, we trimmed each FASTQ file 
for low quality bases and adapter contamination [59], mapped 
the filtered reads to the human reference genome (hg38) [60], 
and extracted counts of reads mapped to genes [61]. If a sample 
had fewer than 250,000 reads mapped to protein coding genes, 
we excluded it from further analyses (see list of filtered samples 
in Table S3). We further filtered the per-gene counts matrix to 
exclude lowly expressed genes, normalized the count data [62], 
and conducted surrogate variable (SV) analysis to remove 
variance attributed to batch or technical effects [63] 
(specifically, we fit three SVs and then regressed out their 
effects). Additional information relating to low level processing 
of mRNA-seq data is available in the Supplementary Materials. 

We downloaded phased genotype calls, derived from 
~30x whole genome sequence data, for 454 1000 Genomes 
Project individuals included in our study [18] (Table S4). We the 
used Plink [64] to remove the following variant types: indels, 
SNPs with >2 alleles, SNPs with MAF<0.05, SNPs called in 
<50% of individuals, and SNPs out of Hardy-Weinberg 
equilibrium (p<10-6). This filtering left us with 7,205,828 SNPs. 
We then performed LD filtering using the indep-pairwise 
command in Plink [64], with a window size of 500kb, a step size 
of 50kb, and an R2 threshold of 0.8. We used these LD-filtered 
SNPs to generate a PCA in Plink [64] as well as a genetic 
relatedness matrix (GRM) in GCTA [65]. Finally, to prepare for 
cis eQTL mapping, we extracted 1,950,183 LD-filtered SNPs 
that fell within 500kb of the transcription start or end site of 
protein coding genes. 
 
Testing for ancestry and treatment effects on gene 
expression levels 

To identify genes for which gene expression was 
significantly predicted by ancestry within a given condition, we 
used linear models implemented in limma [62]. Specifically, for 
each of the 12 cellular environments, we ran the following 
model on the SV-corrected residuals for each gene:  

 
 𝑦! = 𝜇 + 𝑎!𝛽" + 𝑒! (1) 
 
where 𝑦! is the gene expression level estimate for sample 𝑖, 𝜇 is 
the intercept, 𝑎! represents ancestry of the focal sample (AFR or 
EUR), 𝛽"  is the corresponding estimate of the ancestry effect, 
and 𝑒! represents environmental noise.  

To identify genes for which gene expression was 
significantly affected by a given treatment, we used a similar 
modeling approach again implemented in limma [62]. 
Specifically, for each of the 11 treatments, we ran the following 
model on the SV-corrected residuals for each gene:  

 

 𝑦! = 𝜇 + 𝑐!𝛽# + 	𝑎!𝛽" + 𝑒! (2) 
 
where all variables are as described above, with the addition of 
𝑐!  which denotes the condition (treatment or control) and 𝛽# 
which is the corresponding estimate of the treatment effect. 
After running both models 1 and 2, we extracted the p-value 
associated with the effect of interest (ancestry or treatment, 
respectively) and corrected for multiple hypothesis testing using 
a Storey-Tibshirani FDR approach [66]. A summary of the 
results of these analyses is provided in Tables S5 and S8. We 
also extracted the effect size and standard error estimates 
associated with the effects of interest for downstream analyses.  
 
Testing for cis eQTL effects on gene expression levels 

We used the R package matrixeQTL [67] to test for cis 
eQTL (within 500kb) that affected gene expression variation in 
each cellular environment separately. Specifically, for each of 
the 12 environments, we ran the following model on the SV-
corrected residuals for each gene:  

 

 𝑦! = 𝜇 + 𝑔!𝛽$ +, 𝑝%!𝛽%
&

%'(
+ 𝑒! (3) 

 
where 𝑔! denotes the genotype of individual i in terms of number 
of copies of the minor allele (0, 1, or 2) and 𝛽$  is the 
corresponding estimate of the genotype effect. 𝑝%! is the loading 
for principal component k for individual i (from a PCA on the 
filtered genotype matrix, as described above) and 𝛽%  is the 
estimate of the principal component effect. For each gene-SNP 
combination, we extracted the p-values, effect sizes, and 
standard error estimates associated with the genotype effect. We 
then used a Storey-Tibshirani FDR [66] to correct for multiple 
hypothesis testing. Results are summarized in Table S8.  
 We also ran a second analysis, using the same approach 
described above, but pooling the data across all 12 conditions. 
For this analysis, condition was also included as a covariate in 
the following model: 

 𝑦! = 𝜇 + 𝑐!𝛽# + 	𝑔!𝛽$ +, 𝑝%!𝛽%
&

%'(
+ 𝑒! (4) 

Finally, we note that we explored an alternative 
analysis strategy, in which we regressed out 1-20 principal 
components from the normalized (but not SV-corrected) gene 
expression matrix before fitting the models described in equation 
3 (as in [9,30]). We did not find that this approach consistently 
increased our power to detect eQTL across the 12 cellular 
environments, and therefore opted for using the SV-corrected 
data in which a consistent pipeline could be applied to the full 
dataset.  
 
Estimating sharing of ancestry, treatment, and genotype 
effects 

To understand the degree to which treatment, ancestry, 
or genotype effects mapped across different conditions have 
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shared versus context-dependent effects, we used the empirical 
Bayes approach implemented in the R package mashR [20]. 
While previous studies have instead used linear models to 1) test 
for interaction effects between condition and genotype or 
ancestry or 2) test for ancestry or genotype effects on the fold 
change in gene expression levels estimated between treatment 
and control conditions [9,16,26], joint analysis via mashR is 
more appropriate to our design and provides many advantages. 
mashR is explicitly designed for quantitative assessment of 
effect size heterogeneity across conditions, increases power via 
joint analysis, and exploits patterns of similarity to provide 
improved estimates of effect size in each condition. It also 
provides a common framework for comparing effect sizes across 
many conditions, rather than relying on the comparison of many 
different “significant” lists derived from arbitrary p-value or 
FDR cutoffs. Similar meta-analytic approaches have been 
successfully applied to other high-dimensional datasets, such as 
GTEx [30]. We used similar pipelines to estimate sharing of 
treatment, ancestry, and genotype effects using mashR [20], with 
small modifications appropriate to each predictor variable. 

First, using our multi-treatment (n=11) estimates of 
environmental effect sizes, we evaluated effect size concordance 
between all pairwise combinations of treatment-control pairs. 
Here, we followed the pipeline provided by the mashR authors 
for datasets that use the same reference or control condition 
samples across multiple comparisons 
(https://stephenslab.github.io/mashr/articles/intro_correlations.ht
ml). Specifically, we corrected for correlations among conditions 
in our data, and then used a combination of canonical and data-
driven covariance matrices to fit the mashR model. From the 
mashR output, we extracted the posterior mean effect size and 
local false sign rate (LFSR) estimates. Following the authors’ 
recommendations, we considered a gene to have “shared” 
treatment effects across an arbitrary number of treatment if it has 
a local false sign rate (LFSR)<10% for at least one treatment and 
posterior effect sizes of similar magnitude (within a factor of 
two) for the other treatments. We always used the treatment with 
the lowest LFSR as the reference for the effect size comparison 
(we note that similar results were obtained when we used the 
median effect size across all treatments with LFSR<10%). In 
cases where the treatment effect was not shared across all 11 
treatment-control pairs (aka “ubiquitous”), we considered the 
treatment effect to be “context-dependent”. Finally, we 
considered a gene to exhibit a special case of context-
dependency, namely “condition-specific” effects, if it had 
evidence for treatment effects at a LFSR<10% and the posterior 
effect size estimate was not within a factor of two of any other 
treatment.  

Second, using our multi-condition (n=12) estimates of 
ancestry effect sizes, we evaluated effect size concordance 
between all pairwise combinations of conditions. To do so, we 
followed the standard pipeline provided by the mashR authors 
(https://stephenslab.github.io/mashr/articles/intro_mash_dd.html
) which uses a combination of canonical and data-driven 
covariance matrices to fit the mashR model. From the mashR 
output, we again extracted the posterior mean effect size and 

LFSR estimates, and used the same approach described above to 
identify ubiquitous, context-dependent, and condition-specific 
effects.  

Finally, we assessed effect size sharing for cis eQTL 
mapped across all 12 cellular environments. In this case, there 
were too many tested gene-SNP pairs to evaluate all of them in 
the mashR framework (n= 8,109,941), so we followed the 
authors’ recommendations and focused on 66,614 gene-SNP 
pairs with some evidence for cis eQTL from matrixeQTL [67] 
(FDR<10% in at least one condition). We followed the pipeline 
suggested for eQTL 
(https://stephenslab.github.io/mashr/articles/eQTL_outline.html) 
and used a combination of canonical and data-driven covariance 
matrices derived from 50000 randomly chosen gene-SNP pairs 
to fit the mashR model. We then computed posterior summaries 
for the 66,614 gene-SNP pairs of interest using the model fit to 
randomly selected data. Finally, we extracted the posterior mean 
effect size and LFSR estimates, and used the same definitions 
described above to identify ubiquitous, context-dependent, and 
condition-specific treatment effects. In some cases, we also 
summarized our eQTL results at the gene rather than the SNP 
level; in these cases, we report the number of unique genes that 
have at least one eQTL that is shared between a given number of 
conditions (12=ubiquitous and 1-11=context-dependent). We 
note that with these definitions a given gene can be reported in 
more than one category. 

A summary of the mashR treatment, ancestry, and cis 
eQTL analyses are provided in Tables S5 and S8. All estimates 
of LFSR and posterior mean effect sizes are available on Github. 
 
Testing the degree to which ancestry and genotype affect the 
response to treatment 

We also used mashR to understand whether 1) 
individuals of African versus European ancestry responded 
differently to a given treatment and 2) genotype affects the 
response to a given treatment, as evidence for both phenomena 
has been shown in previous work [9]. To test point #1, we asked 
whether the posterior mean estimates of the ancestry effect were 
different between the treatment and control conditions for all 11 
treatments; if so, this would indicate an effect of ancestry on the 
response to a given treatment. We used the same pipeline 
described for estimating sharing of treatment effects, and we 
considered a gene to exhibit differential responses to treatment 
as a function of ancestry if the LFSR was <10% in either the 
treatment or control condition (or both), and the posterior mean 
effect size estimates were not within a factor of two of one 
another. Using this approach, we found no evidence for ancestry 
effects on the response to treatment (except for 1 gene in the 
IGF-1 dataset). To validate this result, we also ran models in 
limma [62] that included an explicit interaction effect (𝛽#)" ) 
between treatment and ancestry. Specifically, for each of the 11 
treatments, we ran the following model on the SV-corrected 
residuals for each gene:  

 
 𝑦! = 𝜇 + 𝑐!𝛽# + 	𝑎!𝛽" + (𝑐! ∗ 	𝑎!)𝛽#)" + 	𝑎!𝛽" +	𝑒! (5) 
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These results agreed with our results derived from mashR and 
revealed no significant ancestry x treatment effects at a 10% 
FDR.  
 To test point #2, we asked whether the posterior mean 
estimates of the genotype effect were different between the 
treatment and control condition for all 11 treatments; if so, this 
would indicate an effect of genotype on the response to a given 
treatment. We used the same pipeline described for estimating 
sharing of cis eQTL effects, and we considered a gene to exhibit 
differential responses to treatment as a function of genotype if 
the LFSR was <10% in either the treatment or control condition 
(or both), and the posterior effect size estimates were not within 
a factor of two of one another. We found several thousand 
response eQTL for each treatment, and these results are 
summarized in Table S5. 
 
Enrichment analyses of treatment- and ancestry-associated 
genes 
 We used gene set enrichment analyses (GSEA) [68] to 
ask whether certain biological pathways were overrepresented 
among the set of genes that exhibited the strongest evidence for 
1) differential expression in response to a given treatment and 2) 
ancestry-associated differences in expression. For #1, we sorted 
our gene list by effect size (output from limma) for each 
treatment effect separately and ran GSEA. For #2, we sorted our 
gene list by median effect size across all conditions, because 
very few genes exhibiting evidence for ancestry effect size 
heterogeneity across conditions. We assessed the significance of 
pathway enrichment scores via comparison to 1000 random 
permutations of gene labels across pathways, and controlled for 
multiple hypothesis testing using a Storey-Tibshirani FDR 
approach [66]. Results are reported in Figure S2, Tables S6, and 
Table S9. 
 We also tested whether ancestry-associated genes 
shared between ≥2/3 of all conditions (as determined by mashR 
[20]) were enriched within genes associated with 114 complex 
traits and diseases. To do so, we followed the approach of [8] 
and drew on publicly available results from Probabilistic 
Transcriptome Wide Association Studies (PTWAS) [21]. 
PTWAS combines eQTL data from GTEx [30] and GWAS data 
from several studies to identify genes that are likely along the 
causal pathway for a given complex trait or disease. We used 
hypergeometric tests to test for enrichment of ancestry-
associated genes within each PTWAS trait-associated gene set 
and an FDR approach [66] to correct for multiple hypothesis 
testing. Results are reported in Table S10. 

 
Relationship between FST and ancestry-associated gene 
expression variation 

We were interested in testing the hypothesis that 
genetic variation contributes to the observed differentiation in 
gene expression between African and European individuals. To 
do so, we followed the approach of [9] and asked whether genes 
with ancestry effects exhibit higher FST values between African 
and European populations relative to non-ancestry-associated 
genes. To do so, we first calculate FST for all 7,205,850 variants 

in our pre-LD filtered genotype dataset. We then generated gene-
specific estimates by averaging FST values for variants within 5 
kb (upstream or downstream) of the transcription start site of a 
given gene. Next, we used a Wilcoxon signed-rank test to ask 
whether FST values differed between genes with no evidence for 
an ancestry effect (LFSR>10% in all conditions) and 1) genes 
with any evidence for an ancestry effect in any condition or 2) 
genes with evidence for an ancestry effect in at least 2/3 of 
conditions. In a second approach, we also used linear models to 
test whether the number of cellular environments a gene 
exhibited significant ancestry effects in was predictive of the 
gene’s average FST value. 

To further understand the contribution of genetic 
variation and selection to population differences in gene 
expression, we compared PST values for ancestry-associated 
genes to FST estimates between African and European 
individuals. PST is a phenotypic analog of FST (and a proxy for 
QST), and comparisons between the two measures can thus 
provide evolutionary insight [24,25]. Specifically, PST > FST is 
interpreted as evidence for diversifying selection, indicating 
different local optima for different populations. In contrast, PST < 

FST signifies uniform selection (also known as homogeneous, 
convergent, or stabilizing selection) and PST = FST suggests that 
phenotypic divergence between populations mimics neutral 
genetic divergence and is thus largely controlled by genetic drift. 
We used the R package Pstat [69] to calculate PST for ancestry-
associated genes identified in each condition (FDR<10%) as 
well as a random sample of 500 genes. We compared these 
values to the genome-wide average of FST estimates between 
African and European individuals included in our dataset (for 
whom we also had whole genome sequencing data, n=454; see 
Figure 2 and Figure S3). To estimate 95% confidence intervals 
for the mean genome-wide FST estimate, we performed 1000 
replicates of bootstrap resampling. 
 
Estimating the heritability of gene expression levels 

We used GCTA and the GRM derived from the dataset 
of filtered genotypes to estimate the heritability of gene 
expression levels in each cellular environment. We followed the 
pipeline recommended by the authors 
(https://cnsgenomics.com/software/gcta/#GREMLanalysis) and 
estimated heritability for each of 10,156 genes in each of the 12 
cellular environments. To understand whether heritability 
changed as a function of the cellular environment, we used a 
Wilcoxon signed-rank test to ask whether mean heritability 
differed between each treatment-control pair (see Figure 3 and 
Table S5). Because we observed upward biases in heritability 
estimates for conditions with the smallest sample sizes, we also 
1) repeated the same analysis after subsampling each 
environment to n=100 individuals (performing 5 independent 
subsamples) and 2) used linear models to ask whether there was 
a consistent difference in per-gene heritability estimates between 
treatment and control conditions controlling for sample size. 
 
Enrichment analyses of ubiquitous and context-dependent 
eQTL and eGenes 
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 We performed several enrichment analyses to 
understand the biology and putative phenotypic impacts of SNPs 
and genes that exhibited ubiquitous (shared across all 12 
conditions) and context-dependent (condition-specific or shared 
across 2-11 conditions) eQTL. 

First, to investigate the cellular mechanisms involved in 
generating ubiquitous and context-dependent eQTL, we 
downloaded ATAC-seq data generated for 20 LCLs from 
Yoruba 1000 Genomes individuals [32]. These data were 
preprocessed and provided as count matrices noting the number 
of reads mapped to a given region (n=2,533,845 windows) for a 
given individual. To identify strong and repeatable regions of 
open chromatin, we normalized the count matrix using the 
function voom in the R package limma [62]; we then retained 
regions for which the average normalized read counts were in 
the upper quartile of the entire dataset, and lifted over the region 
coordinates from hg19 to hg38 using the UCSC liftOver tool 
[70]. Finally, we used bedtools [71] to calculate the proportion 
of ubiquitous and context-dependent eQTL that overlapped with 
LCL ATAC-seq peaks, and we compared these proportions to 
background expectations derived from counting the proportion 
of all tested SNPs that overlapped with LCL ATAC-seq peaks. 
We performed these analyses using hypergeometric tests. 

Second, we asked whether ubiquitous or context-
dependent eQTL genes were enriched within the set of eGenes 
identified in unstimulated LCLs by GTEx [30] (i.e., genes with 
at least 1 eQTL identified at a 10% FDR). To do so, we used 
hypergeometric tests to compare our list of ubiquitous or 
context-dependent eGenes to GTEx eGenes, after first filtering 
for expressed genes that were common to both datasets. We also 
used hypergeometric tests to ask whether context-dependent 
eGenes that were not identified as eGenes in GTEx, but were 
identified as eGenes in our study, were enriched for genes that 
were also differentially expressed in our study (suggesting that 
cell perturbations “reveal” new eQTL). For this analysis, we 
used a combined list of all genes that were differentially 
expressed in any condition (FDR<10% from the limma output).   

Third, we asked whether ubiquitous or context-
dependent eGenes were enriched within sets of genes associated 
with 114 complex traits and diseases via PTWAS [21]. Here, we 
performed separate hypergeometric tests for each complex trait 
and each eGene list, and corrected for multiple hypothesis 
testing with a Storey-Tibshirani FDR approach [66].  

Fourth, we downloaded the list of genes that are 
considered to be loss of function, mutation-intolerant genes, as 
curated by ExAC [34]. We then used Fisher’s exact tests and 
asked whether ubiquitous or context-dependent eQTL genes 
were enriched within the total set of mutation-intolerant genes. 

Fifth, we downloaded the GWAS catalog [33] and 
filtered for SNPs with p<10-8. We then used Fisher’s exact tests 
to ask whether ubiquitous or context-dependent eQTL loci were 
enriched within the GWAS catalog. 
 
Evolutionary analysis of ubiquitous and context-dependent 
eQTL and eGenes 

We performed two sets of analyses to address the roles 
of positive and negative selection in maintaining ubiquitous and 
context-dependent eQTL. First, we obtained two publicly 
available estimates of sequence conservation: phyloP scores [72] 
and phastCons scores [73]. The phyloP score measures the 
evolutionary conservation at each individual alignment site, with 
a positive sign indicating conservation and slower evolution than 
chance expectations, while a negative sign indicates relaxed 
constraint or positive selection and faster evolution than 
expected by chance. The phastCons score measures the 
probability that each nucleotide belongs to a conserved element, 
with a higher phastCons score representing greater sequence 
conservation. We obtained the per-site phyloP and phastCons 
scores from the 100-way vertebrate comparison available via the 
UCSC Genome Browser [70]. Following the methods of [74], 
we averaged the per-site measures across all exons in each 
protein coding gene to obtain per-gene phyloP and phastCons 
scores. Finally, we compared the mean per-gene conservation 
scores for ubiquitous eGenes and context-dependent eQTL genes 
to non eGenes using a Wilcoxon signed-rank test. 

Second, we investigated a role for positive selection by 
obtaining per-site estimates of the integrated haplotype score 
(iHS), a commonly used measure of within-population recent 
positive selection [35,36]. We obtained genome-wide iHS 
estimates for each of the 10 populations included in our study 
from [36], and identified putative selection candidates as loci 
that fell in the >99th percentile of |iHS| values in ≥2 populations 
(as in [9,16]). We then used Fisher’s exact tests to test for 
enrichment of iHS outliers in our ubiquitous and context-
dependent eQTL sets, as well as the sets of response eQTL 
identified in each condition separately. Finally, we grouped the 
results of the response eQTL enrichment analyses into three 
treatment categories (immune stimuli, hormones, and 
environmental contaminants/novel cell stressors; see Table 1) 
and used a linear model to ask whether the enrichment effect 
sizes consistently differed between the immune stimuli 
treatments and the other two treatment categories. 
 
Data and code availability 

FASTQ files for all mRNA-seq samples, as well as 
processed data matrices used for analyses, have been submitted 
to NCBI’s Gene Expression Omnibus (GEO). These files will be 
made public following publication. Code used to analyze the 
data and generate figures is available at: 
https://github.com/AmandaJLea/LCLs_gene_exp.This is an 
equation line. Type the equation in the equation editor field, then 
put the number of the equation in the brackets at right. The 
equation line is a one-row table, it allows you to both center the 
equation and have a right-justified reference, as found in most 
journals. 
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