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ABSTRACT Daugman’s design of IrisCode continues to be fascinating in the research world with its
practicality, efficiency, and outstanding performance. The limits of Daugman’s recognition system, however,
remain a topic of active discussion. Multiple approaches to scale performance have been explored in the past.
Despite them, the problem of finding the maximal population of IrisCode remains open. Because of this,
we appeal to Rate-Distortion theory (limits of error-correction codes) to establish bounds on the maximum
possible population of iris classes that IrisCode can support under the constraint of a minimum Hamming
Distance (HD) between any two codewords. This approach considers the distribution of iris data within and
across iris classes and the quality of iris data. We first present the Hamming, Plotkin, and Elias-Bassalygo
upper bounds and the Gilbert-Varshamov lower bound on the population of IrisCode. The bounds relate the
number of iris classes that the IrisCode algorithm can sustain and the quality of iris data expressed in terms of
HD. Then, we analyze our results and draw conclusions regarding the relationship of IrisCode population size
and the level of quality that enrolled data must have to ensure a particular population coverage. By applying
the theory presented here, researchers can better understand what maximum population is achievable based
on the quality of their iris dataset.

INDEX TERMS IrisCode, population size, Rate-Distortion, error correction bounds, iris image quality,
Hamming distance

I. INTRODUCTION

AS with any practical data, iris datasets are not perfect.
Even good quality iris images experience some qual-

ity degradation due to occlusions, illumination conditions,
camera noise, motion, and out-of-focus blurs (see [1]–[3] and
references therein); followed by an additional degradation due
to imperfect signal processing applied while iris images are
transformed to IrisCode templates [4]. All these degradations
make perfect zero genuine Hamming distance (HD) values
impossible.

When partitioning the interval of normalized HDs into
genuine and imposter subintervals, a range of values between
0.28 and 0.36 is recommended as an interval to pick a
threshold [5], [6]. This implies that two IrisCode templates
are considered as samples from the same class (or genuine)
if the normalized HD between them is less than the selected

threshold. Otherwise two templates are considered as samples
from two different classes (or imposter). Plots of typical
distributions of genuine and imposter HD values can be
found in [4], [7] and several other publications analyzing
performance of IrisCode. Imposter HD values are fitted with
a narrow Binomial probability mass function centered at 0.5
and characterized by 245 degrees of freedom. Distribution
of genuine HD values is highly dependent on quality of iris
data and takes a variety of shapes (see for example, [8]). Note
that the spread of genuine HD values is much larger than the
spread of imposter HD values, which explains the choice of
the threshold value in the range (0.28, 0.36).

Performance of IrisCode is quantified using a number of
metrics. False Match Rate (FMR) is a traditional measure
of verification (authentication) performance, while Rank 1
identification, also known in Detection Theory as M-ary
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detection error [9], is a measure of recognition (or identi-
fication) performance. Error to Enroll is a type of probability
of error applied to analyze the size of iris population that
can be enrolled with nearly zero probability of error or, using
the terminology introduced in [7], [8], without collision. As
demonstrated by Daugman [4], Error to Enroll, FMR, the
decision threshold, and the maximal number of iris classes
that IrisCode can sustain are all related by means of a
single inequality, in which FMR for small values of the
decision threshold is calculated by fitting a narrow Binomial
distribution with 245 degrees of freedom into the plot of
relative frequencies obtained from imposter HD values found
empirically.

Let us take a closer look at the analysis of maximal
population that IrisCode can sustain based on a particular
value assigned to Error to Enroll. We begin with the analysis
of FMR, interpreting it as the probability that a new class not
present in iris dataset is classified as any one of the existing
classes. Setting the number of degrees of freedom to 245 as
suggested by Daugman [4], [6]–[8] and threshold to 0.32,
we conclude that the probability of this event is one in 137
million. If the threshold is set to 0.28, the probability decreases
to one in 648 billion [5], [6].

We now turn to the analysis of the number of iris classes
that IrisCode can sustain at a X value of Error to Enroll. After
solving Daugman’s bound (see its detailed explanation in [8])

%(Error to Enroll) = 1 − (1 − FMR(C))" ≤ X, (1)

for the value of maximal population, denoted here as ", the
bound is given as

" ≤ log(1 − X)
log(1 − FMR(C)) . (2)

Here C is the threshold between genuine and imposter HD
values. The bound (2) yields the population size of 9.50×107
and 4.49 × 1011 when X is set to 0.5 and the threshold value
to 0.32 and 0.28, respectively. If the problem of finding
the maximal iris population is formulated as a “birthday
problem,” (see for details [6], [7]), then the probability that
one or more iris class pairs, among " (" − 1)/2 possible
pairings, are falsely matched is given as

1 − (1 − FMR(C))" ("−1)/2 ≤ X. (3)

Bounding it by a X value allows us to invert the inequality and
solve for "

" (" − 1)
2

≤ log(1 − X)
log(1 − FMR(C)) (4)

This bound yields 13, 782 and 947, 800 values of maximal
population, when X = 0.5 and the threshold is set to 0.32 and
0.28, respectively.

The inequalities (1) through (4) establish a relationship
between one of two error probabilities (Error to Enroll or
error of one of more collisions among " (" − 1)/2 distinct
paired classes), the population size of IrisCode, and FMR
parameterized by a threshold C. Although these equations

allow us to estimate the maximal size of IrisCode population,
given values of the other two components, the equations
are exclusively based on the distribution of imposter HD
values and do not take into account the varying quality of iris
biometric data, which is inherently present in the distribution
of genuine HDs.
In an attempt to fill the gap in understanding the per-

formance limits of Daugman’s algorithm, we turn to an
analysis of the relationship between the size of the population
that the IrisCode can effectively cover and the iris sample
quality. Given Daugman’s IrisCode algorithm, the problem
of finding its maximal population is cast as a basic Rate-
Distortion problem. Upper bounds (Hamming, Plotkin, and
Elias-Bassalygo) and a lower bound (Gilbert-Varshamov) are
applied to the population of a binary code, with the constraint
of quality of iris data as a minimum Hamming Distance
(HD) between two codewords, to obtain themaximal/minimal
number of iris classes that the IrisCode algorithm can sustain.
The rest of the paper is organized as follows: Section II

presents four bounds on the population that IrisCode can
sustain under the condition of a given quality of data, Section
III provides comments on performance of the presented
bounds, and Section IV presents a summary of themain points
discussed in the paper.

II. BOUNDS ON POPULATION OF IRISCODE

In the rest of the paper, we assume that a one-to-one encoding
technique is available to map Daugman’s IrisCode templates
(defined as binary templates of length 2048with each carrying
phase information and representing iris classes) into a set of
binary codewords, each of length = = 245 bits. Note that the
length of each codeword is equal to the number of degrees
of freedom supported by IrisCode (see [4], [8] for a detailed
reasoning behind our assumption). Given this assumption,
the problem of finding the maximal population covered by
Daugman’s algorithm is reduced to finding the number of
binary codewords with a specified minimum HD between
any two codewords as a constraint.
Consider binary codewords of length = and denote the

threshold that separates the interval of possible normalized
HDs into genuine and imposter subintervals as n . Given the
assumption above, ideal iris classes can be visualized as points
positioned along the =-dimensional lattice in a 2= code space.
If a query iris codeword, submitted for recognition, belongs
to a specific iris class, then the query codeword and the true
codeword of the claimed class lie within a hyper-dimensional
ball of radius A, where A and n are related as

A = bn × =c, bits.

For iris classes to be distinguishable during matching, centers
of the hyper-dimensional balls representing different iris
classes have to be spaced at least A×2+1 = bn × =c×2+1 = 3
bits apart, where 3 is the HD between two hyper-dimensional
balls expressed in bits.Under this setup, the problemof finding
the maximal population of the IrisCode is reduced to the
sphere packing problem from Rate-Distortion theory [10]. To
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FIGURE 1. Hamming, Plotkin, and Elias-Bassalygo upper bounds and Gilbert-Varshamov lower bound for code length 245

be more specific, we are looking at limits of error correction
codes [11], [12]. This problem has been well analyzed, and
the developed results can be directly applied to estimate the
size of the IrisCode population. Most Rate-Distortion theory
results are presented in the form of bounds. Below we provide
a brief summary of three upper bounds and illustrate how to
apply them to the IrisCode. We also provide a fourth bound,
a lower bound, on the population size, since both upper and
lower bounds are useful to analyze the performance of the
IrisCode. This allows for the formation of a confidence band
around the true but unknown maximal population size.

A. HAMMING BOUND

Let �(=, A) denote the maximum possible population of a
binary iris gallery with each iris class represented by a
codeword of length =, given that the minimum HD between
iris classes equals 3 = 2 × A + 1 = bn × =c × 2 + 1 bits. Then,
the application of the Hamming bound [11]–[13] yields the
following result

�(=, A) ≤ 2=
A∑
8=0

(
=

8

) . (5)

For an illustration in application to IrisCode, we set = to
245 and thus the number of codewords in unconstrained code
is equal to 2245. If the decision threshold n is set to 0.32, then
the maximum radius of a class’s hyper-dimensional ball, A , is
equal to

A = b245 × 0.32c = b78.40c = 78 bits, (6)

theminimumHDbetween iris codewords is 3 = 2×A+1 = 157
bits, and the Hamming bound on the number of possible iris
classes yields

�(245, 78) ≤
⌊
2245

/ 78∑
8=0

(
245
8

)⌋
= 151.61 × 106. (7)

Fig. 1 and Table 2 present the results of Hamming Bound as
a function of normalized HD. A discussion of the results of
Hamming and following bounds is presented in later sections.

B. PLOTKIN BOUND

The Hamming bound is considered to be a loose upper bound
on a constrained code population. Among other bounds,
the Plotkin bound [14] and the Elias-Bassalygo bound are
tighter alternatives, although each has its own limitations.
The Plotkin bound takes several forms.
1) If 3 is even and 23 > =, then

�(=, 3) ≤ 2
⌊

3

23 − =

⌋
. (8)

2) If 3 is odd and 23 + 1 > =, then

�(=, 3) ≤ 2
⌊

3 + 1
23 + 1 − =

⌋
. (9)

3) If 3 is even and 23 = =, then

�(23, 3) ≤ 43. (10)

4) If 3 is odd and 23 + 1 = =, then

�(23 + 1, 3) ≤ 43 + 4. (11)

Since 3 = 2A + 1 is an odd number, then under condition
A > (= − 3)/4 (if = = 245, then A > (245 − 2)/4 = 60.75) the
Plotkin bound on the population covered by IrisCode is given
as

�(=, A) ≤ 2
⌊
2A + 2
4A + 3 − =

⌋
. (12)

If (4A + 3) = =, then the Plotkin bound can be calculated as

�(=, A) = �(4A + 3, A) ≤ 8A + 8. (13)

To illustrate performance of the bound, we continue the
example from the previous subsection. We set = = 245 and
n = 0.32. Thus, the radius of the hyper-dimensional ball is
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TABLE 1. Plotkin bound for code lengths = = 256, 512, 1024, and 2048

n , in normalized HD
0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36

= = 256 86 24 12 8 6 6 4 4 4 2 2 2
= = 512 172 22 12 8 6 4 4 4 4 2 2 2
= = 1024 342 24 12 8 6 4 4 4 4 2 2 2
= = 2048 684 24 12 8 6 4 4 4 4 2 2 2

A = 78 bits. The Plotkin upper bound on the number of total
possible iris classes yields

�(245, 78) ≤ 2
⌊
158
70

⌋
= 4. (14)

Fig. 1 illustrates the Plotkin bound in application to
IrisCode, = = 245 and A > 60.5. Note that the Plotkin bound
values are available only when the condition A > (= − 3)/4 is
satisfied.

To get a deeper insight on the dependence of the maximal
population size on the length of codewords, we enforced an
assumption that the length of IrisCode codewords can be
extended beyond 245. Table 1 displays the results of the
Plotkin bound as a function of two parameters, codeword
length = and threshold n . As can be seen from the table, for
a large value of normalized HD (the same as threshold n),
the population coverage of the IrisCode is limited to only
a few classes, and the number of classes does not change
significantly with the increase of length of codewords. For
example, if we set the threshold to n = 0.28, the number of
classes that can be enrolled without any error is 8, regardless
of the length assigned to codewords (as seen from the table,
we experimented with = = 256 and up to = = 2048).

C. ELIAS-BASSALYGO BOUND

It can be seen from Fig. 1, that the Hamming bounds is loose
when the threshold n is set to a small value, and Plotkin bound
does not exist for small values of n .As an alternative solution,
we involve Elias-Bassalygo bound [15]. This bound is known
to be tight for small values of threshold n and large values of
=.

Under condition A ≤ (= − 2)/4 (if = = 245, this inequality
implies A ≤ (245−2)/4 = 60.75), the Elias-Bassalygo bound
on the population covered by IrisCode is given as

�(=, A) ≤


= 2=+1(
=

� (=, A)

)  , (15)

where

� (=, A) =
⌊
=

2

(
1 −

√
1 − 2(2A + 1)

=

)⌋
.

A plot of the Elias-Bassalygo bound for code length 245
and varying values of threshold n is presented in Fig. 1 (see the
blue line). Numerical comparison of the three upper bounds
for a broad range of values of n is provided in Table 2.

D. GILBERT-VARSHAMOV LOWER BOUND

Unlike the three bounds discussed above, the Gilbert-
Varshamov bound [11], [16], [17] is a lower bound on the size
of code population. The bound was developed using a sphere
covering technique that requires that the overall space of 2=
binary codewords can be covered with overlapping hyper-
dimensional balls of radius close to the minimum allowed HD
distance between codewords. The Gilbert-Varshamov bound
on the maximum population of a binary code is described
mathematically as

�(=, A) >
⌈
2=

/ 2A∑
9=0

(
=

9

)⌉
. (16)

The bound in application to the IrisCode, with the length of
codewords = = 245 and the number of all possible binary
codewords 2245, is shown in Fig. 1 (see the purple line). Table
2 compares Gilbert-Varshamov bound with the previously
described upper bounds at several selected values of threshold
n .

III. COMMENTS ON PERFORMANCE OF BOUNDS

A. ACTUAL POPULATION VERSUS BOUNDS

Although binary codewords of length = = 245 are viewed as
short length codewords in communications theory, numerical
analysis of maximal population, given a constraint on the
minimal distance between any two codewords, is a compu-
tationally challenging problem. In fact, finding the maximal
population empirically requires an exhaustive search. To limit
computational load, we consider a scaled version of binary
codewords of IrisCode. We chose = = 16 over = = 245.

A numerical comparison between the four bounds and
empirically evaluated maximal population of a binary code
with words of length = = 16 is provided in Table 3, where the
value of empirical maximal population is obtained through
an exhaustive search. The search is implemented in several
steps. It begins with generating all possible binary codewords
of length = = 16. Then a single codeword is picked and
all its neighbor codewords with the normalized HD smaller
than n are eliminated. This step is followed by analyzing
the remaining neighbor codewords and eliminating their
neighbors that are located closer than the distance allowed
by the normalized HD. This process continues until all pairs
of codewords are spaced at least bn × =c × 2 + 1 apart. From
the table, we can note that for large values of n, the value of
the actual maximal population and the value provided by the
Plotkin bound are very close. For small values of n between

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3130100, IEEE Access

J. Zuo et al.: New Perspectives on Recognition Performance of IrisCode

TABLE 2. Hamming (HB), Elias-Bassalygo (EBB), Plotkin (PB), and Gilbert-Varshamov (G-VB) bounds for code length = = 245

n A , bits 3, bits HB EBB PB GVB
0.12 29 59 1.26 × 1036 5.30 × 1034 N/A 3.84 × 1016
0.14 34 69 9.09 × 1031 3.57 × 1029 N/A 8.87 × 1011
0.16 39 79 1.52 × 1028 2.48 × 1024 N/A 1.52 × 108
0.18 44 89 5.42 × 1024 2.71 × 1019 N/A 1.62 × 105
0.20 49 99 3.82 × 1021 6.98 × 1014 N/A 952
0.22 53 107 1.81 × 1019 1.37 × 1011 N/A 50
0.24 58 117 3.84 × 1016 3.04 × 106 N/A 5
0.26 63 127 1.42 × 1014 N/A 24 2
0.28 68 137 8.87 × 1011 N/A 8 2
0.30 73 147 9.14 × 109 N/A 4 2
0.32 78 157 1.52 × 108 N/A 4 2
0.34 83 167 3.98 × 106 N/A 2 2
0.36 88 177 1.62 × 105 N/A 2 2

0.12 and 0.18 the actual value of the maximal population is
about half of the values of the Hamming bound and the Elias-
Bassalygo bound. The values provided by Gilbert-Varshamov
lower bound are quite low and loose.

The result of the Elias-Bassalygo bound for small values
of = and 3 is not as good as the result of the Hamming
bound. However, asymptotically, as = becomes large, the
Elias-Bassalygo is significantly better than the Hamming
bound.

B. MAXIMAL POPULATION VERSUS THRESHOLD

We now turn to the case of = = 245. As the Plotkin bound
(see Table 2) clearly demonstrates, IrisCode is unable to
enroll a large number of iris classes when the threshold n
is set at or above 0.28.Moving it to 0.26 increases the bound
considerably.

Equipped with the intuition provided by the example in
Sec. III-A, we anticipate that as n decreases the population
size of IrisCode (case of = = 245) grows at a rate similar to
the rate in the example. If the threshold n is moved to 0.2 and
even further to 0.12, according to the Elias-Bassalygo bound,
we may be able to enroll without collision up to 6.98 × 1014
and 5.30 × 1034 iris classes, respectively. At the same time,
the Gilbert-Varshamov like bound ensures that the number
of classes that can be successfully enrolled at n = 0.2 and
n = 0.12 are above 952 and 3.84 × 1016, respectively. The
population of 3.84×1016 is a large scale population, however,
this size enrollment is possible only if we ensure that both
enrolled and query data are of exceedingly high quality, that
is, with the combined distortions in enrolled and query data
less than 0.12.

This may sound like a stringent requirement, however,
modern technology is able to support it. State-of-the-art image
acquisition cameras (including those in our cell-phones) take
multi-view video sequences of an object and then interpolate
them in a single view capture of the highest possible quality.
In addition, given a video of an iris, various signal processing
and machine learning approaches can be applied to ensure
high quality of IrisCode templates.

C. OTHER CODES

A brief performance analysis of Daugman’s IrisCode leads us
to a conclusion that recognition performance of iris biometrics
for a given encoding technique is determined by its degrees of
freedom. For Daugman’s algorithm the number of degrees of
freedom is 245. Other iris encoding approaches are likely to
lead to a different number of degrees of freedom and thus to
a different maximum population size that codes can cover. A
comprehensive list of methods that can be used as encoding
techniques can be found in [2], [3], [18], [19]. However, as
processing steps in all these encoding techniques are different,
their tolerance to noise is different as well. Despite their
encoding difference, the analysis of the maximal population
covered by the algorithms can be reduced to the analysis
presented in this paper.

IV. SUMMARY

From the examples and theory presented above, we conclude
that the size of the maximal population of IrisCode can be
analyzed by stating the problem as a basic Rate-Distortion /
channel coding problem. Within this framework, the task is
to find the maximal possible population covered by IrisCode
under the constraint on the distance between codewords. They
should be separated by more than the minimum normalized
HD, which is attributed to noise and distortions present in iris
codewords.
The size of enrolled IrisCode population can be increased

by moving the decision threshold far to the left. Doing so,
requires IrisCode templates of high quality, which can be
readily achieved by modern image acquisition and data pro-
cessing technologies. In conclusion, with the application of
the theory presented above, researchers can better understand
what maximum population is achievable with zero error for
their iris dataset based on its quality.
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