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ABSTRACT Smart home consumer devices like home theatres, music players, voice-based assistants, smart 
lighting, and security cameras have widely adopted the Internet of Things (IoT). These devices pose a 
significant security risk to consumers because the devices are exposed to mobile applications and cloud-based 
services with known security vulnerabilities. IoT technologies also introduce additional vulnerabilities 
specific to smart home architectures. Most current home consumer devices provide little or no information 
about the level of security they afford. Since most consumers are not tech-savvy, it is currently difficult for a 
consumer to make an informed decision about which consumer device model (e.g., which smart television 
model?) has the best security. Hence, consumers need an objective security ranking of each type (e.g., security 
cameras) of home consumer devices. This paper proposes a novel methodology to systematically build such 
security rankings for home consumer devices. The proposed methodology can be applied by utilizing data 
from any security assessment study. The paper discusses previous efforts in applying Analytic Hierarchy 
Process (AHP) to rank security risks in general.  The paper also presents a systematic survey of security 
vulnerabilities of smart home consumer devices when viewed from an IoT lens.  Using the proposed 
methodology, a case study where an AHP model for ranking commonly used home consumer devices 
including home theatres, security cameras, smart lighting, smart speakers, video surveillance, smart switches, 
home automation systems, home security systems, smart routers, wireless doorbell cameras, and home audio 
systems, was developed. Relative security rankings for each type of consumer device were derived from the 
AHP model. According to the AHP model, network security was the primary driver of smart home device 
security with a priority of 0.6893 while application security had the least priority of 0.0591. Critical 
Vulnerabilities were the most important for device security (priority=0.4397), Man-in-The-Middle attacks 
for network security (priority=0.2019), exploitable services for cloud security (priority=0.26), and sensitive 
data for application security (0.7626). The AHP model was internally consistent (Consistency Ratio < 0.1). 
Sensitivity analysis showed that the AHP model was robust against pairing assumptions.  

INDEX TERMS AHP, consumer applications, cloud computing, home consumer devices, Internet of 
Things, network security, smart home. 

I. INTRODUCTION 
Smart home automation goes back to at least 1985 [1]. 
Recently, many smart home automation systems and 
associated devices like surveillance cameras, home voice 
assistants (e.g., Alexa), and appliances (e.g., fridge) have 
embraced the Internet of Things (IoT) [2]. Exposing a smart 
home and devices to the internet raised security concerns as 
early as 2006 [3]. Smart home security is about protecting 
privacy of information embedded in a home environment, 
preserving confidentiality and integrity of consumer’s data, 
and ensuring 24/7 availability of smart home services [4]. A 
recent study showed that 40.3% of smart homes worldwide 
had five or more devices connected to the internet, and that 
40.8% of homes had at least one vulnerable device that puts 

the entire home at risk [5]. Similarly, Williams et al. [6], 
Notra et al. [7], and Ling et al. [8] demonstrated that security 
of webcams, televisions, home printers, smart lightbulbs, 
smart plugs, smart power switches and smoke-alarms could 
be easily compromised. Celik et al. [9] identified security 
issues in a number of IoT programming platforms. Software 
development kits for smart home applications (Apps) also 
have security issues [10]. Mare et al. [11] exposed security 
flaws in commercially available consumer smart home hubs. 
Hu et al. [12] examined mechanisms for testing the security 
of third-party applications for smart home assistants. Lounis 
and Zulkernine [13] discussed Bluetooth Low Energy (BLE) 
security and how the “Just Works” pairing option could be 
used to render a device inoperable. They showed a practical 
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case study of three different Bluetooth smart gadgets. The 
conclusion was that people should be advised about the risk 
of purchasing unsecure gadgets and prioritizing convenience 
over security, privacy, and safety. Efforts are also underway 
to broadly characterize security risks and vulnerabilities of 
smart home consumer devices [14]. The security challenges 
to smart homes and smart grid have also been explored [15-
18]. Reference architectures for implementing smart home 
security at the system level have been proposed as well [19]. 

Consumers are generally aware of security risks 
associated with consumer devices, and are willing to pay for 
security labeling of such devices [20]. While consumers tend 
to trust IoT device manufacturers to protect their privacy, 
neither do they verify nor are they aware of the various 
privacy risks posed by these devices [21]. Consequently, 
security labels for IoT consumer devices clearly indicating 
security mechanisms (e.g., security updates, access control, 
encryption), data practices (e.g., whether the data is stored 
on the device or on the cloud), and additional information 
(e.g., physical actuation) have been proposed [22]. 
Simplified consumer security indexes for such security-
awareness labels have been proposed to inform consumers 
[23]. Even if these labels were available, as have been 
proposed in UK, Netherlands and Singapore, the proposed 
security labels are not easily interpretable by a typical 
consumer. For example, it is unreasonable to assume that a 
layperson can intelligently compare two encryption 
standards stated on labels of competing electronic music 
players.  

This paper proposes a methodology of how to develop a 
simplified security ranking for various types of consumer 
devices (e.g., smart televisions). The ranking thus developed 
can be used by consumers to easily assess the relative 
security of competing device choices. For example, when 
selecting which smart television set to buy, a consumer can 
refer to the relative security rankings of smart television sets 
available, and make an informed choice.  

Determining the relative security of a type of consumer 
device is a complex Multi-Criteria Decision-Making 
(MCDM) problem because a host of interacting factors based 
on device hardware, networking, middleware, etc., and types 
of potential security vulnerabilities contribute towards 
making this decision [24]. Mardani et al. [25] conducted an 
extensive survey of techniques for solving MCDM problems 
and found that Analytic Hierarchy Process (AHP) [26] was 
the top method for solving MCDM problems. One key 
advantage of using AHP is that the technique can easily 
incorporate both numeric and qualitative, or judgment-based 
inputs, and is flexible to incorporate both types of data. 
Furthermore, AHP can be applied transparently and easily by 
conducting pair-wise comparisons against individual 
criterion. Finally, the AHP also provides a mathematical 
formula to measure the internal consistency in the how the 
data is being used to make decisions, and hence providing a 
measure of the quality of goodness of the decision model. 

    This paper makes the following contributions: 
• The paper presents a comprehensive survey of use of 

AHP to rank security aspects of computer-related 
systems.  

• The paper presents a systematic survey of security 
vulnerabilities of smart home consumer devices. 

• The paper presents a novel methodology for applying 
AHP that relies on a systematic literature review and 
on empirical data from security assessment studies. 

• The paper presents a case study to build and validate 
an AHP model to determine the relative importance 
of key factors that have an impact on security of smart 
home devices today. To our knowledge this has not 
been done before. 

The rest of the paper is organized as follows. Previous 
work on using AHP to assess security in a variety of 
computer-related domains is presented first. A systematic 
survey of consumer device security vulnerabilities is 
presented next. This is followed by an example and a 
description of a novel AHP methodology utilizing systematic 
literature review and empirical data from a security study. 
The methodology is then applied to many consumer devices, 
and the resulting AHP model is presented and discussed. 
Paper ends with limitations and conclusions. 

II. PREVIOUS WORK 

A. USING AHP TO ASSESS SECURITY 
AHP is a well-known technique for solving MCDM 
problems [26-27]. AHP is briefly described below followed 
by a discussion of previous work in applying AHP to assess 
security is various computer-related domains. 

AHP begins by defining the problem and determining 
a goal. For example, for this paper the goal was to assess the 
relative security of a type of smart home consumer device 
(e.g., Which personal assistant is more secure?). The goal for 
AHP can be very general like “assessing cybersecurity,” or 
be very specific like “assessing security of nuclear plants.” 
Based on the goal, an AHP hierarchy is developed where 
levels of the hierarchy represent criteria and sub-criteria. For 
example, information security criteria like integrity, access 
control, authentication, availability, etc. are potential top-
level AHP criteria. The next step in AHP requires a pairwise 
comparison of each criterion and sub-criteria. For example, 
if confidentiality and availability were the two chosen 
criteria, then a relative importance of one versus the other 
needs to be established; an expert could indicate that 
confidentiality was significantly more important than 
availability in a specific situation. Based on pairwise 
comparisons, a comparison matrix is then constructed for 
each level. Subsequently, the AHP algorithm assigns relative 
priority to each criterion and sub-criteria in the hierarchy. 
Higher priority means more contribution towards the goal. 
Relative priorities of the various criteria can then be used to 
rank any decision alternatives. For example, Syamsuddin 
and Hawng [28] used AHP to determine, that for information 
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security, cultural elements had the highest priority, followed 
by economy, management, and technology. The final step in 
the AHP methodology is to determine internal consistency 
of the pairwise comparisons. Previous work in applying AHP 
to assess security in various computer-related and 
information technology domains is presented next. 

Maček et al. [29] used AHP to assess cyber security risks 
and used top-level criteria like attacks, vulnerabilities, and 
penetration testing, etc. AHP comparison relied on expert 
opinions after being provided with a systematic literature 
review. The results show that AHP facilitated fine-tuning of 
the cybersecurity risk assessment procedures. Similarly, 
Gupta et al. [30] presented a taxonomy of cyber security 
criteria of vulnerabilities, threats, users, protection 
mechanism and encounter outcomes. The primary goal was 
to evaluate cyber security strength. The process of pairwise 
comparisons was not specified. Zhao et al. [31] proposed a 
methodology for evaluating system security using the criteria 
of host security, network security, and vulnerability security. 
They showed that by using AHP and grey relational analysis 
theory, it was possible to effectively quantify the 
comprehensive security of the network while avoiding the 
subjectivity and one-sidedness of traditional security 
assessment methods through experimental verification. 
Sohime et al. [32] used AHP to rank the relative importance 
of various cyber security skills required in the job market. 
The criteria used were soft skills (e.g., analytical skills), 
technical skills (e.g., ability to identify potential risks) and 
certifications (e.g., related security technical/management 
certifications). 

In the information security domain, Zaburko et al. [33] 
used AHP to evaluate the risk of information loss among 
employees. The criteria used were human dependent (e.g., 
procedural violation), technical (e.g., hardware failure) and 
random (e.g., consumption wear). Using expert opinions for 
comparisons, more information was found to be lost based 
more on human factors than others. Similarly, Bodin et al. 
[34] used AHP with criteria of confidentiality, data integrity 
and availability, and emphasized the utility of AHP to assist 
and organize the ideas of an organization's chief information 
security officer (CISO). 

In the IoT domain, Wang et al. [35] used AHP to 
determine the security of identity resolutions based on two 
primary criteria of trust and user experience. For trust, sub-
criteria included historical trust, leakage rate, and malicious 
resolution rate. For user experience, average resolution 
delay, resolution conscience, and integrity were used as sub-
criteria. All AHP comparisons were based on expert 
opinions. Similarly, Siboni et al. [36] used AHP to determine 
the relative security of IoT devices. The AHP model was 
implemented using a device-centric method that considered 
both device-specific and domain-related features. The 
criteria used were known vulnerabilities (e.g., software, 
hardware, and firmware), sensor capabilities (e.g., 
movement and position, environmental, multimedia, 

connectivity, and health monitoring), and the operational 
context (e.g., mobility, time, and location). Varma and 
Chandra [37] used Fuzzy AHP (FAHP) to assess security of 
fog-IoT systems. The primary criteria included 
authentication, access control, intrusion detection, trust and 
integrity, and the sub-criteria included legitimacy, 
identification, rapid response, accountability, and credibility. 
The comparisons were based on expert opinions. Ogundoyin 
and Kamil [38] used AHP to assess the level of trust in fog 
computing and sub-criteria included latency and reliability. 
They used quality of service, quality of security as the two 
primary criteria. Expert opinions were used for pairwise 
comparisons. Wang et al. [39] used AHP and another 
MCDM technique called Technique for Order of Preference 
by Similarity to Ideal Solution (TOPSIS) to rank the security 
of IoT devices in the healthcare environment. The thirteen 
criteria included confidentiality, authentication, access 
control, and integrity, etc. Expert opinion along with the 
Delphi technique [40] was used for doing comparisons. Ly 
et al. [41] used fuzzy set theory and AHP to build a rule-
based decision support mechanism to evaluate enterprise IoT 
security and used the criteria of connectivity, telepresence, 
intelligence, security, and value. Expert opinions were used 
for comparisons. The tangible variables (e.g., security, value, 
and connectivity) were found to be more essential for 
security than the intangible factors (e.g., telepresence and 
intelligence). Zhang et al. [42] evaluated security of IoT 
systems using FAHP as early as 2011. They used perceptual, 
transport, application, and cloud security as the primary 
criteria. Perceptual layer included sub-criteria like intelligent 
node security and node’s information control certificates, 
etc. Similarly, the transport security criteria included the sub-
criteria of network security, risks of Internet Protocol version 
6 (IPV6), etc. The application security criteria included role 
identification efficiency, normal working hours, and 
software disaster control capability, etc. Finally, the cloud 
security criteria included sub-criteria like cloud computing 
platform security, user access control capability, information 
application security, etc. Expert judgments were used for 
comparisons. Security concerns related to perceptual layer 
were found to be the most important in 2011. 

In the web applications domain, Kumar et al. [43] used 
FAHP-TOPSIS to assess usable-security. They used criteria 
of security and usability where security included the sub-
criteria of confidentiality, integrity, accountability, 
authentication, and durability, while usability included 
appropriateness recognizability, operability, user error 
protection, user interface aesthetics, and accessibility. Expert 
opinion was used for pairwise comparisons. Agrawal et al. 
[44] used FAHP and Fuzzy TOPSIS for assessing the 
sustainable security of web applications. Expert opinions 
were used with the criteria of confidentiality, integrity, 
availability, and durability. The evaluation was based on two 
case studies and six projects. Lai et al. [45] used AHP to 
assess security threats to websites. They used the two criteria 
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of accidental threat (e.g., hardware/software failure, 
ineffective management, operational error) and malicious 
threat (e.g., physical attack, malicious code attack, network 
attack, ultra vires or abuse, information leakage). 

In applications domain Alharbi et al. [46] used AHP and 
TOPSIS to provide rankings for security of a healthcare 
applications. Criteria included integrity, access control, 
confidentiality, and authentication. Expert opinions were 
used for doing comparisons. Kumar et al. [47] used Hesitant 
FAHP-TOPSIS approach to assess usability-security. They 
used security and usability as the top-level criteria. The sub- 
criteria were confidentiality, accountability, authentication, 
and durability. For usability, they used the sub-criteria of 
appropriateness recognizability, operability, error-protection 
and comprehensibility, and user-interface aesthetics. Expert 
practitioners were asked to do the pairwise comparisons. 
Kim et al. [48] used AHP to examine cyber-attack taxonomy 
in Nuclear Power Plants. The primary criteria were divided 
into attacker related variables with sub-criteria like attack 
skill and intensity, and target related variables that included 
the sub-criteria of physical access, logical access, and attack 
surface. Questionnaires and expert views were used to 
determine relative significance. Attack skill and physical 
access, logical access, and attack surface were found to be 
the most important criteria. Phudphad et al. [49] used AHP 
to assess the impact of security aspects of Human Resource 
Information Systems (HRIS) on the work climate. They used 
confidentiality, integrity, non-repudiation, privacy, and 
availability as the key criteria. Expert opinion was used for 
comparisons and the results suggest that the most crucial 
factor was confidentiality, followed by non-repudiation and 
privacy. Zhang et al. [50] proposed a three-layer AHP 
evaluation model for E-Commerce security. Primary criteria 
were technical criterion with sub-criteria of network and 
system security, environmental criterion with sub-criteria of 
legal and cultural security, and managerial criterion with 
sub-criteria of personnel and equipment security. Experts 
were used for comparisons, and the Dempster–Shafer (DS) 
theory of evidence was applied. The model was shown to be 
capable of handling both qualitative and quantitative data. 
Syamsuddin and Hawng [51] utilized AHP to assist banking 
decision-makers in analysing information on security areas 
such as management, technology, economy, and culture. The 
AHP model was derived from questionnaire responses and 
expert evaluations. According to the findings, the top priority 
in terms of information security was cultural elements, 
followed by economy, management, and technology. 

In the cloud domain, Tariq et al. [52] used FAHP to 
prioritize and select the most appropriate collection of 
information security controls to meet the organization's 
information security requirements for cloud and sensor 
networks. Criteria like effectiveness, risk, budgetary 
constraints, exploitation, maintenance, and mitigation time 
were used. Expert opinions were used for comparison. The 
use of FAHP resulted in a more efficient and cost-effective 

evaluation and assessment of information security controls 
within an organization, allowing the most appropriate one to 
be selected based on the International Organization for 
Standardization and the International Electrotechnical 
Commission (ISO/IEC). Ruo-xin et al. [53] used AHP to 
determine Cloud Security. The primary criteria were 
technical requirements and administrative requirements. The 
technical requirements criterion included the sub-criteria of 
physical security, network security, host system security, 
application security, data security, and safety management 
systems. Administrative criterion included safety 
management institution, safety management, system 
construction management, system operational management, 
and service level agreement management. Expert opinions 
using the Delphi method were used for comparisons. Finally, 
Taha et al. [54] used AHP to assess and benchmark security 
provided by a Cloud Service Provider based on its Security 
Service Level Agreement (sSLA). Compliance, data 
governance and information security were used at the top-
level criteria. Compliance criterion included the sub-criteria 
of audit-planning, independent audits and third-party. Data 
handling and governance policy were the sub-criteria used 
for governance criterion, and baseline acquirements and 
policy reviews were used as sub-criteria for information 
security criterion. 

In the networking domain, Li et al. [55] used an improved 
AHP based on D-S evidence and Gray Theory to assess 
network security risks. The top-level criteria included assets 
(e.g., tangible and intangible), access control (e.g., user 
access management), and communication (e.g., computer 
network management). Expert opinions were used for 
pairwise comparisons. The results showed that the proposed 
technique could potentially increase the reliability of 
network security risk assessments. Dong et al. [56] used a 
modified AHP called D-AHP to evaluate security of smart 
grids. The top-level criteria used included smart terminal, 
wireless communication channel, password security, 
application code and the embedded system. Similarly, Yan 
and Qiao [57] used AHP to assess network security. Top-
level criteria used included hardware risk, software risk, and 
information risks. Sub-criteria for hardware risk criterion 
were circuit security, network equipment security and 
computer security. Software security risk criterion included 
application, database, and operating system security. 
Information risk criterion included data backup, access 
control, encryption, and confidentiality strategy. 
Communication risk criterion included encryption, anti-
virus, intrusion detection and firewall. Sub-criteria for 
organization management risk criterion were security 
education, management systems, and organization. Physical 
environment sub-criteria were security power supply, 
physical equipment protection, physical monitoring, and 
physical access control. Expert opinion using the Delphi 
technique was used for pairwise comparisons. Finally, Zhang 
et al. [58] used a combination of FAHP and variable weight  
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TABLE I 
PREVIOUS WORK IN APPLYING AHP TO ASSESS SECURITY IN VARIOUS DOMAINS 

Domain Year Ref. AHP Security Goal Top-Level Criteria 

Cyber Security 2021 [29] Cyber Security Attacks, vulnerabilities, and penetration testing 

2021 [30] Cyber Security Vulnerabilities, threats, users, protection mechanisms. encounters 

2020 [31] Cyber Security Skills Soft skills, technical skills, certifications  

2020 [32] System Security Controls  Effectiveness, risk, budgetary constraints, exploitation, maintenance, mitigation time 

Information 
Security 

2019 [33] Information Loss Security Human dependent, technical, random 

2005 [34] Security Investments Confidentiality, data integrity, availability 

IoT Security 2021 [35] Identity Resolution Security Trust, user experience 

2020 [36] IoT Device Security Known vulnerabilities, sensor capabilities, operational context 

2020 [37] Fog-IoT Security Authentication, access control, intrusion detection, trust, integrity 

2020 [38] Level of Trust in Fog Quality of service, quality of security 

2020 [39] Internet of Health Security  Confidentiality, authentication, access control, and integrity 

2018 [41] IoT in the Enterprise Tangible factors, intangible factors 

2011 [42] IoT Security Perceptual, transport, application, and cloud security 

Web 
Application 
Security 

2020 [43] Website Usability-Security Confidentiality, integrity, accountability, authentication, durability, usability 

2019 [44] Sustainable Security  Confidentiality, integrity, availability, per-durability 

2016 [45] Website Security Accidental threat, malicious threat, physical attach, malicious code, or virus 

Application 
Security 

2021 [46] Software Security Integrity, access control, confidentiality, and authentication 

2020 [47] Usability Security Confidentiality, integrity, accountability, authentication, durability, usability 

2020 [48] Nuclear Plant Security  Attacker’s skill, physical access, logical access, and attack surface 

2017 [49] HRIS Security Confidentiality, integrity, non-repudiation, privacy, and availability 

2012 [50] E-Commerce Security Technical, environmental, managerial 

2009 [51] E-Banking Security Management, technology, economy, and culture 

Cloud Security 2020 [53] Information Security Control  Effectiveness, risk, budgetary constraints, exploitation time, maintenance time 

2014 [52] Cloud Security Technical (physical security, etc.), management (safety management, etc.) 

2014 [54] Security Level Agreements  Compliance, data governance, information security 

Network 
Security 

2021 [55] Network Security Assets, access control, communication 

2020 [56] Smart Grid Security Smart terminal, wireless channel, password security, app. code, embedded system 

2012 [57] Network Security  Software, hardware, information, communication, organization, physical environment 

2010 [58] Wireless Security Authenticity, availability, confidentiality, integrity, non-repudiation 
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theory to assess wireless network security using the top-level 
criteria of authenticity, availability, confidentiality, and 
integrity. A case study suggested that the FAHP variable-
weight technique for assessing wireless network security was 
both efficient and practical. 
   In summary, as Table I shows, many variants of AHP 
models were developed in a variety of security domains. 
However, in most cases, the pairwise comparisons were based 
on expert opinions. In one case, experts were provided with a 
literature review as background information before seeking 
their opinions. A word cloud for the top-level criteria from 
Table I is shown in Figure 1. The word cloud shows that many 

previous studies used the traditional security dimensions of 
confidentiality, integrity, authentication, availability, etc. as 
the primary top-level criteria. Further, most studies required 
experts and assumed that experts could meaningfully judge the 
relative weights of each criterion. A final observation is that 
AHP criteria were developed based on the goal and the ability 
to conduct meaningful pairwise comparisons using either 
experts or some other means. Consequently, the goal and 
availability of opinions or data to make pairwise comparison 
dictated the design of the actual AHP hierarchy used. 
 

B. SURVEY OF SMART HOME SECURITY  
A typical smart home today contains a variety of consumer 
devices including surveillance cameras, voice-assistants, 
thermostats, smart televisions, music streamers, smart 
lighting, etc. As Figure 2 shows, smart homes often utilize 
heterogenous networks. For example, the three signal symbols 
in Figure 2 refer to different wireless technologies; purple 
signals refer to ZigBee networking, blue signals refer to 
Bluetooth networking, and green signals refer to Wi-Fi 
networking. Some consumer devices may also be connected 
to a smart home management system using a home area 
network. Many smart home devices interact with a consumer’s 
mobile phone and use internet gateways to communicate with 
remotely hosted services offered by various commercial  
 

 

 
FIGURE 2. A typical smart home including many smart consumer devices and heterogenous networks 

 

 
FIGURE 1. Word cloud of the top-level AHP criteria used for 
security 
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providers [59]. For example, most home security cameras 
store video on remote servers that can be accessed by 
consumers anytime anywhere. Similarly, smart assistants like 
Alexa also leverage cloud-based services. Recently, there is 
also a trend to move computation from the cloud to the edge 
devices [60-61] within smart homes to enact some services 
locally partially contributing to better network security.       
   There are many ways to conceptualize smart home security 
[62-63]. However, this paper uses an IoT lens where smart 
home security is viewed from the four perspectives of device 
security, network security, cloud security and application 
security [24],[42]. Using this lens, consumer devices in a smart 
home are considered IoT edge devices that can sense, record, 
and communicate data. A security camera or a voice-based 
home assistant like Alexa, for example, senses and connects to 
the outside world through a gateway which could be a home 
router. The IoT gateways collect data from sensing devices, 
and transmit the data to cloud-hosted servers that, in turn, 
provide consumer services. For example, when motion is 
detected by a security camera, a recording of the associated 
video is optionally saved locally, and also transmitted 
remotely to the cloud for storage or further analysis. Finally, 
most smart home devices provide mobile Apps to allow a 
consumer to configure and interact with the smart home 
device. For example, in the case of a security camera, a mobile 
App lets consumers configure the camera, and connect to 
servers on the cloud to access the recorded videos. 

Based on the IoT lens of a smart home, a survey of recent 
work in smart home security since 2016 was conducted to 
answer the following four research questions. 

RQ1: What are the common vulnerabilities of smart home 
consumer devices when viewed as IoT edge devices? 

RQ2: What are the common vulnerabilities of networking 
when used with smart home devices? 

RQ3: What are the common vulnerabilities of cloud when 
used with smart home devices? 

RQ4: What are the common vulnerabilities of applications 
when used with smart home devices? 

Table II shows the results of searching in the four 
commonly used digital libraries by using the most frequently 
used keywords used in the highest cited papers in the area. The 
keywords used included IoT security, Cybersecurity, Smart 
Device, Privacy, Information Security, Attack Surface, 
Communication, Cloud Security, Security of Data, 
Heterogeneity, Ontology, Home Automation, etc. 

The papers were filtered to include only the relevant papers for 
smart home security. Survey results based on the filtered 
papers are described below. 
1) RQ1: SMART HOME DEVICE SECURITY 

IoT edge devices suffer from many vulnerabilities. For 
example, one vulnerability is eavesdropping where an attacker 
listens in to the data being transferred to and from a device 
[64-65]. The physical device can also be compromised by 
node capture attacks, replay attacks and sleep deprivation 

attacks [66-67]. For example, the Mirai Botnet [68] attack 
consisted primarily of compromising embedded IoT devices 
and using these devices for a Distributed Denial-of-Service 
(DDoS) attack. There are several reasons why devices are 
susceptible to attacks. Internet connectivity and telepresence 
are the obvious enablers [69]. There are more particular 
problems as well like undocumented Secure Shell (SSH) and 
default passwords [70]. For example, Antonakakis et al. [68] 
showed that even an unsophisticated dictionary attack could 
compromise hundreds of thousands of internet-connected 
devices. Further, device authentication might not be practical 
for IoT security because securing routing protocols at the 
network layer may potentially suffer from unacceptable end-
to-end delays [71]. Legacy authentication mechanisms may 
also not be suitable IoT devices because many IoT devices are 
resource-constrained [72]. Astaburuaga et al. [73] analyzed 
weakness in an embedded Operating System (OS) often 
utilized in smart home devices, and found that pairing mode 
feature could be easily bypassed which made the OS 
vulnerable to attacks such as DDoS and takeover. Some 
devices are also vulnerable by virtue of the hub they connect 
to [74]. 

TABLE II 

DIGITAL LIBRARIES USED TO SEARCH FOR PAPERS ON SMART HOME 
SECURITY 

Research Quest. Digital Library Number of Papers 

RQ1: Device 
Security  

IEEE Xplore 652 
Science Direct 5,465 
Engineering Village 840 
ACM Digital Library 1,965 

RQ2: Network 
Security in Smart 
Homes 

IEEE Xplore 627 
Science Direct 6,585 
Engineering Village 1,081 
ACM Digital Library 3,021 

RQ3: Cloud 
Security in Smart 
Homes 

IEEE Xplore 179 
Science Direct 2,686 
Engineering Village 280 
ACM  1,454 

RQ4: Application 
Security in Smart 
Homes 

IEEE Xplore 136 
Science Direct 3,787 

Engineering Village 215 

ACM Digital Library 4,686 

  Another common reason for device vulnerability is implicit 
trust and overprivileged design of the connecting Apps [75]. 
For example, over 55% of Apps on a popular IoT App store 
were overprivileged [76]. Over the air update of firmware and 
Apps also makes these devices vulnerable [77]. For example, 
Hernandez et al. [78] showed that firmware verification of a 
commonly used IoT-enabled thermostat could be bypassed, 
providing the means to completely change the unit's behavior. 
The compromised thermostat could then act as a beachhead or 
malicious node to attack other nodes within the local network, 
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and any information stored within the unit was now available 
to the attacker who no longer needed physical access to the 
device. Voice is becoming a standard interface for many smart 
homes. Voice-spoofing has emerged as a recent threat where 
inaudible voice commands that cannot be understood or heard 
by the human, but can still be understood by the system, are 
injected to control the smart home [79]. 

Some consumer devices are borrowed, rented, gifted, 
resold, or retired which raises privacy violation concerns for 
the data stored on these devices [80]. A related issues pointed 
out by Özkan and Bulkan [81] is that increasingly sub-systems 
in modern software and devices may have been developed by 
an ad-hoc team that is no longer available to maintain and fix 
security risks. Sometimes, the company that developed a sub-
system discontinues support for a product, and stops issuing 
security updates. In a government or enterprise context, such 
obsolescence security risks can be handled through 
governance and management level mitigation policies that 
ensure that either such obsolete products are replaced, or the 
obsolete parts are isolated [81]. However, the situation is much 
more complex for consumer devices because even a simple 
consumer device may contain hardware, firmware and 
software from different vendors who may not adhere to the 
same product life-cycle governance policies. Hence, this type 
of obsolescence security risk remains a big challenge for 
consumer devices. Consumer devices with longer shelf life 
like televisions are particularly susceptible to this risk. One 
possible solution is to periodically subject such devices to 
rigorous security testing, and to publish the vulnerabilities to 
warn the consumers. Another option could be introducing 
legislation to ensure the that the original equipment 
manufacturers (OEMs) agree to provide some minimum level 
of extended security support for obsolete consumer devices. 

Finally, consumer devices are also susceptible to a variety 
of attacks at the hardware level [82]. These include 
architectural and system threats (e.g., secure boot attacks, 
firmware attacks, etc.), covert and side channels attacks (e.g., 
timing, electromagnetic channels, etc.), intellectual property 
theft and counterfeiting threats, and hardware trojans. 

Several countermeasures have been proposed for device 
security. For example, a provenance-based framework called 
ProvThings by Wang et al. [83] detected errors and malicious 
activates within deployment, such as weak authentication and 
misconfiguration. ProvThings was able to provide complete 
provenance for twenty-six known IoT attacks like side 
channel, spyware, and backdoor pin code injection. Tian et al. 
[84] proposed SmartAuth that is implemented by device 
vendors, where users can specify which third-party 
applications have permissions, and thus, obviating over 
privileged Apps. Santoso and Vun [85] proposed public key 
mutual authentication protocol for devices as a possible 
solution for authentication vulnerabilities. Han et al. [86] 
argued that confidentiality, access control and data integrity 
required a secure trustworthy smart home service in the back 
end as well. Meng et al. [79] showed that it was possible to 

use channel state information (CSI) to thwart voice-spoofing 
in a device-free manner. For hardware attacks, a variety of 
counter measures including true random number generators 
(TRNG), physical unclonable functions (PUF), system and 
architectural protection techniques, trusted execution 
environments, side channel protection techniques, and 
intellectual property protection techniques like hardware 
watermarking and steganography have been proposed [85]. 
2) RQ2: SMART HOME NETWORK SECURITY 
Home routers have poor protection against internet-based 
attacks [87]. Hussain et al. [88] showed that various 
vulnerabilities like default passwords, infrequent password 
changes, and the absence of system updates could be reduced 
by accessing the home automation system using a single 
network. Lounis and Zulkernine [89] provided a taxonomy of 
attacks in Wi-Fi, Bluetooth, ZigBee, and Radio Frequency 
Identification (RFID) infrastructures, as well as a survey of 
assaults on each network technology. Their findings revealed 
that most attacks were caused by vulnerabilities in the 
authentication protocol. This is important because many smart 
homes utilize wireless heterogenous networks including 
Bluetooth Low Energy (BLE), ZigBee, Z-Wave, and 
Transmission Control Protocol / Internet Protocol (TCP/IP) 
[90]. Alrawi et al. [24] argued that most of the IoT devices 
depended on insecure protocols and that confidentiality and 
integrity were missing. For example, some motion sensor and 
home-surveillance cameras send plain text information which 
makes it comparatively simple for hackers to deduce when a 
user is at home based on the motion sensors’ state [91]. Even 
well-known protocols like TCP/IP with Transmission Layer 
Security (TLS) are not entirely safe [92]. For example, Aviram 
et al. [93] presented a novel cross-protocol attack on TLS 
called DROWN which used a server supporting Secure Socket 
Layer (SSL) v2 as an oracle to decrypt modern TLS 
connections. Results showed that 26% of Hypertext Transfer 
Protocol Secure (HTTPS) servers were vulnerable to Man-in-
the-Middle (MITM) attack, and that SSL was weak and 
damaged the TLS ecosystem. Similarly, Apthorpe et al. [94] 
examined smart home devices and showed that network traffic 
rate for devices revealed user activities, showing that 
encryption alone was not sufficient for privacy protection in 
smart homes. Adrian et al. [95] identified Logjam as a novel 
flaw of TLS that allows MITM to downgrade connections 
export grade Diffie-Hellman key exchange. Wi-Fi networks 
remain a key vulnerability for smart homes. For example, 
Godwin et al. [96] showed that it was challenging to break into 
a common voice-based home assistant using the Bluetooth 
protocol, but the internal Wi-Fi network could be 
compromised during device setup. The heterogenous nature of 
networks inside a home also exacerbates the situation. For 
example, Ho et al. [97] showed how it was possible to have 
relay attacks against Bluetooth Low Energy (BLE) protocols 
by serializing the BLE packets and relying on them over IP. 
Oren and Keromytis [98] examined network-level security 
weaknesses on smart televisions where a number of attacks 
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such as DDoS, authenticated and unauthenticated request 
forgery, and phishing had taken place. Various types of social 
engineering attacks can also be used to penetrate the network 
security of smart homes [99]. Finally, Wood et al. [100] 
monitored home networks and disclosed multiple 
vulnerabilities within IoT devices highest of which was due to 
sharing of sensitive data. 

Many approaches have been proposed for intrusion 
detection in smart homes. For example, Gajewski et al. [101] 
proposed a two-tier intrusion detection mechanism that used 
machine learning to combine anomaly detection at local level 
in each home combined with global anomaly detection across 
homes conducted by the network service provider. Likewise, 
deep learning approaches to detect IoT device anomalies have 
been proposed [102-105]. Similarly, Pan et al. [106] 
implemented a context aware intrusion detection framework 
that could accurately find and classify various kinds of 
Building Automation and Control Networking protocol 
(BacNet) attacks. 

Better alternatives to TLS for resource-constrained devices 
have been proposed [107-108]. Beurdouche et al. [109] 
proposed a programming approach for protocol 
implementation that included a systematic testing of 
unexpected sequences of messages. Peter and Gopal [110] 
introduced a multi-level smart home network authentication 
system that offered multiple security features. Huang et al. 
[111] proposed a security framework called SecIoT which 
provided important authentication and guaranteed secure 
communications to support authorized users with risk 
notification through Fifth Generation (5G) network to operate 
device-to-device communications at any time. Serror et al. 
[112] proposed a rule-based approach that automatically 
complements existing smart home network to provide 
protection for heterogeneous IoT devices and protocols. 
Apthorpe et al. [113] evaluated four strategies to protect the 
home network from threats including blocking traffic, 
concealing Domain Name System (DNS), and shaping traffic, 
and showed how traffic shaping on the home network could 
prevent side-channel snooping. Kim and Keum [114] 
provided a trusted gateway system architecture that built an 
IoT trust domain which could safely protect IoT devices from 
malicious attacks without making any changes to IP-based 
devices. Finally, Gill et al. [115] proposed a Quality of 
Service-aware (QoS-aware) resource management technique 
using fog-assisted cloud computing providing better security 
for smart homes. 
3) RQ3: SMART HOME CLOUD SECURITY 
In many instances, consumer data from a smart home device 
needs to be securely communicated to cloud-based back-end 
services [116-117]. However, security is sometimes 
compromised in such transactions [118]. For example, many 
home surveillance cameras used cloud-based services that had 
issues with authentication and verification [94], [119]. Cloud-
based IoT platforms are also susceptible to security flaws. For 
example, Surbatovich et al. [120] showed that some IoT 

recipes on a popular IoT platform could allow attackers to 
distribute malware and perform Denial of Service (DoS) 
attack. Platforms for cloud integration can also be 
compromised, and may expose the OAuth tokens of the user 
to the public. Analysis of event trigger rules in another popular 
open-source home automation system showed that 80% of the 
rules had less triggers than needed, and hence could lead to 
unexpected security holes that could be exploited [121]. 

Various countermeasures have been proposed to address 
cloud-based security for smart homes. For example, Alsadi 
and Mohan [122] proposed a method to increase secrecy rate 
by letting the legitimate transmitter find an alternative route to 
the fusion center in case of an eavesdropper located in between 
the information passed. Similarly, Tao et al. [123] proposed a 
new multi-layer architectural cloud model to enable efficient 
and seamless interactions on heterogeneous devices/services 
provided by various IoT-based smart home vendors. Another 
way to empower IoT users who trust their private data to the 
vendors is Transport Layer Security-Rotate and Release (TLS-
RaR) that can be jointly deployed by vendors and users or 
trusted third parties. Device vendor can also mitigate their 
exposure by diversifying and subscribing to different cloud 
providers, [124]. 

Finally, Fernandes et al. [125] proposed using a 
decentralized framework for trigger-action programmable 
platforms called Decentralized Trigger-Action Platform 
(DTAP) that acts as a shim between the IoT cloud platform 
and the users’ local network. In this scenario, broker access to 
IoT devices was based on transfer tokens (XTokens) where 
attackers could not misuse the tokens. 
4) RQ4: SMART HOME APPLICATION SECURITY 
Mobile Apps used to configure or access smart home devices 
provide a convenient attack surface [126]. It is difficult to 
maintain security at the application layer because of lack of 
sufficient protocol security services, incorrect configuration, 
and resource limitations [127]. For example, Liu et al. [128] 
showed that it was possible to emulate a commercial edge 
device using software and then fooling the associated mobile 
App to uncover home Wi-Fi passphrases, and to trap the user 
into disclosing personal information. Similarly, Margulies 
[129] argued that linking garage door openers to the internet 
network using mobile Apps might easily pose a security threat. 
Fernandes et al. [130] found that many IoT programming 
frameworks only support permission-based access control on 
sensitive data, and hence making it possible for malicious 
Apps to abuse the permissions and to leak data. Sivaraman et 
al. [87] demonstrated a smart phone attack on a home network 
using a doctored smart phone App by scouting for vulnerable 
IoT devices within the home and then reporting them back to 
an external entity where they modify the firewall to allow the 
external entity to directly attack IoT devices. Demetriou et al. 
[131] proposed HanGuard that allowed the router to enforce 
access control policies to home area network using mobile 
phones and IoT devices. 
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Chen et al. [132] suggested that to ensure proper 
deployment, IoT vendors and developers should follow 
platform development guidelines and leverage the in-built 
security features. Finally, Yamauchi et al. [133] proposed a 
unique intrusion detection mechanism that used Hidden 
Markov Machines (HMM) to learn the behavior of 
homeowners. App commands that were not congruent with 
this behavior were marked as anomalies. 

Table III shows the key security vulnerabilities for each 
research question posed in the survey.  Table III suggests that 
each component of a smart home device viewed from the IoT 
lens leads to related but potentially different set of 
vulnerabilities. 

TABLE III 
COMMON VULNERABILITIES OF SMART HOMES 

Security 
Question Common Vulnerabilities 

RQ1: 
Device 

Eavesdropping [64-65] 
Node capture and replay attacks [66] 
Sleep deprivation attack [67] 
DDoS attack [68] 
Internet pairing default password [70] 
Configuration and device authentication [71], [85] 
Legacy authentication mechanism [72] 
Exposed services [75] 
Overprivileged configuration Apps [76], [84] 
Insecure hardware interfaces [73] 
OTA Updates and upgradeability weakness [75-76] 
Critical vulnerabilities: side channel, spyware, and 
backdoor pin code injection [83] 
Voice spoofing [79] 
Communal acts like renting, lending, etc. [80] 
Hardware-level attacks [82] 
COTS obsolescence risk [81] 

RQ2: 
Network  

Authentication and communication [87], [89] 
Default password [85-86] 
Insecure protocols [24], [91] 
Susceptibility to MITM attack [88-89], [95] 
Inappropriate use of encryption [94] 
Protocol attacks [96], [106] 
Relay attack [97] 
Sensitive data [100] 
Prospective attacks [98-99] 
Social engineering [99] 

RQ3: 
Cloud  

Information disclosure and access control [116-117] 
Authentication and verification [119], [94] 
Exploitable services [112-113] 
Eavesdropping [122] 

RQ4: 
Application  

Incorrect configuration and resource limitations 
[127] 
Leakage of sensitive Data [128] 
Excess permissions [130] 
Programming issues [87] 
Weak password protection [129] 

IV.  AHP METHODOLOGY FOR SMART HOME DEVICE 
SECURITY 

This section proposes a novel methodology for applying 
AHP to create smart home device security rankings. A 
simplified example of how AHP can be used to rank device 
security using the IoT lens with the four top-level criteria of 
device, network, cloud and application security is presented 
first. The simplified example shows in detail all the steps and 
the calculations required for each step of the generic AHP 

methodology. The example is followed by a description of the 
proposed methodology for applying AHP for smart home 
security domain. The proposed methodology is then 
demonstrated by using an existing empirical study, and all the 
steps and calculations are subsequently described in detail.  

A. A SIMPLE EXAMPLE OF APPLYING AHP 
This section presents as simple example of using an AHP 
based on device, network, cloud, and application security 
criteria. Lower-level sub-criteria are excluded for simplicity. 
   The first step in AHP is to build a decision hierarchy like the 
one shown in Figure 3. This hierarchy assumes that AHP has 
the goal of selecting the most secure surveillance camera. This 
goal can be achieved by evaluating each candidate camera 
with respect to Device (D), Network (N), Cloud (C) and 
Application (A) security. The model in Figure 3 shows that 
three alternative camera models (C1-C3) are to be compared. 

FIGURE 3. A simplified AHP model for selecting the most secure 
surveillance camera. 

The second step in applying AHP is to determine the 
priority or importance of each criterion (e.g., Network 
Security) in achieving the said goal. This is done by first 
constructing a pairwise comparison matrix AG for the four 
criteria. The matrix AG encodes the relative importance of 
these criteria towards achieving the goal. This example uses 
arbitrary pairwise comparison numbers. Equation (1) shows 
an example matrix AG where each 𝑎!" 	 ∈ 	AG represents a 
symmetric pairwise comparison of importance between the ith 
and jth criterion based on the AHP fundamental scale [26]. For 
example, 𝑎#$ = 9 in (1) shows the assumption that Device (D) 
security is much more important than the Application (A) 
security in determining the security of a surveillance camera. 

 
       D   N   C   A 

AG=

⎝

⎜⎜
⎛

1 1 3 9
1 1 1 3
1
3

1 1 5

1
3

1
9

1
5

1⎠

⎟⎟
⎞

 (1) 

wG is a vector representing the relative priority of each 
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criterion with respect to the top goal and is calculated by 
solving a system of equations given in (2) and (3) for any 
pairwise comparison matrix A and priority vector w [26] 

Aw = λmaxw  (2) 

wT1=1  (3) 

λmax is the maximum eigenvalue of A, and 1	=	(1…1)T. wG 
calculated using (2) and (3) in (4) shows that according to 
AG, Device has the highest priority for achieving the goal of 
determining the most secure camera (i.e., wDG=0.455). 

wG=

⎝

⎜
⎛

wDG

wNG

wCG

wAG⎠

⎟
⎞

=*

0.455
0.266
0.221
0.058

+  (4) 

The internal consistency of an 𝑛 × 𝑛 pairwise comparison 
matrix A is given by (5) where RIn is empirically determined 
for each n. Matrices with CR(A) < 0.1 are acceptable while 
those with CR(A) > 0.1 are rejected as being inconsistent 
[26]. 

CR(A)=
λmax - n

(n-1)× RIn
 (5) 

CR0AG1 = 0.069 (n=4) which means that pairwise 
comparisons in matrix AG are internally consistent. 

Once the relative priority of each criterion (e.g., Network) 
with respect to the goal is determined, the same process is 
repeated for each criterion by creating a pairwise comparison 
matrix for each criterion (e.g., Network) with respect to each 
alternative. For example, AD in (6) shows the pairwise 
comparison of each of the three camera alternatives with 
respect to Device (D) security criterion. For example, (6) 
shows that with respect to device security, camera C1 is less 
secure than camera C2 (𝑎#% = 0.5), and more secure than 
camera C3 (a13=3). 

        C1 C2 C3 

AD=

⎝

⎜
⎛

1
1
2

3

2 1 3
1
3

1
3

1
⎠

⎟
⎞

 (6) 

wD in (7) shows that overall priority vector for AD 
calculated using (2) and (3). Equation (7) shows that camera 
C2 was the most preferred with respect to device security 
(wC2D =0.528). 

wD=6
wC1D

wC2D

wC3D
7=8

0.333
0.528
0.140

9  (7) 

Finally, goal level priority and the criteria level priority 
vectors can be combined into a single priority vector wcameras 
using (8) [26]. 

wcameras=wDGwD+wNGwN+wCGwC+wAGwA  (8) 

where wN,wC,	wA represent the priority vectors with 
respect to Networking, Cloud and Application layers 
respectively calculated in a similar fashion as wD. 

wcameras in (9) shows the relative priority of each camera 
alternative calculated using (8). 

wcameras=8
wC1
wC2
wC3

9=8
0.242
0.469
0.289

9  (9) 

Equation (9) shows that wC1⋞	wC3⋞	wC2 which means that 
in this example, camera C2 was the best overall choice for a 
surveillance camera. 

B. PROPOSED AHP METHODOLOGY 
A methodology of conducting the pairwise comparisons for 
each level of the AHP model is described next. 
1) TOP-LEVEL PAIRWISE COMPARISON  

At the top-level, relative importance of various security 
criteria like Device Security versus Network Security must 
be determined. The methodology proposed a pairwise 
comparison scheme based on the literature review for smart 
home security. Specifically, the number of words discussing 
issues related to each security criteria were counted for each 
paper and used as a proxy for relative importance of each 
security criterion.  

    Table IV shows an example of how a normalized 
percentage with respect to each paper’s total word count was 
derived. Each Security column in Table IV represents the 
overall importance of each criterion for four sample papers.  

TABLE IV 
SAMPLE OF SYSTEMATIC REVIEW RESULTS 

Paper Word 
Count 

Device 
Security 

Network 
Security 

Cloud 
Security 

Applic. 
Security 

Noor et al. [71] 10,809 0% 23% 0% 0% 
Alrawi et al. [24] 17,465 7% 9% 7% 5% 
Liu et al. [10] 5,810 0% 20% 0% 16% 
Mohammad et al. [64] 5,071 4% 13% 0% 4% 

   An effect size using Rank biserial correlation (r) [135] was 
used to then calculate the magnitude of difference between 
the compared pairs (e.g., Device vs. Network Security 
column in Table IV). The effect size value (𝑟) was then 
mapped to the AHP scale [26] by using (10) and (11).  

r̂=
r

max(max(r) - min(r))  (10) 

ahp_scale=8 ×(r̂)+1  (11) 

   Table V shows the resulting pairwise comparisons among 
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the various security criteria based on all the papers reviewed 
earlier. For example, Table V shows that Device security was 
much less important than Network security (ahp_scale=1/6) 
and much more important than Cloud or Application security 
(ahp_scale = 4). 

TABLE V 
TOP LEVEL PAIRWISE COMPARISON MATRIX FOR TOP-LEVEL 

COMPARISION 
Security Criteria Value Device Network Cloud Application 

Device 
r 

1 
0.28 -0.17 -0.20 

r̂ 0.57 -0.34 -0.41 
ahp_scale 1/6 4 4 

Network 
r -0.28 

1 
-0.44 -0.49 

r̂ -0.57 -0.88 -1.00 
ahp_scale 6 8 9 

Cloud 
r 0.17 0.44 

1 
-0.03 

r̂ 0.34 0.88 -0.06 
ahp_scale 1/4 1/8 1 

Application 
r 0.20 0.49 0.03 

1 r̂ 0.41 1.00 0.06 
ahp_scale 1/4 1/9 1 

2) LOWER-LEVEL PAIRWISE COMPARISON SCHEME 

A second key contribution of this paper is the idea of using 
empirical data on security assessment of home devices for 
the low-level AHP comparisons. Empirical security 
assessment data from a security study conducted by Alrawi 
et al. [24] was used in this paper. Like most such studies, this 
study also used pragmatic lower-level criteria for each of the 
device, network, cloud and application-level security. For 
example, device security criteria contained the sub-criteria of 
internet pairing, configuration, upgradability, exposed 
services, and Common Vulnerability Scoring System (CVSS) 
[134]. This is different than the general dimensions of security 
like confidentiality, integrity, etc. being used by many AHP 
studies in the past as shown in Figure 1. Data published by 
Alrawi et al. [136] based on this study was used to 
automatically generate pairwise comparisons for the lower 
level. Since the original study used a ratio scale to represent 
relative security risk, the ratio scale was first converted to an 
ordinal scale for AHP. For example, the overall security risk 
for Application security in the original study was 16. For one 
consumer device model (e.g., camera model C1), the security 
risk due to ‘sensitive data’ with respect to Application 
security was (7/16), while security risk due to ‘programming 
issues’ with respect to Application security was (5/16). This 
meant that for camera model C1, ‘programming issues’ was 
less of a security risk with respect to Application security. 
Given each such ratio (a/b), (12) was first used to calculate 
the angle of the vector <a, b> in radians for each reviewed 
device. 

θ= cos-1 =
a

>a2+b2
?  (12) 

All reviewed devices of a particular type (e.g., security 
cameras) were then compared in pairs by taking the 
difference between their respective θ’s calculated using (12) 
and subsequently using (13) and (14) to map the difference 
of θ's to the AHP scale.  

∆θ@=
∆θ

max(max(∆θ) - min(∆θ))
 (13) 

ahp_scale=8 ×0Δθ@1+1  (14) 

Table VI shows an example of the pairwise comparison 
matrix for Application security which depends on Sensitive 
Data, Programming Issues and Excess Permissions. 

TABLE VI 
AN EXAMPLE OF APPLICATION SECURITY PAIRWISE COMPARISON  

Security Factor Value Sensitive 
Data 

Program. 
Issues 

Excess 
Permissions 

Sensitive Data 
Δ𝜃  

1 
-0.11 -0.17 

Δθ# -0.65 -1 
ahp_scale 6 9 

Program. Issues 
Δ𝜃 0.11 

1 
-0.06 

Δθ# 0.65 -0.35 
ahp_scale 1/6 4 

Excess 
Permissions 

Δ𝜃 0.17 0.06 
1 Δθ# 1 0.35 

ahp_scale 1/9 1/4 

IV. CASE STUDY 

Using the methodology described in the previous section, an 
AHP analysis was conducted using the pairwise comparison 
matrices as shown in the previous section. A total of 41 
devices (e.g., Alexa) within 11 device types including home 
theatres, security cameras, smart lighting, smart speakers, 
video surveillance, smart switches, home automation 
systems, home security systems, smart routers, wireless 
doorbell cameras, and home audio systems were considered 
based on security assessment data published by Alrawi et. al 
[136]. 

A. THE AHP MODEL 
Figure 4 shows the resulting AHP model based on applying 
the proposed methodology. The calculated priority or 
relative weight of each security criterion is shown in 
parentheses. As Figure 4 shows, at the top level, Network 
security had the highest priority (0.6893) which implies that 
network security was by far the most important security 
criteria for smart home devices. Application (0.059) and 
Cloud securities (0.0614) each had much lower priority. At 
the lower level, for Device security, predictably, ‘critical 
vulnerabilities’ had the highest priority of 0.4397. Second 
position was tied between high vulnerabilities and 
configuration with a priority of 0.1745. Internet pairing, and 
low vulnerabilities were the least important with a priority of 
0.0297 each. Similarly, for Network security, two types of 
MITM attacks had the highest priority of 0.201. 
Interestingly, Mobile-to-Device MITM had a low priority of  
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FIGURE 4.  A graphical representation of the AHP assessment model and priorities assigned to each criterion 

 
0.0378.  For Cloud security, exploitable services had the 
highest priority of 0.260. Finally, for Application security, 
sensitive data had the highest priority of 0.7626, while the 
least important was excess permissions with a priority of 
0.0611. 

B. INTERNAL VALIDATION 
1) CONSISTENCY RATIOS 
It should be emphasized that in this paper, the pairwise 
comparisons were based on quantitative measures taken 
directly from a combination of a literature review and on data 
from an empirical security assessment study. Therefore, it 
was important to ensure that these automatically derived 
pairwise comparisons were mathematically consistent. In 
AHP, internal consistency of judgments of pairwise 
comparisons is measured by the Consistency Ratio (CR) 
[137]. The pairwise comparisons are considered unreliable if 
the CR value is higher than 0.1 and must be revisited [138].  
    The consistency ratios for all top-level comparisons for 
the AHP model were mostly within bounds (CR<0.1). The 
only exception was Application security where the CR value 
was a bit higher than 0.1 (CR=0.1037) which is acceptable. 

Mean CR values for all device types (e.g., surveillance 
cameras) were well within bounds with the highest mean 
being 0.0140 for the video surveillance equipment. In more 
than 50% of the cases, the median CR values were zero, and 
the standard deviations were small. In summary, it is 
reasonable to assume that the model was internally 
consistent at all levels of comparisons. 

2) SENSITIVITY ANALYSIS 
The goal of sensitivity analysis was to determine how 
sensitive the ranking outcomes were to the pairwise 
comparisons. Sensitivity analysis was conducted by varying 
top-level priorities 10% above and below their respective 
values and determining the impact on the relative ranking of 
various devices. Most devices with the topmost ranking 
within each device type were not sensitive to priority 
changes. Priority thresholds of 0.01 and 0.05 were used to 
determine if the rank changed for each device type. For 
example, if the priority of two alternative devices differed by 
more than 1% (threshold=0.01), then the rank was 
considered different based on a threshold of 0.01. For the 
threshold of 0.05, top rankings changed only twice across all 
11 device types. Similarly, for a threshold of 0.01, the 
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ranking changed for 4 device types only. This suggests that 
although the AHP model was sensitive to some device types, 
overall, the model was robust with respect to the pairwise 
comparisons. 
3) COMPARISON WITH ORIGINAL SECURITY SCORES 
It is instructive to compare the security ranks given to each 
consumer device with those from the original security 
scorecards from Alrawi et. al [136]. Table VII shows an 
example of original scorecard percentage scores for four 
video surveillance devices; higher percentages meant better 
security. For example, Video Surveillance Device 1 (VSD1) 
was most secure with respect to Device security (86%) as 
opposed to Network, Cloud or Application security.  It is 
clear from Table VII that while useful for a researcher, a 
typical consumer cannot directly interpret this information to 
determine which device is the most secure. For example, 
from Table VII, it is not clear whether Video Surveillance 
Device 2 (VSD2) was better than Video Surveillance Device 
4 (VSD4). This is because both devices were similar with 
respect to Device (93% and 95% respectively) and Network 
(96% and 93% respectively) security. However, VSD2 was 
better in Cloud security (84% vs. 63%) while VSD4 was 
better in Application security (69% vs. 54%). It is not 
possible for a typical consumer to decide which of the 
Application or Cloud security is more important for video 
surveillance devices in making this decision. What the 
consumers require is a simple ranking as proposed in this 
paper.  

TABLE VII 
A SAMPLE SCORECARD RANK FOR VIDEO SURVEILLANCE EQUIPMENT 

Video S. 
Device 

Original Work: Scorecard Percentage Score [136] 
Device Network Cloud Application 

VSD1 86% 57% 52% 85% 
VSD2 93% 96% 84% 54% 
VSD3 62% 71% 88% 69% 
VSD4 95% 93% 63% 69% 

To facilitate a comparison with our approach, percentage 
scores of the type shown in Table VII were first normalized 
using the SoftMax [139] function shown in (15). 

scoredl= 
eadl

∑ eailn
i=1

 (15) 

In (15), scoredl represents the normalized score of a device d 
(e.g., VSD1) with respect to security criteria l (e.g., Device) 
and n is the number of alternative devices in the group. The 
original percentage score as shown in Table VII is 
represented by adl (e.g., aVSD1-Network = 57%). For a particular 
criterion l (e.g., Network), the normalized scores add up to 1 
for the n device alternatives. By definition, 𝑠𝑐𝑜𝑟𝑒&' ≤ 1 
because each device has four such scores, one for each 
security criterion, (16) was used to calculate the overall rank 
for each alternative device where i represents each security 
criterion (e.g., Cloud). 

rank(d) = 
∑ scoredi4
i=1

4
 (16) 

Levenshtein or Edit distance [140] was subsequently used 
to calculate the distance between the ranks derived from the 
original score cards and the proposed AHP model. Edit 
distance of zero means that ranks are the same. For example, 
the ranks of five smart lights (L1-L5) using the original 
scorecard [136] were L1⋞L2⋞L3⋞L4⋞L5 (i.e., L5 was the 
most secure) while the AHP model’s ranks were 
L1⋞L3⋞L2⋞L5⋞L4 (i.e., L4 was the most secure), showing 
that the ranks were different because the edit distance 
between the two ranks was 4. 

Overall, the ranks based on the proposed AHP approach 
were significantly different than the original scorecard ranks 
with a total Levenshtein distance of 20 across all device 
types. Since the lower-level empirical data was common for 
both the scorecard and the proposed AHP model, this 
discrepancy between the two approaches can perhaps be 
explained by the fact that the original scorecard did not 
explicitly incorporate any top-level assumptions. This speaks 
to the importance of the more holistic view of the AHP 
model for a more informed decision. 

V. CONCLUSION AND LIMITATIONS 
This paper presented a systematic survey, a methodology and 
a case study to rank the security of home consumer devices. 
An IoT lens based on the current state-of-the-art research in 
security of smart home devices was used to propose a novel 
methodology. The proposed methodology was then used and 
evaluated in the context of one empirical security assessment 
study. The key contribution of the methodology is 
systematically combining the current wisdom behind smart 
home device security research with empirical on the ground 
results from security vulnerability studies. The case study 
showed that even though the AHP model was based on 
empirical data, remarkably, the resulting AHP model was 
internally consistent and robust with respect to pairing 
assumptions and sensitivity analysis. The derived AHP 
model also showed the importance of various security factors 
in current home consumer devices in an explicit and 
quantitative manner. In addition to ranking consumer 
devices, the AHP model can also be used to inform future 
research because it incorporates empirical security studies as 
well. For example, under network security, Third Party DNS 
and MITM Device-to-Cloud were found to be most 
significant from a security perspective, and therefore, more 
research could be directed towards determining and 
deploying counter measures for these two vulnerabilities. 

Although the proposed methodology and approach is 
general, the proposed methodology has only been applied to 
one empirical security assessment study. However, the 
methodology can be easily adapted to any of the many 
vulnerability assessment studies being conducted today. In 
addition, as the research focus on smart home device security 
changes, the current top-level priorities may change as well. 
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For example, network may no longer be the primary weak 
point in the future. In this case, the proposed methodology 
can be used to simply recalculate the priorities. Finally, it 
would also be interesting to compare these device rankings 
with those based on an AHP built using expert opinions. 
However, the advantage of the proposed methodology over 
an expert-based approach is that the methodology can be 
mostly automated and applied whenever the underlying 
information changes. 
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