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ABSTRACT The global surge of connected devices and multimedia services necessitates increased
capacity and coverage of communication networks. One approach to address the unprecedented rise
in capacity and coverage requirement is deploying several small cells to create ultra-dense networks.
This, however, exacerbates problems with energy consumption and network management due to
the density and unplanned nature of the deployment. This review discusses various approaches to
solving energy efficiency problems in ultra-dense networks, ranging from deployment to optimisation.
Based on the review, we propose a taxonomy, summarise key findings, and discuss operational and
implementation details of past research contributions. In particular, we focus on popular approaches
such as machine learning, game theory, stochastic and heuristic techniques in the ultra-dense
network from an energy perspective due to their promise in addressing the issue in future networks.
Furthermore, we identify several challenges for improving energy efficiency in an ultra-dense network.
Finally, future research directions are outlined for improving energy efficiency in ultra-dense networks
in 5G and beyond 5G networks.

INDEX TERMS 5G, energy efficiency, ultra-dense networks, game theory, machine learning, resource
allocation, user association, Hetnet.

I. INTRODUCTION
The world is changing continuously with the emergence
of new technologies, a high degree of automation, grow-
ing data rates, ultra-reliable low latency and massive
machine-type communication. According to CISCO an-
nual report [1], data traffic is expected to increase 46%
from 2018 to 2022, and it will eventually reach 77 exabytes
per month by the end of the year 2022. Besides data
consumption, the wireless network users will reach 29.3
billion per capita with 14.7 billion machine-to-machine
(M2M) connections in 2023 [2]. The wireless industry
is overgrowing rapidly to accommodate future commu-
nication requirements that consist of various devices
with varying service requirements from low latency to
high-speed constraints, different features, and pervasive
connectivity [3].

5G road-map envisions target that includes 10–100x
peak-rate data rate, 1000x network capacity, 10x energy
efficiency, and 10–30x lower latency, paving the way
towards Gigabit wireless. In order to address the diverse

requirement, 5G use cases have been grouped into three
categories:

• eMBB: enhanced mobile broadband (eMBB) network
must provide high data rate, extensive coverage and
connectivity [4].

• URLLC: ultra-reliable low latency (URLLC) opti-
mise the throughput and delay of the commu-
nication network. Some of its use cases are au-
tonomous/unmanned vehicles, smart grids, medical
surgeries and robotics.

• mMTC: massive machine type communication
(mMTC) supports a large number of low-cost devices
that require a low data rate for communication or
having small data payloads.

In order to meet the requirement of various use cases,
several new technologies are added to improve the cover-
age and cope with user data demands. These techniques
can be categorised as:

• Spectral efficiency enhancement: Spectral efficiency

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3123577, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

is considered a key performance metric to determine
how efficiently the spectrum is utilised (measured in
bits/s/Hz). The enhanced architecture and advances
in multiple-input multiple-output (MIMO) commu-
nications provide higher spectral efficiency by focus-
ing on narrow beams. Some other technologies such
as sparse code multiple access (SCMA), universal fil-
tered multi-carrier (UFMC) and some novel channel
coding schemes like low-density parity-check code
(LDPC), polar codes also help to increase the spectral
efficiency [5]. Further, radio resource management
also allows for improved spectral efficiency through
dynamic channel allocation, changing the link and
power control.

• Efficient utilisation of spectral resources: Another
effective way to add capacity is by making dynamic
usage of spectral resources. Due to limited spectrum
resources, it is challenging to meet the growing
data demands. Managing frequency spectrum dy-
namically beyond microwave and millimetre-wave
(mmWave) spectra can improve spectral resource
utilisation. Currently, 5G release 16 supports 52.6GHz
carrier frequency; however, growing traffic demands
more bandwidth in terms of tens of gigahertz (GHz)
or up-to terahertz (THz) may be required to provide
services of up to 100Gbits or more [6]. Moving
towards the higher frequency range in the terahertz
domain is the necessity of 5G and B5G networks to
assure ultra-dense network traffic demands [7].

• Increasing the density: Another way to increase the
network capacity is increasing the site density by
deploying several small cells. Network densification
reduces the latency and improves geographical cov-
erage by adding extra capacity, benefiting growing
end-user demands. In addition to the technologies
mentioned above, other qualities like virtualisation,
pliable network, self-organisation, and network scal-
ability are essential for realising the 5G vision [8].

Adding more bandwidth is expensive due to acquiring
the license and the path loss associated with the higher
frequency. Furthermore, point-to-point link throughput
has almost reached its theoretical limit due to scarcity
of available bandwidth and increased usage of available
spectrum [9]. Due to growing traffic, higher spectrum
utilisation has reached its saturation point in terms of
available frequency per cell. Due to this, there is very
little room for further significant improvement in its per-
formance. The small cell deployment related to eMBB and
massive MTC 5G satisfies the critical performance indica-
tors of spectral efficiency, energy efficiency, and latency. It
allows for higher frequency reuse, increases the capacity
and data rate in the network. Also, low power small cell
deployment has become popular because of the growing
demands and increased power consumption. Small cells
help increase the throughput and significantly reduce

power consumption as dense deployment decreases the
distance between the user equipment and base station
(BS). Even though densification is an easy way to achieve
high data rates by minimising the distance between
nodes, it leads to severe inter-cell interference and energy
efficiency (EE) challenges. In addition, even if small cells
consume less power than traditional base stations, the
cumulative power consumed by a large number of small
cells results in increased energy consumption due to the
additional construction and circuit power requirements
[10]. Since these issues are prevalent, energy efficiency
has become a priority in 5G network research.

According to a study [11], 5G consumes almost 1200W
to 1400W of power which is almost 300% more energy
as compared to 4G. Estimated power consumption of
different network generations, in terms of carbon foot-
print, power consumption, radio access network (RAN)
electricity consumption, and operating expenses (Opex),
is shown in Table 1. Base stations are the major contrib-
utors in energy consumption which is around 80%, the
rest 20% is due to cooling systems, power amplifiers, and
other electronic devices [12]. Despite the high cumula-
tive energy consumption of ultra-dense network (UDN)
due to extensive infrastructure, energy efficiency can be
improved by appropriately switching on/off cells based
on traffic conditions [3].

A. MOTIVATION
An increasing number of online services and growing
user data needs are resulting in 0.5% of the world’s
energy consumption by mobile networks alone [14]. The
spatial densification of base stations (femtocells, picocells
and relays) highlights more complexities in UDN. In
addition to increasing OPEX costs, its unplanned deploy-
ment results in increased interference levels and energy
consumption. According to a recent report by Ericsson,
[15], it is predicted that the amount of user data will
reach four times more in 2025 than today’s network. 5G
networks consume almost four times more energy than
4G [16]. From the ecological perspective, greenhouse gas
emissions (GHG) from information and communications
technology (ICT) put together the major share in global
warning [17]. It is estimated that UDN carbon dioxide
(CO2) emission will contribute to 14% in year 2040, in
global GHG emission [18].

In addition to energy consumption, interference man-
agement, resource allocation, and quality of service are
also essential factors in UDN. Effective resource alloca-
tion helps to determine the stability and efficiency of net-
work performance. A resource allocation strategy needs
to be fair enough not to degrade any performance metric.
Sub-optimal resource allocation can further degrade the
energy efficiency and channel conditions. Especially in
the case of UDN when spectrum access is overlaid, which
causes poor bandwidth allocation to small cells.

Along with resource allocation challenges, the inter-
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Year World’s Power
Consumption

Carbon
Footprint in
%

Carbon
Footprint in
Mto

RAN Electricity
Consumption

OPEX BS Density Consumed En-
ergy (ICT)

2005
(3G)

133602TWh 1.3% 86Mto 49TWh low 4-5BS/ km2 3.9%

2015
(4G)

21000TWh 1.5% - 3% 170Mto 77TWh high 8-10BS/km2 3.5%-7%

2020
(5G)

23000TWh 6% 3.5% -
235Mto

86TWh high 40-
50BS/km2

3%

TABLE 1: Estimation of consumed energy in ICT, data centers, carbon footprint, radio base station and core network
for the time period from 2001 to 2030 [13]

ference issue is also a significant problem, especially
in UDN, for two significant reasons. One is because of
the dense deployment of small cells, which may affect
the performance of neighbouring cells. Second, due to
their adjacent deployment, which causes more mutual
interference than traditional networks. Also, the network
topology of UDN small cells is considerably different as
the small cells are generally deployed in an unplanned
manner. These factors lead the interference management
paradigm exceptionally challenging.

The complexity of small cell deployment in UDN leads
to significant mobility management issues as well. The
variation in transmission power of macro base station
(MBS) & small base station (SBS) and the network in-
terference causes quality of service (QoS) degradation.
As the SBS has less coverage area than MBS, the cell
selection and re-selection becomes challenging because
of more available BSs. UDN is crucial for 5G and beyond
networks due to its capacity and coverage improvement
and low cost of implementation. Several works have been
done on UDN, but several issues, significantly improving
energy efficiency, are yet to be addressed.

Several studies have been conducted in the past to
improve UDN performance and energy efficiency. This ar-
ticle aims to review promising state-of-the-art techniques
applied to solving energy efficiency issues in UDN.

B. CONTRIBUTION
Various surveys have been carried out on UDN. However,
our paper is different from [19]–[25] as we aim to provide
a comprehensive survey on energy efficiency in the UDN
considering the recent advances focusing on promis-
ing techniques such as machine learning, game theory,
other optimisation & heuristic techniques. In addition,
this paper also discusses the future work and research
gaps of past researches. This survey is one of its kind,
which presents the taxonomy on ultra-dense networks to
improve energy efficiency and motivation to select the
right tool to solve the energy efficiency problem. Table
2 represents a summary and research gaps of the past
surveys on UDN. In particular, the main contributions of
this paper is as summarised below:

1) A comprehensive survey has been presented by iden-

tifying the key elements of the ultra-dense network
and taxonomy along with the constraints, optimi-
sation types, latest modelling techniques/algorithms
for 5G ultra-dense networks.

2) A detailed taxonomy has been presented on the
optimisation problems in UDN by categorising them
into six approaches, specifically, resource allocation,
cell association/selection, interference management,
base station switching, cell zooming and traffic &
mobility.

3) Further, a comprehensive study has been presented
on the latest modelling techniques and how those
tools will help achieve energy efficiency in the ultra-
dense network without compromising QoS. The dis-
cussed techniques are machine learning, game the-
ory, other optimisation & heuristic techniques.

4) Various involved performance measures, EE metrics
are discussed that are important to evaluate the
performance of UDN. The energy efficiency metrics
are further categorised into the component level,
node level and network level.

5) Finally, the future research directions and challenges
that can further pave the research activities in ultra-
dense networks and related domains are provided.

C. ORGANIZATION

The rest of the paper is organised as follows: Section II
presents the comprehensive survey of UDN, their archi-
tecture and components. The emerging techniques and
tools (machine learning, game theory and optimisation &
heuristic approaches) are discussed in Section III-D that
can be used in UDN to achieve energy efficiency. Section
III contains a detailed taxonomy of UDN to improve
energy efficiency through resource allocation, cell asso-
ciation/selection, interference management, BS switch-
ing, cell zooming and traffic & mobility approaches. It
also covers the performance measures, energy efficiency
metrics, and latest mathematical tools discussion about
improving the energy constraint through mentioned ap-
proaches. Finally, section IV concludes the paper with
future research directions and challenges to extend the
research work in UDN.
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Reference Scope Focus Limitations

[19] Energy efficiency strate-
gies for 5G green network

An energy-efficient architecture was presented in
the paper, and energy efficiency was discussed for
the overall 5G network.

The article lacks a detailed discussion of en-
ergy efficiency in the UDN.

[20] An introductory survey
on UDN.

A survey on UDN was presented; it is more fo-
cused on the basics and technologies of UDN.
Backhauling and other research directions are also
discussed in this paper.

The survey lacks a discussion on machine
learning and other latest modelling tech-
niques.

[21] A detailed discussion
on ultra-dense
heterogeneous networks
(HetNet) concerning big
data.

This article discusses big data aware framework
design guidelines to reduce the energy cost in
ultra-dense HetNet. The survey is based on base
stations, data and resource analysis and caching.

The focus of the article is only on the frame-
work part of ultra-dense HetNet.

[22] A detailed survey on
M2M communication in
UDN.

This survey focuses on the importance of M2M
communication in UDN. A detailed survey has
been presented on the implementation, architec-
ture and different layers of M2M in UDN.

The paper lacks spectral and energy efficiency
part, which is important in any network.

[23] Security issues in UDN. A detailed discussion on security issues in UDN. The paper lacks systematic analysis and de-
tailed solutions for security issues.

[24] Deployment & user-
centric design.

A discussion on the user based deployment in
UDN.

The paper lacks taxonomy and discussion on
modelling techniques related solutions.

[25] Opportunities in UDN
with enabling technolo-
gies.

The paper surveyed different generations of wire-
less networks, 5G, its enabling technologies and
combining UDN and other enabling technologies
to solve future challenges.

The article lacks depth and coverage of UDN
concerning energy efficiency.

TABLE 2: Existing recent survey on UDN

II. OVERVIEW OF ULTRA-DENSE NETWORK (UDN)
In an ultra-dense network, conventional high-power
macrocells coexist with several low-power small cells.
These small cells can be mixtures of picocells, femtocells,
radio remote head (RRH) and relay nodes. The emergence
of UDN and small cells helped lay a foundation for
fast, sustainable networks, resulting in mobile broadband
(MBB) traffic growth. UDN allows for flexibility and en-
ables the following trends for future networks:

1) Small cells can facilitate site deployment by provid-
ing wireless backhaul services.

2) UDN can create a new industry ecosystem as small
cells can be deployed adjacent to end-users.

3) Enables new use cases and enables a wide array of
services in 5G.

4) Support for licensed and non-licensed spectrum.

Over the past years, the commercial deployment of
small cells has proven itself as an optimal solution to
improve user experience as UDN takes advantage of the
existing spectrum by deploying more cells [26].

A. COMPONENTS OF UDN
Networks defined as ultra-dense consist of more deployed
cells than users active in the network [20]. The reason be-
hind this is to provide high system throughput, capacity
and coverage. UDN generally consist of fully functional
BSs providing varying coverage areas. A BS can be a
macrocell providing broad coverage and serving as an an-
chor or a small cell that provides high throughput. Relays
and RRH can be deployed as an extension to macrocells.

These BSs (femtocells and picocells) are fully equipped to
provide all functionalities of macrocells while consuming
low power. However, RRHs and relays perform limited
functions. The apparent difference among different BS
is size, coverage, power consumption and deployment
cost. Table 3 shows macrocell and small cell deployment
statistics in UDN. In the following, we define different
types of cells and their functionalities:

• Macrocells has large antennas which are used to
send and receive radio signals. These BSs are gener-
ally up to 200 feet tall, and the coverage area is up
to several miles. More than 200 users can be served
simultaneously per sector/per frequency. However,
the backhaul connectivity is through fibre cable or
microwave links.

• Microcells are small BSs to enhance wireless connec-
tivity. Microcells enable millimetre wave frequencies
allowing higher throughput.

• Picocells provide coverage up to 100m and are gen-
erally deployed to cover power constraints in small
areas. Picocells can be deployed both indoor and
outdoor to serve traffic offloading purposes from
macro BSs. Fibre or microwave links are used to
provide backhaul connectivity to picocells.

• Femtocells are user deployed access points (AP) that
are used to extend the indoor connectivity. Femto-
cells are like typical routers that are easily accessible
to anyone. It is designed to cater for home, offices or
small business needs. The backhauling can be done
through digital subscriber lines (DSL) or fibre optics.
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Cell
type

Deployment Coverage Power consumption Access
modes

Hardware power consumption

Main
supply

DC-DC Baseband RF Power
ampli-
fier

Cooling

Macro Fully
functional
cell

Outdoor
(Several
kms)

40W to 130W Open/
Closed

8% 6% 13% 6% 57% 10%

Micro Fully
functional
cell

Both
outdoor
& indoor
(upto 500m)

6.3W to 56W Open/
Closed/
Hybrid

9% 7.5% 38% 9% 38% 0%

Picocell Fully
functional
cell

Both indoor
& outdoor
(upto 100m)

Indoor(<=100mW)
Outdoor(0.25-2W)

Open
access

11% 8% 41% 14% 26% 0%

Femtocell Fully
functional
cell

Indoor(10-
30m)

<=100mW Open/
Closed/
Hybrid

11% 8% 47% 12% 27% 0%

Remote
Radio
Head
(RRH)

Signal am-
plification

Outdoor
(upto 100m)

Outdoor(0.25-2W) Open
access

9% 7.5% 23.5% 10.2% 51% 0%

TABLE 3: Macro and small cells deployment statistics in UDN and their hardware power consumption at full load

• Relays are deployed to extend the coverage area
of macro BSs. These are low power APs to cover
the dead zones, particularly to provide transmission
services through macrocells.

• Remote Radio Head (RRH) are for signal amplifica-
tion purposes. RRHs are connected to the BBU and
deployed at the antenna end. Macro RRHs and small
RRHs can work similarly as a macro cell and small
cell respectively.

Apart from macrocells and small cells, a typical BS
contains other transceiver components as well. Among
the multiple transceivers (TRXs) of BS, each consists of
a power amplifier (PA), baseband unit (BB), a cooling
system and a radio frequency (RF) transceiver. For the
power supply, a DC-DC and AC-DC unit is also installed
for power grid connectivity. The transmission power and
coverage for both relays and picocells are the same;
however, they vary due to their functionalities, extension
perspective and backhauling. Relays are used for coverage
area extension, but picocells are for improving capacity.
The backhauling is also different because of wired and
wireless connectivity in pico and relay, respectively. The
connectivity among picocells to the core network is
through microwave backhaul or fibre, whereas relays are
connected through radio interface [27]. The main differ-
ence between picocell and relay backhauling is because of
their infrastructure management. Picocells are part of the
infrastructure, whereas relays are independent and do not
require configuration (frequency, neighbours). Backhaul
deployment for picocell is another concern because of the
growing number of picocells network point of view [28].
In the case of picocell, backhauling, proper deployment
planning and designing are needed in terms of channel

allocation [29]. The UDN fulfil stringent coverage and
capacity requirements via small cells deployment. These
small cells are manifested to remain an integral part of
future wireless networks.

Theoretically, the capacity of the wireless network
scales with the number of small cells as reducing the
cell radius to pack more small cells results in more effi-
cient spectrum utilisation due to higher frequency reuse.
In practice, the resulting UDN poses several challenges
as cells adjoin. Apart from improved received signal
strength (RSSI), dense deployment of small cells cause
severe interference because of increased overlapping. The
initial deployment phase of 5G adopted an orthogonal
deployment approach to increase capacity. Orthogonal
deployment was used to reduce the interference with
macrocells and achieve significant gains through spatial
reuse. The second deployment phase focuses on improv-
ing peak data rates using mmWave frequency bands that
can provide up to 10Gb/s of data transmission [30]. In
addition to interference challenges, increasing network
scale with small cell deployment introduces new energy
considerations not addressed in 5G [31]. In response to
increasing data and traffic volumes, efficient optimisa-
tion techniques for the small cell network are essential.
The energy efficiency techniques are categorised based
on network components. There are physical (mobile
backhaul, base stations, femtocells, and user equipment)
and technical network components involved, requiring
planning, coordination, and estimation of adjustment
time. Table 4 shows significant components that can be
optimised to improve energy efficiency.
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Network component Technique Adjustment time

Mobile backhaul Topology adjustments Component Virtualisation Cooling manage-
ment

From months to years

Base station Traffic adaption Coverage/power adjustments Cell coordination From minutes to hours

Femtocell Power control Coverage adjustments Interference avoidance Minutes

User equipment’s Load profiling/prediction-based adaption D2D relaying Minutes to days

Technology Self-organising networks Coordinated multi-point MIMO beam-
forming

Seconds to hours

Other technologies eCPRI Unknown

TABLE 4: Energy savings based on different optimisation techniques

III. TAXONOMY
The widespread deployment of UDN poses many chal-
lenges, particularly when energy consumption is the main
concern. Hence,

• An effective coordination scheme is required to
decrease the interference between cells and cross-
network. Spectrum reuse can significantly degrade
network energy efficiency.

• Proper planning is a must for BS deployment as in
worst scenarios, there will be huge energy consump-
tion. As UDN traffic load differs in both temporal and
spatial domains.

This section presents the taxonomy of ultra-dense
network characteristics in 5G as shown in Figure 1. The
rest of the section explains the detailed taxonomy that
highlights popular approaches used over the past years
to address energy efficiency issues in UDN, the latest used
modelling techniques, metrics to measure performance,
and objectives to improve energy efficiency.

A. NETWORK PLANNING & ARCHITECTURE
The existing wireless network architectures emphasise
voice and mobile broadband services. However, the trend
changed with the transition of demands from coverage
to capacity. To meet future needs, the way that cellular
networks are implemented needs to change because:

• The diversified 5G network consists of multiple BS
types (macrocells and small cells) and supports exist-
ing standards & multi-connectivity. It also becomes
difficult to support such huge, diverse network re-
quirements like throughput, connectivity and mo-
bility.

• There are different service requirements for different
functions, such as high throughput for enhanced
mobile broadband services, ultra-low latency for
ultra-reliable low latency communications.

• The growing demands are resulting in frequent new
services provisions which require rapid deployments.
Also, an improved management operation is required
for deployment, maintenance and implementation.

In the initial stages of network densification, more macro-
cells were installed to increase coverage and capacity

simultaneously. However, the development of indoor
hotspots became necessary with the increasing number
of indoor devices. The hotspots were confined to a spe-
cific area and dispersed throughout, but researchers de-
veloped small cells of today after that concept. The dense
network consists of several small cells (i.e. microcell,
picocell and femtocell) to provide a dense heterogeneous
network. The critical factor in planning a wireless network
is finding out the correct coverage area since the exact
number of deployed BS rely on the coverage area of
interest [32]. Moreover, planning a network and deploying
the right amount of BSs affect the QoS and energy
efficiency factor [33]. Another crucial factor is planning
and deploying a cell, which is essential for operational
cost and capital expenditure (OPEX/CAPEX) perspectives.
The goal of 5G and beyond networks is to provide a
scalable architecture that provides multiple capabilities
using dense networks, but creating a framework for
analysing and optimising such a network is a significant
challenge [34]. Homogeneous networks are easy to plan
as compared to heterogeneous networks. The BSs ran-
dom deployments in heterogeneous networks can lead
to increased interference, increased power consumption,
and degradation of QoS [35], [36]. Several approaches are
used for BS deployment such as:

• Spatial point processes such as the Poisson Point
Process (PPP) were used over the years to deploy
BS. However, PPP has shown the gap between the-
oretical and practical deployment, which shows its
in-competency for real-time BS deployment [37].

• Non-PPP models such as Poisson hard-core process,
Strauss process, Matern cluster process, and Poisson
cluster process are considered as better options for
real-time environments. Still, these models lack the
statistical characteristics to deal with interference
challenges [38].

• Hexagonal approach has been used over the years
for cellular UDN. Although this approach can help
to cover the maximum area with a minimum number
of BS but still in the case of multiple users (using the
same pilot), the pilot contamination problem is huge
[39]. Also, this approach cannot model the capacity,
and coverage needs in UDN [40].

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3123577, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: Taxonomy of energy efficient ultra-dense network

• Another approach named as Manhattan type grid
was introduced, which is also not sufficient for
the dense networks as the inter-cell interference
increases with BSs density [41]. Lately, some self
backhauling and access links are also increasing,
especially its usage along in-band full-duplex as self
backhauling small-cell deployment is comparatively
low in cost [42].

Planning and deploying a UDN requires careful con-
sideration of small cells. Various cell planning objectives
are required to cater for the needs of the network, such
as [43]

• Traffic: Most of the cell planning and deployment
plan is based on user traffic intensity. In previous
generations, the geographical division of traffic was
adequate. However, with the evolution of multiple
services, capacity and data needs, the traffic charac-
teristics also changed.

• Prospective location: In theory, a BS can be de-
ployed anywhere, but several prerequisites have to
be met before the installation. Choosing a suitable
location involves considering the height of buildings,
topography, traffic density, and the feasibility of the
location.

• Base station modelling: A typical BS is not al-
ways applicable to every situation. BS type, antenna
height, load capacity, CAPEX/OPEX and transmission
power are important for BS modelling.

• Signal modeling: A proper mathematical formula-
tion of frequency and signal propagation according
to distance is necessary. As mapping out a large
area is difficult thus, empirical models are used.
Different empirical models are available to plan the
deployment of small cells. Empirical models abstract
the experimental values to estimate the data for
small cells planning. These models can be further
tuned according to requirements. These models an-
ticipate reflection, structural hurdles (building, phys-
ical topology), signal absorption, and its propagation
[43].

Figure 2 shows the stages of network planning that
are required for a successful deployment. Pre-planning
is essential to estimate the covered area of interest and
number of BS to provide enough coverage. The second
phase of detailed planning helps point out the actual
positions of base stations and other factors like physical
obstructions. The final stage which helps to optimise and
improve the network is post-planning. This phase helps
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Objective Ref Modelling technique Performance mea-
sures

Objective Network BS type BS topology

BS
deploy-
ment

[44]
Greedy based algo-
rithm

P.1 EE, P.2 Through-
put

Enhanced
energy efficiency

Clustered & Dis-
persed

Micro base sta-
tions

Hexagonal grid,
Real BS topology

BS
optimi-
sation

[45]
Greedy based algo-
rithm

P.1 EE & Capacity Enhanced
energy efficiency

Hierarchical cell
configuration

Micro & Macro
base stations

Real BS topology

BS
optimi-
sation

[46]
Meta-heuristic
approach

P.1 EE, P.2 Through-
put

Enhanced
energy efficiency

MIMO
based joint
configuration

Macro, micro,
pico cells

Two-tier
geographical
area

Network
deploy-
ment

[47]
Stochastic geometry P.9 Capacity & cover-

age rate
Resource
optimisation

Uniformly
distributed
network

BS Two-tier
geographical
area

TABLE 5: Summary of BS deployment & optimisation techniques in UDN

to analyse performance and detect problems.

FIGURE 2: Stages of network planning

Small cells have the potential to increase the data
rate while maintaining coverage and enhancing spectrum
usage.

The accurate density of small cell deployment is of
utmost importance to fulfil traffic demands, which should
not be too dense or sporadic. BS is the primary wireless
network element that consumes the most energy, further
categorised as radio-frequency signals power consump-
tion and circuit power consumption. The traditional static
cell deployment based network planning mainly focus on
peak traffic demands, and implementing the same plan
for small cells lead to unnecessary energy wastage [48].
However, deploying the network by estimating the ap-
proximate location can predict the energy efficiency and
performance of the network by taking account of different
traffic distributions [49]. Several UDN development and
planning frameworks have been proposed over the years
for optimal BS density, such as stochastic geometry [47],
heuristic methods [46], [50] and greedy based algorithms
[44], [45]. Table 5 shows the summary of BS deployment
and optimisation techniques discussed in this section.

In [44], the author proposed a greedy algorithm to
solve the microcell base station problem. The author
proposed the optimal location selection to increase the
energy efficiency of UDN while deploying the required
set of BS selected through a greedy algorithm. The pro-
posed algorithm can be implemented in both hexagonal
and conventional base station topology. Another similar
work has been done in [45] using greedy algorithms to
deploy microcells. According to the author, the edges of
cells are the most optimal locations to install new cells,
increasing spectral efficiency. In [47], the user and BS
distribution are studied using the stochastic geometry ap-
proach. The proposed algorithm can also help operators
to estimate the QoS probability of the deployed BS. In
[46], a meta-heuristic approach is used to propose an
optimised framework for BS deployment. The proposed
work is focused on both capacity and BS deployment. The
utilities based on individual BS deployment are proposed
as the meta-heuristic approach is an excellent solution for
dealing with large data sets’ complexities. Another meta-
heuristic approach used the particle swarm optimisation
(PSO) algorithms in [50] for uniform BS deployment. The
focus is to reduce the number of deployed BS and reduce
power consumption by switching off the unnecessary
small BSs. An exciting feature of traffic profile is proposed
based on day and night traffic. Monte Carlo simulations
were used to prove the results.

B. RESOURCE OPTIMISATION STRATEGIES
In UDN, several cellular users coexist with varying radio
access technologies (RAT). In this section, various ap-
proaches to improve energy efficiency in the UDN are
discussed.

1) Resource allocation
Future networks are all about handling massive amounts
of devices accessing the wireless channels simultaneously,
resulting in channel overloading. Due to the massive
deployment of devices, other challenges like network
congestion, resource management, and resource alloca-
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Communication
scenarios

Ref. Approach Objective Modelling
technique

Performance
measures

Network

Traditional [51] User association Resource
optimisation

Water filling P.8 Sum rate Macro-Pico

[52] Resource allocation, User
association

Resource
optimisation

DRL P.3 QoS Macro-Pico

[53] Power allocation Enhanced energy ef-
ficiency

Stackelberg game
theory

P.1 EE Macro-Pico

[54] Power allocation Enhanced energy ef-
ficiency

Frank-Wolfe
algorithm,
Iterative learning

P.7 Power
consumption,
Overall
offloading
overhead

Macro-Small

[55] Power allocation Enhanced energy ef-
ficiency

Q-learning P.1 EE Macro-Small

OFDMA [56] Power allocation Enhanced energy
efficiency, Improved
QoS

DRL P.6 Packet loss,
P.2 Throughput

Macro-Small

[57] Sub-channel allocation Resource
optimisation

Stochastic geome-
try

P.1 EE Dynamic nodes

[58] Sub-channel allocation Minimised interfer-
ence

Game theory P.2 Throughput Macro-Femto

[59] Sub-channel allocation Minimised interfer-
ence

Graph theory P.3 QoS Macro-Small

NOMA [60], [61] Power allocation Enhanced energy ef-
ficiency

Lagrange multipli-
ers

P.1 EE Macro-Femto

[62] Power allocation Enhanced spectral
efficiency

Iterative algorithm P.5 Fairness, P.2
Throughput

Macro-Small

Full-Duplex [63] Radio resource allocation Minimised interfer-
ence

Game theory P.8 Sum rate MBS

H-CRAN [64] Power consumption Enhanced energy ef-
ficiency

Genetic algorithms P.7 Power con-
sumption

Macro-Small

[65] Power allocation Enhanced QoS Linear program-
ming

P.8 Sum rate Macro-RRH

[66] Power allocation Enhanced energy ef-
ficiency

Dinkelbach
method

P.1 EE Macro-Small

TABLE 6: A summary of resource allocation issues in different communication scenarios

tion issues also emerged apart from channel overloading.
Moreover, the dense deployment of random BSs causes
severe interference and increases the computational com-
plexity and resource management/allocation problem.
The resource allocation techniques are equally important
to achieve efficient resource management and network
utilisation. Effective resource management/allocation de-
termines factors to gauge network performance. Recent
years have also seen the importance of energy efficiency
as a key performance indicator. It is essential to highlight
the fairness of any resource allocation strategy as unfair
resource allocation may result in further energy-efficiency
degradation. Bandwidth is also considered as a resource
of the network, and its fair allocation can lead to a
more energy-efficient system [67]. Aside from bandwidth
allocation, unfair power and spectrum allocation would
also result in energy-efficiency degradation [68]. A fair
spectrum allocation is also essential due to the limited
amount of spectrum available. A high transmission data

rate problem is solved in [56] using deep reinforced learn-
ing (DRL). A high mobility network model is considered
with dynamic network traffic. Due to the dynamic nature
of traffic, the author modelled the channels as inner-
cell and inter-cell states. The author focused on channel
capacity and high data rates as incorrectly allocated sub-
frames always affect the network transmission efficiency
and throughput. A deep neural network (DNN) is applied
to extract features from complex network information.
Using DRL, the agents work based on collected rewards
from the environment and use throughput, packet loss
and end to end delay as the state. The simulation results
show significant improvements of the proposed tech-
nique in terms of throughput and packet loss rate.
A sub-carrier allocation problem is discussed in [57],
where the author focused on the QoS-based cross-tier
cooperation resource allocation approach. The author
emphasised improving throughput and QoS by dividing
this non-convex problem into sub-problems. Stochastic
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geometry has been used to study the impact of signal to
interference noise ratio (SINR) on different user equip-
ment placed under the macrocell and small cell coverage
area. Another work in [63] focused on the resource alloca-
tion problem and proposed the solution in a distributive
manner using Game theory. In order to optimise the
full-duplex system, the resource allocation problem is
critical due to interference. The author considered both
uplink and downlink channels for the resource allocation
problem. The proposed algorithm runs until it reaches
Nash equilibrium. Simulation results showed significant
performance and a 99% fast convergence rate. In [52],
a combination of user association and resource alloca-
tion problems is addressed in heterogeneous networks
(HetNet) using reinforcement learning. Combining both
association and allocation problems makes it further
challenging. A double deep Q-network is used to achieve
the most optimal user strategy. Apart from resources like
sub-carrier and spectrum, transmission power is also a
prime contributing factor to network performance. For an
ultra-dense network with diverse network requirements
in [54], a joint energy-efficient offloading and power
allocation scheme is proposed. The author formulated the
joint optimisation problem as a Mixed Integer Nonlinear
Programming problem (MINLP). A Frank-Wolfe algorithm
is introduced to find an optimal solution for offloading.
An iterative searching algorithm is developed that works
based on the difference between two convex functions to
perform the optimal power allocation task. The energy
efficiency is highly dependent on the dynamic power
consumption of base stations. The allocated power of
different channel schemes can be optimised based on
their gains, resulting in energy efficiency and QoS and
throughput. In [55], the problem of resource allocation
using a reinforced learning-based approach for power
optimisation in the UDN is presented. A multi-agent Q-
learning algorithm-based approach is proposed to effi-
ciently solve the power problem in UDN based on a
single macrocell and several small cells. The algorithm is
trained consecutively to solve the problem. User equip-
ment is an agent, and a network control centre trans-
mits the power based on training results. The proposed
algorithm performed better than traditional existing al-
gorithms because it balances the load and efficiently
enhances energy efficiency. In [69], the author proposed
a mean-field power allocation algorithm for a UDN. A
dynamic stochastic game (DSG) is used to model the
power allocation problem. Further, this model is fed into
the mean-field game model. The strategic decision of
allocating optimal power is made by mean-field game
theory. Through simulation, it is proved that the proposed
algorithm guarantees QoS and enhanced energy. Another
game theory-based approach considering the bankruptcy
problem is proposed in [70] to address the resource
allocation challenge. Bankruptcy theory is best utilised
when the players have similar objective functions [71]. In

the proposed work, a small cell network is considered to
solve the space allocation problem among several players.
The small cells have a limited amount of cache space that
require balance distribution to further enhance efficient
space utilisation and hence are considered bankrupt
company. Internet content providers are considered as
players to compete with each other. Considering that
small cells have less space than players, a coalition is
formed based on player’s interests. The solution depends
on rationality constraint, which means that players’ space
size should not be less than the players who have not
participated in the alliance. The simulation results show
the fair distribution of resources. This technique can also
be used for power allocation or bandwidth allocation [72]
to improve the energy efficiency of the network.
Several work has been done on the resource allocation
part on orthogonal frequency division multiple access
(OFDMA) [56] [57] [58], non-orthogonal multiple access
(NOMA) [60] [61] [62], heterogeneous cloud radio access
network (H-CRAN) and other multi-antennas technolo-
gies which has been discussed in Table 6.

2) User association / Cell selection
Changes in the cell state result in energy consumption
which can be significantly high. It becomes challenging
to optimise the energy cost during the cell switching
process. The cell selection function accepts the connec-
tion between user and BS through user association/cell
selection and admission control. This cell selection and
user association are interchangeable terms used for cre-
ating a connection between user and BS to optimise
radio resources, improve QoS, enhance energy efficiency
or load balancing. The association depends on the user
equipment, and their access modes [78]. In the case of
a UDN that consists of several macrocells and small cell
BSs, the process of user association becomes critically
complex because of severe interference and dense cov-
erage. Traditionally, the basic scheme of user association
or cell selection based on transmitted power fails here
due to variation of MBS and SBS transmitted power.
Apart from transmitted power, backhauling is also a
considerable aspect for cell association [20], [79]. Some
conventional techniques used for the association are
based on reference signal received power (RSRP), signal
to interference noise ratio (SINR), cell range expansion
(CRE) and reference signal received quality (RSRQ). Small
cell deployment in UDN is considered to lift the traffic
load from macrocells [80]. However, based on the re-
ceived signal, most of the users associate to macrocells
result in affecting the small cell splitting gain and energy
efficiency [81]. Additionally, users with high data rate
requirements prefer to use small cells. However, this does
not guarantee the maximum users association with small
cells due to several traffic variations. Hence, an optimal
user association scheme is always required to balance
the association among small cells for improved energy
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Communication
scenarios

Ref. Approach Objective Modelling
technique

Performance
measures

Network

Traditional [73] User association Enhanced energy ef-
ficiency

Lagrangian dual
theory

P.1 EE Macro-Small

[74] Cell selection Enhanced energy ef-
ficiency

Heuristic
searching
algorithm

P.1 EE SBS

[75] User association Enhanced QoS Lagrange method P.3 QoS Macro-Small

[76] Cell selection Enhanced QoS Stochastic geome-
try

P.3 QoS Access points

NOMA [77] User association Resource
optimisation

Matching
algorithm

P.2 Throughput Access point

H-CRAN [65] User association Resource
optimisation

Linear program-
ming

P.2 Throughput High power
nodes - RRH

[66] Power allocation Enhanced energy ef-
ficiency

Dinkelbach
method

P.1 EE Macro-Small

TABLE 7: User association/cell selection issues in different communication scenarios

utilisation [82]. Most of the time, BS are assumed to be
connected with unlimited power sources, where energy-
efficient user association refers to the efficient utilisation
of BS power by balancing the load. In these scenarios,
when the user selects the BS that has low battery levels
based on traffic demands will ultimately result in service
degradation [83]. The energy efficiency among macrocells
also depends on the service type they are providing,
which can be improved by offloading their traffic to small
cells [84].

A heuristic algorithm based approach is proposed in
[74] on the energy-efficient cell selection process. The
purpose of the proposed approach is to minimise energy
consumption as well as optimise cell selection. A UDN
is considered with uniformly deployed small cells in the
coverage area, divided into uniform time slots. As the
proposed work is based on the total power consumption
of the network, all three costs are included in the power
consumption model: base-band cost, transmitter cost,
and switching cost. To further solve the problem, they
divided the work into two parts: to reduce the switching
cost and total energy cost of small cells. The switching
strategies are crucial in optimising energy efficiency. The
author proposed a centralised user association strategy
(CUAS) to attach users to individual small cells based on
load possibilities to address the energy issue. Similarly,
for the small cell based on/off strategy, the neighbour cell
loads based heuristic algorithm is proposed where small
cells with a heavier load are less likely to be turned off.
The work is focused on the load strategy of the adjacent
cells and, through simulations, proved significant results
compared to the traditional heuristic searching algorithm
(HSA). In [76] stochastic geometry-based analysis is used
to improve the UDN via a user association scheme. In
[77], a complex problem is formulated by adding NOMA
into a UDN. It is further divided into two sub-problems
to reduce the complexity level, i.e. cell association and

resource allocation. The matching theory was used for
the user association to enhance throughput and energy-
efficient resource optimisation, using channel state infor-
mation and data rate.

In [75], the author proposed an energy-efficient cell se-
lection and power allocation technique. In the proposed
work, a candidate cell is selected based on the user’s QoS
requirements. A minimum data rate constraint is required
to be met by the target cell for selection. A candidate cell
selection and joint cell selection and power allocation
problem both are presented. For multiple users, the issue
of power allocation is solved by the Lagrange method. An
iterative algorithm is applied for power allocation, which
runs continuously until its convergence point comes. The
approach showed an increase in energy efficiency using
numerical simulations. Different modelling techniques
used for energy efficient user association are summarised
in Table 7.

3) Interference management

UDN is deployed to increase system throughput, which
also leads to improved spectral efficiency and energy
efficiency. Small cell dense deployment of the network
significantly increases OPEX/CAPEX, energy consumption
and interference issues. These interference issues in-
crease with randomness and more dense small cells base
station deployment. The decreasing distance between
cells creates more severe co-channel interference, which
may deteriorate the network performance and edge users
QoS. Unlike conventional wireless networks, the interfer-
ence problem is more challenging in UDN because of
its multi-tier architecture. Besides co-tier and cross-tier
interference, inter-cell and intra-cell interference factors
also exist in UDN. Macrocells and small cells have the
major difference in power, resulting in unavoidable inter-
ference challenges. Apart from power, the commonly used
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Ref. Objective Issues Modelling technique Performance mea-
sures

Network

[85] Minimised interference Frequency spectrum
wasting

Graph theory, Reinforce-
ment learning

P.5 Fairness, P.2
Throughput

Macro-Small

[86] Enhanced energy effi-
ciency

Cross tier interference Matching game P.1 Energy efficiency Macro-Femto

[87] Minimised interference Overlapping regions Heuristic algorithm P.8 Coverage capac-
ity

Macro-Femto

TABLE 8: Interference management in different communication scenarios

resource reuse strategy results in increased interference
in UDN in both uplink and downlink directions [88] due
to users and BSs proximity. In multi-tier UDN, sharing the
same spectrum and RAT among MBS and SBS are creating
more challenging energy and interference management
issues [85]. Also, small cells are mostly deployed in an
unplanned manner in a dense growing network; hence
effective interference management is critically impor-
tant. Efficient interference management helps minimise
the energy consumption while it satisfies the spectral
efficiency and QoS. Inter-cell coordination is one way
to cope with the interference issue; however, it needs
signalling overhead due to the dense deployment of small
cells. The distributed control is a viable solution to solve
UDN interference [20]. Also, due to the dense deployment
of small cells, idle and activation and deactivation of BSs
manage the interference problem in neighbouring cells.

FIGURE 3: Interference management in UDN

Interference in UDN can also occur in different do-
mains, and proper coordination among interfering cells
is required, which is also shown in Figure 3. Dynamic
allocations of orthogonal frequency channels are used to
mitigate frequency domain interference, whereas blank-
ing of frames is used for time-domain interference [20].
The transmission power is an effective way which is
mainly preferred to mitigate interference issue of UDN
[48].

Interference management algorithms have become
important as they can minimise energy consumption
in UDN to some extent. According to [89], when a
substantial interference occurs in the wireless network,
small cells must be shifted to an orthogonal frequency
band to mitigate the interference issue.
In the UDN, the state migration process balances the
load that cost extra energy consumption and sometimes
interference which is more complicated in HetNets. Game
theory, machine learning and other heuristic techniques
have become popular techniques to solve the interference
problem cooperatively.
In [85], a graph-based approach is introduced for inter-
ference management. A clustering-based graph is intro-
duced based on SINR. Users without any interference
issues are not considered, whereas; points are defined
on the downlink of BS for already associated users.
Another consideration was made based on resources that
each point within the same vertex should have different
resources. Based on these considerations, a Q-learning
algorithm is used to optimise the interference in the
defined graph; also, energy efficiency and re-usability is
increased.
In [86], an indoor femtocell deployment is considered to
overcome the interference management problem in an
ultra-dense wireless network. The problem is formulated
as many-to-many matching games as each macro-indoor
user can connect several small cells. The proposed
matching algorithm works based on three utility func-
tions. First, it calculates the list of users. Secondly, it
identifies the pairs, and finally, evaluates the matching.
This matching algorithm works until it converges to a
stable matching. The results ensure stable load balancing
and improved energy efficiency.
Co-tier and cross-tier interference is increasing tremen-
dously in ultra-dense HetNets. In [87] author proposed an
interference management scheme using a combination
of graph-based clustering and heuristic algorithms. A
clustering algorithm is used to divide users and base
stations into separate clusters recurrently. After clustering
the users, a heuristic algorithm is proposed to allocate
sub-channels. The interference is reduced by ordered
successive interference cancellation (OSIC) algorithm.
The proposed scheme maximised the system capacity
and reduced interference. Table 8 summarises techniques
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Ref. Objective Issues Modelling technique Performance mea-
sures

Network

[90] Enhanced energy effi-
ciency

QoS DRL P.7 Total power con-
sumption

MBS

[91] Enhanced energy effi-
ciency, Enhanced QoS

Switching aversion Artificial Neural network P.3 QoS, P.1 EE Macro-Small

[92] Resource optimisation State transition, Adjust-
ing transmission power

Heuristic algorithm P.7 Total power con-
sumption

MBS

[74] Resource optimisation Switching cost Heuristic algorithms P.7 Total power con-
sumption

SBS

[93] Resource optimisation Coverage probability Stochastic geometry P.7 Total power con-
sumption

Macro-Small

[94] Enhanced energy effi-
ciency, Enhanced QoS

Inter-cell interference
coordination

Stochastic geometry P.7 Total power con-
sumption, P.3 QoS

Macro-Small

[95] Enhanced energy effi-
ciency

QoS, Inter-cell interfer-
ence

Heuristic search algorithm P.1 EE Macro-Small

[96] Enhanced energy effi-
ciency

User mobility Lowest association off algo-
rithm (LAO)

P.1 EE Macro-Pico-
Femto

[97] Enhanced energy effi-
ciency, Improved QoS

Load Classical algorithm P.3 QoS Macro-Small

TABLE 9: BS switching in different communication scenarios

used for interference management in different commu-
nication scenarios.

4) BS switching

Several researchers agreed upon the efficiency of small
cells in terms of system capacity, and with the smaller
cell size, BS density increases. Nevertheless, on the other
hand, this also affects the energy efficiency of the net-
work, as energy consumption increases with network
densification. BS sleeping strategy is one way to min-
imise energy consumption. According to [98] around 50%
of BSs can be switched off without compromising the
performance of the network, which can result in 43%
energy savings. Wireless networks are designed to provide
coverage during peak hours. However, during off-peak
hours BSs are not fully utilised, which leads to poor
energy efficiency and insufficient spectrum usage [99].
Delay factors are also involved in BS switching on off-
peak hours [100]. BS can be switched on/off based on
two approaches; fractional switching and complete BS
switching. Based on these approaches, the BS can be
entirely switched on/off, or a fraction of radio resources
can be switched on/off [101]. The design of BS switching
involves necessary factors for practical energy-efficient
switching which are summarised as follows: BS switching
faces,

• Cell load & coverage: The cell load which is also dis-
cussed above is a necessary factor to be considered
for an effective BS switching. Besides the BS’s own
load, it is necessary to consider the neighboring cell
load factor as well. As, the deactivation of one BS can
affect the QoS of neighbor BSs. Besides neighbour

cell load, some other factors are coverage, frequent
handover and transition states.

• Traffic profiling: Traffic variation is considered as
an acceptable criterion for BS switching; however,
periodic BS switching action may not be beneficial
in some scenarios, such as during peak hours [102].
These fluctuations also result in extra power or en-
ergy consumption. Hence, a dynamic strategy must
take account of unnecessary fluctuations for actual
network applications.

• Interoperatibility between technologies: The BS
switching strategies can be incorporated according
to the technology used to enhance energy efficiency
without affecting the quality of service. For example,
in ultra-dense deployment, there may be several UEs
communicating through device-to-device communi-
cation. In these use cases, UEs can still communicate
with BS through another BS; hence, switching off BS
in this scenario will not block communication [103].

As more than half of the energy is consumed by BS,
switching off the BS has decreased power consumption
to some extent. Several approaches have been used in
UDN to control the BS power, but it is still highly
challenging. As the complexity of BS switching is directly
proportional to the number of BSs, the optimisation
problem can not be solved in polynomial time [104].
Several researchers have employed heuristic algorithms
to solve the BS switching problem, although heuristic
algorithms employ exhaustive search and are suitable
for small-scale networks. In [74], the author formulated
a complex inter programming problem based on joint
user association and cell sleeping. Heuristic algorithms
are employed to reduce the extra power consumption
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of the network. Initially, the association is performed
based on BS switching probability. Heuristic algorithms
are computationally slow; hence, the neighbour load is
considered for heuristic algorithm based BS switching. In
[90], a unique approach is used for the decision-making
process using DRL. A fading channel in the downlink
is considered to minimise the total power consumption
over the operational time. DRL is considered here as
it can perform well in the sequential decision-making
processes. A generic UDN scenario is taken consisting of
M BS and K users. The author reduced the actions space
to help the DRL make quick decision making and avoid
computational overhead. After eliminating unnecessary
information, the agent resolves the BS sleep strategy.
Power is allocated, and a reward function is granted back
to the DRL agent. The simulation result shows significant
performance improvement when compared to Q-learning
in power saving. The total power is reduced in the
proposed approach. However, the instantaneous power
can also be reduced to achieve energy efficiency but has
a downside too. When instantaneous power is excessively
reduced, it can affect the optimal sleep decision of time
slots because of the time-varying nature of the channel.
Another article [91] using neural networks proved optimal
solutions for energy saving while switching base stations.
The proposed method focused on traffic estimation to
further decide on selecting switching base stations.

The majority of approaches implement BS switch-
ing without considering switching energy. The power
consumed at the time of switching BS on/off is also
necessary. In [92], researchers focused on minimising the
energy consumption of UDN using dynamic BS on/off
strategy, including the switching power consumption. A
dynamic approach is used to switch the BS and allocate
the power among BS, considering the switching state.
This approach results in reduced power consumption.
Most heuristic algorithms end the algorithm early by
estimating the adjacent small cell, resulting in frequent
switching and more energy consumption. In [74] cen-
tralised user association based strategy to achieve mini-
mum switching cost is considered. Further, it also focuses
on the power consumption factor by using the neighbour
cells information for BS switching purposes. This pro-
posed technique results in better energy consumption as
compared to heuristic algorithms.

Author in [93] used stochastic geometry approach
to solve the cell switching issue in UDN. A two-tier
UDN network is considered, considering MBS to be on
all the time, even when small cells are sleeping. The
coverage probabilities are estimated for both macrocells
and small cells so to be adjusted to maximise coverage.
The power consumption is then reduced on the whole
network using coverage probabilities values. Apart from
techniques only focusing on BS on/off strategies, it can
be implemented in combination with some other energy-
saving approaches like clustering [95], user association

[96] [97] [74], interference management [105] and some
other as well. The table 9 summarises BS switching in
different communication scenarios based on discussed
modelling techniques.

5) Cell zooming
The basic idea of BS switching cannot fully satisfy the
growing user traffic needs. On the other hand, deploying
several small cells causes severe interference and energy
consumption. The surge in traffic and diversification,
and mobile mobility patterns prompted the need for
cell zooming. Cell zooming is a valuable method of
balancing cell loads in this regard. In the UDN cell
zooming approach, the BS can adjust its cell size and
transmission power according to the varying traffic. Cell
zooming can be implemented based on several aspects
such as (i) Physical adjustments, (ii) BS cooperation,
(iii) Relay (iv) Hetnets based [106]. The adjustment of
BS transmission power can benefit the UDN in two
ways. One is by increasing the transmission power to
improving the effective cell selection/user association
as less loaded BS can be switched off [110]. Secondly,
reducing the transmission power to adjust cell size and
minimise energy consumption [111]. A load-based cell
zooming approach is proposed in [106] to improve the
energy efficiency of the network. A self-defined load-
balancing algorithm is proposed that gradually minimises
the power transmission of small loaded cells. In this
way, the load is adjusted among neighbouring small
cells, resulting in low power consumption and ultimately
enhanced energy efficiency. The cell zooming technique
is further categorised into two basic algorithms: static and
dynamic. The cell zooming covers both network dynamics
and transmits power together. However, when the opti-
misation of transmit power is performed based on user
equipment to reduce the BS power consumption or by
ascertaining the height of BS antenna based on received
signal strength are considered as approaches used for
self-healing in cell zooming [112]. Most of the research
work has been done on the two-dimensional Euclidean
space, which contradicts the three-dimensional estima-
tors. The author in [107], used the three-dimensional
estimators analytical model for the density aware cell
zooming to increase the capacity. The presented work is
based on outrage probability calculations to adjust the
power transmission of BS, resulting in a more efficient
network. In another research article [108], a data-driven
approach is used to achieve energy efficiency via a
cell zooming approach. A metric is introduced, which
helps sense the relationship between BS to categorise
them according to network statuses. This technique is
helpful, especially in extreme mobility scenarios, as it
reduces the traffic load uncertainty. The proposed data-
driven framework helps to reduce energy consumption
according to traffic conditions and assures minor service
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Ref. Issue Objective Modelling technique Performance measures Network

[106] Load balancing Enhanced energy effi-
ciency

Load balancing
algorithm

P.1 EE Macro-Small

[107] Capacity increase Enhanced energy effi-
ciency

Monte Carlo technique P.1 EE Macro-Small

[108] Minimal service require-
ments

Enhanced energy effi-
ciency

Heuristic strategy P.3 QoS, P.1 EE Macro-Small

[109] QoE Enhanced energy effi-
ciency

Model Predictive Control
(MPC) algorithm

P.7 Total power
consumption,
Computational burden

Macro-Small

TABLE 10: Cell zooming in different communication scenarios

Ref. Objective Issues Modelling technique Performance measures Network

[113] Enhanced energy effi-
ciency

Minimise handover Non-stochastic bandit
theory

P.1 EE Macro-Small

[114] Enhanced energy effi-
ciency, Improved QoS

Load balancing Semi Markov P.3 QoS SBS

[115] Enhanced QoS Traffic offloading, Net-
work capability

Reinforcement learning P.3 QoS SBS

[64] Resource optimisation Delay, Frequent switch-
ing

Genetic algorithms
(heuristic method)

P.7 Total power con-
sumption

SBS

TABLE 11: Traffic & mobility in different communication scenarios

requirements for the user equipment. Another article
[109] introduced the use of the model predictive control
(MPC) algorithm in the cell zooming approach to not
only reduce the transmitted power but also to minimise
the computational load. A summary of the articles as
mentioned above is provided in Table 10.

6) Traffic & mobility
Traffic and mobility in UDN play an essential role in
ensuring user experience. However, limited spectrum and
load are challenging in traffic offloading and mobility
management. Mobility management is not only crucial
for connectivity, but it also ensures the optimal experi-
ence as they advance towards destination [116]. Seam-
less handover in this regard is also a significant chal-
lenge. Initially, the handover mechanism was designed
for infrequent handover among MBS. However, with the
introduction of small cells, handovers occur more fre-
quently. The varying cell size and unplanned deployment
are the primary reasons behind frequent handover trig-
gers. Thus it is crucial to implement effective mobility
techniques to achieve smooth connections. Apart from
dense deployment and arbitrary cell sizes, mmWave, dual
connectivity, and cell aggregation also contribute to the
mobility and traffic challenges. In [114], a user mobility
prediction based AUtonomous pROactive eneRgy sAving
(AURORA) framework has been proposed on the idea
of an intelligent framework that predicts user mobility
behaviour. Initially, a semi-Markov-based framework is
used for mobility prediction. The collected data from this
mobility model is used to switch the underutilised small

cells intelligently. The current location of the user and
handover information at any instance time is used to
predict future location. Moreover, landmarks and mobility
logs of users are used to estimate directions as well.
This work is based on handover traces instead of cell
loads to initiate sleep cycles and leverages load balancing
among cells to decide cell switching, which allows the
QoS to be maintained while improving energy efficiency.
Simulations for the performance analysis of the proposed
framework showed a 68% and 99% increase in total
network energy reduction for both low and high traffic
times. The primary issue with stochastic and iterative
schemes is making assumptions on statistical behaviours
of small cells activities. In this regard, the author in
[113] used a non-stochastic bandit theory approach to
solve the mobility management problem in the ultra-
dense network. The objective is to resolve the energy
efficiency issue by minimising unnecessary handover and
energy consumption. Several BS switching strategies have
been discussed, but the power optimisation issues are
critical for ultra-dense H-CRAN. Author in [64] proposed
a handover scheme to minimise the power consumption
of SBSs in ultra-dense H-CRAN. A margin-based genetic
algorithm has been used to achieve optimal decision
levels to minimise power consumption and the ping-pong
effect.

Traffic and mobility challenges occur due to the limited
spectrum, heavy load and user mobility. For this, traffic
offloading is considered an effective way to deal with
such challenges. The traffic offloading technique is used
to deal with heavy traffic, which works by offloading
the traffic of heavy nodes to the lightly loaded nodes.
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As traffic offloading helps to enhance network capabil-
ity and utilisation, [115] proposed a traffic offloading
technique to enhance network sustainability. A machine
learning-based autonomous traffic offloading technique
was proposed which uses the feature learning technique
to learn the link quality. This link state learning helps the
network to maintain a stable state. The proposed feature
learning algorithm can learn based on the environment
as well. Reinforcement learning (RL) is used for strategy
learning. The strategy learner keeps updating the terminal
periodically to achieve traffic offloading and load bal-
ancing. The proposed feature strategy based algorithm
proved better results as compare to traditional offloading
algorithms. Table 11 summarises the traffic and mobility
work discussed in this section.

C. HARDWARE SOLUTIONS

Traditional approaches in hardware designs use worst-
case power provisioning. The power consumption of
UDN also depends on the hardware components. Most of
the work on UDN assumes that the optical front haul is
perfect. However, there are small length optical links that
have consequential deployment cost, power consump-
tion and performance [117]. BSs, including RF modules,
baseband modules, fronthaul/backhaul links and cloud
radio access networks (CRAN), are important aspects of
UDN performance. According to [118], due to hardware
imperfections, it is assumed that the source point must
be equipped with a large number of antennas. In contrast,
others have single antennas to reduce the amount of
power consumption in the network. A typical antenna
that captures radio frequency signals leads to a trade-
off between power consumption and size. According to
Huawei [119], a 64T64R 5G AAU consumes 1<1.4<2kW of
power for BBU. Radio-frequency design consists of many
hardware antenna designs for massive MIMO, which
helps to reduce power consumption. Power amplifier also
contributes to energy efficiency, and high efficient PA
means improved energy efficiency [120]. Another practi-
cal innovation in wireless communication is separating
the baseband unit (BBU) from the remote radio head
(RRH) to reduce the power consumption in RF cable, as
BBU is placed within a short range from RRH [121].

D. POPULAR MODELLING TECHNIQUES IN UDN

The emerging wireless networks now support diverse ap-
plications such as augmented and virtual reality (AR/VR),
military, medical diagnosis, internet of things (IoT), and
transportation services. Soon, with the expansion of high
data rate communication and QoS, future wireless net-
works need fast and high-performance modelling tech-
niques to provide better computational results. In this
regard, three popular modelling techniques, machine
learning, game theory, and other stochastic and heuristic

techniques, are discussed below. The reasons behind the
focus on these modelling techniques are:

• Game theory has been vastly applied to wireless
networks problems and has significant advantages in
routing and resource allocation problems. Due to its
various benefits in a competitive environment, it is
deployed in UDN to cope with limited transmission
resources. Game theory provides the best results in
competitive environments.

• In the dynamic UDN, there is a need for self-
configured, self-optimised, self-healing operations
that can significantly adapt to the surrounding en-
vironment and make optimised decisions. In this
regard, machine learning techniques are a promising
tool to learn from system uncertainties, challenges
and variations and result in potential solutions.

• Recent advantages in ultra-dense wireless networks
confirms the need for stochastic geometry, especially
in networks where user behaviour is required to be
analysed in the vicinity of different cells.

For future UDN, it is necessary to incorporate these
modelling techniques to handle mutual impacts and
increase network performance. In this regard, machine
learning, game theory, heuristic and stochastic geometry
approaches can address the growing network challenges
and ease the coordination between different densely
deployed cells.

1) Machine learning

The future of wireless communication needs to be
more intelligent to accomplish tasks that cannot be
pre-programmed [122]. Traditionally, functional program-
ming, convex optimisation and game theory have been
used to solve the energy efficiency problem of wireless
networks. These traditional approaches use analytical
solutions based on network parameters. However, in a
complex network such as UDN, it becomes challenging
to model the network dynamics and obtain optimal solu-
tions. With UDN optimising its energy operations became
challenging. With the significant increase of hardware and
other parameters such as channel state information (CSI),
noise effects and power consumption, it is difficult to
adapt the changes for efficient link adaptation [123]. Ma-
chine learning-based solutions play a considerable role in
problem classification, outcome prediction and exploring
solutions for UDN. Machine learning is a considerate
emerging solution to the growing demands of the UDN
while handling its massive information, resources, de-
mands and characteristics [124]. Machine learning tech-
niques can also be used to extract information that can be
helpful to develop future autonomous systems. Machine
learning is a subset of artificial intelligence that improves
performance by learning from network data. Machine
learning techniques have evolved significantly and have
become very efficient in image processing, computer
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visions and medical diagnosis. Researchers emphasise
using machine learning to enhance the overall perfor-
mance in various sectors, including wireless networks
as well [125]. Also, keeping in view the growing dense
network and traffic variation, machine learning can be a
practical approach to cell switching decisions. Machine
learning can help in predicting the sleeping patterns of
base stations based on learning of network traffic and
hence can improve energy efficiency [126]. Apart from BS
sleeping, spectrum sensing and resource allocation also
affect the energy efficiency of the network. While allocat-
ing the appropriate power, the network requires channel
information. Traditional allocation schemes are highly
iterative, time-consuming and incapable of performing
energy-efficient procedures [127]. Machine learning here
provides the benefit of improving energy efficiency by
utilising previously collected network data.

Machine learning is classified into three major cate-
gories: (i) Supervised learning, (ii) Unsupervised Learning
and (iii) Reinforcement Learning. In supervised learning
labelled data set is used where both the input and
desired output are provided to the learning agent to find
the relationship to predict the unseen input. There is
no labelled data set in unsupervised learning, and the
algorithms explore the inputs by identifying patterns. In
reinforcement learning, the agent is responsible for inter-
acting with the environment and on feedback/rewards,
agents generate policies. Apart from the traditional divi-
sion of machine learning into supervised, unsupervised
and reinforcement learning, another vital member is deep
learning [128]. Machine learning has proved beneficial
to solve traditional programming issues in networking,
resource allocation, interference and mobility manage-
ment [129]. Several conditions need to be checked before
incorporating ML [130]:

• Problem classification: generally, machine learning
is used for regression, classification, Markov decision
and clustering problems.

• Training data: As machine learning, most of the
time, require plenty of data for training, it is nec-
essary to think about whether a massive amount of
data can be acquired for training purposes.

• Time utilisation: Two important factors come under
this category: training time and response time [131].
Some applications like resource allocation and man-
agement have critical time utilisation characteristics.
In this regard, neural network and reinforcement
learning proved to be more time-efficient [132].

• Implementation problems: Machine learning im-
plementation depends on the hardware, algorithm
complexity, algorithm processing requirements, data
storage and collection problems.

Machine learning is further used for regression, clas-
sification and clustering purposes which can be incor-
porated into energy-efficient solutions. The supervised

learning algorithms such as Bayesian theory, K-nearest
neighbour and neural networks are used for classification
and decision trees, neural networks and support vec-
tor algorithms are used for regression purposes. Other
unsupervised learning methods like K-mean, Gaussian
mixture, hidden Markov model and fuzzy C-means are
used for clustering purposes. In this paper, several ma-
chine learning-based approaches are discussed based
that are applied in UDN to improve energy efficiency.
Deep reinforcement learning is used in [52], [56], [90],
reinforcement learning in [55], [85], [115], artificial neural
network in [91] and semi-hidden Markov method which
can be used in both supervised and unsupervised learn-
ing is used in [114].

2) Game Theory
Game theory has been widely used in wireless com-
munication for cooperation schemes. It helps to model
actions that have conflicting outcomes [133]. Game the-
ory and conventional optimisation techniques are some-
times considered the same. However, they are different
as no single player have the authority to control the
outcome [134]. Game theory has been widely used to
solve problems in wireless communication due to its
problem analysing nature and ability to describe inter-
active situations [135]. Growing optimisation constraints
of dense networks require schemes that can distinguish
rational behaviour and reach the equilibrium in a dis-
tributed and controlled manner [136]. Over the years,
game theory has been proved beneficial to resolve in-
terference [86], [137], mobility [138], and resource allo-
cation/management [139] problem of wireless networks.
In the case of UDN, game theory can attain ideal solu-
tions to large scale wireless network problems that are
less complex and have low computational complexity
[137]. Game theory is well suited for scenarios involv-
ing distributed decision-making without the need for a
centralised controller where the devices in the network
have conflicting objectives, such as in the case of UDN.
Another benefit of using game theory for UDN is its
ability to make an optimal decision as a response to the
game rather than based on other players strategies.

In the case of UDN, the players will be more as
compared to conventional wireless networks. Also, the
signalling overhead will be huge, along with rapid spa-
tiotemporal variation. In such scenarios, mean-field game
theory is the best strategy to apply as it can take optimal
decisions in a distributed manner [137]. Non-cooperative
games cannot handle a large number of players [140]
however it gives good results in strategic problems and
conflicting scenarios. A game is an interaction between
players (two or more). A player’s own decisions and other
players’ decisions can influence every player’s Payoff. The
main elements for defining a game-theoretical problem
are:

• Players: Players are the independent decision-
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makers of the game.
• Actions: Actions are the specific behaviours within a

game that players have to choose.
• Payoff: Payoff is the amount or value (specific, exact,

increase or decrease) that a player receives that maps
a player’s actions.

• Strategies: The strategies in a game are further
divided into pure strategies and mixed strategies. For
pure strategies, the value of a game is always the
same for every player of that game and determines
the action that particular player will do independent
of any state [141]. In contrast, a mixed strategy is
based on probability.

• Solution: Nash equilibrium is one of the most widely
used solution concepts. It is considered an important
factor in game theory which means a player has no
regrets once the decision is made. Nash equilibrium
also requires two stages [142]:

– identifying each player’s strategy as a reaction to
other players game plan.

– when a situation occurs where every player is
using its best strategy.

A game theory problem solution depends on the nature
of the problem. The types of games are selected based
on features. Some commonly used game types are:

• Static v.s dynamic games: In static games, each
player takes decisions simultaneously, unaware of its
surrounding player’s decisions. On the other hand, in
dynamic games, players can take action repeatedly
and at different times.

• Cooperative v.s non-cooperative games: Non-
cooperative games are player-oriented games in
which the main focus is on the player’s utility instead
of the whole game [143]. On the other hand, in
cooperative games, players tend to make coalitions
to take full advantage of the game [141].

• Zero-sum v.s non-zero-sum games: Zero-sum
games always have a loser for every winner, but
their total values always remain the same. Non-sum
zero games are in contrast to sum zero games as all
players benefit from the game.

The game theory approach gives the best results when
applied to energy efficiency and security problems in
wireless networks because of its decision making power
in uncertain situations [144]. Game theory gives the
benefit of optimising cell-level performance. Due to its
distributed decision-making, potential game theory is
suitable for the energy consumption issue of small cell
dense networks. Some of the widely used game-based
schemes are matching game [86], Stackelberg game [53],
[139], coalition game [145], mean-field game [137], [146],
nash bargaining [147] and bankruptcy game [?], [72].

3) Optimisation & Heuristic algorithms
Apart from machine learning and game theory, other
heuristics and stochastic geometry techniques have
proved beneficial to wireless networks for improved en-
ergy efficiency. Stochastic geometry refers to study the
of random spatial patterns. As a field of applied proba-
bility, it is used to estimate spatial averages on higher
dimensions. Point processes are inherent of stochastic
geometry [148]. The PPP model is an efficient way to deal
with wireless network interference. Power consumption
and interference are interlinked with each other as inter-
ference can be minimised by adjusting the power con-
sumption of BS, but that affects the downlink and uplink
coverage [149]. Another way to enhance energy efficiency
and minimise interference is to use stochastic geometry-
based PPP, where the point processes are considered
random points and are spread over space. Apart from
joint power consumption and interference perspective,
stochastic geometry is efficiently used in resource allo-
cation to improve EE because of the complexity caused
by many access points and users in UDN. Besides the
computational complexity of UDN, complete network
information is required to gain the full benefits of dense
networks. Also, the large number of access points and
complexity leads the network towards extra energy con-
sumption. Stochastic geometry has the benefit of solving
high complexity computational problems, which eases
the computational procedures [150].

Heuristic algorithms are best for the situation where
fast results are required. Heuristic algorithms can prove to
be energy-efficient in network management as it requires
minimal resources for computation and maintains user
QoS. According to [151], the heuristic algorithm is further
divided into availability, representativeness, anchoring
and adjustment. The heuristic approach is best utilised
when memory or data is available to call the statistics. It
is best utilised in energy-efficient resource management
problems. The representative heuristic approach makes
decisions based on probability or random likelihood. The
anchoring and adjustment heuristic gives an initial value
that further increases or decreases as per estimations.
The initial decision part is known as anchoring; most of
the time, the algorithm is stuck at this point, resulting
in biased results. The major benefit of the heuristic
algorithm is its immediate automatic response which
makes it more efficient. Stochastic and other heuristic
algorithms like greedy based algorithm [152] and genetic
algorithm [153], [154] are proved beneficial in solving
energy-efficient resource allocation, cell sleeping [94],
user association [155] and scheduling [156] problems in
UDN.

E. ENERGY HARVESTING
Besides the excessive demand for speed, capacity, and
coverage, the ICT industry should also consider economic
and environmental issues. Due to the annual increase
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in network operations costs, average revenue per unit
(ARPU) decreases annually. One of the significant factors
of these increasing OPEX/CAPEX rates and environmental
footprint is the energy consumption to maintain a net-
work [157]. Researchers are looking for efficient ways to
harvest energy through environmental sources (thermal,
solar, wind) and hardware like BS, sensors and other
mobile terminals to provide eco-friendly and energy-
saving networks. The obtained energy from renewable
energy sources can be further stored and utilised directly.
This section discusses three significant ways to harvest
energy for wireless networks: natural energy harvesting,
coupling techniques, and wireless power transfer (WPT).

1) Wireless Power Transfer (WPT): WPT is a general
method to transfer power across devices that have
been used over the decade. Generally, the power
transfer range is from some microwatts to milliwatts.
However, the industry is now working on high power
applications to increase the range to several kilowatts
[99].

• Wireless Energy Transfer (WET) concentrates on
the downlink side of the wireless network. It
transfers the energy from the base station to user
equipment.

• In Simultaneous Wireless Information and Power
Transfer (SWIPT), energy and information both are
transferred simultaneously in downlink [158].

• Wireless Powered Communication Network
(WPCN) works the same as SWIPT, but both uplink
and downlink are used to transfer information and
energy, respectively [159].

2) Natural energy harvesting: Energy is harvested
through natural resources abundantly available in
the world like sun, water and wind. However, these
kinds of harvested power are not consistent due to
the availability of the sources.

3) Coupling techniques: Inductive and magnetic cou-
pling are two methods to harvest short-range energy.

F. PERFORMANCE MEASURES
P.1 Energy efficiency: In simple terms, energy efficiency

is maximising the number of bits transferred per
unit of energy. In UDN, deploying many devices
makes the network consume more energy, which is
a significant cause of concern. Also, to minimise the
OPEX, it is necessary to keep energy consumption
low. Therefore, energy efficiency schemes are of
utmost importance for 5G.

P.2 Throughput: Throughput is how much actual
amount of data is received or forwarded across a
communication link. Throughput can be measured
in both bits/sec and data/sec. Not only is throughput
an effective way to measure network performance,
but it can also be optimised to minimise latency. The
bandwidth is different from throughput because of

latency, packet loss, jitters, and other parameters.
P.3 QoS: Quality of service (QoS) is used to measure the

overall network performance by users. Considering
the growth in current and future networks, meeting
quality of service has become more critical. Speed,
end-to-end delay, reliability, jitters and bandwidth all
aspects are all covered under QoS. It also includes
handling and controlling network resources and pri-
oritising them for different data types. Enhancing
QoS is one of the critical objectives of an energy-
efficient ultra-dense network as heterogeneous de-
vices in UDN have different types of data require-
ments and priorities.

P.4 Data rate: The data rate is defined as the number
of bits transferred per second time. The data rate is
the transmission speed and is denoted by bytes per
second.

P.5 Fairness: The sharing and allocation of resources
become a challenging task in UDN because of the
dense deployment. It is measured as the difference
between the highest and lowest values of any net-
work parameter. Fairness is mainly related to the
resource allocation aspect of wireless networks. The
fair allocation of resources has become a critical
issue that needs to be addressed. As the unfair
allocation of resources may lead to lack, wastage
or surplus of resources. Fairness can be estimated
as quantitative (Jain’s index and entropy measure)
and qualitative measure (max-min and proportional
fairness).

P.6 Packet loss rate: The packet loss is the percentage of
lost packets compared to the total number of packets
sent. This packet loss occurs mainly because of poor
network, multi-path fading, interference, network
congestion or errors during transmission. Extreme
packet loss also affects the QoS and throughput of
the network.

P.7 Total power consumption: Power consumption de-
fines the power consumed per unit time to operate
the equipment. It is measured in kilowatts (kW)
or watts (W). In wireless networks, some energy is
also wasted as electromagnetic radiation, heat or
vibration.

P.8 Sum rate: The total amount of communication tak-
ing place in a network defines the sum rate. Sum rate
is directly proportional to data; the more significant
the node communication, the more data can be
transferred.

P.9 Coverage: The geographical area covered by the
BS to provide communication facilities to the user
equipment is known as the coverage area of that
particular BS. Reudink’s formula is used to calculate
the relationship between coverage at edges of BS and
cell area coverage probability.
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G. ENERGY EFFICIENCY METRICS
Energy efficiency metrics play an important role in
energy-efficient communication as it gives quantified
information [160]. Energy efficiency metrics are applied
to:

• compare the performance of energy consumption
among different components

• direct future energy efficiency research and develop-
ment goals

• emphasises adapting more energy-efficient configu-
rations in the network

There are different metrics to evaluate the energy con-
sumption of wireless networks. Energy efficiency metrics
are used to either measure the performance-based energy
consumption or the energy efficiency improvement [161].
According to the requirements, energy efficiency metrics
can be further divided into three major classes:

M.1 Component level: Wireless networks vary according
to their architecture, purpose and equipment. A
typical wireless network consists of antennas, power
supply, RF, front end, power amplifier, baseband pro-
cessor, support system. The energy efficiency metric
at the component level evaluates power efficiency
measured as the ratio of output power to input
power of that particular component.

M.2 Node level: The node/equipment level metrics are
used to understand the energy consumption perfor-
mance of devices at wireless terminals or radio base
stations (RBS). These RBS refer to small cells access
points, MBS and wireless terminals. However, the
energy efficiency focus is more on the application
level. The European Telecommunications Standards
Institute (ETSI) specified metrics to estimate the
energy efficiency of BSs. [162]. Base stations, climate
control units, power loss among units and other
auxiliary equipment all are covered under the energy
consumption standardisation body of ETSI [162].
For the indoor area, there are no climate control
units. The baseband processors are measured in
FLOPS/watt or MFLOP/watt. Also, Energy Propor-
tionality Index (EPI) is the metric used to estimate
the energy consumption of equipment at both idle
and full load [160]. Energy consumption rating (ECR)
is used as a metric to calculate the power consump-
tion at RBS [163].

M.3 Network level: Network-level or system-level met-
rics are used to calculate the energy consumed
by wireless devices at the network level. This con-
sumed energy can be because of coverage, capacity
and delay of the system. Although various energy
consumption metrics have been proposed, Energy
Consumption Gain (ECG) and Energy Consumption
Rating (ECR) are widely used. However, in an ultra-
dense small cell network, where the system/network
has discrete characteristics, ECR (J/bit) is considered

a fair metric. Some other energy efficiency metrics
(Area Power Consumption (APC), Energy Efficiency
Rating (EER) [bit/J]) are considerably more effective
to calculate energy consumption at different load
levels as ECR calculates energy efficiency at full load
[160].

IV. CHALLENGES AND FUTURE RESEARCH
DIRECTIONS
With the proliferation of devices, sensors and data-
hungry applications, energy-efficient technologies will be
necessary. There has been much investigation done on
energy-efficient techniques in UDN. However, there are
several challenges and future research directions that
need further investigation, as summarised below:

1) UDN and big-data convergence: 5G is envisioned to
increase the network capacity; however, due to the
design philosophy of UDN, it results in increased
energy consumption. This problem becomes more
severe when big-data technologies are combined
with UDN, especially with the deployment of many
devices, as in IoT. More power is required to operate
an extensive deployed small cell network because
of differences among temporal and spatial traffic
loads. In the future, more work can be done to
improve energy efficiency by utilising big data to
assist the deployed UDN. Also, artificial intelligence
can be utilised for big-data-based UDN to deploy it
practically without incurring increased energy con-
sumption.

2) System analysis in UDN: The system analysis is
essential to identify the challenges that need to be
addressed appropriately. In the case of UDN, in-
creasing dense networks are deployed to satisfy users
coverage and capacity issues. However, practically
analysing the dense system becomes challenging.
There are network deficiencies in every wireless
network that cannot be ignored. Like in UDN, the
impact of shadow fading is more critical because
of the dense deployment, which affects network
performance and causes energy wastage. More work
can be done on the system analysis part, which will
help start new research areas in UDN networks and
energy efficiency.

3) Energy harvesting & traffic patterns: Though re-
searchers have started working on WPT to supply
power to network elements, much work is required
to address the small power efficiencies. Focusing
on network traffic patterns and utilising energy co-
operation techniques efficiently by accessing those
patterns can benefit the network.

4) Overhead information exchange: Information ex-
change among network components requires en-
ergy to communicate. With the increase of devices
and traffic in UDN, information exchanges among
network components also increased exponentially,
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resulting in more energy consumption. Apart from
increased energy consumption, it also causes an
interruption in network outage execution. Hence,
future work is required to analyse and evaluate
overhead information exchange and its impact on
dense small cell networks.

5) Vertical densification: Although vertical densifica-
tion provides more benefits than horizontal den-
sification, it is a challenging task to do vertical
densification of small cells. Vertical densification is
modelling SC base stations in an elevated plane,
which is not easy in UDN. More research work can
be done in future on the performance evaluation,
modelling, frequency reuse techniques and energy
efficiency problems of UDN small cell vertical den-
sification.

6) Lack of training data: Machine learning has been
studied widely in many applications and decision-
making processes from massive data. However, there
is a lack of data sets for research purposes in the
wireless network domain. Apart from data sets, the
security risk is also associated with these big data
sets used for training complex and high-performance
models. For the future, there is a space to work on
the machine learning model to train huge data sets,
especially for improving energy efficiency scenarios.

7) Energy efficiency of machine Learning: One of
the most significant benefits of machine learning is
its iterative learning nature from the environment.
Data acquisition, training, testing, validation, and
debugging consume a considerable amount of pro-
cessing. As there is a strong correlation between
energy consumption and time, it is vital to work
on the energy efficiency of machine learning itself.
Reducing the energy consumption of machine learn-
ing can help to reduce the energy consumption of
networks that have machine learning implemented
in them. More work is required to further work on
machine learning-based scenarios to enhance energy
efficiency further.

8) Security issues: Wireless networks are always more
susceptible to security issues. These non-negligible
security challenges are crucial for small cell dense
networks as they compromise integrity, trust, au-
thentication and energy consumption. Two main
approaches are generally used to secure the network:
upper-layer encryption techniques and securing the
physical layer [164]. The major drawback of these
encryption techniques is the computational cost and
energy to defend these attacks that overload small
cell base stations. Other security concerns of UDN
are handover management attacks and cell interfer-
ence attacks in UDN, where attackers intentionally
increase the number of small cells in the network
to create confusion among users. Mitigating these
attacks require a lot of energy consumption in terms

of processing. Future work must work on the attack
defence schemes that reduce the complexity and
minimise power consumption during this mitigating
phase.

V. CONCLUSION
There are several methods of increasing wireless network
capacity, but the most promising is ultra densification.
UDN is a promising technology to increase the capacity
and performance of future networks. Beyond the capacity
and data aspect, energy efficiency is a critical factor
for future wireless networks. One way to control energy
consumption is by adjusting the power consumption of
BS while satisfying the coverage and performance criteria
for users. There are, however, other ways to increase the
energy efficiency of UDN. This article provides a detailed
survey of energy-efficient small cell networks, along with
different research directions to improve the energy effi-
ciency of UDN. Based on the review, we have provided the
detailed taxonomy of UDN that highlights the popular ap-
proaches, modelling techniques, performance measures,
and energy efficiency metrics. The discussed approaches
cover the UDN from network planning & architecture,
resource optimisation, hardware solutions, and energy
harvesting. Further, resource optimisation strategies con-
sist of resource allocation, user association, interference
management, BS switching, and cell zooming schemes
to address the energy efficiency issues in UDN. The
latest modelling techniques (machine learning, heuristic
algorithms, stochastic geometry, and game theory) and
their roles in UDN are discussed to improve energy
efficiency. Besides energy efficiency, the discussed ap-
proaches also focus on reducing interference, improving
QoS, and enhancing spectral efficiency, directly and indi-
rectly affecting small cell UDN. In addition to discussing
the advantages of UDN, we outline a few challenges that
require more in-depth research and present future re-
search directions. We believe that the proposed taxonomy
will help future research directions and motivate potential
research to improve energy efficiency in UDN.
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