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ABSTRACT
Image captioning can show great performance for generating captions for general purposes, but it remains
difficult to adjust the generated captions for different applications. In this paper, we propose an image cap-
tioning method which can generate both imageability- and length-controllable captions. The imageability
parameter adjusts the level of visual descriptiveness of the caption, making it either more abstract or more
concrete. In contrast, the length parameter only adjusts the length of the caption while keeping the visual
descriptiveness on a similar degree. Based on a transformer architecture, our model is trained using an
augmented dataset with diversified captions across different degrees of descriptiveness. The resulting model
can control both imageability and length, making it possible to tailor output towards various applications.
Experiments show that we can maintain a captioning performance similar to comparison methods, while
being able to control the visual descriptiveness and the length of the generated captions. A subjective
evaluation with human participants also shows a significant correlation of the target imageability in terms
of human expectations. Thus, we confirmed that the proposed method provides a promising step towards
tailoring image captions closer to certain applications.

INDEX TERMS Machine learning, Semantics, Task analysis, Image captioning, Psycholinguistics

I. INTRODUCTION

Image captioning shows great performance in generating
captions for general purposes and receives great attention
in the research community [15], [22], [43]. However, the
requirements of different applications such as news articles,
social media, assistive technology, and so on, can be largely
different. It remains difficult to tailor the generated image
captions to a variety of such applications. The reason is
manifold: First, image captioning approaches usually target
to generate captions close to those in existing training data,
and then are evaluated based on their similarity to the testing
data. Both the datasets and the evaluation metrics are made
under the assumption of performing general-purpose image

captioning. This generally results in a very low diversity of
generated captions, as some research has tried to tackle [9],
[39], [41]. Second, the perception and the style of the gener-
ated captions are rarely considered, although some research
looked into captioning styles and sentiment [3], [11], [24] and
the visual descriptiveness of captions [36]. Recent research
towards caption diversification propose introducing parame-
ters such as length-controllable models [7].

In this paper, we explore the diverse generation of image
captions with two controllable parameters: imageability and
length. First, imageability, a concept derived from Psycholin-
guistics [27] which describes whether a word gives a clear
mental image, is used. Its usage for image-captioning has
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FIGURE 1. Proposed imageability- and length-controllable image captioning model. The imageability parameter allows for adjusting the visual descriptiveness on
captions with the same length, while the length parameter changes the length for a fixed degree of visual descriptiveness. Both parameters can be changed at the
same time to allow for creating diverse captions.

been explored in our previous work [36], yielding promising
results for customized image captions. In context of caption-
ing, it can be used to adjust the visual descriptiveness of
captions, making them being either a more abstract or more
concrete description of the scene. Second, length provides
another dimension of customizability for captions for differ-
ent applications. While a news article might prefer a short
abstract caption, a caption for assistive technology would be
ideally longer and more descriptive. Further, by introducing
two controllable variables, the proposed model can adjust
both dimensions individually. The overall idea is illustrated
in Fig. 1, showing how different settings for imageability and
length can yield to vastly different captions. We believe that
this step towards customized captioning can be a promising
direction for application-tailored captioning.

This research is based on our previous work published
in a conference proceedings [36]. This initial work showed
promising results for imageability-aware captioning with an
LSTM-based architecture, yet yielding a still mixed corre-
lation to human perception and often unnatural captions.
In this follow-up research, we employ a transformer-based
captioning model [46] in order to greatly improve the natu-
ralness of the results, making it more viable for actual use in
targeting different applications. A data augmentation method
similar to our previous work is used to diversify captions
for visual descriptiveness. Furthermore, a length-controllable
parameter [7] is newly introduced, in order to allow for
adjusting the generated captions along a second dimension.
With this, our combined model allows for changing cus-
tomization across two dimensions independently. Note that
imageability and length encode different things; Changing
imageability aims to change visual descriptiveness of the
caption for the same length, while length aims to change
the wordiness while keeping contents similar. As such, we
believe the proposed method, being able to control them
individually, is a great first step towards tailoring captions
to single applications with different needs of contents and
descriptiveness. The evaluations show a greatly improved
performance when generating customized captions, beating
comparison methods. Especially, a crowd-sourced subjective
evaluation shows a significant improvement over our pre-
vious work [36], now closely correlating with the intended
perception of the generated captions.

Image 
Captioning

General-purpose 
Image Captioning

RNN/LSTM-based 
[16], [40], [43]

Transformer-based
[5], [18], [28], [46], [47]

Affective Image 
Captioning

Emotion/Sentiment-based 
(e.g., positive/negative)
[3], [24]

Style (e.g., humurous/
romantic)
[11], [13], [34], [45] 

Feedback Loop-based 
(e.g., user feedback)
[2], [4] 

Descriptiveness-based 
(e.g., amount of contents)
[7], [36]

FIGURE 2. Related Work in Image Captioning. The related work is split into
general-purpose and affective image captioning. The former tries to simply
summarize image contents in a neutral short phrase, while the latter puts a
strong focus on the emotion/sentiment, style, feedback, descriptiveness, or
other user perception of the output phrase.

Our contributions can be summarized as follows:
• We propose an imageability- and length-controllable

image captioning framework which can create diverse
captions closely tailored to various applications.

• To the best of our knowledge, this is the first captioning
framework which allows to adjust both imageability and
length independently.

• The evaluation shows a significant improvement over
our previous work for imageability-aware image cap-
tioning, partially due to the introduction of the
transformer-based model.

II. RELATED WORK
In this section, we discuss related work regarding image
captioning and imageability. The related work on image
captioning can be categorized into general-purpose image
captioning and affective image captioning. While the former
simply tries to summarize an image in a short sentence, the
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latter puts focus on attributes like emotion/sentiment, style,
user-feedback, or descriptiveness. A rough overview of the
introduced work is visualized in Fig. 2.

General-purpose image captioning

With the rise of deep learning-based models such as Long
Short-Term Memory (LSTM) [14], general-purpose image
captioning [16], [40], [43] achieved a great boost in perfor-
mance.

More recently, transformer models [10], [37] using an
attention mechanism have attracted researchers’ attentions
due to a very high performance in many natural language
processing-related tasks. Following, many recent state-of-
the-art models for image captioning [18], [46], [47] make use
of a transformer-based architecture.

Zhou et al. [46] combine a transformer model with at-
tention on visual features extracted from images [18], [32]
for image captioning yielding very promising performance.
Most recently, Cornia et al. [5] and Pan et al. [28] added
more sophisticated attention modules to further improve the
performance of Transformer-based image captioning.

Affective image captioning

Rather than performing a neutral contents-based image cap-
tioning for general-purpose usage, there has been some re-
search focus on image captioning in context of affective
computing such as emotions and impressions [3]. They can
be loosely categorized into four kinds of affective output:

First, Mathews et al. [24] propose a method which allows
for customizing sentiment, yielding positive or negative sen-
timent captions.

Second, Gan et al. [11], Guo et al. [13], and Zhao et
al. [45] explore the generation of styles such as humorous
or romantic, which is further extended in a transformer-
based model [34] to concepts like sweet, dramatic, anxious,
arrogant, and so on.

Third, a different approach has been investigated by Cornia
et al. [4], which allows user-interactive captioning where the
user can specify image areas to be explained in a caption
as well as their order. Chen et al. [2] propose similar ideas
where scene graphs are used to fine-tune customized image
captions.

Lastly, some approaches [7], [36] target specifying the
detail and amount of output. Deng et al. [7] propose a length-
controllable transformer model which can generate captions
with fixed contents but a flexible length. In our previous
work [36], we proposed a method for image captioning
which can control the imageability of the generated captions.
Imageability is a concept derived from Psycholinguistics first
introduced by Paivio et al. [27], describing how easy it is
to mentally imagine a word. It has received some attention
in research for multi-modal analysis [25], [44], providing a
promising opportunity to use it as a parameter for customized
captioning.
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FIGURE 3. Flowchart of the proposed framework. A general purpose image
captioning dataset is augmented using word substitutions through WordNet.
This generates a diverse caption-dataset with different levels of visual
descriptiveness. For each caption, an imageability score is calculated, which is
then used for generating an imageability-embedding. The proposed model
incorporates both an imageability- and a length-based embedding. The model
itself is shown in Fig. 5.

In this research, we target the last discussed category
of affective image captioning, proposing a method which
allows for a high degree of customizability in descriptive-
ness of outputs. We build upon our previous work [36] on
imageability-aware captioning using an LSTM-based model.
We greatly improve the performance and naturalness of the
generated captions by introducing a transformer-based cap-
tioning model [46]. As an additional parameter, we further
introduce length-controllable captioning [7] to build a model
which can generate captions with two independent parame-
ters of customization.

III. IMAGEABILITY- AND LENGTH- CONTROLLABLE
IMAGE CAPTIONING FRAMEWORK
In this section, we introduce the proposed framework
for imageability- and length-controllable image captioning.
For the imageability-controllable parameters, an augmented
dataset with a high diversity in visual descriptiveness is
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needed. The augmentation and caption imageability estima-
tion used in our method is largely based on our previous
work [36], but briefly introduced in Sec. III-A due to this
task being specialized and not yet receiving wide-spread
attention. The proposed model itself is introduced in great
detail in Sec. III-B.

A flowchart of the method is illustrated in Fig. 3.

A. DATASET PREPARATION
Following, we discuss the dataset needed for the proposed
method. While the length-embedding of the framework is
based on length-aware caption decoders as proposed by Deng
et al. [7], the knowledge used for the imageability-embedding
is trained on a diversified dataset. Thus, we first use a data
augmentation technique to increase the number of captions
in the dataset. The main focus lies on increasing the variety
of visual descriptiveness of captions. Thus, we substitute
information with more abstract terms, making captions more
abstract for training. Next, the caption imageability is cal-
culated for each caption, which is used for the imageability
embedding during training.

1) Data Augmentation
Existing image captioning datasets such as Microsoft
COCO [20] and Flickr30k [30] usually come with multiple
captions for each image. However, there is typically not much
diversity in terms of visual descriptiveness and each existing
caption describes the image in a roughly similar way. For
imageability-controllable captioning, we are interested in a
large variety of descriptions, from abstract to visually de-
scriptive. Imageability as a concept derived from Psycholin-
guistics [27] describes whether a word gives a clear mental
image. For this research, we assume a rough relationship
between visual descriptiveness and imageability, and thus
use it to approximate a metric for visual descriptiveness.
For a low target imageability, an ideal description would
be something rather abstract, not mentioning many visual
details. In contrast, for a high target imageability, a very
detailed description of visual details in the caption would be
expected.

To emulate this idea, the augmentation process substitutes
words in existing captions with more abstract terms. With the
help of the transformer architecture, the augmented data can
then help the network to identify abstract language and how
it would change captions. Similar to our previous work [36],
each noun in a given caption is substituted by their hypernym
according to its WordNet [26] hierarchy. We replace a noun
with up to five levels of hypernyms in order to generate
additional captions. Note, that we avoid going too close
to the WordNet root node by removing the top-most two
layers, as terms like object or item become too abstract for
meaningful training. For captions with multiple nouns, we
generate augmented captions for each noun separately. The
idea is visualized in Fig. 4.

Two brown horses in a pasture are eating the grass.

equines

mammals

animals

creatures

organisms

grassland

field

region

location

area

plant

food

Word replacements through WordNet hierarchy

item

object

objects

FIGURE 4. Data augmentation. Using WordNet [26], we extract a hierarchy of
hypernym terms for each noun in the existing captions. We pick up to five
replacements for each noun, e.g., replacing pasture with the terms {area,
location, region, field, grassland}. Note that we avoid replacements too close to
the WordNet root node, as they would become too abstract. As such, grass will
only be augmented by {food, plant}, but not with item or object which would
come above. This process is repeated for all nouns in every caption to create
an augmented dataset with more abstract wordings.

2) Caption Imageability Estimation

In order to learn the relationship between an image and the
visual descriptiveness of a caption, we calculate the caption
imageability. The basic idea is to use imageability values for
individual words composing the caption in order to calculate
a value representative for the whole caption. Existing im-
ageability dictionaries such as [6], [31], [33], [42] describe
imageability on a Lickert scale (e.g., on an interval of [1,7]
or [1,5]) from very unimaginable to very imaginable.

For caption-imageability estimation, we follow the same
approach as in our previous work [36]. We start with a
caption from the dataset and assume available imageabil-
ity labels for all its individual words. As this is a strong
assumption, we skip stop-words, numerals and similar. For
our experiments we target English language, which also
influences some design decisions discussed onwards, but an
adjusted process is expected to work for other languages, too.
We generate a parsing tree using the Stanford CoreNLP [23]
framework. Next, we employ a bottom-up approach which
calculates a sentence imageability score from all its words’
imageability values along the parsing tree. We assume nouns
to become more descriptive when being modified by ad-
jectives (e.g., “black cat” being a less visually ambiguous
description than “cat”). For multiple words on the same
level of the parsing tree, we define some simple rule set for
weighting: 1) If there are one or more nouns, the last noun
is the most significant and weighted the highest (e.g., “cold
apple juice” are modifications of “juice”). 2) If there is no
noun, the first word is the most significant and weighted
the highest (e.g., “run fast” is a modification of “run”). We
caculate the imageability of sub-trees using
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FIGURE 5. Proposed captioning model. The proposed model uses a transformer-based architecture. It is based on [7] which allows for length-controllable
captioning. Inspired by their architecture, the proposed methods adds an imageability embedding layer which encodes the visual descriptiveness of captions. Using
this, the resulting model allows both imageability- and length-controllable output.

I = xs

n∏
i=1(6=s)

(
2− e−xi

)
, (1)

where xi(i = 1, . . . , n | i 6= s) is the score of each mod-
ifying word and xs is the score of the most significant word.
This process is repeated bottom-up until reaching the root
node of the parsing tree. Lastly, the results are normalized
using f(x) = 1− e−x.

We employ this method and calculate the caption image-
ability values for all captions in the augmented dataset.

B. CAPTIONING MODEL
For the captioning model, we employ a BERT-based trans-
former model [46]. Deng et al. [7] apply this model for
length-controllable captioning, where they add a layer of
length-embedding to the language features. Inspired by this,
we add an extra layer of imageability-embedding based on
the augmented dataset with caption imageability estimations.
Our proposed model is illustrated in Fig. 5.

First, we introduce each type of embedding and the fea-
tures used for the training.

1) Length embedding
The length embedding is implemented in the same fashion as
proposed by Deng et al. [7].

For a caption C = {ci}Ni=1, we assign C a length level
with the range [Llow, Lhigh] according to its length N . Then,
the length-embedding matrix Wl ∈ Rk×d (with k being the
number of length levels and d being the embedding dimen-
sion) is trained to differentiate image captions on different
length levels.

A one-hot vector tl ∈ Rd for the length l is generated. The
length embedding is then defined as

elen = WT
l tl ∈ Rd. (2)

2) Imageability embedding
Inspired by the length embedding discussed before, we im-
plement an imageability embedding in the same way. For
each caption, we generate an imageability embedding based
on the caption imageability estimation obtained in Sec. III-A.
We assign an imageability level i to a caption within a
range of (Ilow, Ihigh] according to its caption imageability
I . Through this, the existing caption imageability annota-
tions are binned into evenly-sized levels. The imageability-
embedding matrix Wi ∈ Ra×d (with a being the number
of imageability levels and d being the embedding dimen-
sion) is trained to differentiate image captions on different
imageability levels. ti ∈ Ra represents a one-hot vector for
the imageability level. Finally, the imageability embedding
becomes

eimag = WT
i ti ∈ Rd. (3)

3) Visual features
The model applies a Faster-RCNN [32] network pretrained
on the Visual Genome dataset [17] to extract visual fea-
tures. Using this object detection model, M objects in the
regions R = {ri}Mi=1 are detected. We extract region features
Fe = {fe,i}Mi=1, classification probabilities Fc = {fc,i}Mi=1,
and localization features Fl = {fl,i}Mi=1 for each object in the
image.

The visual features are then defined as

xri = WT
e fe,i +WT

p [LN(fc,i),LN(fl,i)] + evis, (4)
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describing the visual vector xri for the region ri. Here, evis is
a learnable embedding for differentiating the image regions
from text tokens. The projection matrices We and Wp are
trainable and project the corresponding features into d-D
space. LN refers to layer normalization while [·, ·] represents
feature vector concatenation.

4) Language features
For an input caption C = {ci}Ni=1 with ci representing each
word in a caption, we use a BERT-based model [46] to obtain
a word-embedding ew,ci ∈ Rd and a location-embedding
ep,i ∈ Rd.

The length- and imageability-embeddings are added to the
language features, which are defined as

xci = ew,ci + ep,i + elen + eimag. (5)

5) Model training
The proposed model is based on the language generation
model by Ghazvininejad et al. [12]. For a correct caption
T = {ti}Ni=1, which is randomly masked with tokens
[MASK], the transformer network is fed with a masked
caption C = {ci}Ni=1. Next, the pair of visual and language
features is fed into the network, predicting the masked token.
The model is trained by minimizing the cross-entropy loss
between the correct token ti of the ground-truth caption and
the masked-in token ci as expressed by

L = −
N∑
i=1

l(ci) ti log ci. (6)

Note that ci = [MASK] is an indicator function that is 1 only
when l(·), and 0 otherwise.

6) Caption generation
Following Ghazvininejad et al. [12], we use the “Mask-
Predict-Update” method to generate captions. Initially, the
whole caption is masked with [MASK] tokens. The feature
embeddings are fed into the transformer network in order
to predict a mask position and its most suitable vocabulary.
The process is repeated iteratively until the whole caption is
generated.

IV. EVALUATION
In this section, we evaluate our proposed image captioning
method. After discussing the environment in Sec. IV-A, we
illustrate some generated captions of the proposed method in
Sec. IV-B.

Following, we evaluate the approach from three angles:
First, Sec. IV-C discusses the performance of the model
measured by general-purpose image captioning metrics. The
length-controllable transformer-based method has already
been extensively evaluated in [7]. Therefore, for the second
and third experiments, we focus on a deeper evaluation of
the imageability-controllable part of the transformer-based

model and its differences over the previous LSTM-based
work [36] for generating captions with different visual de-
scriptiveness. As such, Sec. IV-D discusses the imageability
diversity of the generated captions, and Sec. IV-E the perfor-
mance in a crowd-sourced human evaluation.

A. ENVIRONMENT
a: Datasets
We employ the Microsoft COCO [20] dataset as a baseline
for the data augmentation. For training and testing, we use
Karpathy splits [16]. The extended dataset is generated as
discussed in Sec. III-A1, aiming for twenty captions per im-
age. For the imageability estimation of captions, we employ
two imageability dictionaries by Ljubešić et al. [21] and Scott
et al. [33]. As the former is a large estimated dictionary
while the latter is a small crowd-sourced one, we favor the
ground-truth imageability of the latter dictionary in case of
overlaps. Images which did not yield sufficient numbers of
captions through data augmentation or did not have enough
sufficiently available imageability word annotations were
excluded from the experiments. We end up with 109,115
images for training, 4,819 images for validation, and 4,795
images for testing.

b: Implementations
We use a pre-trained Bidirectional Encoder Representations
from Transformers (BERT) [10] model consisting of twelve
layers of transformers. For both imageability and length, we
define classes as discussed in Sec. III.

For the imageability-controllable parameter, we define five
levels of imageability. The imageability from dictionaries is
normalized to an interval of [0, 1]. Due to the distribution
of imageability values in the original datasets, virtually all
captions result in an imageability above 0.5 through the
method discussed in Sec. III-A2. Thus, splitting the re-
sulting data evenly, we end up with the five imageability
levels: I-1 (imageability between (0.5, 0.6]), I-2 ((0.6, 0.7]),
I-3 ((0.7, 0.8]), I-4 ((0.8, 0.9]), and I-5 ((0.9, 1.0]) used for
training. For the experiment, we are interested in how the
imageability captures human perception, i.e., whether the
visual descriptiveness of different levels actually resemble
the expectations of a human. As neighboring imageability
levels are very close and sometimes perceptually overlap, we
evaluate three classes in order to understand the overall trend
of results —concretely choosing: Low (I-1), Mid (I-3), and
High (I-5).

For the controllable length parameter, we define four
length levels: L-1 (length of [7, 9] with 10 iterations of Mask-
Predict-Update), L-2 ([10, 14], 15 iterations), L-3 ([15, 19],
20 iterations), and L-4 ([20, 24], 25 iterations).

We evaluate all combinations of L-x and I-x regarding
their qualitative and quantitative results. We furthermore
also evaluate a variant where we only use the imageability-
controllable features I-x and exclude the length-embedding.
The reason for this is that the length-controllable transformer
model have been already exhaustively evaluated in [7], while
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TABLE 1. Example of generated image captions when changing the target imageability and the length at the same time. The results verify a promising
performance for generating diverse captions for different applications.

Image Length Imageability Captionlevel level
Low Some organisms are playing in a baseball game.

l = 1 Mid A batter taking a mechanism at a ball.
High A baseball person at bat during a game.
Low A close up of a person holding a baseball bat.

l = 2 Mid A male is swinging a bat at a baseball game.
High A baseball person holding a bat on a field.
Low A close up of a baseball player holding a vertebrate on a field.

l = 3 Mid A foodstuff getting ready to swing at a ball during the game.
High A baseball person holding a bat with a catcher and umpire standing behind him.
Low A close up of a baseball player holding a vertebrate with a catcher and umpire behind

him.
l = 4 Mid A foodstuff getting ready to hit, while the catcher is getting ready to catch the ball.

High A baseball game with a batter, catcher, umpire, and a foodstuff at home plate.

TABLE 2. Example captions as qualitative comparison. As TAYI [36] can not generate length-aware captions, these examples use the proposed method without the
length embedding. The results show that the proposed method generates much more natural results for the same imageability setting, and a higher variety of
descriptiveness in general (bold highlights).

Image Method Imageability Captionlevel
Low A placental is sitting on a window sill.

Tell As You Imagine [36] Mid A feline is sitting on a window sill.
High A cat is sitting on a window sill.
Low A close up of a cat near a glass window sill.

Proposed method Mid A vertebrate is looking out of a window.
High A brown and white cat sitting on a window sill.
Low A large brown canine laying on top of a beach.

Tell As You Imagine [36] Mid A large brown canine laying on top of a beach.
High A large brown dog laying on top of a beach.
Low A close up of a canine laying on a beach.

Proposed method Mid A carnivore laying on the ground in the sand.
High A brown and white dog laying on a beach.
Low An organism swinging a baseball bat at a baseball.

Tell As You Imagine [36] Mid An organism swinging a baseball bat during a baseball game.
High A baseball player swinging a bat at a ball.
Low A concoction getting ready to swing at a pitch.

Proposed method Mid A male is up to bat during a baseball game.
High A baseball person holding a bat on a field.

the imageability-controllable part of the transformer model is
a contribution of this paper.

c: Comparison methods

For comparison, we tested a selection of methods from
related work on the same datasets.

First, we want to understand how the performance of
our imageability- and length-controllable captioning method
compares to general-purpose captioning. Thus, in Sec. IV-C,
we compare our results to a general-purpose method, “Show,
Attend, and Tell” (SAT) by Xu et al. [43], the length-
controllable approach LaBERT by Deng et al. [7] (using their
best-performing variant with L-2 for the comparison), as well
as general-purpose methods X-Transformer by Pan et al. [28]
and M2 by Cornia et al. [5].

Second, we include our previous work “Tell As You
Imagine” (TAYI) [36], which generates imageability-aware
captions using an LSTM-based approach. This work is not
trained on grouped imageability levels, but can generate

individual values of imageability I = [0.5, 0.6, . . . , 0.9]. To
yield a comparable output, similar to the way we defined
levels in the proposed method, we generate captions for Low
(with I = 0.5), Mid (I = 0.7), and High (I = 0.9). We
use this as the main comparison method for experiments in
Sec. IV-D and IV-E, as it is to the best of our knowledge the
only related work tailoring its output to imageability.

B. QUALITATIVE EVALUATION

Before looking into the quantitative metrics, we showcase
some examples of the output of the proposed method. Table 1
shows the output for an example image where imageability-
and length-parameters were adjusted at the same time. We
can see that the customization works well in both dimensions,
allowing for a promising way to tailor the model output to
individual needs of applications. Note that this also results in
a high caption diversity which could also be useful for many
applications. To the best of our knowledge, there is no other
method which can generate both imageability- and length-
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TABLE 3. Evaluation through general-purpose image captioning metrics. The proposed method is compared to [36] which is the only other related work aiming at
imageability-aware captioning and [5], [7], [28], [43] in order to compare performance against general-purpose captioning models. Due to the very different style of
captions generated for different levels of imageability, the scores are split into three groups, highlighting the average performance for a low, mid, and high target
imageability. The bold values correspond to the highest value within the imageability-aware methods.

Method BLEU-4 [29] CIDEr [38] ROUGE [19] METEOR [8] SPICE [1]
Low-I Mid-I High-I Low-I Mid-I High-I Low-I Mid-I High-I Low-I Mid-I High-I Low-I Mid-I High-I

Imageability-aware image captioning
TAYI [36] 0.265 0.262 0.246 0.621 0.633 0.618 0.495 0.495 0.491 0.232 0.235 0.238 0.089 0.092 0.093
Prop. (I) 0.247 0.294 0.290 0.671 0.747 0.850 0.488 0.536 0.538 0.234 0.255 0.264 0.094 0.101 0.110

Prop. (I+L-1) 0.222 0.263 0.241 0.553 0.654 0.714 0.459 0.518 0.511 0.208 0.232 0.236 0.080 0.088 0.096
Prop. (I+L-2) 0.248 0.295 0.289 0.683 0.758 0.850 0.489 0.537 0.540 0.234 0.255 0.264 0.094 0.101 0.108
Prop. (I+L-3) 0.205 0.231 0.240 0.589 0.633 0.712 0.472 0.503 0.513 0.244 0.260 0.272 0.102 0.107 0.116
Prop. (I+L-4) 0.166 0.181 0.184 0.316 0.342 0.360 0.433 0.451 0.460 0.246 0.257 0.265 0.109 0.112 0.121

General purpose image captioning
SAT [43] 0.281 0.671 0.504 0.238 0.092

LaBERT [7] 0.328 0.895 0.560 0.273 0.110
X-Trans. [28] 0.372 1.204 0.576 0.287 0.218

M2 [5] 0.393 1.318 0.587 0.293 0.226

controllable captions. Thus, we can not provide a comparison
method.

TAYI [36] is the only related work targeting imageability-
aware captioning. We compare it to our proposed model in
Table 2. In this case, we excluded the length-embedding,
resulting in results which roughly resemble those of length
level L-2. As we can see here, the output of our method vastly
outperforms this comparison method, making the results
much more natural. This is mostly a result from the switch
to a transformer-based architecture compared to LSTM used
in the comparison method.

For length-controllable captions, LaBERT [7] provides an
exhaustive analysis. As our architecture without the image-
ability embedding is largely identical to their setup, we thus
skip a more detailed analysis of this parameter.

C. EVALUATION WITH IMAGE CAPTIONING METRICS
For this experiment, we evaluate our proposed method
against comparison methods [5], [7], [28], [36], [43]
regarding the general-purpose image captioning metrics
BLEU [29], CIDEr [38], ROUGE [19], METEOR [8], and
SPICE [1]. The results are shown in Table 3. As general-
purpose image captioning and imageability-aware image
captioning are strictly speaking different tasks and not di-
rectly comparable, we grouped these methods for better
visibility.

Overall, the imageability-aware models yield a reason-
able performance across all metrics, despite the more recent
general-purpose methods outperforming them. As the pro-
posed method discusses a specialized task of imageability-
and length-controllable captioning, we did not expect to
achieve the best performance in these metrics. Rather than
performing the best, we want to aim for a reasonable per-
formance while providing an additional dimension of cus-
tomizability. Note that most of the evaluation metrics actually
do not consider, but rather punish, diverse captions and style
changes, as the evaluation is based on a direct comparison
to a ground-truth annotation. As such, methods aiming for

diversification or affective computing commonly slightly
degrade performance in such metrics by their nature. The
method by LaBERT [7] outperformed our proposed method
in most metrics, but the results are close enough to verify
a similar performance. As we were interested in general-
purpose performance, we used the best-performing variant
(L-2) of their model.

Newer architectures such as [5], [28] further outperform
the proposed method. Because of this, future research could
investigate into whether these architectures could also be
benifitial for imageability-aware captioning.

Note that the nature of the approach, actively purposefully
changing contents of the output, would naturally decrease
their performance in terms of these general-purpose image
captioning metrics.

We can also see a great improvement over TAYI [36],
which also aimed for imageability-aware captioning. Here,
the proposed method outperformed the comparison method
on all metrics.

D. EVALUATION OF IMAGEABILITY-CONTROLLABLE
CAPTIONS
In this experiment, we evaluate the imageability-controllable
captions. Here, we analyze the variety of the generated cap-
tions.

The results are shown in Table 4. We can see that the
proposed method is able to yield an overall increased variety
of captions. While TAYI [36] aims for generating individual
results for imageability between [0.5, 0.6, . . . , 0.9], most will
actually result in very similar or identical captions. Similarly,
the range of output imageability is rather compact. In con-
trast, the proposed method can generate a higher variety of
diverse captions, yielding up to five distinct captions (i.e.,
usually having individual results for each imageability level
I-1 to I-5). Furthermore, the span of imageability is higher,
leading to a perceptionally larger difference between the
generated captions.
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TABLE 4. Quantitative evaluation of imageability-controllable captions. The
proposed method is compared to [36] which is the only other related work
aiming at imageability-aware captioning. This table shows the output range of
the proposed model. The variety and imageability range are indicators for the
diversity of the generated captions. Note that the Root Mean Squared Error
(RMSE) is not directly comparable as the comparison method is trained on
discrete imageability values on an interval of [0,1] while the proposed method
is trained on five imageability levels (changing the interval to [0,4]).

Method Caption Imag. RMSE
variety range Low-I Mid-I High-I

TAYI [36] 2.755 0.091 0.274 0.107 0.084
Proposed (I) 4.827 0.335 A0.438 0.329 0.181

Proposed (I+L-1) 4.723 0.343 0.290 0.258 0.142
Proposed (I+L-2) 4.849 0.335 0.441 0.348 0.183
Proposed (I+L-3) 4.848 0.334 0.704 0.543 0.196
Proposed (I+L-4) 4.924 0.326 1.162 0.726 0.179

E. SUBJECTIVE EVALUATION
Lastly, in this section, we explore the human perception of the
generated captions. As the imageability-controlled captions
are expected to have a varying degree of visual descrip-
tiveness, we are interested in whether this intended effect
matches the perception of users when reading the caption.
Following, we performed a crowd-sourced subjective evalu-
ation where we asked participants to judge pairs of captions
regarding how easy they are to visually imagine. Note that we
do not include other related methods such as SAT [43] in the
comparison, as those methods provide no meaningful way to
generate multiple captions with different perceptions (such
as visual descriptiveness). As such, we compare our results
only to TAYI [36], which is the only related work with such
a parameter.

We generated three English captions each for 195 images,
corresponding to the Low (I-1), Mid (I-2), and High (I-
5) imageability levels as discussed before. Using Amazon
Mechanical Turk1 we asked participants to perform a Thur-
stone’s paired comparison task [35], judging which caption
is easier to visually imagine based on its textual contents.
Note that we do not show the actual image, because we
also want to see whether a high imageability might help
making a caption more suitable for assistive technologies.
For each pair, we asked fifteen US participants to obtain a
meaningful majority decision. The human judgements were
compared to the intended imageability values using Pearson’s
rank correlation. The results are shown in Table 5. The
values in the right half of the table show the distribution
of fully matching, half-matching, inverse-half-matching and
inverse-fully-matching between our intended imageability
and human perception. The avg. column shows the overall
correlation for each method. The proposed method vastly
outperformed the comparison method, resulting in an av-
erage correlation of 0.70 over a correlation of 0.36 in the
comparison method. Note that the 95% CI column shows
95% confidence intervals for each method. As discussed

1https://www.mturk.com/

TABLE 5. Subjective evaluation of visual descriptiveness. The proposed
method is compared to [36] which is the only other related work aiming at
imageability-aware captioning. In the survey, participants were asked to judge
the mental image of a pair of captions. The results show the correlation
between the human perception of generated captions and the
target-imageability. For this experiment, the length embedding is excluded,
using only the imageability-controllable setting.

Method ρ
Avg. 95% CI −1.0 −0.5 0.5 1.0

TAYI [36] 0.36 [−0.19, 0.74] 0.05 0.22 0.43 0.30
Proposed 0.70 [0.29, 0.89] 0.01 0.03 0.46 0.50

before, TAYI uses an LSTM-based architecture while our
method uses a transformer-based architecture, resulting in a
well-improved performance. Together with the more natural
results illustrated in Table 1, we believe that the proposed
method provides a meaningful framework useful for many
real-world applications.

V. CONCLUSION
In this paper, we proposed a transformer-based method
to generate diverse image captions with two controllable
dimensions: First, building upon our previous work on
imageability-aware captioning [36], we use imageability as
a parameter to change the degree of visual descriptiveness
of a generated caption. Second, inspired by recent work on
length-controllable captioning [7], we use length as another
parameter to modify the length of a caption independent of
the degree of visual descriptiveness. Imageability and length
encode two different angles: Changing imageability aims to
change visual descriptiveness of the caption for the same
length, while length aims to change the wordiness while
keeping contents similar. The resulting model is, to the best
of our knowledge, the first model which can generate a
variety of differently-perceived captions tailored to various
applications.

In the experiments, the proposed method showed a promis-
ing performance for generating captions across different
lengths and imageability values. A subjective evaluation
with human participants verified a vastly improved perfor-
mance compared to an existing method. This shows that the
transformer architecture in combination with imageability
as a prior can successfully learn the human perception of
sentences regarding the degree of visual descriptiveness.
For future work, it could be interesting to look into other
Transformer-based architectures such as [5], [28].
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