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Abstract: Alzheimer’s disease (AD), the most familiar type of dementia, is a severe concern in modern
healthcare. Around 5.5 million people aged 65 and above have AD, and it is the sixth leading cause
of mortality in the US. AD is an irreversible, degenerative brain disorder characterized by a loss of
cognitive function and has no proven cure. Deep learning techniques have gained popularity in
recent years, particularly in the domains of natural language processing and computer vision. Since
2014, these techniques have begun to achieve substantial consideration in AD diagnosis research, and
the number of papers published in this arena is rising drastically. Deep learning techniques have
been reported to be more accurate for AD diagnosis in comparison to conventional machine learning
models. Motivated to explore the potential of deep learning in AD diagnosis, this study reviews the
current state-of-the-art in AD diagnosis using deep learning. We summarize the most recent trends
and findings using a thorough literature review. The study also explores the different biomarkers and
datasets for AD diagnosis. Even though deep learning has shown promise in AD diagnosis, there are
still several challenges that need to be addressed.

Keywords: Alzheimer’s disease; deep learning; biomarkers; positron emission tomography; Magnetic
Resonance Imaging; mild cognitive impairment

1. Introduction

Alzheimer’s disease (AD) is the most widespread neurodegenerative disease, with a
prefatory Mild Cognitive Impairment (MCI) stage in which memory loss is the primary
symptom, which gradually worsens with conduct problems and deprived self-care [1].
However, not everyone identified as having an MCI goes on to develop AD [2]. A small
percentage of people with MCI develop non-AD dementia or stay stable in the MCI stage
without advancing to dementia [2]. Even though there is no cure for AD, it is vital to
correctly recognize those in the MCI phase who will develop AD. Simultaneously, it would
be ideal to correctly identify people in the MCI stage who do not advance to AD so that
they are saved from unneeded pharmacologic therapies that at best may give little help
and, at worst, may harm them more with side effects. As a result, much work has gone into
developing early detection tools, particularly at pre-symptomatic phases, in an attempt to
reduce or thwart disease progression. Advanced neuroimaging strategies, such as Magnetic
Resonance Imaging (MRI) and Positron Emission Tomography (PET), have been employed
to uncover the structural and molecular biomarkers pertaining to AD [3].

Brisk advancement in neuroimaging strategies has made the integration of large-
scale and high-dimensional multi-modal neuroimaging data very crucial [4]. As a result,
interest in computer-assisted machine learning methodologies for integrative analysis
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of neuroimaging data has attracted a lot of attention. Well-known machine learning
approaches such as Support Vector Machine (SVM), Linear Discriminant Analysis (LDA),
Decision Trees (DT), etc., have been employed and promise early diagnosis and prediction
of AD progression. However, appropriate pre-processing steps must be applied before
using such approaches. Moreover, these approaches require feature extraction, feature
selection, dimensionality reduction, and feature-based classification for classification and
prediction. These steps necessitate specialist knowledge as well as several optimization
stages, which are time-intensive [5]. To overcome these hurdles, deep learning (DL), a
looming domain of machine learning research that employs raw neuroimaging data to
produce features through “on-the-fly” learning, is garnering substantial attention in the
field of large-scale, high-dimensional neuroimaging analysis.

Motivated to unfurl the power of DL techniques in AD diagnosis, we present an
extensive review of the current state-of-the-art in the area of DL-based AD diagnosis. More
precisely, this paper;

• Investigates the biomarkers for AD;
• Explores the different AD datasets;
• Discusses the different DL techniques;
• Reviews the most recent literature pertaining to DL-based AD diagnosis;
• Presents the trends and key findings from the literature review;
• Highlights the obstacles that the scientific community still faces in this area.

The remainder of the paper is organized as follows: Section 2 presents the preliminaries
required for understanding the DL-based AD diagnosis. These preliminaries are crucial
for understanding the most suitable biomarkers for AD diagnosis, the AD datasets and
the appropriate DL techniques for those datasets and how DL is used for AD diagnosis.
Section 3 reviews the literature pertaining to DL-based AD diagnosis. The literature is
classified based on the DL technique used. This section also presents the tabular summary
of the reviewed literature highlighting the year of publication of the study, biomarker used,
DL technique used, AD dataset used, and the performance achieved by the study. Section 4
discusses the key findings from the literature review. The section also presents a four-
panel graph plotting the number of studies versus biomarkers, number of studies versus
AD datasets, number of studies versus the DL technique, and number of studies versus
performance metrics. Section 5 highlights the challenges faced by DL in AD diagnosis.
Finally, Section 6 presents the concluding remarks.

2. Preliminaries
2.1. Biomarkers for AD

A large subgroup of medical indicators, objective signals of medical state viewed
from outside the patient that can be assessed correctly and reproducibly, is referred to
as a biomarker. The biomarkers of AD include Magnetic Resonance Imaging, functional
Magnetic Resonance Imaging (fMRI), Fluorodeoxyglucose-Positron Emission Tomogra-
phy (FDG-PET), Amyloid-Positron Emission Tomography (Amyloid-PET), Tau-Positron
Emission Tomography (Tau-PET), electroencephalography (EEG), magnetoencephalogra-
phy (MEG), speech transcripts, genetic measures and cerebrospinal fluid (CSF) measures.
Following provides a detailed description of these biomarkers.

2.1.1. MRI

The non-invasive in vivo imaging of the human brain with MRI is a powerful method [6].
It can help to characterize neurological diseases such as AD quantitatively. Even before
clinical signs or irreparable brain damage are evident, MRI can give useful biomarkers.
Numerous studies have found links between quantitative measurements derived from brain
MR images and the course of AD. There is significant evidence that different areas of the
brain are impacted at various stages of the disease, with the hippocampus, amygdala, and
entorhinal cortex showing early involvement [6]. Although these markers are sensitive to
dementia, they may not be adequately specific to AD. A standardized strategy that takes
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into account pathological alterations in several areas throughout the brain has the potential
to improve dementia diagnosis specificity and the differential diagnosis of different forms
of dementia. As a result, rather than focusing on a small number of brain structures, it is
preferable to take a holistic approach and examine a vast number of structures throughout
the brain.

The hippocampus and cerebral cortex shrink, and the ventricles grow, as AD pro-
gresses. The severity of these consequences varies according to the stage of the disease.
Dramatic shrinkage of the hippocampus and cerebral cortex, and enlargement of ventricles,
occurs in the advanced stages of AD. These changes are quite noticeable in the MR images.
Automatic approaches such as DL perform in a manner comparable to expert radiologists
while classifying MR images of Alzheimer’s patients.

2.1.2. fMRI

Functional brain alterations are anticipated to precede structural brain abnormalities.
Hence, resting-state fMRI, a technique used to scan intrinsic functional brain connections,
is a prospective diagnostic for AD [7]. Resting-state functional connectivity has been found
to be responsive to functional brain alterations associated with AD in previous research.

2.1.3. FDG-PET

In the assessment of individuals with suspected neurodegenerative illnesses, particu-
larly AD, FDG-PET is widely and increasingly utilized to support the clinical diagnosis [8].
It represents synapse loss, and neuronal functional impairment. Lower FDG-PET levels
were thought to be a marker of neuronal hypo-metabolism caused by neuro-degeneration.
However, it has been found that it reflects the glucose consumption of astrocytes rather
than neurons [8]. Furthermore, there is evidence that decreased FDG brain uptake by PET
could be a diagnostic for blood–brain barrier (BBB) transport abnormalities [8].

2.1.4. Amyloid-PET

Amyloid-PET is a type of neuroimaging that uses standardized visual reading proto-
cols for each tracer. It enables the non-invasive, in vivo identification of amyloid plaques,
the key neuro-pathological indicators of AD, with extremely high values of sensitivity and
specificity in patients with diagnosed AD who had an autopsy within one year of PET
scanning [9]. Amyloid-PET can also detect amyloid pathology in clinically unusual AD
variants that include logopenic variants, frontal-executive variants and posterior cortical
atrophy [9]. However, it does not allow for the distinction of different amyloid-positive
illnesses with comparable amyloid-deposition patterns.

2.1.5. Tau-PET

The drawbacks of amyloid imaging include the fact that amyloid plaques alone are
not enough to diagnose AD. As a result, the development of a PET tau-pathology tracer
could be used as a supplement to help with positive diagnosis and staging of AD [10].
Extracellular amyloid-β deposits and neurofibrillary tangles of intracellular incorrectly
folded phosphorylated tau (p-tau) protein are neuropathological indicators of AD. In
AD, tau protein undergoes chemical alterations (hyper-phosphorylation). It has been
observed that when tau threads become hyper-phosphorylated, they tangle together and
form paired helical filaments, triggering microtubule disintegration, and they crumple the
transport system of neurons and create intractable aggregates. With this result, neuronal
communication is disrupted, which leads to cell death. The presence of neurofibrillary
tangles shows a hierarchical spreading pattern of tau pathology, in contrast to the diffuse
distribution of amyloid plaques in the neocortex [11]. A prudent procedure would be to
apply image staging methods for analyzing the location and quantity of tau tracer retention
in PET. The contemporary advancements in PET tau tracers facilitate the visualization,
mapping, quantification and examination of tau pathology in relation to cognition [12–14].
Hence, Tau-PET imaging is a significant advancement in AD diagnosis, and it is hoped that
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the combination of amyloid positive and tau positive PET scans will get us closer to an
affirmative in vivo diagnosis of AD in the future.

2.1.6. EEG

Clinical indicators such as EEG, quantitative EEG, event-related potential, transcranial
magnetic stimulation, and vagus nerve stimulation can identify neural alterations linked
with dementia [15]. EEG is a neurosignal that accurately measures information processing
in milliseconds. It undergoes visual evaluation by clinicians and has yielded adequate
diagnosis results. However, EEGs have a lower spatial resolution than other neuroimaging
techniques, despite the fact that these techniques do not provide functional information
about the brain and have a limited temporal resolution; EEG, on the other hand, has a
high temporal resolution and is thus essential for monitoring the brain activity. Hence, the
degree of abnormality in EEG can be used to determine the intensity of dementia and AD.

2.1.7. MEG

While EEG gives valuable information on AD, it does not appear appropriate for
detecting preclinical illness [15]. Prior to the onset of symptoms, MEG is utilized to identify
functional abnormalities in the brain caused by AD [16]. It is a method for quantifying
magnetic fields in the brain that are generated due to electrical currents, and it has been
particularly beneficial in non-invasive epilepsy research. It can examine the activations
of synchronously firing neuronal populations with a sub-millisecond temporal precision
and reports brain activity depending on magnetic fields created by coordinated neuronal
currents. MEG usually employs far more detectors than typical EEG sensor arrays, allowing
for quick signal coverage [16]. High-frequency bands have higher SNR values than EEG,
which is impacted by biological tissue resistance and distorted by the skull, since magnetic
fields are more visible through biological tissue. In comparison to EEG, this provides for
improved spatial resolution and consequently improved localization of electrical activity
sources from MEG.

2.1.8. Speech Transcripts

Linguistic ability as measured by oral declarations could be an excellent indicator of
AD and other dementias [17]. The idea is that neurodegenerative diseases cause nerve cells
that manage language, speech and cognitive functionalities to degrade, which affects the
way patients create oral statements.

2.1.9. Genetic Measures

In identifying the mechanisms behind AD, genomic and genetic methods have made
significant progress [18]. Twenty-three statistically significant AD genes have been revealed
by meta-analyses and Genome-Wide Association Studies (GWAS). So far, thirty-nine AD risk
genes have been discovered, including APOE, SORL, TRIP, ABCA, and APP [18]. These genes
emphasize the significance of several functionalities implicated in AD, including cell migration,
hippocampal synaptic function, immune response and inflammation, lipid transport and
endocytosis, and other cell regulatory mechanisms, as well as the impact of tau and amyloid
protein. The bulk of the literature available in gene expression has used post-mortem brain
samples, and, as a result, they have primarily stressed severe illness phases.

2.1.10. CSF Measures

CSF is a translucent substance that surrounds the brain and fills the subarachnoid space
and ventricular system [6]. It is a “liquid cushion” that protects the brain mechanically
and immunologically. It is collected through a lumbar puncture. Despite the fact that
lumbar puncture is intrusive and, most likely, uncomfortable for the patient, CSF is the
most revealing substance in the search for biomarkers for neurodegenerative diseases [6].
Because CSF is not isolated from the brain by the firmly regulated BBB, it has closer
proximity with the brain than any other substance. Hence, proteins or peptides that
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are direct indicators of brain-specific activities or disease pathology are more likely to
disseminate into CSF than any other physiological substance. These metabolites and
proteins have the potential to be useful biomarkers for AD and other neurodegenerative
illnesses. CSF indicators might be especially useful in the beginning phases of AD, when
determining the proper diagnosis is the most challenging.

Amyloid-β and tau in CSF are the most commonly used biomarkers for AD. Both
the proteins are related to amyloid plaques and neurofibrillary tangles, which are two
characteristic lesions of AD. Senile plaques, predominantly made up of amyloid-β, a
proteolytic fragment of the amyloid precursor protein, are one of the major pathological
hallmarks of AD. The degree of amyloid precursor protein expression could be used as
a diagnostic sign in AD. Tau is an intracellular protein that maintains the stability of
microtubules in neurons. Normal individuals have a very small concentration of tau in
CSF. A multitude of post-translational changes, including phosphorylation at threonine
and serine residues, affect the functioning of tau. These changes could lead to the loss
of axonal integrity and increased cytoskeleton flexibility in the brain [19]. Tau-protein is
discharged into CSF when the neuronal architecture gets significantly disrupted. As a result,
higher tau levels in CSF mark the onset of neurodegeneration in AD. P-tau in CSF is also
being used as a potential biomarker of AD, as it is the major component of neurofibrillary
tangles. CSF concentration of p-tau in AD patients has been found to be higher than normal
individuals. The increased p-tau concentration discriminates AD from normal aging and
other dementia in a more accurate manner than that of CSF concentrations of total-tau
(t-tau) and Aβ-42 [20–22].

2.2. AD Datasets

The most extensively used datasets for AD diagnosis include Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset, Open Access Series of Imaging Studies (OASIS)
dataset, DementiaBank, Harvard Aging Brain Study (HABS) dataset, and Mayo Clinic
Study of Aging (MCSA) dataset. They are discussed in detail below.

2.2.1. ADNI Dataset

The ADNI [23] was introduced in 2003 as a USD 60 million, five-year public-private
joint venture by the National Institute of Biomedical Imaging and Bioengineering, the
National Institute on Aging, private pharmaceutical organizations, the Food and Drug
Administration, and some non-profit groups. ADNI is a longitudinal study and its major
purpose is to see if serial MRI, CSF measurements, PET, clinical assessments and other
neuropsychological factors could be used to track MCI and early AD progression. The
identification of responsive and precise indicators of premature AD diagnosis will benefit
clinicians and research scientists in developing novel and effective treatments and keeping
track of their efficacy, as well as shortening the time and expense of clinical examinations.
Michael W. Weiner, MD, of the VA Medical Center and the University of California, San
Francisco, is the initiative’s Principal Investigator. ADNI is the consequence of the collabo-
rative hard work of several co-investigators from a variety of academic institutions and
corporate businesses, and subjects have been taken from over 50 locations across the United
States and Canada. Depending on the participant pool, ADNI datasets are classified into
four types: ADNI-1, ADNI GO, ADNI-2, ADNI-3, as shown in Figure 1.

2.2.2. OASIS Dataset

OASIS [24] is a collection of 1098 participants’ MRI and PET imaging, as well as linked
clinical data, gathered over the period of 15 years in the Washington University Knight
Alzheimer Disease Research Center. Participants range in age from 42 to 95 years old and
include 605 cognitively intact adults as well as 493 people in various phases of cognitive
deterioration. About 2000 MR Sessions, comprising numerous functional and structural
sequences, are contained in the OASIS dataset. About 1500 raw imaging scans from PET
metabolic and amyloid imaging, as well as post-processed images from the PET Unified
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Pipeline (PUP), are available in OASIS. Post-processed imaging data, such as PET and
volumetric segmentation studies, are also accessible in OASIS. APOE and dementia status,
as well as longitudinal cognitive and clinical results, are all included in the imaging data.
The scientific community can use OASIS as a free-access dataset to answer issues about
healthy aging and dementia. Apart from longitudinal dataset, OASIS also consists of a
cross-sectional dataset.

J. Pers. Med. 2022, 12, x FOR PEER REVIEW 6 of 32 
 

 

 
Figure 1. Presents the preliminaries required for DL-based diagnosis of AD. These preliminaries 
include biomarkers of AD, AD datasets and DL techniques.  

2.2.2. OASIS Dataset 
OASIS [24] is a collection of 1098 participants’ MRI and PET imaging, as well as 

linked clinical data, gathered over the period of 15 years in the Washington University 
Knight Alzheimer Disease Research Center. Participants range in age from 42 to 95 years 
old and include 605 cognitively intact adults as well as 493 people in various phases of 
cognitive deterioration. About 2000 MR Sessions, comprising numerous functional and 
structural sequences, are contained in the OASIS dataset. About 1500 raw imaging scans 
from PET metabolic and amyloid imaging, as well as post-processed images from the PET 
Unified Pipeline (PUP), are available in OASIS. Post-processed imaging data, such as PET 
and volumetric segmentation studies, are also accessible in OASIS. APOE and dementia 
status, as well as longitudinal cognitive and clinical results, are all included in the imaging 
data. The scientific community can use OASIS as a free-access dataset to answer issues 
about healthy aging and dementia. Apart from longitudinal dataset, OASIS also consists 
of a cross-sectional dataset. 

2.2.3. DementiaBank Dataset 
DementiaBank [25] contains recorded speech of 117 subjects diagnosed with AD and 

93 healthy subjects. The subjects are reading an image’s description. The data came from 
a National Institute on Aging funded longitudinal study on AD and associated dementia 
done by the University of Pittsburgh, School of Medicine. Speech transcripts of individu-
als with potential AD, MCI, and other dementias are included in the dataset. Participants 
answered questions in English depending on the explanation of the Cookie-Theft image, 
part of the Boston Diagnostic Aphasia Examination (BDAE). The BDAE Cookie-Theft im-
age has been demonstrated to be clinically useful in detecting deficits in linguistic utter-
ances in people with AD and aphasia. 

Figure 1. Presents the preliminaries required for DL-based diagnosis of AD. These preliminaries
include biomarkers of AD, AD datasets and DL techniques.

2.2.3. DementiaBank Dataset

DementiaBank [25] contains recorded speech of 117 subjects diagnosed with AD and
93 healthy subjects. The subjects are reading an image’s description. The data came from a
National Institute on Aging funded longitudinal study on AD and associated dementia
done by the University of Pittsburgh, School of Medicine. Speech transcripts of individuals
with potential AD, MCI, and other dementias are included in the dataset. Participants
answered questions in English depending on the explanation of the Cookie-Theft image,
part of the Boston Diagnostic Aphasia Examination (BDAE). The BDAE Cookie-Theft image
has been demonstrated to be clinically useful in detecting deficits in linguistic utterances in
people with AD and aphasia.

2.2.4. HABS Dataset

HABS [26] is a long-term observational study aimed at better understanding brain
aging and the early stages of AD. This research used imaging data to detect early signs
of AD, such as tau tangles and amyloid plaques, as well as structural and functional
imaging data and thorough assessments of memory and other cognitive functions. The
main purpose is to provide information that will speed up progress toward successful
prevention of cognitive deterioration caused by AD. The current version of the HABS
public dataset (v2.0) contains 290 participants who have been followed for up to 5 years. At
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the start of the study, the participants’ ages ranged from 62 to 90 years old, and they were
all classified as non-clinically impaired. Clinical and cognitive tests are usually taken once
a year, while imaging measures are taken at baseline, three years, and five years.

2.2.5. MCSA Dataset

MCSA [27] is a population-based cohort study that aims to find out how common MCI
and dementia are, as well as their causes and risk factors. The Rochester Epidemiology
Project was used to count the population of Olmsted County, Minnesota, aged 70–89 years
old on 1 October 2004. Eligible subjects were chosen at random and invited to take part in
the study. A thorough in-person neuropsychological and neurological examination of the
participants was carried out. Using previously published criteria, a panel made a consensus
diagnosis of NC, MCI, and dementia. A subset of participants was interviewed over the
phone. A total of 2719 individuals were assessed, which included 703 women (70–79 years of
age), 769 women (80–89 years of age), 730 men (70–79 years of age) and 517 men (80–89 years
of age). 2050 participants were assessed in person, while 669 were assessed over the phone.
A thorough assessment of the medical data discovered 402 dementia patients.

2.3. Deep Learning Techniques

This sub-section presents a discussion on deep learning techniques. These techniques
include feed-forward Deep Neural Network, Convolutional Neural Network (CNN), Auto-
Encoder (AE), Recurrent Neural Network (RNN), Deep Belief Network (DBN), and Gener-
ative Adversarial Network (GAN). Figure 2 presents their architectures and outlines some
of their crucial features.
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2.3.1. Feed-Forward DNN

A feed-forward DNN is a collection of neurons arranged in a series of layers, with each
layer’s neurons receiving input from the preceding layer and performing a weighted sum
of the input followed by a nonlinear activation [28]. A sophisticated non-linear mapping
from the input to the output is implemented by the network’s neurons in concert. The
weights of each neuron are tuned using a method called error back-propagation to discover
this mapping from the data.

2.3.2. CNN

A CNN [29,30] is a feed-forward neural network that uses convolution structures to
extract features from data. Unlike classic feature extraction approaches, CNN does not
require manual feature extraction. CNN kernels signify diverse receptors that can react to
various characteristics, whereas activation functions replicate the function in which only
electric signals from neurons over a particular threshold can be sent to the subsequent
neuron. CNN has dominance over generic artificial neural networks in the following
ways: (1) Local connections: Neurons of a layer are not linked to all neurons from the
preceding layer, but only to a limited fraction of them, which helps to reduce parameters
and accelerate convergence; (2) Weight sharing: The weights of a collection of links can
be shared, thus reducing parameters; (3) Down-sampling dimensionality reduction: To
down-sample an image, a pooling layer uses the notion of image local correlation, which
reduces the amount of data while preserving important information. It can help cut down
on the number of parameters by deleting unnecessary ones. CNN has become one of the
most representative algorithms in DL due to its enticing properties.

Convolution is an important phase in the feature extraction process. Convolutional
outputs are known as feature maps. Information in the border can be lost while using a
convolution kernel of a given size. As a result, padding is used to extend the input with
a zero value, allowing the size to be adjusted indirectly. Furthermore, stride is used to
adjust the density of convolving. The density decreases with increase in the size of stride.
Following convolution, feature maps include a significant number of features, which might
lead to an over-fitting problem. As a result, pooling, including max pooling and average
pooling, is advocated to eliminate redundancy.

2.3.3. AE

AE [28–30] is a typical unsupervised DL algorithm. It is the most common sort of
generative model that uses simple neural networks to compress high-dimensional input
into a compact representation. The goal of AE is to make the target values identical to the
original input. It usually consists of three distinct phases:

• Encoder: The weight matrix and bias are used to parameterize the encoder, which is a
series of linear feed-forward filters (analogous to a multi-layer perceptron).

• Activation: The encoded coefficients are transformed into the range [0,1] through
activation, a non-linear mapping.

• The input is reconstructed using a collection of reverse linear filters called a decoder.

AE is a standard feed-forward neural network. A neuron’s output can be used as
an input by another neuron. A back-propagation algorithm can be used to estimate the
parameters. The activations throughout the network, including the hypothesis’ output
value, are computed first in a “forward pass”. An “error term” is computed for each middle
node, indicating how much that node was liable for any errors in the output. The difference
between the network’s activation and the true target value can be assessed directly for an
output node. It can be further used to update the “error term”.

2.3.4. RNN

Since the ordinary feed-forward DNN was not capable of modeling the time-series
tasks, a modified version of the feed-forward DNN called RNN [28–30] was developed to
analyze such tasks. The RNN’s input at a specific time ‘p’ is input at time ‘p’ and output
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at time ‘p−1’. Its neurons are equipped with an internal memory that records previous
calculations. Back Propagation Through Time (BPTT), a form of back propagation, is used
to train the RNN instead of back propagation.

2.3.5. DBN

DBN [28–30] is a form of DNN that is generative. It is made up of numerous hidden
layers and a visible layer. DBN extracts complex abstractions from raw data. DBNs are
made up of several stacked RBMs. They are trained in an unsupervised manner, with the
network learning to probabilistically reconstruct the inputs from the features retrieved at
every layer. Apart from generative feature discovery, DBNs can be applied to discriminative
prediction problems.

2.3.6. GAN

GANs [28–30] are hybrid DL models made up of two components: the discriminator
and the generator. These components work together to generate high-quality data. The
discriminative network learns to minimize the difference between the original data and
the data produced by the generator, whereas the generator learns the data distribution and
generates new data based on the acquired data patterns. GANs are ideal for circumstances
involving noisy data.

3. DL for AD Diagnosis

Figure 3 presents a framework for classification of the AD using DL. The AD dataset
is pre-processed first using pre-processing techniques such as skull stripping, spatial
normalization, smoothing, grayscale normalization, slicing and resizing. Skull stripping is
used to segregate non-brain tissues from brain tissues. Spatial normalization normalizes
images from diverse subjects to a common template. Smoothing improves the quality of
the images by removing noise from the images. Grayscale normalization maps the pixel
intensity values to a new and more suitable range. Slicing divides the image into multiple
logical images. Finally, resizing is carried out in order to get the desired image size. Then
the pre-processed data are fed as input to the DL model that performs feature extraction
and classification of the input data. Finally, the model is evaluated using performance
metrics such as accuracy, F1 score, area under curve (AUC), and mean squared error (MSE).
The following presents a thorough literature review of DL techniques for AD diagnosis.
Table 1 presents a summary of these research works.
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3.1. Feed-Forward DNN for AD Diagnosis

Feed-forward DNN has been utilized by multiple studies for AD diagnosis.
Amoroso et al. [31] proposed a method based on Random Forest (RF) and DNN for reveal-
ing the onset of Alzheimer’s in subjects with MCI. RF was used for feature selection, and
DNN performed the classification of input. The RF consisted of 500 trees and performed
100 rounds, and in each round, 20 crucial features were chosen. DNN consisted of 11 layers
with 2056 input units and four output units. ReLU and tanh were used as the activation
functions, and categorical cross-entropy was used as the loss function. Adam was used as
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the optimizer in the DNN. The authors compared the proposed approach with SVM and
RF, and it was shown that the proposed method outperforms these techniques.

Kim and Kim [32] proposed a DNN-based model for the diagnosis of Alzheimer’s in
its early stage. The model takes the EEG of the subjects as input and classifies it into two
groups, MCI and HC (healthy controls). The authors compared the proposed approach with
a shallow neural network, and it was demonstrated that the proposed model outperforms
a shallow neural network. Rouzannezhad et al. [33] formulated a technique based on DNN
for binary (MCI, CN) and multiclass (EMCI, LMCI, AD, CN) classification of subjects in
order to detect AD in the premature stage. The authors fed multimodal data (MRI, PET
and typical neurophysiological parameters) as input to the DNN. The DNN consisted of
three hidden layers, and Adam was used as the optimizer. Moreover, dropout was used to
avoid the over-fitting problem. Experiments carried out in the research work demonstrated
that the proposed technique performs better than the single modal scenarios in which
only MRI or PET was fed as input to the DNN model. Moreover, the fusion of typical
neurophysiological data with MRI and PET further enhanced the efficiency of the approach.

Fruehwirt et al. [34] formulated a model based on Bayesian DNN that predicts the
severity of AD disease using EEG data. The proposed model consisted of two layers
with 100 units each. The authors demonstrated that the proposed model is a good fit
for predicting disease severity in clinical neuroscience. Orimaye et al. [35] proposed a
hybrid model consisting of DNN and deep language models (D2NNLM) to predict AD.
Experiments conducted in the study demonstrated that the proposed model predicts the
conversion of MCI to AD with high accuracy. Ning et al. [36] formulated a neural network-
based model for the classification of subjects into AD and CN categories. Moreover, the
model predicts the conversion of MCI subjects to AD. MRI and genetic data were fed as
input to the model. The authors compared the proposed model with logistic regression (LR),
and it was demonstrated that the proposed model outperforms the LR model.

Park et al. [37] proposed a model based on DNN that takes as input the integrated gene
expressions and DNA methylation data and predicts the progression of AD. The authors
demonstrated that the integrated data results in better model accuracy as compared to
single-modal data. Moreover, the proposed model outperformed existing machine learning
models. The authors used the Bayesian method to choose optimal parameters for the model.
It was shown that a DNN with eight hidden layers, 306 nodes in each layer, the learning
rate of 0.02, and a dropout rate of 0.85 attains the best performance. Benyoussef et al. [38]
proposed a hybrid model consisting of KNN (K-Nearest Neighbor) and DNN for the
classification of subjects into No-Dementia (ND), MCI and AD based on MRI data. In the
proposed model, KNN assisted DNN in discriminating subjects that are easily diagnosable
from hard to diagnose subjects. The DNN consisted of two hidden layers with 100 nodes
each. Experimental results demonstrated that the proposed model successfully classified
the different AD stages.

Manzak et al. [39] formulated a model based on DNN for the detection of AD in
the early stage. RF was used for feature extraction in the proposed model. Albright [40]
predicted the progression of AD using DNN in both cases, i.e., the subjects who were CN
initially and later got AD and subjects who were having MCI and converted to AD. Suresha
and Parthasarathy [41] proposed a model based on DNN with the rectified Adam optimizer
for the detection of AD. The authors utilized the Histogram of Oriented Gradients (HOG) to
extract crucial features from the MRI scans. It was shown with the help of experiments that
the proposed model outperformed the existing strategies by a good margin. Wang et al. [42]
utilized gene expression data for studying the molecular changes caused due to AD. The
study used a DNN model for identifying the crucial molecular networks that are responsible
for AD detection.

3.2. CNN for AD Diagnosis

The following studies utilized CNN for AD diagnosis. Suk and Shen [43] proposed
a hybrid model based on Sparse Regression Networks and CNN for AD diagnosis. The
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model employed multiple Sparse Regression Networks for generating multiple target-level
representations. These target-level representations were then integrated by CNN that
optimally identified the output label. Billones et al. [44] altered the 16-layered VGGNet for
classifying the subjects into three categories, AD, MCI and HC, based on structural MRI
scans. Experiments conducted in the study demonstrated that the authors successfully
performed classifications with good accuracy. The authors claimed that this was achieved
without performing segmentation of the MR images.

Sarraf and Tofighi [45] utilized LeNet architecture for the classification of the AD
subjects from healthy ones based on functional MRI. The authors concluded that due
to the shift-invariant and scale-invariant properties, CNN has got a massive scope in
medical imaging. In another study, Sarraf and Tofighi [46] utilized LeNet architecture for
classification of AD subjects from healthy ones based on structural MR images. The study
attained an accuracy of 98.84%. In one more study, Sarraf and Tofighi [47] utilized LeNet
and GoogleNet architectures for AD diagnosis based on Functional as well as structural
MR images. Experiments conducted in the study demonstrated that these architectures
performed better than state-of-the-art AD diagnosis techniques.

Gunawardena et al. [48] formulated a method based on CNN for the diagnosis of
AD in its early stage using structural MRI. The study compared the performance of the
proposed method with SVM, and it was shown that the CNN model outperformed the
SVM. The authors intend to incorporate two more MRI views (axial view and sagittal view)
in addition to the coronal view used in this study in future. Basaia et al. [49] developed
a model based on CNN for the diagnosis of AD using structural MR images. The study
implemented data augmentation and transfer learning techniques for avoiding the over-
fitting problem and improving the computational efficiency of the model. The authors
claimed that the study overcomes limitations of the existing studies that usually focused
on single-center datasets, which limits their usage.

Wang et al. [50] designed an eight-layered CNN model for AD diagnosis. The authors
compared three different activation functions, namely rectified linear unit (ReLU), sigmoid,
and leaky ReLU and three different pooling functions, namely stochastic pooling, max
pooling, and average pooling, for finding out the best model configuration. It was shown
that the CNN model with leaky ReLU activation function and max pooling function gave
the best results. Karasawa et al. [51] proposed a 3D-CNN based model for AD diagnosis
using MR images. The architecture of proposed 3D-CNN is based on ResNet. It has
36 convolutional layers, a dropout layer, a pooling layer and a fully connected layer.
Experiments conducted in the study demonstrated that the model outperformed several
existing benchmarks.

Tang et al. [52] proposed an AD diagnosis model based on 3D Fine-tuning Convo-
lutional Neural Network (3D-FCNN) using MR images. The authors demonstrated that
the proposed model outperformed several existing benchmarks in terms of accuracy and
robustness. Moreover, the authors compared the 3D-FCNN model with 2D-CNN and it
was shown that the proposed model performed better than 2D-CNN in binary as well as
multi-class classification. Spasov et al. [53] proposed a multi-modal framework based on
CNN for AD diagnosis using structural MRI, genetic measures and clinical assessment. The
devised framework had much fewer parameters as compared to the other CNN models
such as VGGNet, AlexNet, etc. This made the framework faster and less susceptible to
problems such as over-fitting in case of scarce-data scenarios.

Wang et al. [54] proposed a CNN based model for AD diagnosis using two crucial MRI
modalities, namely fMRI and Diffusion Tensor Imaging (DTI). The model classified the
subjects into three categories: AD, amnestic MCI and normal controls (NC). The authors
proved that the proposed model performed better on multi-modal MRI than individual
fMRI and DTI. Islam and Zhang [55] proposed a CNN-based model for AD diagnosis in the
early stage using MR images. The authors trained the model using OASIS dataset, which is
an imbalanced dataset. They used data augmentation to handle the imbalanced nature of
the OASIS dataset. Experimental results demonstrated that the proposed model performed
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better than several state-of-the-art models. The authors plan to apply the proposed model
to other AD datasets as well in future.

Yue et al. [56] proposed a CNN-based model for AD diagnosis using structural MR
images. The model classified the subjects into four categories: AD, EMCI, LMCI and
NC. Experiments carried out in the research work demonstrated that the proposed model
outperformed several benchmarks. Jian et al. [57] proposed a transfer learning-based
approach for AD diagnosis using structural MRI. VGGNet16 trained on the ImageNet
dataset was used as a feature extractor for AD classification. The proposed approach
successfully classified the input into three different categories: AD, MCI and CN. Huang
et al. [58] designed a multi-modal model based on 3D-VGG16 for the diagnosis of AD using
MRI and FDG-PET modalities. The study demonstrated that the model does not require
segmentation of the input. Moreover, the authors showed that the hippocampus of the
brain is a crucial Region of Interest (ROI) for AD diagnosis. The authors intend to include
other modalities as well in future.

Goceri [59] proposed an approach based on 3D-CNN for AD diagnosis using MR Images.
The proposed approach used Sobolev gradient as the optimizer, leaky ReLU as the activation
function, and Max Pooling as the pooling function. The research work demonstrated that
the combination of optimizer, activation function and pooling function implemented out-
performed all the other combinations. Zhang et al. [60] utilized two independent CNNs for
analyzing MR images and PET images separately. Then, correlation analysis of the outputs
of the CNNs was performed to obtain the auxiliary diagnosis of AD. Finally, the auxiliary
diagnosis result was combined with the clinical psychological diagnosis to obtain a compre-
hensive diagnostic output. The authors demonstrated that the proposed architecture is easy
to implement and generates results closer to the clinical diagnosis.

Basheera and Ram [61] proposed a model based on CNN for AD diagnosis using MR
images. The MR images were divided into voxels first. Gaussian filter was used to enhance
the quality of voxels and a skull stripping algorithm was used to filter out irrelevant portions
from the voxels. Independent component analysis was applied to segment the brain into
different regions. Finally, segmented gray matter was fed as input to the proposed model.
Experimental results demonstrated that the proposed model outperformed several state-of-
the-art models. Spasov et al. [62] proposed a parameter-efficient CNN model for predicting
the MCI to AD conversion using structural MRI, demographic data, neuropsychological
data, and APOe4 genetic data. Experiments carried out in the research work demonstrated
that the proposed model performed better than several existing benchmarks.

Ahmad and Pothuganti [63] performed a comparative analysis of SVM, Regional
CNN (RCNN) and Fast Regional CNN for AD diagnosis. The study demonstrated that the
Fast RCNN outperformed the other techniques. Lopez-Martin et al. [64] proposed a ran-
domized 2D-CNN model for AD diagnosis in the early stage using MEG data. The research
work demonstrated that the proposed model outperformed the classic machine learning
techniques in AD diagnosis. Jiang et al. [65] proposed an eight-layered CNN model for AD
diagnosis. The proposed model implemented batch normalization, data augmentation and
drop-out regularization for achieving high accuracy. The authors compared the proposed
model with several existing techniques, and it was demonstrated that the proposed model
outperformed them.

Nawaz et al. [66] proposed a 2D-CNN based model for AD diagnosis using MRI data.
The proposed model classified the input images into three groups: AD, MCI and NC. The
authors compared the proposed model with AlexNet and VGGNet architectures, and it was
demonstrated that the proposed model outperformed these architectures. Bae et al. [67]
modified the Inception-v4 model pre-trained on ImageNet dataset for AD classification
using MRI data. The study used datasets from subjects with two different ethnicities. The
study demonstrated that the model has the potential to be used as a fast and accurate AD
diagnostic tool. Jo et al. [68] proposed a model based on CNN for finding the correlation
between tau deposition in the brain and probability of having AD. The study also identified
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the regions in the brain that are crucial for AD classification. According to the study, these
regions include hippocampus, para-hippocampus, thalamus and fusiform.

Janghel and Rathore [69] proposed a VGG-16 based CNN model for AD diagnosis
using fMRI and PET data. The CNN model carried out feature extraction and for classi-
fication, DT, SVM, KNN, and linear discriminate were used. It was observed that in the
case of fMRI data, SVM, KNN, and linear discriminant classifiers achieved the best results.
However, in the case of PET, KNN outperformed others. The authors also compared the
proposed model with several existing studies, and it was demonstrated that the proposed
model outperformed them. Sathiyamoorthi et al. [70] proposed a CNN-based model for
AD diagnosis using MR images. The authors applied pre-processing techniques including
2D-ABF algorithm, AHA algorithm, AMS-MEM algorithm and 2D-GLCM for making it
suitable for classification. The study demonstrated that the proposed model outperformed
existing state-of-the-art techniques.

Mehmood et al. [71] proposed a CNN-based model called Siamese Convolutional
Neural Network (SCNN) for the classification of dementia into different stages, namely
Moderate Alzheimer’s Disease (MAD), Mild Dementia (MD), Very Mild Dementia (VMD),
and No Dementia (ND). The authors demonstrated that even though the model was trained
on a small dataset, it generated accurate results. They compared the proposed model
with five state-of-the-art studies and it was demonstrated that the model outperformed
them. Raju et al. [72] proposed a cascaded 3D-CNN for AD diagnosis using structural
MR images. The proposed CNN model mined features from the input and SVM was used
for the classification of the input based on the features extracted by the CNN model. The
authors revealed that the model outperformed several benchmark models.

Sun et al. [73] modified the V-Net architecture for segmentation of bilateral hippocampi
from 3D-MR images of the brain and for AD diagnosis. The authors demonstrated that the
segmentation of hippocampi accurately is highly crucial for building an efficient AD diag-
nosis model. They analyzed the performance of the proposed architecture against several
segmentation and classification models and it was reported that the model outperformed
them. Dyrba et al. [74] built a CNN model for AD diagnosis using MR images. The authors
assessed the co-relation between relevance score and volume of the hippocampus to check
the utility of the approach in clinical settings. It was observed that hippocampal atrophy is
the most crucial factor for AD detection.

Feng et al. [75] proposed a 3D-CNN-SVM model for AD diagnosis using MR images. The
proposed model extracted features from the input MR images using 3D-CNN and classified the
MR Images using SVM based on the features extracted by 3D-CNN. The study compared the
performance of the proposed model with 2D-CNN and 3D-CNN, and it was demonstrated that
3D-CNN-SVM outperformed 2D-CNN and 3D-CNN. Solano-Rojas and Villalón-Fonseca [76]
proposed a CNN based on DenseNet Bottleneck-Compressed architecture for AD diagnosis
using MR images. The proposed model classified the input into five different categories, CN,
EMCI, MCI, LMCI and AD, with an average accuracy of 86%.

Amini et al. [77] performed a comparative analysis RF, linear discrimination analy-
sis (LDA), DT, SVM, KNN, and CNN for AD diagnosis using functional MRI data. It was
observed that CNN outperformed all the other techniques and had the ability to model
the AD severity efficiently. Turkson et al. [78] proposed a framework for AD classification
based on MRI data consisting of two stages: discriminative AD features were extracted
using an unsupervised Convolutional Spiking Neural Network and classification was
performed using a supervised CNN. The study demonstrated that the proposed framework
had an efficient discriminative capability for the diagnosis of AD. The authors intend to
fuse clinical data with the neuroimaging data for building a more robust AD diagnosis
model in future.

Lee et al. [79] designed a model based on CNN for brain age prediction in cogni-
tively unimpaired individuals and AD patients. It was observed that in AD patients, the
brain age gap was much larger as compared to the cognitively unimpaired individuals.
Greve et al. [80] developed a tool using CNN for segmentation of sub-cortical limbic struc-
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tures for early detection of AD. Ushizima et al. [81] designed a pipeline in order to extract
tau associated features for AD classification using CNN.

3.3. AE for AD Diagnosis

The following studies utilized AE for AD diagnosis. Lu et al. [82] proposed a SAE-
based model for predicting the progression of AD. The proposed model was named
Multi-scale and Multi-modal Deep Neural Network (MMDNN) as it integrated information
from multiple areas of the brain scanned using MRI and FDG-PET. Experiments carried
out in the research work demonstrated that analyzing both MRI and FDG-PET gives better
results than the single modal settings. Liu et al. [83] designed a SAE-based model for the
diagnosis of AD in its early stage. The authors demonstrated that the designed model
performed well even in the case of limited training data. Moreover, the authors analyzed
the performance of the model against Single-Kernel SVM and Multi-Kernel SVM, and it
was revealed that the proposed model outperformed these models.

Lu et al. [84] proposed a DL model based on SAE for discriminating pre-symptomatic
AD and non-progressive AD in subjects with MCI using metabolic features captured with
FDG-PET. The parameters in the model were initialized using greedy layer-wise pre-training.
Softmax-layer was added for performing the classification. The proposed model was com-
pared with the existing benchmark techniques that utilized FDG-PET for capturing the
metabolic features, and it was shown that it performed better than those techniques.

3.4. RNN for AD Diagnosis

Lee et al. [85] proposed a RNN-based model that extracted temporal features from
multi-modal data for forecasting the conversion of MCI subjects to AD patients. The
data were fused between different modalities, including demographic information, MRI,
CSF biomarkers and cognitive performance. The authors proved that the model outper-
formed the existing benchmarks. Furthermore, it was shown that the multi-modal model
outperformed the individual single-modal models.

3.5. DBN for AD Diagnosis

Ortiz et al. [86] proposed two methods based on DBN for the early diagnosis of
AD. These methods worked on fused functional and structural MRI scans. The first one,
named as DBN-voter, consisted of an ensemble of DBN classifiers and a voter. Four
different voting schemes were analyzed in the study, namely majority voting, weighted
voting, classifiers fusion using SVM, and classifiers fusion using DBN. As the second
model, FEDBN-SVM used DBNs as feature extractors and carried out classification using
SVM. It was demonstrated that FEDBN-SVM outperformed DBN-voter in addition to the
existing benchmarks, and in the case of DBN-voter, DBNs with classifiers fusion using SVM
performed better.

3.6. GAN for AD Diagnosis

Ma et al. [87] proposed a GAN-based model for the differential diagnosis of fron-
totemporal dementia and AD pathology. The model extracted multiple features from MR
images for classification. Moreover, data augmentation was performed in order to avoid
over-fitting caused due to limited data problem. Experimental analysis carried out in
the research work revealed that the model showed promising results in the differential
diagnosis of frontotemporal dementia and AD pathology. The authors claimed that the
proposed model could be used for the differential diagnosis in other neurodegenerative
diseases as well.

3.7. Hybrid DL Models for AD Diagnosis

The following studies utilized hybrid DL models for AD diagnosis. Zhang et al. [88]
proposed 3D Explainable Residual Self-Attention Convolutional Neural Network (3D
ResAttNet) for diagnosis of AD using structural MR images. The proposed model is a
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CNN with a self-attention residual mechanism, and explainable gradient-based localization
class activation mapping was employed that provided visual analysis of AD predictions.
The self-attention mechanism modeled the long-term dependencies in the input and the
residual mechanism dealt with the vanishing gradient problem. The authors compared the
proposed model with 3D-VGGNet and 3D-ResNet, and it was shown that the proposed
model performed better than these models.

Payan and Montana [89] formulated a model based on 3D-CNN for the prediction of
AD using MR images. The study employs Sparse AE for pre-training the convolutional
filters. Experiments conducted in the research work revealed that the model outperformed
the existing benchmarks. Hosseini et al. [90] proposed a hybrid model consisting of AE
and 3D-CNN for early stage diagnosis of AD. The variations in anatomical shapes of brain
images were captured by AE, and classification was carried out using 3D-CNN. The authors
compared the proposed model with the existing benchmarks, and it was established that
the proposed model outperformed those techniques. Moreover, the authors plan to apply
the proposed model for the diagnosis of other conditions such as autism, heart failure and
lung cancer.

Vu et al. [91] proposed an AD detection system based on High-Level Layer Concatena-
tion Auto-Encoder (HiLCAE) and 3D-VGG16. HiLCAE was used as a pre-trained network
for initializing the weights of 3D-VGG16. The proposed system worked on the fused MR
and PET images. Experiments carried out in the research work demonstrated that the
proposed system detected AD with good accuracy. The authors intend to develop deeper
networks for both HiLCAE and VGG16 in future so as to improve the accuracy further.

Warnita et al. [92] proposed a gated CNN-based approach for AD diagnosis using
speech transcripts. The proposed approach captured temporal features from speech data
and performed classification based on the extracted features. The authors plan to apply
the proposed approach to different languages in the future. Feng et al. [93] proposed a
hybrid model consisting of Stacked Bidirectional RNN (SBi-RNN) and two 3D-CNNs for
diagnosis of AD in its early stage. CNNs extracted preliminary features from MRI and
PET images, while SBi-RNN abstracted discriminative features from the cascaded output
of CNNs. The output from SBi RNN was fed to a softmax classifier that generated the
model output. Experiments conducted in the study demonstrated that the proposed model
outperformed state-of-the-art models.

Li and Liu [94] proposed a framework consisting of Bidirectional Gated Recurrent
Unit (BGRU) and DenseNets for hippocampus analysis-based AD diagnosis. The DenseNets
were trained to capture the shape and intensity of MR images and BGRU abstracted high-
level features between the right and left hippocampus. Finally, a fully connected layer
performed classification based on the extracted features. Experiments conducted in the
study revealed that the proposed framework generated promising results. Oh et al. [95]
proposed a model based on end-to-end learning using CNN for carrying out the following
classifications: AD versus NC, pMCI (probable MCI) versus NC, sMCI (stable MCI) versus
NC, and pMCI versus sMCI. The authors utilized Convolutional Auto-Encoder for per-
forming AD versus NC classification, and transfer learning was implemented to perform
pMCI versus sMCI classification. Experiments carried out in the study showed that the
proposed model worked better than several existing benchmarks.

Chien et al. [96] developed a system for assessing the risk of AD based on speech
transcripts. The system consisted of three components: a data collection component that
fetched data from the subject, a feature sequence generator that converted the speech
transcripts into the features, and an AD assessment engine that determined whether the
person had AD or not. The feature sequence generator was built using a deep convolutional
RNN, and the AD assessment engine was realized using a bidirectional RNN with the
gated recurrent unit. Experimental analysis carried out in the research work revealed that
the system gives promising results.

Kruthika et al. [97] proposed a hybrid model consisting of 3D Sparse AE, CNN and
capsule network for detection of AD in its early stage. The authors revealed that the hybrid
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model worked better than the 3D-CNN. Basher et al. [98] proposed an amalgam of Hough
CNN, Discrete Volume Estimation-CNN (DVE-CNN) and DNN for AD diagnosis using
structural MR images. Hough CNN has been used to localize right and left hippocampi.
DVE-CNN was utilized to mine volumetric features from the pre-processed 2D patches.
Finally, DNN classified the input based on the features extracted using DVE-CNN. The
study demonstrated that the proposed approach outperformed the existing benchmarks by
a good margin.

Roshanzamir et al. [99] utilized a bidirectional encoder with logistic regression for early
prediction of AD using speech transcripts. The authors implemented the concept of data
augmentation for dealing with the limited dataset problem. Experiments conducted in the
study demonstrated that the bidirectional encoder with logistic regression outperformed
the existing benchmarks. Zhang et al. [100] proposed a densely connected CNN with
attention mechanism for AD diagnosis using structural MR images. The densely connected
CNN extracted multiple features from the input data, and the attention mechanism fused
the features from different layers to transform them into complex features based on which
final classification was performed. It was established that the model outperformed several
existing benchmark models.

Table 1. Summary of research works.

Work Year Biomarker DL Method Dataset Performance

[83] 2014 MRI and PET SAE
ADNI-311 subjects (AD-65,

cMCI-67, ncMCI-102,
NC-77)

Accuracy (NC/AD): 87.76%
Accuracy (NC/MCI): 76.92%

[88] 2015 MRI
Residual Self Attention

3D Convolutional
Neural Network

ADNI-835 subjects (AD-200,
MCI-404, NC-231)

Accuracy (NC/AD): 91.3% ± 0.012
Accuracy (sMCI/pMCI):

82.1% ± 0.092

[89] 2015 MRI CNN + Sparse AE ADNI-2265 subjects
(AD-755, MCI-755, HC-755)

Accuracy (HC/MCI/AD): 89.47%
Accuracy (HC/AD): 95.39%
Accuracy (AD/MCI): 86.84%
Accuracy (HC/MCI): 92.11%

[43] 2016 MRI CNN ADNI-805 subjects (AD-186,
MCI-393, NC-226)

Accuracy (NC/ADI): 91.02% ± 4.29
Accuracy (NC/MCI): 73.02% ± 6.44

Accuracy (sMCI/pMCI):
74.82% ± 6.80

[44] 2016 MRI CNN ADNI-900 subjects (AD-300,
MCI-300, HC-300) Accuracy (HC/MCI/AD): 91.85%

[45] 2016 fMRI CNN ADNI-43 subjects (AD-28,
NC-15) Accuracy(NC/AD): 96.85%

[86] 2016 MRI and fMRI DBN ADNI-275 subjects (AD-70,
MCI-111, LMCI-26, NC-68)

Accuracy (NC/AD): 90%
Accuracy (MCI/AD): 84%
Accuracy (NC/MCI): 83%

[90] 2016 MRI CNN + AE ADNI-210 subjects (AD-70,
MCI-70, NC-70) Accuracy (NC/MCI/AD): 89.1%

[46] 2016 MRI CNN ADNI-302 subjects (AD-211,
HC-91) Accuracy (HC/AD): 98.84%

[47] 2016 MRI and fMRI CNN

ADNI (fMRI-144 subjects:
AD-52, CN-92)

ADNI(MRI-302 subjects:
AD-211, CN-91)

Accuracy (fMRI (CN/AD)): 99.9%
Accuracy (MRI (CN/AD)): 98.84%

[31] 2017 MRI DNN ADNI-240 subjects (AD-60,
cMCI-60, MCI-60,HC-60)

Accuracy (HC/MCI/cMCI/AD):
53.7 ± 1.9%

[48] 2017 MRI CNN ADNI-504 subjects (AD-101,
MCI-234, CN-169) Accuracy (CN/MCI/AD): 96%



J. Pers. Med. 2022, 12, 815 17 of 29

Table 1. Cont.

Work Year Biomarker DL Method Dataset Performance

[84] 2018 MRI and
FDG-PET SAE

ADNI-1051 subjects
(NC-304, sMCI-409,
pMCI-112, AD-226)

Accuracy
(NC/AD): 93.58%,

Accuracy
(sMCI/pMCI): 81.55%

[32] 2018 EEG DNN

Data collected from Chosun
University Hospital and

Gwangju Optimal Dementia
Center located in South

Korea-20 subjects (MCI-10,
HC-10)

Accuracy (NC/MCI): 59.3%

[82] 2018
MRI and
FDG-PET

images
SAE

ADNI-1242 subjects
(sNC-360, sMCI-409, pNC:

18, pMCI-217, sAD-238)
Accuracy (sMCI/pMCI): 82.93%

[49] 2018 MRI CNN

ADNI-1409 subjects
(AD-294, MCI-763, HC-352),
Milan dataset-229 subjects
(AD-124, MCI-50, HC-55)

Accuracy (HC/AD): 98.2%
Accuracy (HC/cMCI): 87.7%
Accuracy (HC/sMCI): 76.4%
Accuracy (cMCI/AD): 75.8%
Accuracy (sMCI/AD): 86.3%

Accuracy (cMCI/sMCI): 74.9%

[33] 2018 MRI and AV-45
PET data DNN

ADNI-896 subjects (CN-248,
AD-149, EMCI-296,

LMCI-193)

Accuracy (CN/EMCI): 84%
Accuracy (CN/LMCI): 84.1%

Accuracy (CN/AD): 96.8%
Accuracy (EMCI/LMCI): 69.5%

Accuracy (EMCI/AD): 90.3%
Accuracy (LMCI/AD): 80.2%

[34] 2018 EEG DNN

Data collected from Medical
Universities of Graz,

Innsbruck and Vienna, as
well as Linz General

Hospital—188 subjects
(Probable AD-133, Possible

AD-55)

Mean Squared Error (Probable
AD/Possible AD): 12.17

[91] 2018 MRI and
FDG-PET AE + CNN ADNI-615 subjects (AD-193,

MCI-215, NC-207)

Accuracy (MCI/AD): 93%
Accuracy (NC/MCI): 95%
Accuracy (NC/AD): 98.8%

Accuracy (NC/MCI/AD): 91.13%

[50] 2018 MRI CNN

OASIS dataset-126 subjects
(AD-28, HC-98) and data

from local hospitals-70
subjects (AD-70)

Accuracy (HC/AD): 97.65%

[51] 2018 MRI CNN
ADNI-1728 subjects
(AD-346, MCI-450,
LMCI-358, NC-574)

Accuracy (NC/AD): 94%
Accuracy (NC/MCI): 90%

Accuracy (NC/MCI/AD): 87%

[52] 2018 MRI CNN ADNI-391 subjects (AD-150,
MCI-129, NC-112)

Accuracy (NC/AD): 96.81%
Accuracy (MCI/AD): 88.43%
Accuracy (NC/MCI): 92.62%

Accuracy (NC/MCI/AD): 91.32%

[35] 2018 Speech
transcripts DNN DementiaBank dataset AUC (MCI/AD): 0.815

[53] 2018

MRI, clinical
assessment and

genetic
(APOe4)
measures

CNN ADNI-800 subjects (AD-200,
MCI-400, NC-200) Accuracy (NC/MCI/AD): 99%
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[54] 2018

fMRI and
Diffusion

Tensor Imaging
(DTI)

CNN ADNI-105 subjects (AD-35,
aMCI-30, NC-40) Accuracy (NC/aMCI/AD): 92.06%

[92] 2018 Speech
transcripts Gated CNN DementiaBank dataset-267

subjects (AD-169, HC-98) Accuracy (HC/AD): 73.6%

[36] 2018

MRI and single
nucleotide

polymorphism
(SNP) data

DNN ADNI-721 subjects (AD-138,
MCI-358, CN-225) AUC (CN/MCI/AD): 0.992

[55] 2018 MRI CNN OASIS dataset-416 subjects Accuracy (Non Demented/very
Mild/Mild/Moderate): 93%

[93] 2018 MRI and PET CNN + RNN
ADNI-397 subjects (AD-93,

pMCI-76, sMCI-128,
CN-100)

Accuracy (NC/AD): 94.29%
Accuracy (NC/pMCI): 84.66%
Accuracy (NC/sMCI): 64.47%

[56] 2018 MRI CNN ADNI-1663 subjects
(AD-336, MCI-542, CN-785)

Accuracy (NC/LMCI): 94.5%
Accuracy (NC/AD): 96.9%

Accuracy (LMCI/AD): 97.2%
Accuracy (EMCI/AD): 97.81%

Accuracy (EMCI/LMCI): 94.8%

[37] 2019

gene
expression and

DNA
methylation

profiles

DNN

GSE33000 and GSE44770
(gene expression), prefrontal

cortex GSE80970 (DNA
methylation)

Accuracy (NC/AD): 82.3%

[38] 2019 MRI DNN OASIS-416 subjects Accuracy (NC/AD): 86.66%

[57] 2019 MRI CNN ADNI-150 subjects (AD-50,
CN-50, MCI-50)

Accuracy (CN/AD): 99.14%
Accuracy (AD/MCI): 99.3%
Accuracy (CN/MCI): 99.2%

[39] 2019 MRI DNN ADNI-291 subjects (AD-97,
CN-194) Accuracy (CN/AD): 67%

[94] 2019 MRI CNN + RNN ADNI-807 subjects (AD-194,
MCI-397, NC-216)

Accuracy (NC/AD): 91.0%
Accuracy (NC/MCI): 75.8%

Accuracy (sMCI/pMCI): 74.6%

[95] 2019 MRI AE+ CNN
ADNI-694 subjects (AD-198,

NC-230, sMCI-101,
pMCI-166)

Accuracy (AD/NC):
86.60% ± 3.66%

Accuracy (pMCI/NC):
77.37% ± 3.55%

Accuracy (sMCI/NC):
63.04% ± 4.16%

Accuracy (pMCI/AD):
60.97% ± 5.33%

Accuracy (sMCI/AD):
75.06% ± 3.86

[58] 2019 MRI and
FDG-PET CNN

ADNI-2145 subjects
(AD-647, sMCI-441,
pMCI-326, HC-731)

Accuracy (NC/AD): 90.10%
Accuracy (NC/pMCI): 87.46%

Accuracy (sMCI/pMCI): 76.90%

[59] 2019 MRI CNN ADNI-315 subjects (AD-185,
HC-130) Accuracy (HC/AD): 98.06%
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[85] 2019

Demographic
information,

neuro-imaging
phenotypes
measured by

MRI, cognitive
performance,

and CSF
measurements

RNN ADNI-1618 subjects
(AD-338, MCI-865, CN-415) Accuracy (CN/MCI/AD): 81%

[96] 2019 Speech
transcripts CNN + RNN DementiaBank dataset AUC (NC/AD): 0.838

[97] 2019 MRI CNN + AE ADNI-1941 subjects
(AD-345, MCI-991, NC-605)

Accuracy (MCI/AD): 94.6%
Accuracy (NC/AD): 92.98%

Accuracy (NC/MCI): 94.04%

[60] 2019 MRI and PET CNN ADNI-392 subjects (AD-91,
MCI-200, CN-101)

Accuracy (NC/AD): 98.47%
Accuracy (NC/MCI): 85.74%
Accuracy (AD/MCI): 88.20%

[61] 2019 MRI CNN ADNI-1820 images (AD-635,
MCI: 548, CN: 637)

Accuracy (CN/MCI/AD): 86.9%
Accuracy (CN/AD): 100%

Accuracy (MCI/AD): 96.2%
Accuracy (CN/MCI): 98%

[40] 2019 MRI DNN ADNI-1737 subjects AUC (NC/MCI/AD): 0.866

[62] 2019 MRI and
clinical features CNN ADNI-785 subjects (AD-192,

MCI-409, HC-184) Accuracy (MCI/AD): 86%

[87] 2020 MRI GAN

ADNI-1114 subjects and
Frontotemporal Lobar

Degeneration
Neuroimaging Initiative

(NIFD)-840 subjects

Accuracy (NC/AD): 88.28%

[63] 2020 MRI CNN ADNI Test time (NC/AD): 0.2 s

[64] 2020 MEG CNN

Data collected from Centre
for Biomedical Technology,
Spain-132 subjects (MCI-78,

HC-54)

F1-Score (HC/MCI) = 0.92

[65] 2020 MRI CNN

OASIS dataset-126 subjects
(AD-28, HC-98) and data

from local hospitals-70
subjects (AD-70)

Accuracy (HC/AD): 97.76% ± 0.41

[66] 2020 MRI CNN ADNI-159 subjects (AD-45,
MCI-62, NC-52) Accuracy (NC/MCI/AD): 99.89%

[67] 2020 MRI CNN
ADNI-390 subjects (AD-195,

CN-195), SNUBH-390
subjects (AD-195, CN-195)

Accuracy (ADNI (CN/AD)): 89%
Accuracy (SNUBH (CN/AD)): 88%

[69] 2020 fMRI and PET CNN

fMRI ADNI dataset-54
subjects (AD-27, HC-27)
PET ADNI dataset-2675

images (AD-900, HC-1775)

Accuracy (fMRI dataset (HC/AD)):
99.95%

Accuracy (PET ADNI (HC/AD)):
73.46%

[70] 2020 MRI CNN Kaggle’s MRI dataset Accuracy (MCI/AD): 96%

[41] 2020 MRI DNN

ADNI-819 subjects (AD-192,
MCI-398, CN-229) and
NIMHANS-99 (AD-39,

CN-60)

Accuracy (ADNI (CN/MCI/AD)):
99.50%

Accuracy (NIMHANS (CN/AD)):
98.40%
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[71] 2020 MRI CNN

OASIS-382 images (No
Dementia: 167, Very Mild

Dementia-87, Mild
Dementia-105, Moderate

AD-23)

Accuracy (No Dementia/Very Mild
Dementia/Mild

Dementia/Moderate AD): 99.05%

[72] 2020 MRI CNN ADNI-465 subjects (AD-132,
MCI-181, CN-152) Accuracy (CN/MCI/AD): 97.77%

[73] 2020 MRI CNN ADNI-132 subjects (AD-25,
MCI-61, CN-46) Accuracy (CN/MCI/AD):84%

[74] 2020 MRI CNN

ADNI-GO/2-663 subjects
ADNI-3-575 subjects

AIBL-606 subjects
DELCODE-474 subjects

Accuracy (ADNI-GO/2): 86.25%
Accuracy (ADNI-3): 74.375%

Accuracy (AIBL): 79.225%
Accuracy (DELCODE): 78%

[75] 2020 MRI CNN ADNI-469 subjects (AD-153,
MCI-157, CN-159)

Accuracy (NC/MCI/AD): 92.11%
± 2.31

Accuracy (NC/AD): 99.10% ± 1.13
Accuracy (NC/MCI): 98.90% ± 2.78
Accuracy (MCI/AD): 89.40% ± 6.90

[68] 2020 Tau-PET CNN ADNI-300 subjects (AD-66.
EMCI-97, LMCI-71, CN-66) Accuracy (CN/AD): 90.8%

[98] 2021 MRI CNN + DNN Gwangju Alzheimer’s and
Related Dementia (GARD) Accuracy (NC/AD): 94.02%

[99] 2021 Speech
transcripts

Bidirectional encoder
with logistic regression

DementiaBank dataset-269
subjects (AD-170, HC-99) Accuracy (HC/AD): 88.08%

[100] 2021 MRI CNN with attention
mechanism

ADNI-968 subjects (AD-280,
cMCI-162, ncMCI-251,

NC-275)

Accuracy (NC/AD): 97.35%
Accuracy (NC/MCI): 87.82%
Accuracy (MCI/AD): 78.79%

[76] 2021 MRI and PET CNN

ADNI-5556 images (AD-718,
EMCI-1222, MCI-1274,
LMCI-636, SMC-186,

CN-1520)

Accuracy
(CN/EMCI/MCI/LMCI/AD): 86%

[77] 2021 fMRI CNN ADNI-675 subjects

Accuracy (Low AD): 98.1%
Accuracy (Mild AD): 95.2%

Accuracy (Moderate AD): 89%
Accuracy (Severe AD): 87.5%

[78] 2021 MRI CNN ADNI-450 subjects (AD-150,
MCI-150, NC-150)

Accuracy (NC/AD): 90.15% ± 1.1
Accuracy (MCI/AD): 87.30% ± 1.4
Accuracy (NC/MCI): 83.90% ± 2.5

[42] 2021 Genetic
Measures DNN MCSA-266 subjects p-value < 1 × 10−3

[79] 2021 FDG-PET CNN MCSA Mean Absolute Error: 2.8942

[80] 2021 MRI CNN HABS Error rate < 1%

[81] 2021 Tau-PET and
MRI CNN Tau-PET and MRI images

from two human brains Area under Curve: 0.88

4. Discussion

Effective and precise identification of AD is critical for the start of productive therapy.
Early detection of AD, in particular, is critical for the therapeutic improvement and, ulti-
mately, for optimal patient care. We conducted a systematic assessment of the diagnostic
classification of AD based on DL models. We looked at seventy research articles from
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2014 to 2021 and categorized them based on DL technique, type of biomarker, dataset and
performance metric (Table 1).

Out of seventy studies, thirty-nine utilized CNN, twelve utilized DNN, three utilized
AE, one utilized RNN, one utilized DBN, one utilized GAN and thirteen utilized hybrid
DL models. The majority of the studies utilized CNN for AD diagnosis, followed by
hybrid DL models. The accuracies of studies ranged between 53.17% and 99.95%. With
regards to biomarkers, thirty-nine utilized MRI scans, two utilized fMRI scans, one utilized
FDG-PET, one utilized Tau-PET, two utilized EEG, one utilized MEG, four utilized speech
transcripts, one utilized genetic measures, and nineteen utilized multi-modal biomarkers.
The maximum number of studies utilized MRI followed by multi-modal biomarkers.
Regarding datasets, fifty-one studies utilized the ADNI dataset, five utilized the OASIS
dataset, DementiaBank was used by four, HABS by one, MCSA by two, and seven studies
utilized other datasets for AD diagnosis. The majority of studies utilized the ADNI dataset
for AD diagnosis. Regarding performance metrics, fifty-nine studies utilized accuracy, five
utilized AUC, one study utilized F1-score, one utilized test time, one utilized error rate,
one utilized MAE, one utilized p-value, and one utilized MSE as the performance metric.
These statistics are shown in Figure 4. The following summarizes the key findings from the
literature review:

• DL techniques outperform conventional machine learning techniques in AD diagnosis.
• DNN outperforms the shallow neural network architectures in AD diagnosis.
• Conventional machine learning techniques such as Random Forest, KNN, SVM can be

used to assist DL models in feature selection and discrimination processes.
• Multimodal classification models outperform single-modal settings.
• Fusion of typical neurophysiological data with MRI and PET enhances the efficiency

of the AD classification models.
• Bayesian method and greedy layer-wise pre-training are effective techniques for

initializing the DL model parameters such as learning rate, drop-out rate, number of
hidden layers, and number of nodes in each layer.

• Due to the shift-invariant and scale-invariant properties, CNN has got a massive scope
in medical image analysis.

• Transfer learning and data augmentation are suitable for avoiding over-fitting in
DL models.

• CNN model with leaky ReLU activation function and Max pooling function gives the best
results as compared to other combinations of activation functions and pooling functions.

• Models built on multi-modal MRI (fMRI and DTI) perform better than models built
on individual fMRI and DTI.

• Hippocampus of the brain is a crucial ROI for AD diagnosis, and hippocampal atrophy
is the most crucial factor for AD diagnosis.

• Batch normalization, data augmentation and drop-out regularization generate efficient
AD classification models.

• Selecting the appropriate pre-processing and segmentation techniques are crucial for
building efficient DL models for AD diagnosis.

• Unsupervised DL techniques such as auto-encoders are effective for limited data scenarios.
• Hybrid DL models perform better than individual DL models.
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5. Challenges and Future Research Directions

Despite the significant advancements made by DL techniques in the diagnosis of AD,
there are still some critical hurdles that need to be overcome. These challenges are as follows:

• Over-fitting: DL algorithms are multilayered algorithms that need a lot of processing
power and have millions of parameters. Convergence of these algorithms necessitates
a huge quantity of data in proportion to the number of parameters. Although there
are no hard and fast rules about how much data are needed to train DL algorithms,
empirical research suggests that ten times more training data are needed than the
number of parameters. Given the widespread availability of images, text and videos
on the internet, it is no wonder that disciplines such as computer vision and natural
language processing have experienced the fastest advancements due to DL. Neuro-
imaging data, on the other hand, is largely decentralized and housed locally within
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hospital systems, with privacy restrictions that make it difficult to access for research.
Furthermore, due to the complexity of disease processes and patient presentations,
obtaining solid ground truth labels for neurological diseases including AD is exceed-
ingly costly, and requires expert knowledge. The scarcity of labeled data continues to
be a major stumbling block in the advancement of DL in AD diagnosis.

Over-fitting is always a possibility when training a complicated classifier on a limited
dataset. DL models have a strong tendency to fit data well, but this does not imply that
they generalize well. Many studies have employed various tactics to mitigate over-
fitting, such as regularization, early stopping, and drop-out. While the algorithm’s
performance on a separate test data set can be used to assess over-fitting, the algorithm
may not work well on similar images obtained in other facilities, on different scanners,
or with patients with different demographics. Larger datasets from multiple locations
are often gathered in diverse ways, with marginally varied image attributes, using
different scanners and protocols, resulting in poor performance. Moreover, it has
been observed that without consistent criteria, data augmentation will not be able to
adequately address difficulties with limited datasets. Overcoming this issue is a crucial
topic of study.

• Data Quality: DL algorithms are intrinsically unsuited to healthcare data in general.
Electronic medical records are made up of highly heterogeneous clinical notes, a
jumble of diverse codes, and other patient details often containing missing and incom-
plete data. This intrinsic complication of healthcare data makes it impractical for DL
algorithms to separate signal from noise.

• Interpretability and Transparency: Expert intervention in preprocessing procedures for
feature selection and extraction from images in traditional machine learning algorithms
may be required. DL, on the other hand, does not require human mediation and digs
out features straight from the input data, therefore data preprocessing is not usually
required. This enables greater flexibility in feature extraction based on a variety of
inputs. As a result, DL can produce an effective model at each time of the run. Because
of this flexibility, DL has outperformed conventional machine learning methods that
rely on preprocessing. However, this element of DL inherently introduces uncertainty
about which features will be mined at each epoch, and it is hard to explain which
individual features were extracted from the network unless there is a dedicated design
for the feature. It is also hard to figure out how those selected characteristics lead to
a conclusion and the relative relevance of various features or subclasses of features
due to the intricacy of the DL algorithms, which consists of several hidden layers.
This is a significant restriction for AD research in which it is desirable to understand
the importance of specific traits in order to create models. These intricacies and
uncertainties tend to obscure the process of attaining high accuracy, making it more
difficult to rectify any biases in the dataset.

• Reproducibility: The performance of DL algorithms is affected by the values of hyper-
parameters such as learning rate, drop-out, number of epochs, batch size, momentum,
etc. It is crucial to use the same choice of hyper-parameters on numerous levels to
get the same experimental result. Even if hyper-parameters and random seeds are
not offered in most circumstances, it is necessary to keep the same code bases. The
randomization of the training technique and the ambiguity of the setup may make it
impossible to replicate the study and acquire the same findings.

6. Conclusions

In developed countries, AD is a prominent cause of death. Although the premature
diagnosis of AD is a critical and strenuous task, the employment of computer-based meth-
ods in conjunction with medical specialists can provide an effective diagnostic approach.
In recent years, it has been observed that DL techniques have the capability to model the
progression of AD efficiently and accurately based on neuroimaging data and hence can
contribute to slowing down its advancement. Motivated to unfold the potential of DL



J. Pers. Med. 2022, 12, 815 24 of 29

techniques in AD diagnosis, this study reviewed the current benchmarks in the arena. An
in-depth literature review of AD diagnosis using DL techniques, such as feed-forward
DNN, CNN, AE, RNN, DBN, GAN and hybrid DL models, was carried out. The study
also explored the different biomarkers and datasets for AD diagnosis. The biomarkers
that are crucial for AD diagnosis include MRI, fMRI, FDG-PET, amyloid-PET, Tau-PET,
EEG, MEG, speech transcripts, genetic measures, and CSF measures. The datasets that
are available for AD diagnosis are ADNI dataset, OASIS dataset, DementiaBank dataset,
HABS dataset, and MCSA dataset. A systematic assessment of the literature was carried
out, and the trends and key findings were discussed. It was observed that CNN is the most
widely used DL technique for AD diagnosis, followed by hybrid DL models. In the case of
biomarkers and datasets, MRI and ADNI have been extensively used in the AD diagnosis
studies using DL, respectively. However, it was discerned that regardless of the fact that DL
has made massive advancements in AD diagnosis, there are still some impediments that
need to be addressed. These impediments include over-fitting, data quality, interpretability,
transparency, and reproducibility.
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Abbreviations

ABF Adaptive Bilateral Filter
AD Alzheimer’s Disease
ADNI Alzheimer’s Disease Neuroimaging Initiative
AE Auto-Encoder
AHA Adaptive Histogram Adjustment
AMS-MEM Adaptive Mean Shift Modified Expectation Maximization
AUC Area under Curve
BBB Blood-Brain Barrier
BDAE Boston Diagnostic Aphasia Examination
BGRU Bidirectional Gated Recurrent Unit
BPTT Back-Propagation Through Time
CN Cognitively Normal
CNN Convolutional Neural Network
CSF Cerebrospinal Fluid
DBN Deep Belief Network
DL Deep Learning
DNA Deoxyribonucleic Acid
DNN Deep Neural Network
DT Decision Tree
DTI Diffusion Tensor Imaging
DVE Discrete Volume Estimation
EEG Electroencephalography
EMCI Early Mild Cognitive Impairment
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FCNN Fine tuning Convolutional Neural Network
FDG-PET Fluorodeoxyglucose-Positron Emission Tomography
fMRI Functional Magnetic Resonance Imaging
GAN Generative Adversarial Network
GLCM Gray Level Co-Occurrence Matrix
HABS Harvard Aging Brain Study
HC Healthy Control
HiLCAE High-Level Layer Concatenation Auto-Encoder
HOG Histogram of Oriented Gradients
KNN K Nearest Neighbour
LDA Linear Discriminant Analysis
LMCI Late Mild Cognitive Impairment
LR Logistic Regression
MAD Moderate Alzheimer’s Disease
MCI Mild Cognitive Impairment
MCSA Mayo Clinic Study of Aging
MEG Magnetoencephalography
MMDNN Multi-scale and Multi-modal Deep Neural Network
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
MSE Mean Squared Error
NC Normal Control
ND No Dementia
OASIS Open Access Series of Imaging Studies
PET Positron Emission Tomography
pMCI probable Mild Cognitive Impairment
PUP PET Unified Pipeline
RCNN Regional Convolutional Neural Network
RF Random Forest
RNN Recurrent Neural Network
ROI Region of Interest
SAE Stacked Auto- Encoder
SBi-RNN Stacked Bidirectional RNN
SCNN Siamese Convolutional Neural Network
sMCI stable Mild Cognitive Impairment
SVM Support Vector Machine
VMD Very Mild Dementia
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