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ABSTRACT People with hearing impairments are found worldwide; therefore, the development of
effective local level sign language recognition (SLR) tools is essential. We conducted a comprehensive
review of automated sign language recognition based on machine/deep learning methods and techniques
published between 2014 and 2021 and concluded that the current methods require conceptual classification
to interpret all available data correctly. Thus, we turned our attention to elements that are common to almost
all sign language recognition methodologies. This paper discusses their relative strengths and weaknesses,
and we propose a general framework for researchers. This study also indicates that input modalities bear
great significance in this field; it appears that recognition based on a combination of data sources, including
vision-based and sensor-based channels, is superior to a unimodal analysis. In addition, recent advances have
allowed researchers to move from simple recognition of sign language characters and words towards the
capacity to translate continuous sign language communication with minimal delay. Many of the presented
models are relatively effective for a range of tasks, but none currently possess the necessary generalization
potential for commercial deployment. However, the pace of research is encouraging, and further progress is
expected if specific difficulties are resolved.

INDEX TERMS Sign Language , Deep learning, Continuous Model, Machine learning, Pose Estimation

I. INTRODUCTION

FOR millions of people, sign language communication is
the primary means of interacting with the world, and it

is not difficult to imagine the potential applications involving
effective sign language recognition (SLR) tools [1], [2]. For
example, we could translate broadcasts that include sign lan-
guage, create devices that react to sign language commands,
or even design advanced systems to assist impaired people in
conducting routine jobs. In particular, deep neural networks
(DNNs) have emerged as a potentially groundbreaking asset
for researchers, and the full impact of their application to the
problem of SLR will likely be felt in the near future [3], [4].
SLR is a field dedicated to the automated interpretation of
hand gestures and other signs used in communications be-
tween people with a speech or hearing impairment. Because
hardware and software components have evolved to the point
where developing advanced systems with real-time transla-
tion capacities appear to be within reach, a large number of
exciting and innovative solutions have been proposed and
tested in recent years [5]–[9]with the objective of building

fully functional systems that can understand sign language
and respond to commands given in this format. However,
before any truly practical applications can be considered, it
is imperative to perfect the interpretation algorithms to the
point where false positives are rare [6], [10]–[13].
Owing to the numerous challenges inherent in this task, at
this stage, it is not yet possible to design SLR tools that
approach 100% accuracy on a large vocabulary [14], [15].
Thus, it is very important to continue developing new meth-
ods and evaluate their relative merits, gradually arriving at
increasingly reliable solutions. While most researchers agree
that deep learning models are the most suitable approach,
the optimal network architecture remains a point of con-
tention, with several competing designs achieving promising
results. Detailed experimental evaluations are the only way
to identify the best performing algorithms and refine these
further using discoveries from other research teams when
applicable. As most countries use their own variations of sign
language, much of the research is conducted locally with
persons skilled in using regional signs. With this in mind,
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it is not surprising that a large number of scientific papers
are targeting SLR problems and that the performance level
of the proposed solutions is rapidly increasing from year to
year [16], [17].
In the current literature, the various SLR solutions can es-
sentially be divided into two major groups, depending on
the primary data collection method. One group of methods
relies on external sensors to gather insights regarding the
actions of the signer, for example, through data gloves worn
by the signer. Starner et al. [18] provided early example of a
system based on wearable sensors, while many other authors
have exploited this concept since then. However, there are
practical considerations regarding sensor-based techniques,
and therefore a majority of recent research has been directed
toward vision-based methods, which rely on images, video,
and depth data to determine the semantic content of hand
signs. For example, Chen et al. [19] pioneered a hand gesture
recognition method based on skin color, while many alterna-
tive techniques have since been proposed, some of which are
based on filtering principles [20].
In particular, the commercial launch of the Microsoft Kinect
device has unlocked a completely new level of insight [21]–
[23] ,and researchers are still exploring how to leverage
the power of depth vision to develop more accurate SLR
tools. In terms of the type of neural network most suitable
for SLR purposes, the convolutional neural network (CNN)
model [24] was one of the first to gain major attention [25]–
[28]. In addition to CNNs, other architectures such as hidden
Markov models (HMMs) [19] and recurrent neural networks
(RNNs) are frequently applied [29]. The support vector
machine (SVM) model is frequently used for this purpose
as well [30], [31],while random forest (RF) and K-nearest
neighbor (k-NN) are sometimes chosen for the classification
task [29], [32]. We summarize our work contributions in this
paper as follows:

1) Comprehensive review and taxonomy of automated sign
language recognition (ASLR) literature: We conducted
a comprehensive review of automated sign language
recognition using machine/deep learning methods and
techniques published between 2014 and 2021. We con-
cluded that several SLR methods currently in existence
require some conceptual classification to make sense
of all available data. Thus, we focus on elements that
are common to almost all sign language recognition
methodologies and discuss their relative strengths and
weaknesses regarding specific SLR tasks and function-
alities as part of this study.

2) Establishment of a general framework for creating SLR
models: We propose a general framework based on the
challenges and limitations we have identified in the liter-
ature. At this point, the value of machine learning/deep
learning (ML/DL) methodologies for sign language
recognition is beyond question, although discussions
regarding the most promising directions of research

continue. There is consensus that deeper models hold
more promise for the eventual development of real-
life SLR applications than traditional machine learning
approaches, but at present, even the most sophisticated
models fall considerably short of the necessary reliabil-
ity.

3) Benchmark datasets and performance: An analysis of
the benchmark datasets and performance used in the
literature is conducted. The quality of available sign lan-
guage datasets is essential for ensuring that SLR tools
built and tested with them return relevant predictions.
However, the availability of high-quality datasets of
this kind is limited, and in some cases barely sufficient
for serious testing. Some of the datasets mentioned
in literature include the Corpus VGT consisting of
over 140 hours of video input and including approxi-
mately 100 classes, PHOENIX14T dataset with video
recordings of 9 different signers using more than 1000
unique signs, PHOENIX-Weather2014T with vocabu-
lary related to weather, and ASLG-PC12 which includes
various English-language versions of signs. Datasets
are usually split into training, validation, and testing
portions, so the models can be evaluated with the same
type of input that was used to optimize them. However,
due to different datasets used in different studies, direct
comparison of the results across studies is not possible.

4) Identifying open Issues and challenges: After analyzing
and discussing the existing methodologies, we draw
some conclusions with respect to their limitations, open
issues, and potential challenges. Differences between
regional variations of sign language alphabets and vo-
cabularies greatly complicate cross-border collabora-
tion, especially considering the scarcity of high-quality
datasets for languages with smaller numbers of speak-
ers. This also makes it very difficult to develop and test
more advanced applications, which require much larger
training vocabularies. Most of the proposed methods are
conceptually sound, yet they lack the level of accuracy
and reliability that would be desired for a final solution.
These problems are exacerbated in the continuous SLR
sub-field, where semantic content is far more complex
and thus more difficult to capture through statistical
analysis.

The remainder of this paper is organized as follows. In
Section II, we provide a brief background regarding some
of the basic concepts discussed in this paper, such as deep
learning, machine learning. Section III presents the review
method used in this study. Machine learning and deep learn-
ing methods to design sign language recognition models are
discussed in detail in Section IV along with the proposed
framework. Types of models and languages related to the
recognition process are discussed in Section V and Sec-
tion VI, respectively. The related studies and surveys have

2 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110912, IEEE Access

been discussed in Section VII. Section VIII introduces the
benchmark SLR datasets used for ML/DL and provides a
comparative analysis of the ML/DL methods performance for
sign language recognition. Section IX discusses open issues,
challenges, and opportunities for future research. Finally, the
conclusions of our study are presented in Section X.

II. BACKGROUND
In recent years, there have been ongoing efforts to develop
automated methods for the completion of numerous linguis-
tic tasks using advanced algorithms that can ‘learn’ based
on past experience [33]. Sign language recognition (SLR)
is an area where automation can provide tangible benefits
and improve the quality of life for a significant number
of people who rely on sign language to communicate on
a daily basis [34]. The successful introduction of such ca-
pabilities would allow for the creation of a wide array of
specialized services, but it is paramount that automated SLR
tools are sufficiently accurate to avoid creating confusing or
dysfunctional responses. In this section, we provide a brief
background regarding some important approaches that have
been utilized for automated SLR.

A. MACHINE LEARNING (ML)
The machine learning concept encompasses a number of
stochastic procedures that can be used to predict the value
of a certain parameter based on similar examples that the
algorithm was previously exposed to. A simple example,
illustrated by Algorithm 1, shows how a general formal-
ization of the learning process takes place. There are many
different methodologies that belong to this group; some of the
best-known methods include naïve Bayes, random forest, K-
nearest neighbor, logistic regression, and the support vector
machine [33], [35]. All of these methods undergo a training
phase, which can be either supervised (using labeled input
data) or unsupervised (without labeled data) , and use input
features to establish connections among variables and acquire
predictive power. However, owing to their simplicity, such
methods have limitations when there is a need to capture nu-
anced semantic hints, as is the case with most linguistic tasks.
On the other hand, they can often provide the foundation for
the development of more powerful analytic tools and serve as
a measuring stick to evaluate progress.

Algorithm 1: LEARNING PROCESS

Input: x, is a d dimensional vector of features
Output: y, is the output decision

1: Target function f : X ⇒ Y the ideal formula
(Unknown)

2: Data: (x1, y1), (x2, y2), ..., (xN , yN ) training examples
3: Hypothesis g : X ⇒ Y formula to be used
4: Learning algorithm g ≈ f final hypothesis

Machine learning techniques are used to aid in sign lan-

guage recognition and have achieved some degree of success.
Some of the earliest studies in this field were based on
data input from wearable sensors, which provide a very
direct translation of a user’s movements. The data can be
filtered using techniques such as SVM to provide a reason-
ably accurate recognition of the intended sign. Some of the
aforementioned machine learning methods are used primarily
to analyze static content (i.e., individual signs isolated in time
and space), while in some cases, there have been attempts
to interpret continuous segments of sign language speech,
necessitating the use of dynamic models such as dynamic
time warping or relevance vector machines. In general, basic
stochastic models are better suited for simple SLR tasks,
which is why they were extensively used in the early stages
of research. These statistical models typically require less
computing power than more complex architectures, although
this depends on the number of analyzed features as well as
the size of the dataset. As more complex ASLR applica-
tions naturally require the inclusion of additional variables
and sometimes additional modalities, the simplicity of basic
models remains attractive. Thus, simpler machine learning
methods remain valuable tools and often serve as comparison
benchmarks that can be used to evaluate the properties of
newly proposed methods.

B. DEEP LEARNING
Recently, basic machine learning approaches have been
largely replaced with deeper architectures that employ sev-
eral layers and pass information in vector format between
layers, gradually refining the estimation until positive recog-
nition is achieved. Such algorithms are usually described as
”deep learning” systems or deep neural networks, and they
operate on principles similar to the machine learning strate-
gies described above, although with far greater complexity.
Based on the structure of the network, two architectures are
commonly used for a number of different tasks: recurrent
neural networks (RNNs) that include at least one recurrent
layer, and convolutional neural networks (CNNs) that include
at least one convolutional layer. Depending on the number
and type of layers, these networks can exhibit different prop-
erties and are generally suitable for different types of tasks,
while the training phase decisively impacts the performance
of the algorithm. The general rule is that larger and more
specific datasets allow for more robust network training, and
therefore the quality of the training set is an important factor.
Additional fine-tuning of a model can usually be achieved by
changing some of the relevant hyper-parameters that define
the training procedure [36].
The majority of research involving the automation of SLR
tasks is currently based on methods that rely on a combina-
tion of images and depth data, which generate a tremendous
amount of information that often requires analysis in real
time (or at least taking the temporal dimension into account).
With larger and more diverse datasets, simple machine learn-
ing methods tend to underperform, which is why many of
the more sophisticated models are based either on RNN or
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CNN design. Deep networks can be trained using multimodal
input (e.g., skeletal data combined with depth images from
Microsoft Kinect), and in some applications, they can achieve
a recognition accuracy of over 98% under optimal condi-
tions. The advantages of deep learning were demonstrated
by Konstantinidis et al. [37] ], who successfully used data
from disparate sources to identify sign language words in
isolated form, although their model displayed uneven perfor-
mance depending on the dataset used. More demanding SLR
tasks, such as interpretation of continuous speech or real-
time translation, require even more sophisticated models,
which in some cases require an increased number of layers
(depth). While deep models appear to be a safe choice for
the role of empowering automated SLR applications in the
future, it remains to be seen whether the current architectures
will survive in their present form or will evolve into new
models that can ‘understand’ the semantic aspects of sign
communication more astutely. Possible models that could be
more widely used in the future include deep belief networks
with a very large number of layers, as well as networks based
on autoencoders.

III. REVIEW METHOD
In this study, we summarize and organize scientific data
about the subject of Sign Language Recognition (SLR) for
the benefit of the entire research community. In order to
assist anyone interested in the fundamental knowledge in
this field, we complemented the basic facts about each study
with an impartial assessment of its quality and potential for
positive contributions. We attempt to answer the following
main research questions:
Question 1 – Which studies have been conducted addressing
automated Sign Language Recognition, and what are the
available datasets?
Question 2– What techniques in Automatic Sign Language
Recognition for various languages are applied to date?
Question 3 – Which challenges remain unsolved in this
scientific field?
One of the ultimate objectives of this paper is to lay the
groundwork for future inquiries about SLR and clarify any
ambiguous elements that might confuse some researchers.
We accomplished this in three phases – preparatory, exe-
cution and presentation, with each stage including several
steps. These steps included 1) selecting the most relevant
research questions, 2) setting fundamental rules for the eval-
uation procedure, 3) formalizing the selection threshold, 4)
assessing the quality of the work’s premises and results, 4)
looking into the methodological setup of the experiments,
and 5) extracting any bits of information that contribute to
answering the central questions.

A. REVIEW PROTOCOL
We followed a defined procedure during the literature review,
allowing for a more objective evaluation of the paper content.
This procedure consisted of numerous tasks, starting with
selecting relevant variables, isolating the authors’ strategic

approaches, analyzing the methods and techniques used to
obtain the results, sorting out quantitative output, and defin-
ing the principles for generalization and summarization.

B. INCLUSION AND EXCLUSION CRITERIA
During the collection of scientific works, a set of well-defined
parameters were used to decide which works to include.
Since the subject of this paper is SLR, only papers from this
field were taken into consideration. The period covered is
between 2014 and 2021, as shown in Fig 1, as the idea was
to provide a systematization of contemporary research. In the
following Table 1 , we provide a complete set of rules for
selecting the research papers in a succinct format.

FIGURE 1: Number of publications on Sign Language
Recognition by year

C. SEARCH STRATEGY
Finding the most relevant research material required an
arduous process combing publicly available sources using
a combination of automated tools and human workforce.
Specific keywords drove the automated segment, which are
displayed in Table 2.

This collection of studies is continually expanded through
addition of individual papers that match the same level of
relevance as those found by the algorithm. We included all of
the most significant online repositories of scientific content in
the search, from Google Scholar, MDPI, Springer, Elsevier,
and IEEE explore to ACM and ArXiv. The proportion of
papers from each source is shown in Fig 2.

The overall objective at this stage was to discover as
many works that address the topic of SLR as possible. After
completing this stage, we carefully analyzed the entire corpus
of collected material using the forward/back technique. This
allowed for a more detailed understanding of each paper, with
the ability to track all references and follow the significant
lines of research. In this way, it was possible to ensure that
no foundational studies are missing from the study and that
the final collection of SLR papers is truly representative of
the most successful research directions.We then processed
the collection based on the Mendeley method, which made
it possible to easily identify and remove identical items
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TABLE 1: Inclusion and exclusion criteria for SLR studies.

Task Criteria

Included Articles • SLR papers in any native languages
• SLR papers addressing alphabets, words and sentences
• SLR papers with Depth cameras
• SLR papers with open datasets
• Published from the year 2014 onwards

Excluded Articles • Not relevant to research questions
• Incomplete or inaccessible text
• Published before 2014
• Written in language other than English
• Duplication

TABLE 2: Keywords for Searching Stage.

Group 1 Group 2
Sign language Deep learning

Sign language recognition Machine learning
Sign language translation Pose estimation
Automated sign language Hand gesture

Transformer

FIGURE 2: Number of publications on Sign Language
Recognition by Publisher

from the list, making the content more readily searchable.
We noted several trends in this part of the process, which
included a breakdown of collected works based on the local
variation of sign language they refer to. A majority of works
in the collection (more than 30%) were related to the Amer-
ican variation, but French, Argentinian, Arabic, and many
other SL variations are also represented, as seen in Fig. 3.

Another factor that was used to differentiate between pa-
pers is the type of architecture of the proposed solution. Full
overview is available in Fig. 4.

D. STUDY SELECTION PROCESS
During the initial search, we found 196 different papers,
although 11 of them were duplicates that we immediately
disqualified. All original papers were reviewed using the
principles outlined in Table5 and information available on the
first page of the paper. In this manner, we removed all works
not connected to the research field, collected from unreliable
sources, or with other weaknesses. Examination of this kind
identified 47 entries that did not meet the inclusion criteria;

FIGURE 3: Number of publications on Sign Language
Recognition by Language

FIGURE 4: Number of publications on Sign Language
Recognition by Architecture

138 core and relevant studies remained.
We examined the full text of the studies next, and removed

any that failed to directly address SLR or to support their
hypothesis with high-quality data removed as well. Next, we
took the quality of all quotes and correct naming of sources
into account, and performed online checks to ascertain the
authorship of source papers. In the last phase, we performed
a qualitative evaluation to determine which studies deserved
to be reported on. The entire selection procedure cut down the
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number of included works to 84, but their level of scientific
value and importance regarding the main research questions
leaves nothing to be desired.

IV. AUTOMATED SIGN LANGUAGE RECOGNITION
FRAMEWORK
Most automated SLR research is concerned with similar
problems, namely the need to interpret hand and body move-
ments associated with sign language characters in a clear
and unambiguous manner. Because the main objectives are
similar, the studies in this area also share similar methodol-
ogy, even if their procedures may not be identical. Figure 5
presents the general model shared among the majority of
researchers in this area. The input layer of the solution
consists of an input device based on SLR data collection
methods, as shown in Figure 6, and includes a visual display
to present hand signs. The second layer is the pre-processing
layer that performs gesture data filtering and can decode a
sign into the required data format. In some cases, there are
additional steps, such as sample normalization or merging
information contained in successive frames of a video. The
first procedure performed by the system after receiving sign
data is feature extraction. All proposed methods have to
provide solutions for the two most important tasks: extraction
of relevant features, and classification of entries to determine
the most likely sign being presented.

There are many different types of features that can be
used as the primary source of information, such as visual
features, hand movement features, 3D skeletal features, and
facial features, among others . The selection of features to be
included for algorithm training is one of the most important
factors that determine the success of the SLR method. The
data are typically processed and transformed into a vector
format before being input to the modeling layer, and multiple
channels may be fused together to analyze their joint contri-
bution to sign recognition.

A. DATA COLLECTION
The interactive computing domain has evolved extensively
in recent times. Consequently, a need for efficient hu-
man–computer interaction techniques has arisen. Sign lan-
guage recognition is among the methods that can support
further development of this domain. Sign language recogni-
tion enables the transfer of well-known gestures to a receiver.
Techniques used to collect sign language recognition data can
be hardware-based, vision-based, or hybrid.

1) Hardware-based
Hardware-based approaches are designed to circumvent
computer vision problems during sign language recogni-
tion. These challenges may develop when recognizing signs
from a video, for example. In many cases, hardware-based
approaches use devices or wearable sensors. Wearable de-
vices used in sign language recognition often use sensors
attached to the user or implement a glove-based approach.
These devices (whether sensors, gloves, or rings) can convert

FIGURE 5: Automated Sign Language Recognition Frame-
work

sign language into text or speech. With respect to wearable
sensors and devices, the authors in [38]–[41] describe how
they capture depth and intensity images obtained from a
Microsoft Kinect sensor and a SOFTKINECT sensor. A
similar category of observations features direct measurement
methods that involve the use of sensors attached to the hands
or body, as well as motion capture systems [42]. Huan et al.
[43] observed that sensor-based approaches are never natural
because burdensome instruments must be worn. Instead, they
propose a novel approach, Real-Sense, which can detect and
track hand locations naturally.

In recent years, the vast popularity of device-based ap-
proaches has resulted in renewed interest toward develop-
ing human gesture and action recognition methods. Among
the device-based methods, Kinect is more commonly ap-
plied than the Leap motion controller (LMC) or Google
Tango [13], [38]–[40], [43]–[50]. Wang et al. [51] identified
Leap Motion as an excellent product that uses computer vi-
sion to achieve a useful interactive function. The significance
of LMC is reinforced by the fact that learning and practicing
sign language is not common in society, as discussed in [52].
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Some other methods rely on specially designed gloves for
input such as [53]–[55], while a range of other technological
devices such as accelerometers [56] and depth recording
devices [57]. Some of the most basic sensor configurations
include coloration of the fingers on gloves, as in [58], [59],
allowing for easy and inexpensive motion tracking.

Gloves equipped with digital capture capacities were intro-
duced by [60] and utilized to deduct hand signs of the Arabic
sign language variation with a reduced number of sensors.
While the cost of creating and using special equipment of
this kind is considerable, it is still many times cheaper than
purchasing some of the high-tech products available in the
market.Authors in [61] chose motion controller as the pri-
mary input device, which allowed them to track objects in
three dimensions with extreme precision at a 120 fps rate.
The controller they used was developed for the purpose of
tracking hand motion, so the researchers were able to follow
many key points on the hands from one frame to the next.
The same device was used by [62] to differentiate between 50
unique isolated hand signs, with absolute precision attained.

2) Vision-based
In recent years, research on sign language recognition sys-
tems has focused more on vision-based methods because
they provide little to no restraints on users, unlike sensor-
based approaches. In vision-based techniques, depth and
pose estimation data are collected from users. A discussion
regarding depth data and pose estimation can be found in
section V. some of the recent SLR studies rely on input in
the visual format. For example, depth information and RBG
are some of the formats that can be commonly encountered
in this field as demonstrated by [17]. Previous research by
Rioux-Maldague et al. [44] indicates that use of depth data
has increased because of the increased number of 3D sensors
available in the market. A Microsoft Kinect sensor was used
in their experiment, which has an image resolution of 640 ×
480 and uses a traditional intensity camera to obtain depth
images. Recent publications have also obtained depth data
using vision-based approaches [40], [63], [64]. Depth data
can be in the form of video sequences [65]–[70] or images
[40], [71]–[74] obtained using a normal camera or a mobile
device. Oyedotun et al. [74] used hand gesture grayscale
images measuring 248 × 256 pixels. According to Zheng et
al. [17], the use of depth data is advantageous to maintain
privacy and to streamline the human body extraction process.
Furthermore, depth data are invariant to changes in illumina-
tion, hair, clothing, skin, and background [17].

Aside from depth data, pose estimation has been used
to facilitate vision-based techniques. Rioux-Maldague et
al. [44]used a combination of regular intensity images and
depth images to group different hand poses. They tracked
the hands using functions that are publicly available in the
OpenNI+NITE framework. While using pose estimation,
computationally heavy heat maps for 2D joint locations were
generated, and a 3D hand pose was inferred based on inverse
kinematics and depth channels. Koller et al. [63] further

described the state-of-the-art aspect of hand shape recogni-
tion, where the configuration of a hand pose is determined
by the positions and angles of the joints. Currently, many
experiments use these joint positions and angles because
they can be estimated based on depth images and pixel-
wise hand segmentation. Other experiments, such as those
by Zimmermann et al. [75] use a hand pose estimation system
combined with a classifier trained to recognize hand gestures.

While vision-based methods are non-invasive, they are
constrained by the inadequate performance of conventional
cameras. Another challenge is that uncomplicated hand fea-
tures can cause ambiguities, while advanced features require
extra processing time [39].

3) Hybrid
In some instances, hybrid approaches have been used to col-
lect sign language recognition data. Hybrid methods exhibit
similar or better performance compared to other methods
with respect to proportional automatic speech or handwrit-
ing recognition. In hybrid approaches, vision-based cameras
together with other types of sensors, such as infrared depth
sensors, are combined to acquire multi-mode information
regarding the shapes of the hands [76]. This approach re-
quires calibration between the hardware and vision-based
modalities, which can be particularly challenging. The fact
that this method does not require retraining means that it is
faster and can be used to examine the impact of deep learning
techniques. Koller et al. [77] conducted an experiment and
opted for the cleaner hybrid method, otherwise referred to as
automatic speech recognition (ASR), to examine the direct
impact of this type of data on a CNN.

Using still photos or continuous recordings in RGB format
has the advantage of good resolution, but depth imaging does
a better job at determining how far an item might be located
from a fixed point. There are certain algorithms that use both
types of visual data in combination [72]. Thermal imaging is
also an intriguing possibility, even if it is used more rarely
than the previous two formats. IR heat sensors can leverage
the emitting of radio waves or reflection of light rays to
construct an image as well. This type of information has
been used with success for tasks such as facial recognition
or body contouring, but has not yet found its way into SLR
studies [78]. Skeletal data can also be used as a source
of input, mostly in the form of hand joint position during
SLR gestures. Another type of input is derived from motion
capture, where information changes are tracked from one
image to another. Models of this kind usually define the
optical sequence as a vector describing the movement of
pixels in series of still images, while so called scene sequence
can be tracked in video materials referring to the motion of
three-dimensional objects within the scene, relative to the
distance from the camera lens [79].

While all of the input devices can be effective in the right
scenario, their performance significantly fluctuates depend-
ing on the context. Still, more advanced input sources such
as depth sensors and Real Sense/Kinect recording systems
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can create three-dimensional representations which carry far
more information than simple two-dimensional images from
a fixed angle [78], [80].

B. SLR DATA PRE-PROCESSING AND FEATURE
EXTRACTION FOR DEEP NEURAL NETWORKS
SLR data pre-processing plays a critical role in sign language
recognition engineering. As such, data processing may in-
volve sign representation, normalization and filtering, data
formatting and organization, feature extraction, and feature
selection.

1) Sign Representation
Sign language is a type of visual language that utilizes
grammatically structured manual and non-manual sign rep-
resentations to facilitate the communication process. These
representations may range from the hand shape to the ori-
entation of the palm, finger or hand movement and location,
as well as head tilting, mouthing, and other aspects of facial
expression. Tang et al. [39] used eight representative frames
organized in a time sequence. Their representations showed
the movement of two hands that began by moving closer to
each other before moving apart. In [40],all gestures used in
an experiment were represented by the hand of the signer. A
hand segmentation phase was also used to represent the shape
of the hand sign. Similarly, Koller et al. [63] represented 60
hand shape classes using a double state, while the garbage
class was represented by a single state. Another experiment
by Zhou et al. [81] evaluated only right-handed signers. In
this case, the right hand was used to represent the dominant
hand, while the left hand was the submissive hand. Hossen
et al. [45] focused on the Bengali Sign Language, having 51
letters that were represented in the experiment using 38 signs,
which were developed by combining related sound alphabets
into single signs.

In the Bahasa Indonesia Language, one word is repre-
sented by at most five signs, as discussed in [69]. This
means that every word and affix has an independent signed
Indonesian (SIBI) representation and is represented by one
sign that is consistently performed. Another experiment by
Huang et al. [43], used 66 input units and 26 output units to
represent 26 signs.

Past experiments have also attempted to compare body and
hand features. In [15], it was observed that body features
make up a somewhat better representation compared to hand
features for sign language recognition. In essence, using
body features improved the recognition of sign language by
2.27% [70]. These observations can be attributed to the fact
that body joints are more dependable and robust than hand
joints.

2) Normalization and filtering
In machine learning and deep learning, normalization refers
to all actions and procedures aimed at standardizing the input
based on a set of predefined rules with the ultimate objective
to improve performance of the AI tool. This procedure is

typically performed during the data pre-processing stage, and
may include various statistical operations or media process-
ing tasks. The exact type of normalization procedure that is
optimal for the current implementation depends on the format
of the input (i.e. text, image, or video), the level of variability
within the sample, the type of machine learning architecture,
the purpose of the automation tool, etc. Due to its impact on
performance, normalization is commonly included in most
contemporary Sign Language Recognition methodologies
and its contributions are empirically verified [59], [82]. As
SLR studies use a lot of different input modalities and pursue
a range of different objectives, it is logical that the scope of
normalization techniques found in this field is quite broad.
Most of the techniques are visual in nature, and involve
changes of images to fit them into a standard format that
can be readily interpreted by the algorithm. This is frequently
done by altering the data on the level of pixels, since this is
how information is encoded in the machine learning models
during the feature extraction and network training stages.

Some of the simplest examples of normalization meth-
ods used in SLR are image resizing and re-shaping, as
demonstrated in Kratimenos et al [83] and several other
works [59], [84]. Garurel et al [85] also normalize the size
of each frame to fit feature map dimensions, using mean
values and standard deviations obtained during training to
find the most optimal size. Cropping is another frequently
used method that can improve the quality of visual data and
make sign recognition more reliable by removing sources
of possible confusion for the algorithm. Input images are
typically cropped in such a way to eliminate all regions
except those depicting hands and face, which are crucial for
sign language communication. In [86], cropped images are
normalized based on the average length of the neck, thus
negating the impact of the distance from camera for every
image. In [87], a benchmark signer is selected and input from
other signers is standardized based on positions of key joints.
Contour extraction is used to this end as well, for example
in [88], with the main focus on the areas corresponding to
hands, with background removed from the image. For SLR
methods that rely primarily on video for raw input, frame
downsampling is frequently used to standardize the quality
of various clips and reduce computational demands.

In [44], normalization and filtering processes were applied.
The intensity histogram of an image was equalized and all
pixels were normalized to the [0,1] interval. Gabor filters
were then applied to the processed images using four differ-
ent scales and orientations. An attempt was made to apply
bar filters to the depth and intensity images to obtain the
primary contours of the hands. Gabor filters were also used
in an experiment by Li et al. [76] to obtain hand features that
could be used for classification. While using Gabor filters,
images were normalized to a size of 96 × 96 pixels. In another
experiment in [40], principal component analysis (PCA) filter
convolutions learned from input images were used. As part of
the preprocessing, Koller et al. [63] applied a per-pixel mean
normalization to images and used pre-trained convolutional
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FIGURE 6: Primary data collection methods employed for SLR

filters located in the lower layers of their CNN model. Zhou
et al. [81] did not conduct any normalization process in their
experiment because the extracted features occurred naturally
in the range of [-1,1]. Another experiment by Yang et al. [65]
set a threshold to filter the minor skin-color area, an approach
that enhanced the robustness of the system by using the
second layer of their CNN model as a filter.

Other examples of normalization can be observed in the
experiments by [67], [70], [71].Balayn et al. [67] normalized
Japanese sign language (JSL) motion sentences and used
them as inputs and outputs for Seq2Seq models. Konstantini-
dis et al. [70] normalized hand positions, which were used as
inputs for the classifier together with cropped hand regions.
In their attempt to examine Chinese Sign Language, [71]
obtained a total of 1,260 images of basic signs in Chinese,
which were normalized to 256 × 256 optimized background
samples. Their model used 16 filters in the first convolutional
layer. The filters had a width and height of 7 and a channel
width of 3. Similarly, Koller et al. [77] applied a global
mean normalization process to images before fine-tuning
their CNN model.

Experiments to format and organize data in various ways
have been reported. Tang et al. [39] organized the hidden
layers of their models using various planes within which
all units shared similar weights. In another experiment by
Jiang et al. [71], the data were divided into training and
test sets, with the training set containing 80% of the total
images and the test set containing the remaining 20%. In a
different experiment that used a Kinect sign language dataset,
Huang et al. [41] formatted and organized their data into
25 vocabularies that were extensively used in daily life.
Each word was played by nine signers, and each signer
repeated each word three times. Using this approach, each
word was organized into 27 samples, yielding a total of 25 ×
27 samples. Eighteen samples were selected for training, and
the remaining samples were used for testing.

Many studies from this field also include filtering and data
augmentation steps, which have the purpose of improving the
quality of input and consequently boosting the accuracy of
the model. Random sampling or discarding of frames is one

of the most straightforward techniques found in literature,
where approximately 20% of input is eliminated. In [89], this
technique is complemented by random changes of brightness,
saturation, and other image parameters. Some of the data
augmentation methods used in [90] include Gaussian Noise,
Just Counter, and Future Prediction. The PoseLTSM tool
also employs some operations aimed at augmenting the input
images, with rotation of the hands around fixed points in the
wrists as one of the most original ideas. As with normaliza-
tion, the choice of filtering and data augmentation techniques
is directly related to the properties of the model and the type
of input, so it must be made with full understanding of each
individual implementation and its objectives.

3) Feature extraction
Feature extraction is a crucial step in all of SLR models, since
it impacts how the models are trained and consequently how
quickly they can become effective at distinguishing between
different signs/words. In all cases, features are derived from
raw data, and they refer to positions of body parts (key points
in hands and face) relevant for sign language communica-
tion. Features are calculated based on statistical operations,
and assigned weights proportional to their discriminatory
value [90]. In effect, features are expressed as vectors in
the latent space and allow the neural model to learn the
probabilities of their association with particular classes.

Several different feature engineering schemes are dis-
cussed, and in some cases a special tool was used for their
extraction. The final number of features as well as weight
distribution between them is typically optimized based on
their impact on accuracy and scalability of the model [40],
[81]. Various authors [38], [39] conducted feature extraction
processes in their sign language recognition experiments. Wu
et al. [38] carried out high-level feature extraction by fixing
the architecture of the network as [NX, N2, 1000, 1000, 1000,
1000, NTC ), where NX represents the dimension of the
observation domain and N2 represents the number of hidden
nodes. In another experiment, Rioux-Maldague et al. [44]
presented a novel feature extraction method for recognizing
hand poses using depth and intensity images. Images were
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de-interlaced by maintaining every other line in an image
to resize them from 128 × 64 to 64 × 64. Each resulting
64 × 64 image was unrolled as a 1 × 4096 intensity vector.
Tang et al. [39] extracted hand features by considering the
two hands as a whole, making the recognition process much
more accurate. A similar experiment in [40] used PCANet
for feature extraction to solve the challenges associated
with processing different image modalities. Li et al. [42]
exemplified the process of feature extraction by transferring
sensor signals from both hands into feature vectors. Such an
approach bypasses the approach of reconstructing the precise
shape of the hand, its orientation, and position.

Likewise, Camgoz et al. [64] used 2D CNNs to conduct
spatial feature extraction. The 2D convolution layers ob-
tained feature maps by using weights to convolve images.
Additionally, observations from [21] also demonstrated that
various stages of convolution and subsampling can be used to
extract spatial-temporal features. Based on these principles,
Huang et al. [41] extracted hand-crafted features from a
video containing sign language and used the features to train
a Gaussian mixture model-hidden Markov model (GMM-
HMM). Unlike Huang et al. [41], who oversaw the feature
extraction process manually, features such as finger length,
finger width, and angle of the finger were input directly
to the DNN in a separate study [43]. Instead of using 2D
CNNs, some experiments have used 3D-CNNs owing to their
capability to consider spatial and temporal relationships. For
instance, the authors in [11] used a ResNet model rooted
in a 3D CNN model to generate a representation of each
video clip considered. Within the same domain, the authors
in [45] developed a neural network that uses a stack of layers
to extract features. In [71], a convolution layer was used to
extract various features of the input. The authors in [72] used
a trained CNN as the feature extractor for an SVM.

Another experiment by Konstantinidis et al. [37] extracted
a mixture of video and skeletal features from video se-
quences. The video features were the image and optical flow,
while the skeletal features were the body, hand, and face.
The VGG-16 network pre-trained on ImageNet was used to
extract video features, whereas FlowNet2 was used for the
optical flow images. A similar experiment by Konstantinidis
et al. [70] used a mixture of the ImageNet VCG-19 network
and conv44 for feature extraction. The key features extracted
during the experiment included 18 body and 21 hand joints in
2D. Rao et al. [68] conducted human-like feature extraction
and recognition. These features are those used by human
interpreters to recall signs accurately.

There have been a few experiments that seek to avoid or
simplify the feature extraction process. For instance, Yang et
al. [65] used a CNN owing to its capability to avoid com-
plicated feature extraction processes. Therefore, it allowed
direct image input into the sign language recognition system.

4) Feature selection
Feature selection is a crucial step in the design of practically
all machine-learning-based sign language recognition model.

Basically, it involves a reduction of data to a limited number
of relevant statistical parameters, which are then fed into the
machine learning network as input [91]. The idea is to include
only those features that significantly contribute to the ability
of the algorithm to distinguish between different classes,
effectively limiting the number of computations necessary
to obtain an accurate prediction. Thus, the exact number of
selected features may vary from one model to the next, de-
pending on the type of algorithm used, structure and volume
of raw data, and the main tasks that the machine learning
classifier will be expected to complete [92].

Researchers use many different methodologies to rank
features based on their relevance and select those that de-
serve to be included. Broadly speaking, there are two major
types of feature selected techniques – supervised and unsu-
pervised [91]. In terms of the principles used to rank the
features, we can talk about Filter methods (such as variance
threshold, correlation coefficient, or Chi-square test) which
capture some of the native properties of each feature, and
Wrapper methods (i.e. forward feature selection or backward
feature elimination), which measure how a proposed set of
features works with a particular algorithm [92]. There are
also Embedded (LASSO regularization or random forest
importance) and Hybrid approaches, which combine some of
the main strengths of both Filter and Wrapper methods. With
so many possibilities for feature selection, researchers need
to take the specifics of their project into account and use the
scheme that best suits the classifier, the key tasks, and the
data [93].

Some experiments that conduct feature selection include
those in [39], [81]. In [39], a deep neural network was used,
reducing the need to manually select certain features. The
deep neural network autonomously detects and obtains useful
features . Another example of the feature selection process
was presented in [81], where 215 distinct test sentences
were selected to represent conventional conversations in sign
language. Another experimental work by Konstantinidis et
al. [70] selected only 12 out of the total of 18 features ex-
tracted from body skeleton joints. The selection was based on
the fact that the signers in a sign language dataset are usually
in a sitting position , and the skeleton joints of their legs
are usually not visible. Apart from CNN, some experiments
also used PCA to facilitate the feature selection process. The
use of PCA is guided by the fact that PCA is a conven-
tional dimensionality reduction approach that can be useful
when processing image data, which typically involves high-
dimensional space. For instance, the authors in [76] used
PCA to conduct feature selection and dimensional reduction.
A different experiment by Huang et al. [43] illustrated the
use of a DNN (deep learning or feature learning) in the
generation and selection of features. In essence, a DNN has
the capability to autonomously analyze and generate features
from raw data.

10 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3110912, IEEE Access

C. SIGN LANGUAGE MODELING AND RECOGNITION
Sign language modeling focuses on developing an articulate
model from the phonetic to the semantic level for language
representation. The modeling process covers various aspects,
ranging from the use of the signing space to the synchroniza-
tion of manual and non-manual features such as eye gaze and
facial expressions. On the other hand, sign language recog-
nition entails pattern matching, computer vision, linguistics,
and other aspects of natural language processing [94]. The
objective of sign language recognition is to establish different
methods and algorithms that can recognize already developed
signs and perceive their meaning. The techniques for sign
language modeling and recognition discussed in this section
include classic , deep learning, SLR continuous models, and
SLR isolated models.

1) Machine Learning
Machine learning refers to the science of using computers
to complete a task without having to program them explic-
itly. In many cases, machine learning algorithms are usually
provided with general guidelines that characterize the model
along with the necessary data. The data usually contain
information to allow the model to complete a given task. This
means that a machine learning algorithm can achieve its task
when the model is adjusted based on the associated data.
Examples of machine learning algorithms include SVM,
PCA, and LDA, among many others.

Support Vector Machines
A support vector machine (SVM) is a supervised machine
learning model that uses classification algorithms for classi-
fication problems involving two groups. Feeding new sets of
labeled training data into an SVM model can result in group-
ings of new examples. Past experiments have used SVM for
this and many other purposes. Nguyen et al. [72] applied
multiclass SVMs to learn extracted data . The validation
accuracy of the CNN-SVM model was lower than that of
the HOG-LBP-SVM model. However, the CNN-SVM model
had a better chance of avoiding overfitting . The demand
for real-time performance was evaluated in [76] to compare
the most popular classifiers, which combine softmax and
linear SVM. SVM and softmax performed better than other
advanced classifiers in terms of accuracy. Additionally, it was
observed that an SVM classifier featuring a linear kernel
required more training time but performed better than the
softmax-based classifier. Similarly, an experiment by [43]
attempted to compare the performance of DNN and SVM by
using the same dataset. The results indicated that DNN had
a better recognition rate than SVM. Similarly, the authors
in [46] identified SVM as a suitable classifier for real-
time sign language recognition. While exploring American
Sign Language, Chong et al. [52] used SVM and a deep
neural network as a sign language recognizer. The outcome
of the experiment showed that the rate of sign language
recognition for 26 letters was 80.30% when using SVM and
93.81% when using DNN. It was also observed that the
recognition rates for a grouping of 26 letters and 10 digits

were slightly lower at 72.79% for SVM and 88.79% for
DNN. The performance of the SVM was inferior to that of
the DNN in sign language recognition. Similarly, Huang et
al. [49] applied SVM to their approach for recognizing a
large-vocabulary sign language. The SVM scheme used in
the experiment facilitated the process of mean pooling over
clipped features to produce a fixed dimension vector as the
video feature representation. Huang et al. [49] trained an
SVM for classification based on video features. Despite the
use of SVM, the authors noted that their machine learning
approach disregards temporal information during the mean-
pooling process. The effectiveness of the SVM in a hybrid
system was also evaluated in [95]. The experiment examined
the classification accuracy of a HOG+SVM system. The hy-
brid system included a HOG feature extractor that produced
64-dimensional features and an SVM classifier that was
fed canonical handshapes. Improvements in accuracy with
the HOG+SVM system were between 14.18% and 18.33%
compared to SVM alone.

Principal Component Analysis
PCA is used in computer vision to reduce dimensionality or
to extract features. Many recent experiments have used PCA
in sign language recognition as a dimensionality reduction
mechanism. PCA can best be described as an orthogonal
linear transformation that converts the original data into a
new coordinate system having a reduced number of dimen-
sions. In [40], a fingerspelling recognition system based on
PCA was proposed. The convolutional layer of the proposed
PCANet system features PCA. Another investigation focused
on training a CNN on 1 million hand images using PCA
[63]. Koller et al. [63] utilized 1024-dimensional feature
maps and applied PCA to reduce the dimensionality to 200.
Another experiment by [67] used PCA to select data streams
exhibiting a high variance represented by approximately 492
dimensions. The use of PCA on Kinect data has also helped
to reduce cases of overfitting. In a different experiment, [51]
used PCA to expand a matrix into a 210-dimensional vector.
These dimensional vectors are useful in the creation of an
enhanced scheme for the mel frequency cepstral coefficient
(MFCC), which is useful for sign language recognition.
Some experiments have compared their proposed approaches
to a hybrid version of PCA. In [96], the proposed method was
compared to other methods, including SAE+PCA. The out-
come of the comparison indicated that SAE+PCA performed
better than the proposed method, and achieved 99.05% accu-
racy. Other experiments have also shown interest in a vari-
ation of PCA, referred to as recursive principal component
analysis (RPCA) for feature extraction. While exploring the
features of SLR systems, [97] reported that using RPCA
achieved a classification rate of 98%.

2) Hidden Markov Model HMM
This method relies on statistical operations that can reveal
trends from the complex interaction of motions within a
space-time continuum. It was first applied to the field of SLR
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by [98] in 1996, while [99] used in 1997 to classify isolated
hand gestures based on visual input, achieving solid perfor-
mance with the most optimal parameters. Variations such as
dual HMM [100] or factorial HMM [101] were suggested
at approximately the same time, seeking to build on the
promising performance of the base model. Those studies con-
firmed that the model requires a lot of data during the training
stage in order to arrive at sound statistical projections. Soon
after, Wilson & Bobick [102] proposed a parameter-based
improvement of this method, while authors in [103] proposed
using parallel computing within this paradigm. The same
principle was developed further by [104] to solve language-
based problems. This approach was demonstrably more cost-
efficient than any of the earlier HMM implementations and
capable of reaching accuracy in excess of 94% for static signs
and over 84% for dynamic signs in continuous speech by
using 80% of the sample for training and 20% to test the
model. Another class of models from this group is called
input & output HMM, and was first developed by [105]
to deal with material that is less homogenous. The same
concept can be applied with success to track positions of
hands during sign language communication, as demonstrated
by [106], with accuracy of output of more than 70% when
distinguishing between 16 signs based exclusively on hand
movement.

Further development of the input/output HMM model was
achieved in 2009 by [107], who introduced a cut-off point
a thus managed to push the accuracy over 90%, albeit only
when the total number of signs to be recognized was smaller
than 20. An alternative was proposed by [108] in 2003, who
called their method Left & Right HMM but were unable to
significantly improve SLR performance over earlier version.
A combination of HMM with GMM models can be useful
for hand sign recognition even when the available data is
scarce, as shown by [109], although reliability of the system
decreases in this case. Hidden Markov Models were also used
by [110] to analyze data collected with the help of multiple
video cameras. While those methods have certain benefits,
their application to the field of SLR requires additional work.
In recent years, some researchers tried to use HMM alongside
other methodologies in order to obtain better results. One
such attempt was done by [111] in 2011, where this method
was deployed together with PCA to determine key features of
hand signs. On the other hand, authors in [112] added HMM
to an RNN model tasked with tracking contours of hands
during sign language communication, but were successful
only when working with a limited number of already known
signs. Yang et al [113] developed a variation of HMM that
was aimed at shortening the calculation time, but this method
requires certain conditions to be met, for example the length
of each gesture must be limited. In the work of Belgacem et
al [114], CRF method and HMM were used in combination to
process training samples with scarce distribution, but with a
lot of possible options the discrimination process is still very
demanding.

Many continuous processing tasks experience terrestrial

alignment challenges, which can often be resolved using
hidden Markov models. In [63], an EM-based algorithm was
incorporated into HMMs to facilitate weak supervision and
overcome the challenges associated with video processing.
Zhou et al. [81] used HMM techniques to develop a model
framework that makes continuous sign language recognition
possible. The use of HMM allows the resulting system to
scale up to a larger vocabulary, allows modeling of signs
and of transitions between signs, and decoding and training
are possible even with new deep learning algorithms. In an-
other experiment, the authors in [41] evaluated the Gaussian
mixture model-hidden Markov model (GMM-HMM) as a
baseline method. Trajectory and hand-shape features were
extracted and used to train the GMM-HMM for recognition.
An average accuracy rate of 90.8% was achieved when using
trajectory as well as hand-shape features. A similar experi-
ment by [49] also used GMM-HMM to facilitate temporal
pattern recognition (automatic speech recognition as well as
sign language recognition). Alternatively, combining HMM
and BLSTM-NN yielded an accuracy of 97.85% for single-
hand signs and 94.55% for double-hand signs [115].

Another experiment by Cui et al. [3] examined the role of
HMMs in continuous sign language recognition. HMMs are
among the most popular temporal models for sign language
recognition. However, the framework developed in Cui et
al.’s study performed better than HMMs. Their framework
used recurrent neural networks in the sequence learning
module.

3) Deep Learning Techniques
Deep learning is an incipient field of machine learning that
focuses on learning representations of data [38]. However,
the ability of deep learning techniques to capture seman-
tics contained within data is limited by the complexity of
the models and the underlying details of the input to the
system [37], [38]. Advances in the field of deep learning
have strong implications and applications for sign language
interpretation using neural networks. Key deep learning tech-
niques that have been applied in recent experiments include
backpropagation, convolutional neural networks, recurrent
neural networks, recurrent convolutional neural networks,
attention-based approaches, deep belief networks, PCANets,
SubUNets, logistic regression, transfer learning, and hybrid
deep architecture.

Backpropagation
Backpropagation is a supervised learning algorithm used
to train feedforward neural networks. The basic equations
describing the learning process are given by (1) and (2) .
This classic multilayer perceptron (MLP) technique was used
by Rioux-Maldague et al. [44] to train a translation layer.
The output layer was trained using normal backpropagation
to interpret the activations of various restricted Boltzman
machines (RBMs) into a 24-dimension softmax vector for
every 24 letters. Training was conducted based on 200 epochs
of backpropagation and used both weight decay and early
stopping. A fine backpropagation phase was also conducted
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using the entire network but at a much lower learning rate. In
addition, Wu et al. [38] adopted the standard backpropagation
method to adjust the weight of each modality

θt+1 = θt − α∂E
∂θ

(1)

E =
1

2N

N∑
i=1

(yi − yí)2 (2)

where theta is a weight θ, alpha α is the learning rate.
Deep Belief Network

Some sign language experiments have used a deep belief
network (DBN) to classify learning representations. DBNs
are comparable to multilayer perceptrons (MLPs), but they
have many additional layers in their structure. The extra
layers in DBNs provide enhanced learning potential, even
though these layers are usually difficult to train. However,
recent work has facilitated DBN training. For instance,
Rioux-Maldague et al. [44] used a DBN consisting of three
restricted Boltzmann machines (RBMs) and a single extra
translation layer. Tang et al. [39] used DBNs to implement
hand posture recognition. Based on the recognition results,
the DBN attained a high recognition accuracy of 98.12%,
which was better than the baseline HOG+SVM approach.
Similarly, Huang et al. [43] established a deep neural network
that can recognize various signs based on Real-Sense. The
technique uses 3D coordinates of finger joints because the
model can learn key recognition features from the raw data.
The average rate of recognition of this DNN based on Real-
Sense was 98.9%, while that of a DNN based on Kinect
was 97.8%. An additional experiment that used the deep
belief network was conducted in [96]. An American Sign
Language dataset was used to examine the structure of a deep
belief network and its performance in gesture recognition.
The experiment compared DBN with other classic methods
for recognizing gestures (a convolutional neural network and
a stacked denoise auto encoder), and the results demonstrated
a much higher performance by the designed DBN.

Convolutional Neural Network (CNN)
A Convolutional Neural Network receives an input image,
assigns significance to different aspects of the image, and
differentiates one image from another. Figure 7 shows the
basic CNN architecture mode for sign language recognition.
CNNs require a much lower level of pre-processing com-
pared to other deep learning algorithms [63]. While these
networks perform strongly in many tasks [65], they require
large amounts of labeled training data [67], [71]. Hand shape
recognition, a process influenced by the pose of the subject,
has a remarkably high rate of intra-class ambiguity, which
results in an added burden to acquire training data. In many
cases, only a few specific labeled datasets exist in the gesture
and sign language recognition field. As such, CNN has
been used because it can be trained easily. In [63], a CNN
was embedded within an iterative expectation-maximization
(EM) algorithm, which allowed the CNN to be trained using
a very large number of model images. The CNN achieved

a recognition accuracy of 62.8% on over 3000 hand shape
images that were labeled manually.

Some experiments focus on American Sign Language,
such as in [72]. The methodology applied an end-to-end CNN
architecture to a training dataset for comparison purposes.
Additionally, CNN and SVM were combined to act as a
feature descriptor, producing acceptable accuracy. Another
related experiment by Li et al. [76] used CNN to process
images of a large size. The CNN shares the weights of
the images, thereby significantly reducing the number of
parameters that need to be learned. This also reduces the
risk of overfitting. CNN also finds invariant features that are
particularly useful during image processing. By combining
CNN with various PCA layers, [76] developed a hierarchi-
cal model that proved useful for recognizing fingerspelling
in American Sign Language. Similarly, the authors in [73]
developed a CNN focused on grouping fingerspelling images
using a mixture of image intensity and depth data. The CNN
was evaluated by applying it to American Sign Language
with respect to fingerspelling recognition, and the developed
CNN performed better than CNNs evaluated in previous
studies. Specifically, the CNN achieved a precision of 82%
and a recall of 80%.

Similar observations concerning American Sign Language
were noted in an experiment by Taskiran et al. [116], where
a CNN structure was used to extract and classify features
obtained from the American Sign Language. The CNN model
had the following features: an input layer, a pooling layer,
two 2D convolutional layers, two dense layers, and a flatten-
ing layer. The resulting system achieved high accuracy, even
when evaluating letters that had shared gestures. Daroya et
al. [117] used a CNN model to examine the performance of
a framework they proposed. The experiment applied Alexnet
(an effective CNN model) and altered a few parameters to
adapt it to their dataset consisting of 28 × 28 pixel images.
In another trial, Shahriar et al. [118] attempted to recognize
American Sign Language using a real-time approach. Images
used in the experiment were categorized using CNN and
deep learning. A CNN was used to obtain features from the
images, while the deep learning method was used to train
a classifier to identify sign language. Specifically, the CNN
model was trained to produce a 4096-dimensional feature
vector for the following classes: face, A, palm, and v. Similar
to [119], the authors in [118] also used AlexNet, a built-
in neural network consisting of 25 layers that was pre-
trained extensively. The output of the image features indi-
cated that the CNN model, together with the deep learning
method, managed to classify input images with a high level
of accuracy. Similarly, Cayamcela et al. [120] used a CNN
model to translate American Sign Language from a real-time
perspective. The CNN model was trained using a dataset con-
sisting of several instances obtained from the American Sign
Language alphabet. The CNN obtains features from every
pixel and develops precise predictions based on a translator.
In general, the CNN model achieved higher accuracy than its
comparable counterparts.
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FIGURE 7: Basic CNN Model used in Sign Language Recognition

In [65], a CNN was integrated into a novel video-based
recognition method and used to obtain upper-body images
precisely from videos. In the experiment, the CNN model
was trained for recognition, thereby simplifying the feature
extraction process. The CNN circumvented the complicated
feature extraction process by allowing direct image input. In
addition, a Chinese Sign Language recognition method using
this CNN model achieved a high accuracy of 99%. Simi-
larly, [45] used deep convolutional neural networks (DCNNs)
to develop a new method that can facilitate Bengali Sign
Language recognition. Hossen et al. [45] used a network
consisting of a convolution layer, a ReLU layer, a max-
pooling layer, a fully connected layer, a dropout layer, and a
softmax layer , which achieved an accuracy of 84.68%. This
accuracy is remarkably high, considering that a very small
dataset was used to train and test their network.

A similar experiment focusing on the Chinese Sign Lan-
guage used a CNN consisting of six layers to facilitate
fingerspelling recognition [71]. The deep learning approach
consisted of various components such as dropout, maximum
pooling, and batch normalization. The CNN achieved an
overall accuracy of 88.10 +/- 1.48%, and a maximum ac-
curacy of 90.87%, which was higher than other established
approaches. Recent experiments have focused on the Arabic
Sign Language. Shahin et al. [121] introduced a system
that could recognize Arabic sign language using a vision-
based approach. In the design of the system, deep learning
methodologies relying on CNN were used to attain a high
level of accuracy without the need for sensors . The results
of the experiment were very promising for the application of
CNN in the recognition of Arabic sign language. In addition,
Yasir et al. [122] used the CNN approach to train a dataset
obtained from the Bangla Sign Language. The use of this
data classification technique was guided by the fact that
CNNs require little pre-processing when compared to other
image classification algorithms. The resulting model had a
validation accuracy of 94.88%.

Previous experiments have focused on the Indian Sign
Language. Rao et al. [123] observed that it is exceedingly

difficult to classify complex head and hand movements ow-
ing to their ever-changing shapes. Because of this, the use
of CNN was proposed to recognize gestures in the Indian
sign language. They trained the CNN using three varying
sample sizes, each consisting of different sets of subjects and
viewing angles. Different CNN architectures were designed
and evaluated, from which much better recognition accuracy
was achieved. Specifically, Rao et al. achieved a recognition
rate of 92.88% when using CNN. Another test in this domain
was conducted by Sajanraj et al. [124], who developed a
real-time system to convert Indian Sign Language into text.
A deep learning method (CNN) was introduced to classify
the sign language. The accuracy of the resulting system was
99.56%. Additionally, the authors in [15] used a VGG-19
network to recognize sign language from video sequences.
VGG-19 is a type of CNN that has been trained using more
than 1 million images obtained from the ImageNet database.
Generally, the VGG-19 network is 19 layers deep and can
categorize images into 1,000 object categories. Konstantini-
dis et al. [70] used VGG-19 because it has learned rich feature
representations for different image ranges. Within the same
scope, the research contribution by Koller et al. [77] demon-
strated a scheme that can be used to train a CNN in a super-
vised manner. The experiment took the outputs of the CNN
classifier and incorporated them with an HMM approach,
thereby allowing iterative learning of video data. Through
this approach, a significant improvement was reported in the
classification performance of the deep learning technique.
Huang et al. [41] proposed a 3D CNN approach designed to
automatically obtain discriminative spatial-temporal features
from raw video streams. In their CNN architecture, for every
type of visual source, nine frames measuring 64 × 48 were
considered and centered on the existing frame as input. The
3D CNN achieved an accuracy of 88.5% when implemented
on a gray channel, and 94.2% when implemented on multi-
channels.

Some experiments have applied deep learning to classify
RGB images. For instance, in [117], a CNN was used as an
approach that can classify RGB images of static hand poses
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(representing a letter) associated with sign language. This
method is based on DenseNet. In essence, the approach could
classify sign language images in real time and performed well
with an accuracy of 90.3%. Similarly, Rastgoo et al. [125]
used a CNN model called a faster region-based convolutional
neural network (Faster-RCNN) to detect hands in an input
image. The purpose was to examine how a generative deep
model can be used to obtain data from modeled data distribu-
tion probabilities and whether it can enhance the recognition
performance of up-to-the-minute alternatives for recognizing
sign language. The CNN detected input images as either
original, cropped, or noisy cropped images [125]. CNNs have
also been used in attempts to resolve the challenging task
of gesture and sign language recognition in a constant video
stream. For instance, Pigou et al. [126] used a deep learning
approach and temporal convolutions to address this problem.
The CNN model featured certain improvements that made
it easier to conduct the classification process. The use of
temporal convolutions was important for coping with the
spatiotemporal nature of the data. Upon evaluation, the CNN
model achieved a top-10 frame-wise accuracy of 73.3% when
trained on the Corpus NGT and 55.7% on the Corpus VGT.

A recent experiment by Gunawan et al. [47] modified a
CNN model and used the outcome to recognize sign lan-
guage. The modified CNN is referred to as the i3d inception
model and is based on the inception v1 model. The archi-
tecture of this model was used because of its capability to
enhance the outcomes of previous experiments that used the
ResNet-50 models, Two-Stream Fusion + IDT, and the C3D
Ensemble. The i3d inception model was composed of 67
convolutional layers, including the input and output layers. In
addition, the model contained nine inception modules. The
outcome of the experiment indicated that the i3d inception
model achieved fair training accuracy but an extremely low
rate of validation. Correspondingly, Soodtoetong et al. [48]
used a 3D-CNN to assess its efficiency in sign language
recognition. The 3D-CNN model was used to determine the
predictive gestures. The results of the experiment demon-
strated that the 3D-CNN algorithm could identify gesture
motions accurately, with the highest recognition rate being
92.24%.

Another experiment by Nakjai et al. [127] used a CNN
model as part of the base model of YOLO. YOLO was
used in the experiment to detect objects in real time, and
CNN was its support model. The Darknet-19 architecture was
used, which consisted of 19 convolution layers as well as 5
max-pooling layers with varying numbers of filters and filter
sizes. Furthermore , Papadimitriou et al. [95] used a CNN
variant to introduce a hybrid, vision-based, two-stage system
that could effectively extract the shape of the hand. The
convolution operation was changed in the CNN to enhance
the learning capacity of the model. The alteration focused
on the convolution scheme, leading to nonlinear behavior of
the network output. The AlexNet architecture was used as
part of the CNN. Additionally, the developed model followed
the normal CNN layer pipeline, which involves convolution,

pooling, and corresponding activation functions. The clas-
sification accuracy of the proposed method was tested and
outperformed existing alternatives.

Recurrent Neural Network (RNN)
RNN is an influential model used to facilitate sequential data
modeling. This approach has been used extensively and has
been proven successful in a variety of important tasks, such
as speech recognition, natural language processing, video
recognition, and language translation. Figure 8 shows the
basic RNN Encoder-Decoder architecture used for sign lan-
guage recognition. Fang et al. [128] used a bidirectional RNN
and long short-term memory (LSTM) in their experiment to
facilitate universal and non-intrusive word and sentence-level
translation of sign language. The outcome of the experiment
indicated that the RNN model could successfully capture the
important features of American Sign Language words.

A feature of RNNs that has been applied in some ex-
periments is LSTM. For instance, Kavarthapu et al. [129]
applied a bidirectional LSTM as the encoder and a second
LSTM within the embedding layer as the decoder. The use
of bidirectional LSTM in sign language recognition is sig-
nificant because it allows the collection of information in
an abstract manner. A standard LSTM was used to mini-
mize the loss function. The results demonstrated that the
bidirectional LSTM performed very well. Its performance
could be attributed to the aptitude of the bidirectional LSTM.
Correspondingly, Rakun et al. [130] attempted to use LSTM
to recognize Indonesian Sign Language. LSTM was used in
the experiment because the model can use full sequences
as input and does not depend on pre-clustered per-frame
data. The outcome of the experiment indicated that the 2-
layer LSTM model achieved the best performance among the
models compared and was 95.4% accurate in classifying root
words. However, the LSTM model achieved a much lower
accuracy of 77% when used on inflectional words, which
can be attributed to the challenges involved in identifying
prefixes and suffixes. The architecture used in [131] featured
an RNN consisting of LSTM cells. In the architecture, the
feature vector from every frame was provided as the input at
every time step. The output layer was composed of a softmax
classifier. LSTM was used to guarantee the real-time trans-
lation of sign language. The resulting model could translate
continuous sign language videos into comprehensive sen-
tences in English and was regarded as being highly effective
in facilitating communication through sign language.

A few recent experiments have also used LSTM to
recognize Indonesian sign language gestures. In [132], 2-
layer LSTM neural networks were used to identify Sis-
tem Isyarat Bahasa Indonesia (SIBI) gestures. The neural
network achieved very high accuracy rates of 91.74% for
prefix, 98.94% for root, and 97.71% for suffix datasets [132].
Attempts to address the challenges associated with sign
language translation have led to increased use of hierarchi-
cal deep recurrent fusion (HRF) networks. Guo et al. [50]
developed a hierarchical recurrent architecture to encrypt
visual semantics with varying visual granularities. The HRF
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FIGURE 8: Basic RNN Encoder-Decoder model used in Sign Language Recognition

decodes a sentence by using complementary RGB visemes
as well as skeleton signemes. The steps used were as follows.
The HRF encoded the entire visual content after translating
the video into various neural languages. Next, Guo et al. ex-
plored the use of adaptive clip summarization (ACS) to delve
into sign action patterns in sign language translation. They
also proposed an adaptive temporal segmentation scheme
that differed from past models that obtain key frames or
clips over a fixed time interval. In the next step, a hierar-
chical adaptive temporal encoding network was developed
that condensed the time span. In addition to HRF, LSTM
was selected as the basic RNN unit. The top layer of LSTM
was responsible for learning the persistent characteristics
of the original features. The medium layer was responsible
for learning the recurrent features of compact visemes or
signemes. The bottom layer transformed the visual informa-
tion into textual semantics. As mentioned earlier, the main
idea of the suggested model was to learn the descriptors of
sub-visual words, such as visemes and signemes. Detailed
experiments indicated that the HRF framework, working on
the basis of LSTM, was highly effective.

Recurrent Convolutional Neural Networks (RCNNs)
Cui et al. [133] introduced a recurrent convolutional neural
network to map video segments to glosses. They used an
RCNN to extract features and facilitate sequence learning. By
developing their architecture using RCNN, the performance
could be equated to state-of-the-art models without having to
introduce additional information. In this sense, the RCNN as-
sisted in the process of continuous sign language recognition.

PCANet
Another type of deep learning technique used in sign lan-
guage experiments is PCANet. Although this deep learning
method has been proposed only recently, it is highly effective.
As evident in [40], PCANet is very successful in solving
many problems associated with object recognition and can
be used to learn features obtained from intensity and depth
images. Fingerspelling was recognized using two PCANet
models to cover every color and depth input present in im-
ages. Empirically, the use of a two-stage PCANet is sufficient
to achieve acceptable performance. As a result, developing a
deeper architecture may not necessarily enhance the perfor-
mance of this deep learning technique. Additionally, Aly et
al. [13] used the PCANet deep learning architecture to recog-

nize the alphabet in American Sign Language. Unlike [40],
Aly et al. [13] proposed two approaches that could be used
to train the PCANet models: the single PCANet and user-
specific PCANet feature models. The single PCANet was
trained using samples obtained from all users. In contrast ,
the user-specific PCANet was used to train various PCANet
models, where individual models learned certain features
from individual users. The extracted features were then iden-
tified using a linear SVM classifier. Inspired by the many
achievements of the PCANet deep learning architecture, the
model was used to autonomously learn depth features from
segmented regions of the hand.

SubUNets
A few other experiments have used SubUNets to facilitate
sequence-to-sequence tasks. In [64], the authors used Sub-
UNets, which is a new deep learning architecture that pro-
duces a series of outputs from video. Unlike the other video-
to-text methods, the approach mimics the contextual subunits
of a task while simultaneously training the network for the
key task. When dealing with the challenges of sign language
recognition, SubUNets detect and identify individual signs
in a certain video and generate a text translation. SubUNet
features three tiers of neural networks. The first tier includes
CNNs, which take images as inputs and are responsible for
extracting spatial features. The second tier uses bidirectional
LSTM (BLSTM) layers, which model the spatial features
obtained from the CNNs [64]. The final tier includes a
connectionist temporal classification (CTC) loss layer, which
allows training the networks using videos of different lengths
and label sequences. After being trained on the Deep Hand 1
million hands dataset, SubUNets achieved a Top-1 accuracy
of 80.3% and a Top-5 accuracy of 93.9%.

Hybrid Deep Architectures
In many instances, the use of a single deep learning tech-
nique is challenging. As a result, some experiments have
combined deep learning techniques. For instance, [39] noted
that the process of training DBNs was difficult to parallelize
across different computers. They evaluated this issue by us-
ing CNNs for comparison purposes. The recognition results
indicated that CNN achieved a high recognition accuracy rate
of 94.17%, although this was lower than the accuracy of the
hybrid DBN approach.

Wang et al. [66] proposed a hybrid deep architecture to
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address the continuous sign language translation (CSLT)
problem. The hybrid model featured the combination of a
temporal convolution (TCOV) module, a bidirectional gated
recurrent unit (BGRU) module, and a fusion layer (FL)
module. In the model, TCOV is responsible for capturing
short-term temporal transitions, whereas BGRU preserves
the long-term context transitions that occur across temporal
dimensions. The FL then links (fuses) the embedded features
in both the TCOV and BGRU outputs to learn their cor-
responding relationships. Experimental results demonstrated
that this hybrid deep architecture improved accuracy by 6.1%
in terms of the word error rate (WER) compared to single
deep learning techniques.

A CNN has also been used in combination with a bidi-
rectional recurrent neural network (Bi-RNN). Combining
these techniques, the authors in [69] used a 3D CNN to
obtain features from every video frame and a Bi-RNN to
generate unique features from the sequential behavior present
in individual video frames. On average, the hybrid approach
exhibited a higher average word error rate and a similar
character error rate when compared to the Lipnet model.
Comparably, Cui et al. [3] combined a deep CNN with
a Bi-LSTM to extract features. The CNN model proved
useful in learning spatiotemporal representations from the
input of video streams. Then, Bi-LSTMs were used to learn
more complicated dynamics. Bi-LSTMs iterate LSTM com-
putations by calculating both forward and backward hidden
sequences. The authors employed Bi-LSTMs because unidi-
rectional RNNs are limited in the sense that they can only
calculate hidden steps based on past time steps.

The authors in [49] employed attention-based 3D-CNNs
to facilitate the recognition of large vocabularies in sign
language. The attention-based framework has two primary
advantages. First, the model can learn spatio-temporal fea-
tures based on raw video input without having previous
knowledge. Second, attention mechanisms assist in selecting
clues. In this case, attention-based 3D-CNNs were assessed
using Chinese Sign Language data and the ChaLearn14
benchmark. The outcome demonstrated the higher accuracy
of the approach compared to other advanced algorithms.
In [115], transfer learning was used to tune an ASLR model
to detect Indian sign language. Transfer learning helped in the
learning of new classes even in situations when new training
sets were limited in size.

While focusing on American Sign Language, Oyedotun et
al. [74] applied a mixture of deep learning-based networks
to recognize hand gestures collected from a public database.
The techniques applied were CNN and a stacked denoising
autoencoder (SDAE). The recognition rate of CNN was
91.33%, while that of SDAE was 92.83% when evaluated
on test data that were not part of the training data. Another
experiment by Bantupalli et al. [134] examined American
Sign Language using a mixture of CNN and RNN. In this
case, Inception, a CNN model, was used to identify spatial
features from a video stream designated for sign language
recognition. Next, the experiment used LSTM and an RNN

model to obtain temporal features from sequences of videos
using two approaches: outputs were generated from softmax
and from the pooling layer of the CNN. Despite the success
of the experiment, the authors suggested that the use of
capsule networks rather than Inception may have yielded
better results in sign language recognition.

4) Transformer-Based Approach
A range of different methodological approaches to sign lan-
guage recognition can be found in the reviewed literature,
but there are some basic principles shared by nearly all of
them. In particular, the studies are focused on attention-based
neural models with transformer architecture [135]. In this
computing paradigm, encoder and decoder stacks are used to
train the model for the classification of sign language samples
as you can see in the diagram in Fig. 9. This approach has
been proven successful with other types of tasks, and offers
some unique advantages over earlier models. In this case,
the models are expected to capture the relationship between
temporal and spatial cues, and deduce the intended sign based
on them. A tokenization procedure is performed to break
down the input and output into frames/key points and word
embeddings [136].

One of the unique limitations of transformer models is that
they lack positional information for the inspected sequences,
necessitating the introduction of the temporal ordering step.
Therefore, feature extraction is another necessary element of
all transformer-based neural models, where the most relevant
features derived from input tokens are selected and later used
for model training [85], [136]. Some of the features delineate
between signs (inter-cue features), while others are useful to
differentiate the particular gloss from similar ones (intra-cue
features) [89], [137].

In one hybrid model, a separate neural network of the CNN
type is used to extract the features from video input, greatly
improving the efficiency of the process. The classification
step is typically performed by a Bi-directional Long Short
Term Memory (Bi-LSTM) module or an encoder-decoder
stack, comprising several successive layers in both cases.
The exact depth of the model and the number of deployed
attention heads varies depending on the intended use of the
model and other factors, and can be optimized for best per-
formance based on the empirical evaluations. For example,
some studies propose using only two layers in transformer
models (as opposed to standard six used for Natural Lan-
guage Processing), while others introduce a linear projection
layer and a softmax attention layer on top of the stack [83],
[86]. A normalization procedure is used to improve the
efficiency of model training, which is driven by maximizing
conditional probabilities and minimizing cross-entropy loss,
while a validation procedure fine-tunes the model for the
particular purpose.

Networks of this type were tested in several roles, includ-
ing for isolated [138] and continuous SLR [139], as well
as translation of sign language into spoken language. Video
footage and skeletal data were used as input modalities,
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(a) Transformer-based SLR Main Architecture

(b) A detailed overview of a single layered Sign Language Transformer

FIGURE 9: Transformer-based Model used in Sign Language Recognition [136]

but this methodology could conceivably also be used with
different modalities [88]. Versatility of the deep learning
approach with transformer architecture is very welcome in
this challenging field, since the output can be specialized
through the selection of training dataset and features, as
well as training hyper parameters. Several interesting ideas
were presented in the reviewed literature that could addition-
ally refine the ability of encoder models to understand sign
language, for example gloss-level supervision or the use of
specialized pose estimation tools. With those improvements,
some of the long-standing difficulties in the SLR field could
finally be permanently resolved [140].

All studies from this group include an experimental eval-
uation of the proposed deep learning model, typically com-
paring its results with those obtained with alternative SLR
approaches. The methods based on transformer architecture
tend to outperform simple sequence to sequence models and
other benchmarks by a significant margin on most datasets.
The most optimal version of the algorithm can typically
correct predictions in up to 85% of cases for tasks such as
pose estimation, around 70-75% for isolated SLR, and up
to 45% for the more demanding translation task. In some
cases, the gains over competing methods were small, but in
certain instances the improvements were quite dramatic. In
addition to the task, several other factors such as the size
of vocabulary, the size of the training dataset, and exact
configuration of the network etc., could affect the quality
of output [141]. While insights gained from those tests are
extremely valuable, at this point it’s hard to draw any firm
conclusions about the most optimal setup that would guar-
antee high performance regardless of factors, such as the
identity of sign performer, local variation of sign language,
and environmental influences. From the data collected so far,
it appears that deep neural networks of transformer type have
a role in this scientific field, but it remains to be seen exactly
what that role should be and how it can be leveraged for
expanding the range of possible SLR applications [82].

While the methods based on transformer architecture bring
tangible improvements over earlier deep learning SLR sys-

tems, their accuracy is still not near the level where they could
be used in everyday practice without issues. Low accuracy is
especially apparent with more complex tasks, and it tends to
decrease as the complexity of analyzed sign language sam-
ples grows [139]. It’s possible that gaps in performance are
due to training samples and selected features rather than the
fundamental data processing approach, but this postulation
needs to be ascertained by more comprehensive testing and
the possible inclusion of additional input modalities and lo-
calized sign language variations [89]. Based on the presented
results, universal autonomous tools capable of continuous
SLR that is signer-independent and language-independent
remains a distant goal. Evaluation of the proposed encoder
models suggests that a slightly different architecture might
be optimal for SLR than for linguistic tasks, so it would be
very interesting to see innovative attempts to redefine trans-
former models and develop them with the explicit purpose of
interpreting sign language [142].

D. USING HAND GESTURE FOR SLR
Because of the importance of hand gestures for SLR, and
given the significant amount of scientific research that has
been carried out in this field, we limit our review to the most
important points while mentioning the most important stud-
ies. Gesture interpretation has been a subject of scientific re-
search for several decades; consequently, numerous reviews
of this field have been conducted at various points in time.
One of the earliest reviews was performed by Gavrila [143],
who considered several 2D and 3D models for the analysis
of human motion. Moeslund and Granum [144] provided
a comprehensive recapitulation of two decades of research
involving gesture tracking and recognition, while Ribeiro and
Gonzaga [145] focused primarily on real-time approaches
available at the time. Some of the more recent publications
include an updated review of opportunities and challenges in
this field undertaken by Rautaray and Agrawal [146]. Kumar
et al. [147] discussed various feature extraction techniques,
while Mohandes et al. [148] presented a survey of sensor-
based and direct measurement methods for sign language
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recognition. Because this field has experienced significant
progress and undergone many reviews over the past two
decades, we provide a brief overview of the current state
of research in the field of hand gesture and sign language
recognition by automated systems.

A majority of sign language characters and words can be
expressed with simple hand gestures, which makes correct
recognition of hand shapes a very practical feature for au-
tomated systems. However, the process of recognizing hand
gestures involves many difficulties, which may be related to
different hand sizes and shapes among signers, as well as
different skin shades. In addition, various individuals may
use unique styles to display certain elements when signing.
Such difficulties can be resolved through the use of advanced
analytic techniques aimed at identifying patterns independent
of the signer’s identity or the physical properties of their
hands [149].

Because deep learning networks have the capability to
identify latent connections among many different variables,
they can be effectively used to analyze hand gestures in
ASLR. Depending on the regional variations of sign lan-
guages, both one-handed and two-handed gestures can be
used to express certain words or phrases, with single-handed
signs usually assigned basic meanings, such as letters or
numbers. Thus, hand gesture analysis alone has the potential
to correctly recognize simple linguistic content from still
images or videos, as well as other sources. In other ap-
plications, hand gesture analysis may be complemented by
other techniques, such as tracking head movements [150].
Given that hand motion is the central building block of all
sign language communication systems, this aspect of SLR
is unlikely to lose relevance despite increased focus on full-
body tracking and continuous sign language interpretation.
However, pure hand gesture analysis techniques are likely to
be combined with other methods to obtain the best results.
This is exemplified by the increasing number of hybrid
models that consider many different elements of a signer’s
behavior [151], [152].

E. USING POSE ESTIMATION FOR SLR
Because body configuration plays an important role in sign
language recognition, pose estimation techniques are among
the core tools in this area. The basic idea is to determine
the exact pose of the entire body based on the positions of
certain fixed points that can be ascertained through measure-
ment. While this can be accomplished in various ways, deep
learning algorithms have proven effective in this task given
sufficient training using well-chosen samples. This is espe-
cially true when high-quality input is provided, preferably
from more than one source/modality [153].

1) Pose estimation based on RGB images
A method using a convolutional neural network was sug-
gested by [154] for determining pose of the human body
by analyzing pictures of variable size, thus comparing how
individual body parts are spatially organized. The final pre-

diction required the operations of pooling and up-sampling
to be repeated in several iterations. When this model was
experimentally tested with two different datasets, it accom-
plished excellent results that outperformed the baselines for
approximately 1.7-2.4%.

Another model using the same type of neural network
was presented by [155], and it leveraged mutually dependent
variables to predict the body position. In addition to a CNN
network, this method also includes already prepared knowl-
edge maps, and it employs a procedure that doesn’t have to
create a graphical representation in order to produce accurate
output. This was confirmed by empirical testing where the so
called Convolutional Pose Machine method outperformed all
alternatives by 9% on the MPII set, 6% on the LSP dataset,
and 3% on FLIC.

A model with cascading architecture was constructed
by [156] in 2014, using DNN as the basic tool for estimating
the positions of joints on the body and their mutual relations.
This model frames the problem as a matter of regression,
which turned out to be a very suitable paradigm, as evidenced
by the performance of the model which was above the marks
set by earlier solutions by 2% and 17% on two commonly
used datasets. In the work of [157], a new dataset for SLR
research was presented along with a benchmark for body po-
sition predictions for the comparison of techniques for pose
estimation based on deep learning. Interestingly, they studied
the possibilities for transfer learning and found evidence that
this phenomenon applies in the field of SLR [158].

A similar model for pose estimation that uses RGB photos
and deep learning was suggested by [159], starting from the
linear SMPL model. In this work, three-dimensional repre-
sentations of body joints were deployed as intermediaries
and a regression of parameters was performed. The model
relies on autoencoders to act as the link between the regressed
SMPL and a convolutional neural network, guaranteeing
that any structural imperfections would be corrected. Those
improvements yielded a tangible performance boost in com-
parison with the basic SMPL on Surreal and Human 3.6M
sets.

Sign language communication relies on more than one
channel, and in addition to hand movements, facial expres-
sions and body postures are commonly used to express
meaning. While much work has been performed in the area
of automatic recognition of hand gestures, the literature
concerning the analysis of body positions is not as abundant.
Tompson et al. [160] attempted to address this problem by
analyzing the relationships among various body parts using a
CNN. On the other hand, Yang and Ramanan [30] organized
the data in tree-like fashion and used an SVM as the classifier.

Another notable study in this area was conducted by Chen
and Yuille [161], who used a graphical model to represent
the spatial configuration of body joints. This approach was
improved by Pfister [162], who extracted temporal informa-
tion from successive images to improve the capability of the
system to interpret body positions, while Toshev et al. [156]
provided an alternative method for body joint position eval-
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uation. Although there are many competing principles and
ideas, the latter two approaches were chosen by the authors
of this study as the starting points for conducting experiments
on a new dataset, with the objective of establishing the most
optimal methodology for body posture detection.

One more recent solution based on a convolutional net-
work for analyzing graphs was proposed by [163], where
a human body is presented in three dimensions by mul-
tiple points and links between them. This model deploys
an attention mechanism to discriminate between data and
contextualize this schematic representation. According to the
results of experimental testing, this model can bring some
modest gains in the range between 0.7% and 3.4% compared
to alternative methods on various SLR datasets.

2) Pose estimation based on depth imaging

A model formulated by [164] combines components of
convolutional and recurring neural networks with a self-
correcting feature that can improve previous predictions. This
model builds a 3D vector space constructed from local data
and extracts partial body poses from it while accounting
for the noise. The authors tested the model on an original
dataset and found that it is indeed superior to any of the
existing alternatives. Depth imaging also has a central role
in the solution suggested by [165], which is named Depth
Ranking Pose Estimation for 3D images. In this concept,
CNN network is used for deciding between candidate pairs
in the initial phase, followed by another step in which 3D
pose estimations are made, thus combining depth data with
two-dimensional images to great effect. This model was
evaluated using the standard Human 3.6M dataset, yielding
a significant accuracy improvement on the scale of over 6
mm over any competing 3D pose estimation methods.

A model named DDP or Deep Depth Pose was proposed
by [166], where body positions were approximated by the
construction of maps based on depth information. Such maps
were created in advance and contained many different body
positions along with all relevant joints. This approach was
practically proven to be effective, outperforming the bench-
marks by more than 11%.

3) Analysis of various pose estimation models

Since body position estimation has an important role in many
different fields of research including SLR, there have been
many attempts to formulate a successful model based on
deep learning networks of convolutional and recurrent types.
Introducing three-dimensional imaging and construction of
depth maps has greatly increased the recognition capacity
of such models. Some of the techniques aimed at achiev-
ing further gains in terms of accuracy comprise cascade or
tree-like structures, imposing of certain limits, etc. From
experimental evaluations, it is clear that recent models are
far more powerful and reliable than their predecessors, but
even the most complex solutions are still far from universal
applicability [82].

Research directed towards better interpretation of body
positions remains a central topic for scientific research. In
particular, researchers are working to ensure that exact po-
sitions of each joint can be determined even when ambient
noise is present in the images or parts of the body are blocked
from view. There has been a lot of progress with 3D mapping
of the body positions, but a part of the complication arises
from the fact that multiple 3D positions can correspond to
a single 2D pose. An additional complication is caused by
the difficulty of labeling 3D joint images, necessitating the
use of technologically advanced input devices. On the other
hand, effective regression of 3D information requires highly
precise mapping of spatial relations between key body points.
Many existing models track multiple aspects including pre-
cise location of every joint in three dimension, from various
angles and with regard to specific body shapes. Such models
represent the foundation for future SLR research that new
methods can build upon. Technological advancement of cap-
turing devices also contributes to improved pose recognition
and shape prediction abilities of new systems. Fusion of dif-
ferent types of data (i.e. thermal imaging or hybrid data) with
vision-based indicators can make the systems more reliable
under real life conditions and thus represents a promising
direction of research.

Using sensor technology, the positions of the key points
(i.e., limbs and joints) are transferred directly, whereas in
image-based methods, those positions are inferred based on
2D images. Because of this essential difference, the methods
chosen for completion of this task must reflect the type of
input as well as the intended outcome [167]. Deducing the
pose is instrumental in correcting the interpretation of the
content of sign language communication [152]. This aspect is
particularly important for continuous SLR, where individual
signs are displayed in a non-stop stream, and changes in body
position can be indicative of the intended meaning of the
entire expression.

Many factors can affect the performance of pose estima-
tion algorithms, from the choice of features that can include
both 2D and 3D data points, to the classifier depth and
architecture. Many of the latest tools for pose estimation
achieve relatively high accuracy, but they are too prone to
false recognition to consider them suitable for immediate
practical application on a mass level [168]. In recent stud-
ies, there has been a tendency to use advanced technology,
including the Microsoft Kinect device, to detect body poses
based on multiple parameters, which is clearly a direction
that will be exploited further in the near future as better
sensors and tracking devices become available [151], [156].
Finally, high-quality resources necessary for evaluating new
methods are emerging. The existence of readily available
large SLR datasets stimulates more meticulous testing and
brings us a step closer to the commercialization stage for this
technology.
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V. SLR MODEL TYPES
There are two types of models related to the recognition pro-
cess of sign languages: the isolated model and the continuous
model. In the following sections we will show the work that
has been done in this aspect.

A. SLR CONTINUOUS MODELS
As part of sign language recognition and modeling, some
experiments have used continuous models. For example,
Wu et al. [38] proposed a new bimodal dynamic network
suitable for continuous recognition of gestures. The model
relied on the positions of the 3D joints, as well as audio
utterances of the gesture tokens. Koller et al. [63] demon-
strated the use of an EM-based algorithm for continuous sign
language recognition. The EM-based algorithm was designed
to address the temporal alignment problem associated with
continuous video processing tasks. Similarly, Li et al. [42]
proposed a framework that addresses some of the scalability
challenges associated with continuous sign language recog-
nition. Another experiment by Camgoz et al. [64] developed
an end-to-end system designed for continuous sign language
alignment and recognition. The model is based on explicit
subunit modeling. Similarly, Wang et al. [66] suggested a
connectionist temporal fusion method having the capability
to translate continuous visual languages in videos into textual
language sentences.

Additional studies on continuous SLR models have been
conducted by Rao et al. [68]. A system was developed and
evaluated at various times using continuous Indian Sign
Language sentences developed from 282 words. Similarly,
Koller et al. [77] used a database consisting of continuous
signing in German Sign Language. In [46], animations were
processed continuously. However, this approach proved to be
extremely challenging because the animations were difficult
to work with after processing. While exploring the challenges
of continuous translation, Pigou et al. [126] observed that
deep residual networks can be used to learn patterns in con-
tinuous videos containing gestures and signs. The use of deep
residual networks can minimize the need for preprocessing.
In [17], a model was developed that can enhance existing
sign language recognition methods by between 15% and 38%
relatively, and by 13.3% absolutely. Cui et al. [133] also
suggested a weakly supervised approach that could recognize
sign language continuously with the help of deep neural
networks. This approach achieved an outcome comparable
to state-of-the-art approaches .

B. SLR ISOLATED MODELS
Until recently, a majority of sign language recognition exper-
iments have been carried out on isolated sign samples. These
models examine a sequence of images or signals based on
hand movements obtained from sensor gloves [97]. Sensor
gloves often represent a complete sign. For instance, Koller et
al. [63] used a dataset that featured isolated signs from Dan-
ish and New Zealand sign languages. Another experiment
by [37] proposed an isolated SLR system designed to extract

discriminative aspects from videos, where each signed video
corresponded to one word. After evaluating the challenges
of continuous translation, Escudeiro et al. [46] resorted to
an isolated approach. In essence, every gesture was created
separately, making it easier to use animations with ease.
Different observations by Fang et al. [128] suggested the
use of a hierarchical model reliant on deep recurrent neural
networks. The model successfully combined the isolated
low-level American Sign Language characteristics into an
organized high-level representation that could be used for
translation.

Recent developments in sign language experiments have
also suggested that the use of regions of interest (ROIs) to
isolate hand gestures and sign language features can enhance
the accuracy of recognition [134]. In [131], the authors
used an isolated gloss recognition system to facilitate real-
time sign language translation. The isolated gloss recognition
system included video pre-processing as well as a time-
series neural network module. Another experiment by Latif
et al. [169] also considered video segments based on an es-
timated “gloss-level.” While making their observations, Cui
et al. [3] set their receptive field to the estimated length of an
isolated sign. A recent study by Huang et al. [49] focused on
a basic isolated sign language recognition task. The use of an
attention-based 3D-CNN was proposed to recognize a large
vocabulary. The model was advantageous because of it took
advantage of the spatio-temporal feature learning capabilities
of the 3D-CNN. Papadimitriou et al. [95] used the American
Sign Language Lexicon Video Dataset, which consists of
video sequences of isolated American Sign Language signs.

C. DELIBERATIONS ABOUT CONTINUOUS AND
ISOLATED SLR
SLR comprises two distinct modes – isolated and continuous,
each of which requires a different approaches and is associ-
ated with very specific challenges. In particular, one key dis-
tinction is that direct supervision is much more essential for
continuous SLR. In isolated SLR, all the relevant content is
concentrated in a limited area of a single image, but in contin-
uous SLR it is necessary to carefully align the sections of the
video in chronological order and ensure that each sentence
is properly tagged. That’s one example of the complexities
associated with continuous sign language recognition, which
is far more demanding in terms of computing efficiency.
This must be taken into account during the evaluation of
methodologies, as well as the feature selection process. If
sequential labeling is done correctly and the most predictive
features are selected, the resulting model has a higher chance
of being accurate with continuous video analysis.

Over the last several years, smart applications of deep
learning systems have removed many obstacles in this field
as well as many other related automation tasks, but real
breakthroughs that could lead to broad application by general
population are still ahead. The attention mechanism is an
intriguing element that works well with different types of
data, and can be used to describe complex interactions in
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space and time (for example, Graph Neural Networks appli-
cations). Further research will show whether this approach
is the most optimal for resolving the issues complicating
continuous SLR at the moment.

VI. SIGN LANGUAGE RECOGNITION BASED ON
LOCALIZATION
Many basic concepts surround the use of sign language. First,
sign languages are never international. Most, but not all,
nations use different sign languages. Sign language is popular
in American, British, Arabic, and Chinese settings, among
many others. Table 3 provides an overview of various stud-
ies undertaken using different sign languages. For instance,
American Sign Language (ASL), the most popular localiza-
tion, includes independent grammar rules that are not a visual
form of English. Application of this localization was evident
in the experiment by Rioux-Maldague et al. [44], where the
authors applied their proposed technique and classified ASL
based on grammatical rules. Another experiment by Tang et
al. [39] considered 36 hand postures obtained from American
Sign Language to facilitate posture training and recognition.
However, there are other systems that derive non-ASL signs
and use them in English order. Such examples include exper-
iments that have focused on Italian Sign Language. In [38],
a dataset consisting of 20 Italian cultural or anthropological
signs was used to evaluate a novel bimodal dynamic network
designed to recognize gestures. The Italian dataset consisted
of 393 labeled sequences and a total of 7,754 gestures.

Arabic Sign Language is also considered the preferred
communication approach among many deaf people. In [40],
depth and intensity images in the Arabic language were used
to develop a system that can recognize associated signs .
The proposed system was tested using a dataset obtained
from three different users, resulting in an accuracy of 99.5%.
The authors in [121], [169] also used an Arabic Sign Lan-
guage dataset. In some cases, sign language experiments
have focused on Chinese. In [81], vocabulary was adopted
from 510 distinct words obtained from Chinese Sign Lan-
guage. Among these words, 353 were single-sign words,
while the remaining were multi-sign words. Yang et al. [65]
also showed interest in Chinese Sign Language and used
the instructional video We Learn Sign Language to meet
the objective of their experiment. Another experiment by
Jiang et al. [71] used Chinese Sign Language to facilitate the
fingerspelling process. Furthermore, the authors in [49]–[51],
[97] used Chinese Sign Language in their experiments.

A few other experiments evaluated Argentine Sign Lan-
guage. An example would be [37], where an initial dataset
was obtained from 10 subjects speaking Argentine Sign
Language. Konstantinidis et al. [70] also used Argentine
Sign Language featuring 10 subjects to explore hand and
body skeletal recognition. Rather than focusing on a single
language, some experiments use a mixture of sign languages.
For example, Koller et al. [63] employed a mixture of Danish
and New Zealand sign languages in their effort to examine
how to train a CNN on 1 million hand images. The sign

languages were obtained from two representative videos
based on publicly available lexicons. The Danish data did
not have any motion blur, while the New Zealand version
had some motion blur. In another experiment, Camgoz et
al. [64] focused on Danish, New Zealand, and German sign
languages to evaluate the role of SubUNets in sign language
recognition.

VII. RELATED STUDIES
The importance of hand gestures and sign recognition is
indisputable; well-designed technologies of this type have the
potential to impact millions of lives in a positive manner.
This is reflected by the amount of new research in this
area [143], [144], [146], [170], [171], which is growing
rapidly as new technological platforms become available.
By compiling a comprehensive list of SLR methods that
are currently being discussed in research circles [6], [16],
[172], we aim to provide the foundation for future researchers
who are searching for references and inspiration. We discuss
two major groups of solutions: vision-based (including both
static and dynamic) methods and sensor-based SLR methods.
Regarding the first group, various segmentation and feature
extraction techniques are reviewed in [6], along with ex-
amples of successful neural classifiers. The latter group is
discussed primarily in the context of a specific sensor device
that enables data capture, while data processing is explained
only briefly.

In terms of performance evaluation, the two metrics that
are highly relevant to all of the discussed studies are clas-
sification accuracy and sample size. Classification accuracy
is the percentage of correctly recognized signs and can be
within the 0–100% range, with a higher percentage indicat-
ing better recognition results. Some of the methods in this
field reached very high accuracy levels above 98% [173]–
[178], but it is important to understand the conditions under
which an algorithm can be expected to perform to its full
potential as well as the scope of its possible applications.
Most importantly, reviewing these studies can direct any
interested researchers toward the most relevant research that
may contain further information regarding a topic of interest.
The sample size represents a combination of the total num-
ber of gestures that were displayed during the experimental
evaluation and the number of classes to which a particular
sign could belong [179], [180]. A larger sample size indicates
more reliable results, and is always preferable. The sample
size used for model training was listed in cases where it was
specified in the original study.

The majority of reviews in this field lack sufficient space
to provide in-depth discussions of all methods, and instead
provide only a general snapshot [145], [181]–[184]. Addi-
tionally, some aspects of the sign recognition algorithms were
not significantly discussed; for example, data preprocessing
methods have been omitted because of the uneven presence
of such information in the studies that were reviewed. In
addition, methods that rely on sensors or customized input
devices were not given proper consideration. Individual ap-
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TABLE 3: Categorization of Sign Language Studies

Reference(s) Sign Language
[13], [39], [44], [52], [72]–[74], [76], [95], [96], [116]–[120], [125], [128], [131], [134] American Sign Language

[38] Italian Sign Language
[40], [121], [169] Arabic Sign Language

[49]–[51], [65], [71], [81], [97] Chinese Sign Language
[70] Argentine Sign Language

[63], [64] Danish and New Zealand Sign Language
[45], [122] Bengali Sign Language

[3], [66], [77], [95], [133] German Sign Language
[67] Japanese Sign Language

[68], [115], [123], [124] Indian Sign Language
[69], [130], [132] Indonesian Sign Language

[46] Portuguese Sign Language
[126] Dutch Sign Language
[127] Thai Sign Language
[158] Korean Sign Language

plications of SLR technology were also presented in a very
succinct form, despite their relevance for the large number of
users. This topic definitely deserves more attention in order
to create innovation space that would allow for addressing
numerous practical and philosophical issues that were not
adequately covered in the previous period [?], [82]. The
completeness of a literature survey is also relative, as new
studies are rapidly published such that the solutions listed
in any survey will eventually become obsolete. Hence, the
value of this scientific resource will gradually decrease, and
it will have to be replaced with a more updated version at
some point.

VIII. BENCHMARKS
As we have seen in the previous sections, advanced learning
algorithms have been used in the context of SLR with various
degrees of success. As new deep learning architectures are
being devised, some could bring improvements to studies of
sign language interpretation and push them a step closer to
practical application. Improved accuracy of basic sign recog-
nition would open the doors for more advanced linguistic
operations, including translation into spoken language, and
prediction of the following signs. Since there are many re-
gional variations of sign language, it is preferable to develop
methods with universal potential. Deep learning networks
can be trained on specific language corpora, which illustrates
why this approach is so promising. It is hoped that the chal-
lenging issue of continuous SLR could be decisively solved
with further perfection of currently researched methods based
on artificial intelligence and deep learning. In this part, we
will try to compare previous work with each other from
several aspects such as datasets, features, and performance
analysis.

A. DATASETS
This section presents some of the most important and avail-
able datasets containing hand gestures that can be used for the
evaluation of SLR tools. The emphasis is on ensuring large
enough dictionaries to facilitate more robust testing and more
sophisticated applications. Currently, some high-quality sets
can be used for this purpose, depending on the chosen ge-

ographic variation of sign language. For UK version of sign
language, researchers have multiple datasets at their disposal,
including RWTH-Boston-1, RWTH-Boston-50, and RWTH-
Boston-400, ranging in number of different signs from 10 to
400.

High quality data corpus is also available for German
sign language, with DGS Kinect-40, SIGNUM, and RWTH-
PHOENIX-Weather as the most prominent examples. Those
sets contain between 35 and 1225 unique signs, have a large
number of authentic sentences by up to 9 skilled signers,
and are labeled with the first and last frame of each sign
clearly defined in terms of facial and hand features. ASLLVD
proposed by Thangali et al. in 2011 is the most significant
resource for studying American Sign Language, and contains
over 30 thousand signs performed by 6 different persons.
This is also a labeled set with designated frames marking the
beginning and end of every sentence.

Studies of Polish Sign Language variation can use one
of the 3 high-quality data sets, including PSL Kinect 30,
PSL ToF 84, and PSL 101. Those datasets contain only
isolated words (totaling between 30 and 101 signs) and have
the limitation of being performed by only one person. Sign
corpus IITA-ROBITA ISL is available for Indian researchers,
and it was developed collaboratively between 2010 and 2017
by several research teams. Unfortunately, the entire set is
performed by a single signer and contains only 23 signs.
From all the aforementioned datasets, two stand out for
their universal usability – ASLLVD and RWTH-PHOENIX-
Weather. Those publically available sign language sets are
suitable for interpretation of sign language in conditions
that most resemble the real world, which is why they are
often used as benchmarks in SLR studies for determining the
effectiveness of proposed computing techniques.

Access to specialized datasets is currently one of the
limiting factors in SLR research, which is why almost all
researchers focus on this issue. The problem is exacerbated
by the fact that separate datasets are required for each re-
gional variation of sign language and for each different type
of linguistic task. In some studies, the authors constructed
new datasets from scratch by making video recordings of
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sign language users and obtaining other measurements, while
in other cases, well-known local datasets were used instead.
A typical dataset contains multiple repetitions of the same
sign by several signers, with the objective of facilitating
signer-independent recognition capacity after training. Some
datasets presented in the literature are considerably larger
than others, and this aspect should be taken into consideration
when assessing the reliability of results.

Our examination of the datasets in all the reviewed re-
search papers was conducted based on firmly defined criteria
as we can see in Tables 4- 12, and relied on the discussions in
the literature . Given that all papers are primarily interested
in decoding sign language elements of various complexity
levels, the databases used have many common features and
can effectively be classified based on these features. The
criteria were selected with the idea of providing a framework
for direct comparison between studies, although in some
cases, certain categories may not be applicable or some data
may not have been reported by the authors. In this manner,
our overview attempts to illustrate both the commonalities
and differences among datasets upon which the conclusions
of each study were based. Owing to space constraints and
the need for clarity, training, testing, and evaluation datasets
were typically merged together, so in some of the studies,
the actual structure of a particular dataset may be more
complex than is apparent from the size listed in the table.
A more focused examination of each particular example is
recommended for those interested in the practical use of any
SLR dataset belonging to this group.

TABLE 4: Datasets Arabic Sign Language Recognition

Reference(s) #Subjects #Classes #items Arch
[185] 10 3 180 NA
[186] 30 30 900 NA
[187] 21 150 150 NA
[40] 3 28 1400 PCANet, SVM
[169] 40 32 54049 NA
[121] 40 32 54049 Resnet18

A quick glance at Tables 4– 12 is sufficient to note the
large degree of diversity among the datasets with respect to
the parameters used. This is a natural result of the fact that
sign language studies employ a variety of methodological
concepts and may explore mutually unrelated aspects of
sign language recognition. It is important to understand the
distinction between isolated and continuous SLR and the
types of datasets suitable to each approach – for example,
alphanumerical characters or words are typically used for
recognition of isolated language elements, while sentences or
even longer segments of speech are necessary for continuous
SLR experiments. The datasets also greatly differ in terms
of size and complexity, which is important to consider when
attempting to evaluate the generalization potential of a given
model. However, even the largest datasets are far from ex-
haustive and are typically limited by available resources and
practical concerns.

One encouraging trend is that additional datasets docu-

menting many different regional variations of sign language
are becoming available. This is important because SLR re-
search is universally relevant, so building automated tools
capable of recognizing local versions of hand signs should
be a priority. Multi-modal datasets are also becoming more
common, which is a positive development signaling the next
stage of SLR research and opening additional possibilities
for innovative ideas. On the negative side, most datasets
were created using a very small number of signers and
feature a small number of classes, which brings into question
their representative value. Consequently, the accuracy of any
automated tools that rely on those datasets could be com-
promised when faced with slightly different presentations
of sign language gestures. In any AI-related research field,
the availability of high-quality datasets for model training
and testing is a crucial factor that can affect the pace of
progress. As a relatively new area of interest, SLR research
initially suffered from this problem, but the studies reviewed
offer evidence that the situation is steadily improving in
this respect. There are several widely used datasets that can
be considered ‘standard’ and can be used whenever broad
compatibility of the experimental results is desired. On the
other hand, new datasets focused on local sign language
systems are quickly emerging and could potentially be re-
used to fuel additional research in the same geographic
location. Despite the optimistic outlook, it is necessary to
recognize that currently available datasets differ greatly in
terms of quality, size, and structure, potentially necessitating
the compilation of new datasets to support specific directions
of research.

B. PERFORMANCE EVALUATION
A vast majority of research papers are concerned with ac-
curate recognition of sign language material, and the pri-
mary metrics they use attempt to measure this capability.
Consequently, some studies use common percentage-based
accuracy indicators, such as precision and recall, as well as
their combination, known as the F1 score. Depending on the
stage of an experiment, some authors differentiate between
training accuracy, testing accuracy, and validation accuracy.
The training time necessary to accomplish reasonable accu-
racy is another factor that was tracked in some studies, and it
was most commonly expressed in epochs. Processing time
and input video length were less frequently considered to
be sufficiently relevant to warrant direct measurement, but
could be expressed in seconds and/or the number of frames.
Tables 13 and 14 provide overviews of two performance
benchmarks used in ASLR studies.

Almost every research paper reviewed includes a quanti-
tative evaluation of the proposed sign recognition algorithm.
Testing varies greatly in scope and complexity, with particu-
lar tests being administered depending on the objectives of
the study. In general, the tests were designed to estimate
how effectively the algorithm could differentiate between
sign language words or sentences, often in comparison with
several benchmark methods. Because of the diverse nature
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TABLE 5: Datasets for American Sign Language

Reference(s) #Subjects #Classes #items Architecture
[188] NA 36 2524 NA
[189] 6 3300 9800 NA
[157] 6+2 NA 808+479 NA
[190] 3 (1 M, 2 F) 15+20 NA NA
[44] 5 24 60000 Deep Belief Network
[39] 6+2 36 288 videos Deep Neural Network
[77] 7 40 2137 sentences CNN + HMM
[76] 5 24 120000 images Sparse AutoEncoder, PCA
[41] 9 25 657 3D CNN
[73] 5 26 60000 images Convolutional Neural Network
[13] 5 24 60000 images PCANet with SVM
[95] 6,20 24,3000 3000, 4416 image frames Altered convolution operation,CNN
[120] NA 26 78000 CNN
[74] NA 24 2040 gestures CNN and stacked denoising autoencoder
[128] 11 56, 100 7306 samples hierarchical bidirectional DRNN
[116] NA 36 900 images NA
[117] NA 24 100000 images DenseNet
[119] NA 24 34627 images Capsule based Deep Neural Network
[134] NA 24 62400 CNN-LSTM
[52] 12 26 letters, 10 digits NA DNN
[72] 20 5 2425 images CNN-SVM

TABLE 6: Datasets for Sign Language Recognition for EU Countries Languages

Reference(s) #Subjects #Classes #items Architecture
[37] 10 + NA 64 + 50 3200 + 1297 NA
[70] 10 6450 32001535 videos CNN, OpenPose, Stacked LSTM
[70] 10 64 3200 videos CNN-Stacked LSTM
[47] 10 10 500 videos 3D CNN
[63] 6, 8, 2009 60 1,134,319 frames CNN with embedded EM algorithm
[64] 23 60 1.2 million hand images CNN+BLSTM
[191] 100 40 11 + 200 per class NA
[126] 78, 53, 21 100, 100, 249 55224, 12599 video-gloss pairs, 22535 video files Deep Residual Network, Bi-LSTM
[192] 18 60 5 hours of video content NA
[3] 9 455 65,22711,874 Deep CNN and Bidirectional RNNs
[75] 20 35 43,986 images Segmentation + Pose Estimation
[133] NA 9 5,672 sentences Connectionist Temporal Classification
[66] 40 10 6841 videos TCOV, BGRU, Fusion Layer
[3] 91 455 6841 sentences 2340 sentences Deep CNN+BiLSTM
[38] NA 20 13,858 Deep Belief Network
[193] 3 10 2000 videos NA
[46] NA 57 NA SVM, Dynamic Time Warping

TABLE 7: East Asian Countries Sign Language Recognition Datasets

Reference(s) #Subjects #Classes #items Architecture
[45] 3 45 54,000 NA
[194] NA 10 1075 CNN
[45] NA 37 1147 images DCNN
[195] NA 90 9000 NA
[43] 3 26 78 NA
[50] 50 179 5000 videos 3D CNN
[97] 3-50 20-3000 100-16000 sentences NA
[49] 50 500 125000 Attention based 3D CNN
[65] NA 40 NA CNN
[71] NA 30 1260 samples CNN
[49] 50 50020 125000+14000 instances Attention based 3D CNN
[115] 15 20 30000 images Deep Neural Networks
[124] NA 26, 9 NA CNN
[68] 10 NA 282 words Deep Neural Network
[130] 2 163 1630 word sequences LSTM
[69] 10 30 3,006 videos 30 sentences 3D CNN-BiRNN
[48] NA 5 100 images 3D CNN
[132] NA NA NA 2 layer LSTM
[67] 1 195 812 sentences Deep LSTM
[158] 14 419+105 14,672 NA
[158] 14 524 14672 videos OpenPose feature extraction, GRU
[127] 12 25 30000 images YOLO based CNN
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TABLE 8: Other Sign Language Recognition Datasets

Reference(s) #Subjects #Classes #items Architecture
[196] NA 20 8000-10000 NA
[197] 28 14/28 2800 NA
[51] NA NA NA NA
[42] NA NA NA NA
[129] NA 8 1600 gestures Encoder-Decoder with LSTM
[17] NA NA NA NA
[123] 5 200 72000 images CNN
[96] NA 24 60000 images NA
[118] NA NA NA CNN
[131] NA NA NA Attention based Sequence model
[196] NA 20 8000-10000 NA
[197] 28 14/28 2800 NA
[51] NA NA NA NA
[42] NA NA NA NA
[129] NA 8 1600 gestures Encoder-Decoder with LSTM
[17] NA NA NA NA
[123] 5 200 72000 images CNN
[96] NA 24 60000 images NA
[118] NA NA NA CNN
[131] NA NA NA Attention based Sequence model

TABLE 9: Datasets for Sign Language Based on Alphabetic
Linguistic Content

Reference(s) #Input Modality
[196] RGB video + depth info
[188] 2D Photo
[45] 2D photo
[63] RGB
[186] Image
[45] RGB
[73] RGBD
[13] RGBD, Kinect
[97] RGB, Kinect, Gloves
[95] RGB Video
[120] RGB
[40] RGB, Depth
[75] RGB
[74] RGB
[17] NA
[71] RGB
[119] RGB
[52] 3D models
[115] RGB
[124] RGB
[96] RGB
[125] RGB, Depth RGB
[169] RGB
[121] RGB
[72] RGB
[127] RGB

of the tests, the results can generally be compared across
different studies with only some reservations; in general,
many methods performed reasonably well and recognized
more than 90% of the displayed signs. In some cases, the
reported effectiveness was above 97%, but this usually in-
volved less complex tasks and often could not be maintained
over multiple datasets. For continuous SLR tasks, recognition
rates above 80% can be considered very strong, especially
when they are consistent over multiple datasets.

A notable trend found was that almost all algorithms
exhibited mixed performance from one sign to another, and in
general, only a handful of confusing signs were typically re-

TABLE 10: Datasets for Sign Language Based on Hand
Gesture Linguistic Content

Reference(s) #Input Modality
[197] 2D and 3D skeletal representations, depth data
[64] RGB
[126] RGB, RGB-D Kinect
[44] intensity camera , Kinect
[39] RGB image, Kinect
[76] RGBD
[65] RGB Video
[3] RGB
[129] 6D IMU data
[116] RGB
[117] RGB
[134] RGB videos
[48] RGB, Kinect

sponsible for a large portion of false recognitions. These fre-
quent mistakes often persisted regardless of the classifier or
training procedure, and were caused either by the similarity
between hand gestures or other systemic factors. This finding
implies that certain difficulties in the structure and form of
sign language, rather than methodological deficiencies, are
impeding the construction of more effective tools and serves
as a reminder that currently available SLR algorithms are still
prone to error and must be constantly compared with human-
created estimations to avoid miscommunication.

In general, the performance of the suggested models is
typically evaluated in terms of capacity for correct execu-
tion of the primary task, i.e., sign language recognition or
translation. Average accuracy for the entire dataset is given
as the main indicator of model performance, with a higher
percentage indicative of a more accurate system. In some
cases, top-1, top-5, and top-10 accuracy were calculated,
expressing the model’s ability to identify ‘most likely’ can-
didates rather than one correct answer. A BLUE score was
used to assess the quantitative output of translation models
with values between 0 and 100 as depicted in Table 15, while
qualitative analysis was based on comparison with ground
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TABLE 11: Datasets for Sign Language Based on Linguistic
Content in Words and Sentences

Reference(s) #Input Modality
[37] RGB video
[185] Kinect
[189] Video
[157] RGB image extracted from video
[191] Video, Kinect
[190] Video
[187] RGB video, depth video, 3D skeletal data, facial features
[41] RGB video, Kinect, 3D skeletal data
[195] Kinect, RGB image, skeletal data
[50] RGB video
[49] RGB, Kinect, Skeleton point data
[128] Infrared
[133] RGB
[66] RGB
[3] RGB
[37] RGB Video
[49] RGB, depth, skeleton
[193] Video
[68] NA
[130] RGB, Kinect
[69] RGB Video
[70] RGB Video
[47] RGB Video
[67] RGB, Kinect
[158] RGB from two angles, Video

TABLE 12: Datasets for Sign Language Based on Other
Linguistic Content

Reference(s) #Input Modality
[37] RGB video
[185] Kinect
[189] Video
[157] RGB image extracted from video
[191] Video, Kinect
[190] Video
[187] RGB video, depth video, 3D skeletal data, facial features
[41] RGB video, Kinect, 3D skeletal data
[195] Kinect, RGB image, skeletal data
[50] RGB video
[49] RGB, Kinect, Skeleton point data
[128] Infrared
[133] RGB
[66] RGB
[3] RGB
[37] RGB Video
[49] RGB, depth, skeleton
[193] Video
[68] NA
[130] RGB, Kinect
[69] RGB Video
[70] RGB Video
[47] RGB Video
[67] RGB, Kinect
[158] RGB from two angles, Video

truth as interpreted by human operators. A combination of
accuracy and training sample size is used to construct the
learning curve, which demonstrates how the performance
changes as the volume of training sample increases. Word
error rate (WER) analysis is conducted in some studies, as
shown in Table 16, to determine which glosses are most
confused with each other.

To be effective, the neural classifier must first be trained
on data resembling the samples it will encounter during

TABLE 13: State-of-the-art Sign Language Recognition Ac-
curacy Results

Reference(s) Accuracy in %
Konstantinidis et al. [37] 99.84
Aujeszky and Eid [185] 92
Sun et al. [196] 97.3
Magar and Parajuli [188] 96
Hossen et al. [45] 84.68
Mao et al. [195] 94.7
Xue et al. [189] 98
Devineau et al. [197] 91.28
Mocialov et al. [191] 95
Sabyrov et al. [193] 73
Alzohairi et al. [186] 63.56
Lim et al. [190] 89.33
Elpeltagy et al. [187] 55.57
Ko et al. [158] 93.28
Wu and Shao [38] 70.1
Rioux-Maldague and Giguere [44] 77
Tang et al. [39] 98.12
Koller et al. [77] 55.7
Li et al. [76] 99.1
Huang et al. [41] 94.2
Huang et al. [43] 98.9
Ameen and Vadera [73] 80.34
Guo et al. [50] 92.9
Aly et al. [13] 88.7
Joy et al. [115] 97
Ko et al. [158] 93.28
Papadimitriou and Potamianos [95] 99.56
Cayamcela and Lim [120] 99.39
Huang et al. [49] 88.7
Cui et al. [3] 91.93
Aly et al. [40] 99.5
Koller et al. [63] 62.8
Li et al. [42] 87.4
Oyedotun and Khashman [74] 92.83

testing and/or practical use. The training data usually involve
a basic group of sign language characters, words, or sen-
tences presented in a format that the system was designed to
decipher, which is typically annotated by human observers.
After training is conducted, the model can be used to deduce
the sign language elements in the same format with varying
degrees of accuracy. In some studies, several classifiers were
tested on the same tasks to evaluate their relative strengths
and weaknesses, while in others the focus was on discovering
the most suitable combinations of features. The capability of
the neural model is generally limited to the signs learned
from the training set, but some generalization regarding
different people displaying the same sign can be achieved.
Therefore, the optimization of training parameters is one
of the most important elements of SLR research and can
have tremendous impact on the utility value of the proposed
solutions. More advanced systems aim to develop real-time
translation capacity and to interpret more complex segments
of continuous sign language speech. Such applications are
vastly more complex than simple recognition of alphabetic
characters or isolated words, and they frequently have to
analyze multiple signs together to understand the meaning
behind a given sequence. In response, researchers have to
deploy hybrid architectures and sophisticated sequence-to-
sequence models intended to capture semantic nuances and
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TABLE 14: State-of-the-art Sign Language Recognition Ac-
curacy Results

Reference(s) Accuracy in %
Fang et al. [128] 94.5
Pigou et al. [126] 73.3
Kavarthapu and Mitra [129] 97.7
Zimmermann and Brox [75] 81.7
Yang and Zhu [65] 99
Konstantinidis et al. [37] 70
Islam et al. [194] 95
Taskiran et al. [116] 98.05
Daroya et al. [117] 90.3
Jalal et al. [119] 99.74
Bantupalli and Xie [134] 91
Chong and Lee [52] 83.78
Hossen et al. [45] 84.68
Balayn et al. [67] 53
Rao et al. [123] 92.88
Ma et al. [96] 83.72
Sajanraj and Beena [124] 99.56
Rastgoo et al. [125] 99.31
Shahriar et al. [118] 94.7
Rakun et al. [130] 77
Rao and Kishore [68] 90
Konstantinidis et al. [70] 98.09
Gunawan et al. [47] 100
Soodtoetong and Gedkhaw [48] 92.24
Cui et al. [3] 91.93
Huang et al. [49] 88.7
Shahin and Almotairi [121] 99.48
Jiang and Zhang [71] 88.1
Nguyen and Do [72] 98.36
Adimas et al. [132] 98.81
Nakjai et al. [127] 87.31
Mathieu et al. [138] 92.92
Amit et al. [142] 98.4
Bansal et al. [84] 71.9
Roy et al. [88] 77.75
Meng et al. [87] 98.08
Gajurel et al. [85] 46.96
Mathieu et al. [86] 74.7
Agelos et al. [83] 94.77

avoid confusing similar signs.

IX. OPEN ISSUES AND FUTURE DIRECTIONS
After reviewing numerous studies related to SLR, the most
obvious weakness is the fragmented nature of research in
this field. Many research teams have achieved promising
results using a wide variety of approaches, but there is little
overlap among these studies, and the joint utilization of
multiple effective tools is slow to emerge. The lack of a
general consensus regarding the most valuable features and
the optimal neural network architecture may be an obstacle to
achieving better practical results. Recognition of continuous
sign language speech remains a considerable challenge, and
even the best automated systems struggle with linguistic
nuances that can be expressed in sign language sentences.
This may be partially a consequence of the fact that most
available datasets contain only limited vocabularies and sim-
ple sentences, while training models for advanced linguistic
tasks requires far more extensive libraries containing diverse
examples.

Understanding sign language communication remains a
formidable challenge for automated systems. On closer ob-

servation, the reasons for the continued inability of machines
to consistently and accurately interpret sign language se-
quences are not as mysterious as they appear to be at first
glance. Any natural language features a complex interplay
of many rules and relationships, which are difficult to sum-
marize in a mathematical format that can be programmed
into computers. This explains why the current generation
of sign language recognition (SLR) tools fares quite well
with alphabetic characters and simple words and phrases, yet
struggles to handle continuous streams of communications
such as conversations and narratives.

These shortcomings will almost certainly be remedied in
the future, as this field is regarded as socially relevant and
consequently receives significant attention from some of the
world’s most accomplished research teams. It may be argued
that the upcoming period is critical for overcoming some of
the obstacles that stand in the way of more rapid progress.
Some of the main areas where it would be reasonable to
expect significant changes over the next few years include
the following.

A. TYPE OF INPUT

A majority of reviewed models make use of depth imaging,
although some are focused on the RGB images with a higher
amount of details to facilitate efficient SLR. Sequential infor-
mation has been useful as well, most commonly for tracking
objects and scenes, along with information about the skeleton
(i.e. joint positions). Thermal imaging is less frequently used
for SLR, but can bring additional gains when combined
with some of the basic types of information such as images.
On the level of signs, there is a distinction between static
and dynamic signs, with the latter group having a subgroup
used in continuous SLR. Based on the current trends, it can
be assumed that continuous video and complex signs will
become a key focus of study in the next period. It appears
that all the preconditions are in place for this shift of focus to
occur.

B. GLOBAL RESOURCE BASE

One of the overarching themes in SLR research is the
chronic lack of high-quality input databases. Large and di-
verse datasets are available only for American Sign Language
and a few other variations, such as Chinese or Indian, but
researchers in smaller countries lack the samples needed
for model training and testing. This is slowly changing as
the volume of study into SLR continues to grow, and the
accumulated resources are becoming sufficient to support
the next wave of research. While the situation is certainly
improving, it remains difficult to test more advanced appli-
cations that require large vocabularies to demonstrate the
full capacities of existing or future methods. On the other
hand, direct collaboration among research teams and more
proactive sharing of available resources could alleviate cur-
rent issues to a considerable degree and provide a blueprint
for more impactful networking. Sign language recognition is
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TABLE 15: Bilingual Evaluation Understudy Score Comparison

Reference(s) Dev.BLEU-4 Dev.BLEU-3 Dev.BLEU-2 Dev.BLEU-1 Test.BLEU-4 Test.BLEU-3 Test.BLEU-2 Test.BLEU-1
Jiang et al. [140] 10.91 14.01 19.53 31.97 10.35 13.49 19.11 31.86
Yin Kayo et al. [94] - - - 3.2 - - - 22.17
Saunders et al. [90] 11.54 14.48 19.63 30.94 11.68 14.55 19.70 31.56
Camgoz et al. [136] 22.12 26.83 34.03 46.56 21.80 26.75 34.46 47.20
Kayo et al. [137] 24.68 29.81 37.60 50.31 25.40 30.58 38.36 50.63

TABLE 16: Word Error Rate Comparison

Reference(s) Val.Del Val.Ins Val.WER Test.Del Test.Ins Test.WER
Cui et al. [133] 13.7 7.3 39.4 12.2 7.5 38.7
Camgoz et al. [64] 20.6 3.2 43.9 19.8 3.2 43.1
Wang et al. [66] 12.8 5.2 37.9 11.9 5.6 37.8
Kumar et al. [131] - - - - - 43.7
Ilias et al. [139] - - 23.7 - - 23.4

a worldwide problem, and the only way to resolve it requires
a truly global effort.

On the other hand, there are numerous regional variations
of sign language, relying on unique combinations of hand
and facial gestures to express meaning. For this reason,
there is a clear need for high-quality datasets including all
relevant input modalities. With regard to hand signs, there is
currently a lack of adequate labeled sets that would enable
testing of SLR tools under natural conditions, but this has
been changing recently. Hopefully, improving datasets will
eventually facilitate development of practically applicable
SLR models. For this, it’s necessary to label longer parts
of sign language speech, not just individual elements as is
mostly the case right now. Basically, new datasets need to
reflect the diversity of communication with sign language
so that newly developed methods could be a step closer
to reality. Real communications are continuous and without
artificial limits, and modern SLR tools must be able to handle
long sequences of signs without problems. With use of deep
learning networks entering a mature stage, this ambitious
goal could be reached soon.

C. COMBINING DIFFERENT FEATURES
This issue has been addressed by many studies, but many
difficulties still need to be worked out. It can be desirable
to combine features when trying to describe multiple parts of
the human body. This issue is typically complicated by the
fact that data can be in different formats and include textual
elements, images of different types, depth and skeleton data,
etc. Fusing some of this data together can result in improved
feature engineering and consequently a more accurate model.
Three main areas of the body where such features are concen-
trated include hands, facial region, and the torso. Limiting the
attention to hands only can result in imperfect models that fail
to properly interpret some of the signs.

Specific areas relevant for success in this regard include
detection of hand position, estimation of hand shapes and
gestures, real time following of hand movement and similar
tasks, and in many ways all of those tasks can present
problems. For example, there is extremely high variability
in the size and shapes of hands of different signers, while

on the other hand different fingers can look very similar and
sometimes block each other from view. Ambient conditions
including the amount of available light also come into play.
Those difficulties are magnified when input images are in
low resolution of there are interfering objects, and when
complicated gestures need to be analyzed. To alleviate some
of those concerns, researchers resort to feature fusion and
include facial characteristics into the mix.

On the other hand, rapid motion of the face and neck dur-
ing sign language use present their own challenges, including
partial blocking of key areas. The third group of features
– those related to signer’s body – can be added as well
and bring an additional recognition improvement. Hence,
versatile models capable of leveraging features from different
parts of the body have an edge and present a better starting
point for future research.

D. SEQUENCE SLR MODELS

While notable success has been attained in the realm of
isolated SLR, where the algorithms merely have to recognize
the single alphabetic sign or word, the same cannot be said
for continuous SLR, which involves interpretation of longer
segments of speech. Contextual relationships among signs
have a strong impact on the meaning of the sentences, so
this task cannot be reduced to the recognition of individual
gestures.

Contemporary attempts to develop continuous SLR ca-
pacity have demonstrated only limited effectiveness and
frequently make mistakes when sophisticated analysis of
semantic details is required. This is obviously one of the hot
topics of SLR research that will continue to be examined in
many different ways, searching for a configuration that can
overcome the difficulties preventing the emergence of highly
effective tools. Based on current findings, we believe that
research in this area will focus on deeper and more complex
neural network models that employ additional layers and
combine several types of layer compositions to gain addi-
tional processing power.
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E. IMPROVING RECOGNITION ACCURACY

To be used commercially and trusted by everyday users,
any technology must be highly reliable (>99%) and highly
consistent. This is not the case with the SLR applications
available today, as they typically still report a small but
persistent percentage of false positives and false negatives.
The rate of incorrectly recognized items increases as the size
of the vocabulary and the complexity of the tasks increases,
which is why very few SLR tools are currently deployed in
practice. Some of the proposed solutions are conceptually
sound and appear suitable for further development, but they
are often created by small teams that lack the resources to
conduct large-scale testing and refine the training procedures.
For the next phase, it is necessary to summon broader support
and gather sufficient funds and resources to make high-level
accuracy optimization possible. The systems will have to be
tested under a wide variety of settings and deliver reasonably
useful results even when the external conditions are less than
ideal (for example, input images taken under poor lighting
conditions).

F. IMPROVING THE EFFICIENCY OF SLR SOLUTIONS

In the past, the focus of scientific research has been on de-
veloping the fundamental capability to meaningfully connect
observed hand and body gestures and fixed units of sign
language. While this is understandable for an early stage
of scientific examination, it is will necessary to increase
attention on the usability dimension in the future. Some of the
earliest SLR solutions required body-worn sensors and other
bulky equipment, but newer systems are considerably less
demanding and may include only a few miniature cameras.
Interaction between the user and the system is another topic
that will have to be considered more seriously in the future,
with the idea of providing the user with a level of control
over the software used by a system. It is equally important
to create feedback mechanisms that allow for the instant dis-
covery of common errors while ensuring that user opinions
are valued. The previous period of discoveries has renewed
interest in SLR research and has resulted in many competing
theoretical postulations.

While deep learning networks are broadly accepted as the
most suitable technology for tackling this difficult linguistic
problem, there is much work needed before fully automated
systems capable of understanding continuous streams of sign
language communication can be created. In the upcoming
decade, we can expect some of the already known solutions
to mature to the point where their accuracy is nearly perfect,
and it is possible that a major breakthrough will occur at any
given point. As the SLR methods become more reliable, it is
nearly a given that more creative and meaningful mainstream
applications will emerge, delivering direct benefits to the en-
tire population of hearing/speech-impaired people anywhere
in the world.

X. CONCLUSION
There is little doubt that the current momentum in the field
of sign language recognition will continue into the foresee-
able future – the number of potential beneficiaries of such
solutions is simply too great to ignore. Recent advances in
this area have been largely fueled by the use of deep learning
models, which are currently being perfected and will only
become more widely accepted in the coming years. Over the
past decade, many original and highly innovative suggestions
have been used to build SLR tools by extracting features from
sensor data or visual streams and feeding them into neural
classifiers.

In this paper, we covered most of the currently known
methods for SLR tasks based on deep neural architectures
that were developed over the past several years, and divided
them into clusters based on their chief traits. There is a
multitude of options in this regard, as this area of research
has been attracting a lot of attention lately. The most com-
mon design deploys a CNN network to derive discriminative
features from raw data, since this type of network offers the
best properties for this task. When information is collected
in multimedia format, some of the architectures that can be
used include Long Short Term Memory, Recurrent Neural
Networks, and GRU. In many cases, multiple types of net-
works were combined in order to improve final performance.
Those models are capable of processing information from
different sources and in different formats, including still
images, depth information, thermal scans, skeletal data and
sequential information have all been used with success.

Some of the proposed models were demonstrated to be
very effective, albeit on tasks with limited scope. Studies
come from all parts of the world and address many different
variations of sign language, which is very important toward
ensuring global coverage. Despite some remaining issues, it
is fair to conclude that the scientific community is making
steady progress toward developing real-time, two-way trans-
lation systems that can eventually be deployed in the real
world. Before this occurs, it will be necessary to achieve
more consistent performance and eliminate some common
confusion points (where most algorithms tend to misinterpret
an intended sign).

Some hybrid models are emerging that combine the best
characteristics of several types of neural networks, and solu-
tions of this type may represent the most logical path forward
with respect to advanced SLR applications. It is reasonable
to expect breakthroughs in this field in the future, and many
of the research studies may include key elements that will
eventually become a part of the final solution to automated
sign language recognition. Even at this stage, many SLR
tools can be practically used to some extent, and can provide
immediate relief to disabled people as well as point to future
directions of research.
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