
https://helda.helsinki.fi

Regression Test Selection Tool for Python in Continuous

Integration Process

Kauhanen, Eero Olavi

IEEE

2021-03

Kauhanen , E O , Nurminen , J K , Mikkonen , T & Pashkovskiy , M 2021 , Regression Test

Selection Tool for Python in Continuous Integration Process . in 4th International Workshop

þÿ�o�n� �V�a�l�i�d�a�t�i�o�n�,� �A�n�a�l�y�s�i�s� �a�n�d� �E�v�o�l�u�t�i�o�n� �o�f� �S�o�f�t�w�a�r�e� �T�e�s�t�s� �(�V�S�T ��2�0�2�1�)� �c�o�-�l�o�c�a�t�e�d� �w�i�t�h� �S�A�N�E�R

2021 . IEEE , pp. 618 - 621 , IEEE International Conference on Software Analysis, Evolution

and Reengineering , Honolulu , United States , 09/03/2021 . https://doi.org/10.1109/SANER50967.2021.00077

http://hdl.handle.net/10138/333461

https://doi.org/10.1109/SANER50967.2021.00077

acceptedVersion

Downloaded from Helda, University of Helsinki institutional repository.

This is an electronic reprint of the original article.

This reprint may differ from the original in pagination and typographic detail.

Please cite the original version.

Regression Test Selection Tool for Python
in Continuous Integration Process

Eero Kauhanen1, Jukka K. Nurminen1, Tommi Mikkonen1, Matvei Pashkovskiy2
1Department of Computer Science, University of Helsinki, Helsinki, Finland

first.[initial].last@helsinki.fi
2F-Secure Corporation, Helsinki, Finland

matvey.pashkovskiy@f-secure.com

Abstract—In this paper, we present a coverage-based regres-
sion test selection (RTS) approach and a developed tool for
Python. The tool can be used either on a developer’s machine
or on build servers. A special characteristic of the tool is the
attention to easy integration to continuous integration and de-
ployment. To evaluate the performance of the proposed approach,
mutation testing is applied to three open-source projects, and
the results of the execution of full test suites are compared
to the execution of a set of tests selected by the tool. The
missed fault rate of the test selection varies between 0–2% at
file-level granularity and 16–24% at line-level granularity. The
high missed fault rate at the line-level granularity is related to
the selected basic mutation approach and the result could be
improved with advanced mutation techniques. Depending on the
target optimization metric (time or precision) in DevOps/MLOps
process the error rate could be acceptable or further improved
by using file-level granularity based test selection.

Index Terms—Regression test selection, test automation, con-
tinuous integration, mutation testing, software engineering.

I. INTRODUCTION

In a large software project, running the full test set can
take a long time. In particular, when working in the modern
DevOps style, developers are frequently checking in their mod-
ifications, and the resulting updates are tested and deployed
on the fly. Having to wait – often only for some minutes,
but in extreme case hours – at each check-in slows down
development and is frustrating for developers. Furthermore,
it consumes computing resources. For example, Mozilla esti-
mates each check-in to cost over $25 in Amazon Web Services
fees [1] while Google suggests that their annual continuous
integration (CI) system execution is in millions of dollars [2].

Regression test selection (RTS) – selecting the most appro-
priate test cases to ensure identification of bugs in new code
– has been studied for a long time (see e.g. [3]). Engström
et al. [4] and Yoo and Harman [5] are recent surveys regarding
the different RTS techniques, while Engström et al. [6] is a
survey of empirical evaluation approaches to RTS. However,
the importance of RTS has only become crucial in modern
DevOps and MLOps environments. Identifying and rerunning
only the relevant tests after code changes is necessary for
productivity and efficient resource use in CI.

Previous RTS studies have largely focused on Java and
other compiled languages [7]. The rationale has been that
large, complex software, which would benefit the most from
RTS, was relying on these languages. However, the situation is

rapidly changing, and Python and other interpretable languages
have become increasingly popular. One of the reasons for
that increase is the growth of MLOps culture where Python
plays a key role along with for example PySpark framework
for data analysis and building ML models. RTS can bring
even more benefits to the MLOps process because testing
data transformation logic and model building are extremely
expensive operations. This in turn has raised a growing interest
in RTS in the context of Python.

In this work we take a new look at RTS, placing Python at
the core. In particular, our key contributions are:

1) We develop a regression test tool, which integrates with
Pytest, Coverage.py and Git to support CI workflow
(Section III).

2) This toolset will be the core of the demo part of this paper,
describing a demo setup that showcases these features at
the hands-on level (Section IV).

3) We present early results of our experiment (Section V)
and investigate how well our system finds bugs after code
changes (sometimes called inclusiveness [3]), how much
computing effort it saves, and how much resources are
needed for bookkeeping (Section VI).

II. BACKGROUND AND RELATED WORK

RTS has been studied since the 1980s, and numerous tools
have been proposed. Rothermel and Harrold [3] is an early
and influential study of RTS techniques. They divide the
techniques into three different sets: (i) Coverage techniques
aim to locate changed program components and select tests
that exercise those; (ii) Minimization techniques aim to choose
the smallest set of tests for modified program components;
(iii) Safe techniques aim to select all tests that can expose
faults in updated programs. Our focus is primarily on coverage
techniques, but, at the same time, we aim to minimize the
needed tests.

RTS technique should be safe and precise. Safe means
that all relevant tests are executed, precise means that only
necessary tests are executed. Some studies, e.g. Shi et al.
[8] focus on improving safety when dealing with different
language constructs. Others, including us, accept that full
safety is not possible and integrate the RTS approaches to
development processes in such a way that occasional test
omissions are acceptable.

Like our study, many of the latest works have focused on
integrating RTS into software development. Ekstazi [9] is a
dynamic RTS technique for Java programs. It is integrated with
popular testing frameworks (JUnit and ScalaTest) and build
systems (Maven and Ant). Likewise, searching for solutions
that work in practice, Gyori et al. [10] study test selection
opportunities in a very large open-source ecosystem. Finally,
some tools, e.g. Jest JavaScript test framework, have built-in
RTS support.

Novel approaches to RTS include using machine learning
[11] and using natural language processing [12]. We also seek
to extend our work in this direction.

III. INTRODUCING THE TOOL

It is important to consider the usage of RTS tools from
two perspectives: from developers and CI pipelines. The main
difference between those is the fact that the changes done by
developers on their local workstations could be identified even
without version control systems (VCS), but if test selection is
used on CI server VCS plays an important role in the identi-
fication of recent changes. Tools like Ekstazi [9] and Pytest-
testmon1 address RTS from a local development perspective
whereas our tool is also addressing test selection on CI servers.

Our tool aims to integrate with the VCS of the project
under development. This allows RTS to be performed in a
typical workflow where new features are developed in separate
version control branches and a CI-pipeline is configured to
run the tests. Currently, two types of tools are available for
RTS: code coverage based and history-based. The current
code coverage based tools, such as Ekstazi [9] and Pytest-
testmon, only work on the developer’s local machine by
creating a mapping database completely independent from any
version control data. Without version control data linked to
the mapping database, selecting correct tests between software
versions becomes extremely difficult. The history-based tools,
such as ChangeEngine2, require data from previous test runs,
and their output can be inaccurate if the data is scarce.

Git VCS and Coverage.py are used for tracking changes
in the code. For the test runner, Pytest is used. As already
mentioned, there are two settings where the tool is used, the
developer’s machine and CI server. To start using the tool
initialization of a mapping database has to be performed on
the developer’s machine: an initial run of all tests has to be
done. While performing the first run of the tests, a locally
stored SQLite database is constructed with the coverage data
provided by Coverage.py.

After the initial full test suite run, the tool is ready to be
used. On the developer’s machine, when changes are made
to the target project’s files, the tool checks for changes in
the Git working directory. The tool first constructs a list of
changed files according to Git and checks which of those
files are either source code files or test code files in our local
database. After the tool has determined which files are taken

1https://pypi.org/project/pytest-testmon/
2https://github.com/salabs/ChangeEngine

gitpytest-rts SQLite pytest
and Coverage.py

runs tests

searches for relevant tests

list of tests

passes found tests for execution

results of tests execution

source
file

source
file line test

foo.py 2 bar_test

...

gets changes
comparing to
prev. HEAD

list of files and lines

file line

foo.py 2

... ...

CI server

reads coverage data

coverage data

updates mapping with recent coverage data

Fig. 1. CI workflow with our tool

into consideration, it checks the Git diff output for each of
those files. From this ’diff’, the tool can determine which lines
have changed and which lines have shifted from their original
position. Then the tool can query all the test functions from our
database according to the list of line numbers for the changed
lines and run them with Pytest. No database state updating is
performed during this. If a user wishes to make these changes
final, a Git commit operation is required. When the changes
are committed and obtained by the CI server, an agent on the
server runs the tool and checks whether the current Git HEAD
hash differs from the one that is marked as a last update hash
in the mapping database. If so, the tool searches for relevant
tests, queries the changes and tests for those changes and
checks for newly added test functions by checking what test
functions Pytest can find and comparing it to the current state
in the database. The tool also calculates how unchanged lines
have shifted in the files and performs a database update based
on this information. When the tests are run after this, new
coverage data is collected and inserted into the database. The
RTS sequence in the CI environment is presented in Figure 1.

IV. TOOL DEMO

The tool demo shows how a developer can use the tool
in an open-source project. The steps include (i) initializing
the tool, (ii) making changes in the Git working directory,
and (iii) committing the changes. The operation that handles
committed changes highlights how the tool could work in a CI-
environment. By initializing the tool in the master branch and
then checking out a feature branch results in a scenario where
the tool compares the current feature branch Git HEAD to
the one in master. The resulting test set from this comparison
could be used in pull requests to determine which tests are
required to test the actual changes.

The tool is called pytest-rts and the source code is available
in our Github repository.3 Pytest-rts currently supports RTS

3https://github.com/F-Secure/pytest-rts

based on changes in the current Git working directory, as well
as committed changes. A simple test prioritization algorithm
is also implemented by storing the run times of each test case
and sorting the queried tests based on this information. The
tests with the shortest run time are ran first to attempt finding
a fault as fast as possible.

V. EXPERIMENTAL SETUP

We evaluated our tool with a simple mutation approach. A
random line was deleted and our system selected and executed
the tests it considered relevant. The use of existing mutation
testing tools was considered (see e.g. [13] for a review
mutation testing approaches for Python code). However, many
of the mutation tools work at abstract syntax tree or byte
code level, making it hard to attribute a specific mutation to a
certain code line. On the other hand, studying C# programs,
Derezińska [14] observe that deletion mutations perform well
when compared to more complex mutations.

Our approach, to evaluate the case where a random source
code line was deleted, first required a full test suite run to
build the local mapping database. Then, all the target project’s
source code files were queried from the database to a list.
We then ran multiple iterations where a source code file was
randomly selected from this list and a randomly chosen, non-
empty line was changed to an empty line. Next, we checked
the line number of this mutated line and queried all the tests
for that specific line, based on our mapping database. Then,
we queried all the tests that had mapping information for any
of the line numbers for the file in question. At this point we
had three test sets; the full test suite, a line-level granularity
test set for the change, and a file-level granularity test set
for the change. Then we fed these test sets to Pytest one by
one and saved the Pytest exit code for each runs. We also
added a fake exit code labeled ’−1’ to indicate that a timeout
had appeared while running the tests. This was to prevent our
mutation causing eternal loops.

We plan to run better mutation testing in the future with
mutation testing tools and make the evaluation step the core
of the tool’s module test automation (TA). This could provide
better data on how our approach handles changes in a real-
life scenario. At the moment, the TA for the tool module is
built with GitHub Actions.4 Our future plans also include
the use of historical data of existing projects in Github.
This is naturally more realistic. However, it is not a very
scalable approach, because it can be used with only some
git updates. When import dependencies change – something
which frequently happens in Python – the system needs to be
manually reconfigured. We are investigating ways to automate
this step further.

VI. RESULTS

For the experimentation we collected 1) the number of
cases where the reduced test set failed to find the error;
2) the reduction in the number of tests; and 3) the size of

4https://github.com/features/actions

TABLE I
EXPERIMENTAL RESULTS OF RANDOM LINE REMOVAL TEST - 10 000

ITERATIONS PER PROJECT

Project name Flask Rich Python-rsa

Lines of code 16143 22762 7149
Tests 487 391 94

Mapping database size (MB) 4.43 2.91 0.28
Line-granularity missed fault rate (%) 22.83 35.23 23.94
File-granularity missed fault rate (%) 2.43 0.00 2.25
Line-granularity test set size (%) 2.98 2.06 4.05
File-granularity test set size (%) 32.46 14.13 26.00

the dependency database (e.g. Machalica et al. [11] claim that
the dataset becomes prohibitively large)

We evaluated our tool’s operation in three open source
projects: Flask5, Rich6, and Python-rsa.7 Flask is a popular
Python micro-framework for building web applications, Rich
is a library for terminal text formatting and Python-rsa is
a Python implementation of RSA public-key cryptosystem.
Table I contains the data for our evaluation results. We ran
our evaluation for 10 000 iterations per project. This amount
was chosen because it provided a good indication on what
types of lines were problematic for our tool. The missed fault
rate is calculated by taking the number of cases where the
test set did not contain any tests or only a set of passing
tests was selected, but running the entire test suite found an
error. We also extracted the average line-level and average
file-level test set sizes. With that data, we calculated how
many tests different levels of selection yields. The table shows
how the test set sizes were compared to the original. We use
the terms ’line-granularity’ and ’file-granularity’ to indicate
from which selected test set the results are. The term line-
granularity means that our tool selected tests on the line-level
granularity and the term file-granularity means that our tool
did the selection on the file-level granularity.

The data shows that the line-granularity missed fault rate
is quite high and inspection of the individual failure cases
indicates that the coverage based approach has trouble keeping
track of lines that contain a function or class definition (e.g.
’def foo() / class foo()’), decorators (e.g. ’@decorator’) or
module imports (e.g. ’import module’). Further investigation
based on these results shows that the tool’s mapping database
has missing coverage data for these types of lines. This seems
to be an issue with the method of mapping coverage data:
the aforementioned lines are executed in Python before the
coverage collection is started for any specific test function.
By removing these cases from our evaluation results, we are
left with new missed fault rates shown in Table II.

Inspecting the cases after this adjustment reveals no other
clear classes of error-causing lines that could be pinpointed
to a specific fault in our coverage collection. Only one
observation could be made: many of the errors were caused by

5https://github.com/pallets/flask
6https://github.com/willmcgugan/rich
7https://github.com/sybrenstuvel/python-rsa

TABLE II
ADJUSTED MISSED FAULT RATES

Project name Flask Rich Python-rsa

Line-granularity missed fault rate (%) 15.73 24.01 18.29
File-granularity missed fault rate (%) 2.09 0.00 1.60

removing the start or end of a multi-line string, which caused
the code to be invalid. The file-granularity missed fault rate
is significantly lower even after the adjustment, but the error
causing lines seem to be similar to the ones in line-granularity
error cases. It seems that the average file-granularity test set
size is much bigger than the average line-granularity test set
size. This has most likely helped the system to find a fault in
cases where a non-covered line was deleted.

VII. CONCLUSIONS

In this paper, we have introduced a coverage-based RTS
approach and a tool for Python, providing easy integration to
continuous integration and deployment. The tool was evaluated
by benchmarking its performance with open source software.
Mutation testing was applied and the results of the execution
of full test suites were compared to the execution of a set of
tests selected by the tool. In the tests, the missed fault rate of
the test selection at file-level and line-level granularities vary
between 0–2% and 16–24%, respectively. The high missed
fault rate at the line-level granularity is related to the selected
basic mutation approach and the result could be improved
with advanced mutation techniques. Depending on the target
optimization metric (time or precision) in DevOps/MLOps
process the error rate could be acceptable or further improved
by using file-level granularity based test selection.

In our future work, there are two directions we look into.
First, to better consider timing constraints, we plan to study the
possibilities for prioritizing tests. Then, we could ensure that
the most important tests are always run, whereas some less
important ones might be omitted to save time. In addition,
flaky tests, or tests that both pass and fail periodically without
any code changes, is a direction for future research.

VIII. ACKNOWLEDGEMENT

This work was labelled by ITEA3 and funded by local
authorities under grant agreement ITEA-2019-18022-IVVES.8

REFERENCES

[1] J. O’Duinn. (2013) The financial cost of a
checkin. Accessed 2020-08-11. [Online]. Avail-
able: https://oduinn.com/2013/11/20/the-financial-cost-
of-a-checkin-part-1/

[2] M. Hilton, T. Tunnell, K. Huang, D. Marinov, and D. Dig,
“Usage, costs, and benefits of continuous integration in
open-source projects,” in 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE). IEEE, 2016, pp. 426–437.

8http://ivves.eu/

[3] G. Rothermel and M. J. Harrold, “Analyzing regression
test selection techniques,” IEEE Transactions on software
engineering, vol. 22, no. 8, pp. 529–551, 1996.

[4] E. Engström, P. Runeson, and M. Skoglund, “A sys-
tematic review on regression test selection techniques,”
Information and Software Technology, vol. 52, no. 1, pp.
14–30, 2010.

[5] S. Yoo and M. Harman, “Regression testing minimiza-
tion, selection and prioritization: a survey,” Software
testing, verification and reliability, vol. 22, no. 2, pp.
67–120, 2012.

[6] E. Engström, M. Skoglund, and P. Runeson, “Empirical
evaluations of regression test selection techniques: a
systematic review,” in Proceedings of the Second ACM-
IEEE international symposium on Empirical software
engineering and measurement, 2008, pp. 22–31.

[7] B. G. Ryder and F. Tip, “Change impact analysis for
object-oriented programs,” in Proceedings of the 2001
ACM SIGPLAN-SIGSOFT workshop on Program analy-
sis for software tools and engineering, 2001, pp. 46–53.

[8] A. Shi, M. Hadzi-Tanovic, L. Zhang, D. Marinov, and
O. Legunsen, “Reflection-aware static regression test
selection,” Proceedings of the ACM on Programming
Languages, vol. 3, no. OOPSLA, pp. 1–29, 2019.

[9] M. Gligoric, L. Eloussi, and D. Marinov, “Ekstazi:
Lightweight test selection,” in 2015 IEEE/ACM 37th
IEEE International Conference on Software Engineering,
vol. 2. IEEE, 2015, pp. 713–716.

[10] A. Gyori, O. Legunsen, F. Hariri, and D. Marinov,
“Evaluating regression test selection opportunities in a
very large open-source ecosystem,” in 2018 IEEE 29th
International Symposium on Software Reliability Engi-
neering (ISSRE). IEEE, 2018, pp. 112–122.

[11] M. Machalica, A. Samylkin, M. Porth, and S. Chandra,
“Predictive test selection,” in 2019 IEEE/ACM 41st Inter-
national Conference on Software Engineering: Software
Engineering in Practice (ICSE-SEIP). IEEE, 2019, pp.
91–100.

[12] S. Sutar, R. Kumar, S. Pai, and B. Shwetha, “Regression
test cases selection using natural language processing,” in
2020 International Conference on Intelligent Engineer-
ing and Management (ICIEM). IEEE, 2020, pp. 301–
305.

[13] A. Derezinska and K. Halas, “Experimental evaluation
of mutation testing approaches to Python programs,” in
2014 IEEE Seventh International Conference on Software
Testing, Verification and Validation Workshops. IEEE,
2014, pp. 156–164.

[14] A. Derezińska, “Evaluation of deletion mutation opera-
tors in mutation testing of C# programs,” in International
Conference on Dependability and Complex Systems.
Springer, 2016, pp. 97–108.

