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ABSTRACT Given the current COVID-19 pandemic, most people wear a mask to effectively prevent the
spread of the contagious disease. This sanitary measure has caused a significant drop in the effectiveness of
current face recognition methods when handling masked faces on practical applications such as face access
control, face attendance, and face authentication-based mobile payment. Under this situation, recent efforts
have been focused on boosting the performance of the existing face recognition technology on masked faces.
Some solutions trying to tackle this issue fine-tune the existing deep learning face recognition models on
synthetic masked images, while others use the periocular region as a naive manner to eliminate the adverse
effect of COVID-19 masks. Although the accuracy of masked face recognition remains an important issue,
in the last few years, the development of efficient and lightweight face recognition methods has received an
increased attention in the research community. In this paper, we study the effectiveness of three state-of-
the-art lightweight face recognition models for addressing accurate and efficient masked face recognition,
considering both fine-tuning on masked faces and periocular images. For the experimental evaluation, we
create both real and simulated masked face databases as well as periocular datasets. Extensive experiments
are conducted to determine the most effective solution and state further steps for the research community.
The obtained results disclose that fine-tuning exiting state-of-the-art face models on masked images achieves
better performance than using periocular-based models. Besides, we evaluate and analyze the effectiveness
of the trained masked-based models on well-established unmasked benchmarks for face recognition and
asses the efficiency of the used lightweight architectures in comparison with state-of-the-art face models.

INDEX TERMS COVID-19 pandemic, lightweight deep models, masked face recognition, periocular
recognition

I. INTRODUCTION
The present situation of the COVID-19 pandemic has
changed the world in all dimensions. The trend of wearing
face masks for all people in public places have imposed new
challenges for the research community. Many applications
based on face recognition techniques, such as face access
control, face attendance, and face authentication based mo-
bile payment, have nearly failed to effectively recognize the
masked faces. At the moment, removing masks for passing
authentication systems is not recommended since this can
increase considerably the transmission of the COVID-19
virus. Furthermore, because the virus can be spread through
contact, systems based on passwords or fingerprints are less
safer than face recognition solutions which do not need to

touch any device. Therefore, masked face recognition has
become a crucial computer vision task to help the global
society reduces virus infection.

Current advanced face recognition methods are based
on deep learning models [10], [21], which have been able
to achieve impressive performance on public benchmarks.
However, deep face recognition performs poorly under new
challenging conditions, such as the occlusion caused by
masked faces. Face occlusion has been widely addressed by
the research community in the scope of face recognition solu-
tions [43]. Most existing works consider general occlusions
that commonly appear in unconstrained capture conditions,
such as sunglasses, scarves, or other random objects like
books and cups [34]. The performance of these methods
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tends to degrade by a large margin in front of specific objects
like the COVID-19 masks, that occlude a large part of the
face, including important facial regions such as the mouth
and the nose [29].

This is the reason why recognizing masked faces is cur-
rently an active research topic [7], [18], [37]. In the last year,
recent works [4], [8], [29] have evaluated the effect of wear-
ing a mask on automatic face recognition systems based on
state-of-the-art deep Convolution Neural Networks (CNN).
However, these studies focus mainly on the performance of
common deep face recognition models with high computa-
tional cost. Moreover, since deep learning-based approaches
depend on massive training data, databases with real face
masks have been collected and tools for generating synthetic
masked images have been developed [2]. Nevertheless, most
of these collected datasets are not publicly available and
the models are trained and evaluated under different exper-
imental settings, which can be difficult to understand their
behavior.

The use of some of the ocular traits that have been pro-
posed for human recognition, can be regarded as a naive
manner to eliminate the adverse effect of the mask. Unlike
other ocular traits such as iris, retinal and conjunctival vascu-
lature, the acquisition of the periocular biometrics does not
require high user cooperation and close capture distance [31],
which is in particular useful for COVID-19 pandemic. Recent
methods for periocular recognition based on deep learning
models have shown promising results even for in-the-wild
images [13], [16], [36]. Nevertheless, since periocular bio-
metrics encloses only the immediate vicinity of eyes, i.e., a
sub-region of a face, it captures relatively less information
compared with that of the face.

On the other hand, although the accuracy of face recog-
nition systems is very important, in the last few years, the
development of efficient and lightweight face recognition
methods has received an increased attention in the literature.
This interest has been motivated by the demand for the
deployment of face recognition models in the embedded do-
mains and other use-cases constrained by low computational
power devices and high throughput requirements. Recently,
the effectiveness of several lightweight face architectures
was demonstrated for different face recognition scenarios,
reaching high levels of accuracy and compactness with a very
low computational cost [24].

In this paper, we aim at studying the effectiveness of three
state-of-the-art lightweight face recognition models to en-
able the future development of solutions addressing accurate
and efficient masked face recognition. We investigate two
different approaches to enhance the performance of these
models in front of masked faces. The first approach consists
of including masked facial images in the learning process of
the lightweight models. Due to the lack of publicly available
masked face databases, we create face datasets with synthetic
masks and propose a masked face dataset that simulates a
realistically variant collaborative face scenario. The created
real masked database is the first version of an on-going

data collection process, that will be available upon request
for future research and comparisons. In the experimental
evaluation, we cover the matching of masked faces as well
as faces with and without masks. Considering the periocular
biometrics as a naive manner to address the adverse effect
of the mask, the second approach applies the lightweight
networks in the context of periocular recognition. In order
to analyze the feasibility of using periocular information and
compare its performance against the obtained by the models
trained with masked faces, we create periocular datasets
from the same datasets used in the masked face recognition
scenario. In addition, we investigate the effect of employing
the lightweight models trained with masked images on well-
established benchmarks of unmasked images. Aiming at
evaluating the deployment capacity of the used lightweight
face networks, we assess their computational requirements
and compare them with state-of-the-art models.

The main contributions of this work are summarized as
follows:

• The collection of a real masked face dataset includ-
ing verification and identification protocols for uncon-
strained masked face recognition, that will be available
upon request to encourage and support future solutions
for this problem.

• An extensive evaluation of the performance of
lightweight deep models from two different approaches
including (real and simulated) masked faces images and
periocular images. This covered extended experiments
with three state-of-the-art lightweight face architectures,
which evidence that the masked face models should be
used as the primary solution.

• Performance assessment of face models when matching
masked vs. masked face images and masked vs. un-
masked face images.

• Comparison of the proposed lightweight masked and
periocular models with several state-of-the-art deeper
models for the problem of wearing a mask on face
recognition.

• A study of the effect of using lightweight masked face
models on unmasked face recognition benchmarks with
different covariates such as pose, age, and large-scale
(unmasked vs. unmasked face images).

• An analysis and comparison of deployment capacity
of the proposed lightweight solutions with several face
recognition models by taking into account the storage
space (model size), the compactness (number of pa-
rameters) and the Floating Point Operations Per Second
(FLOPs).

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide an overview of related work covering both
masked face recognition and periocular face recognition. In
Section 3, the datasets employed for the study are described.
The selected lightweight face models and the implementation
details are presented in Section 4. The extensive experimental
evaluation is provided in Section 5 and finally, conclusions
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are given in Section 6.

II. RELATED WORK
In this section, we review the face recognition methods that
have been proposed to address the effect of wearing a mask in
the era of the COVID-19 pandemic. We summarize existing
solutions on two different approaches containing the methods
that directly leading with the mask and those which use
periocular region as biometric trait for recognition.

A. MASKED FACE RECOGNITION
Wearing a mask can be characterized as a kind of facial
occlusion. Although there are a large number of approaches
developed for face recognition in the presence of occlusions
[43], most of them consider the occlusion of small regions
of the face due to sunglasses, mustache, bangs or hats [34].
However, the face masks that are used to prevent COVID-19
disease, occlude around 70% of the face area [29], including
the mouth, chin, and nose. Thus, specific studies and methods
have been arisen during the last year for masked face recog-
nition.

Due to lack of training and testing datasets with face
images wearing masks, the first works related to masked
face recognition during the COVID-19 pandemic are based
on the creation of databases with real or simulated face
masks. Wang et al. [38] were the first in proposing real and
simulated masked face datasets, including a large Real-world
Masked Face Recognition Dataset (RMFRD) and Simulated
Masked Face Recognition Dataset (SMFRD). Although the
authors claim to enhance the recognition accuracy from 50%
to 95%, this dataset is a little hard to be used since it has not
clearly defined an evaluation protocol. Moreover, details of
their method and baseline are not clearly specified. In [2], a
methodology and an open-source masking tool are presented,
in order to effectively augment existing face datasets to train
masked face recognition algorithms. Also, the authors create
a real-world masked face database (MFR2) for testing that
contains masked face images from celebrities and politicians.
As result, they report a considerable increase in the accuracy
of the existing FaceNet model for both masked and unmasked
faces, being able to extend out to real life masked faces.

On the other hand, some works have focused on enhanc-
ing the recognition performance of masked faces. In [28]
a Support Vector Machine classifier is trained using the
feature vector embeddings provided by FaceNet model on a
collected small database for this purpose. The authors claim
99% of accuracy but the database and evaluation protocols
used, are not provided and detailed. An alternative solution
based on recovering unmasked faces for feature extraction
was proposed in [19]. For this, a de-occlusion distillation
framework is introduced, where first, appearance information
is recovered by using a generative inpainting network and
then, rich structural knowledge is transferred from a high-
performance pretrained general recognizer in a teacher -
student model. The method presented in [37], is based on
the state-of-the-art ArcFace work [10] to extract deep fea-

tures from the detected and normalized face images, which
are then combined with LBP features extracted from eyes
and eyebrows. Also, ArcFace network is used in [26], with
several modifications for the backbone and the loss function.
The network, based on ResNet-50, is modified to output the
probability that a face is wearing a mask. In addition, the
ArcFace loss is combined with a mask-usage classification
loss to train mask robust facial feature embedding.

In the last year, different challenges and studies have
been conducted in order to benchmark the performance of
masked face recognition methods. The behavior of three face
recognition algorithms in the presence of masked face probes
is evaluated in [7]. The authors collect their own database
for the evaluation and show how two of the top-performing
face recognition deep models (ArcFace and SphereFace) and
a COTS algorithm (from Neurotechnology) are affected in
the presence of masks. The National Institute of Standards
and Technology (NIST) reports the performance of a large
number of face recognition algorithms on faces occluded by
face masks being run under the Ongoing Face Recognition
Vendor Test (FRVT) [29]. This study evidence that error rates
for unmasked versus masked faces, have been decreasing
across algorithms development after the pandemic. How-
ever, some of the algorithms that are quite competitive with
unmasked faces still fail to authenticate between 10% to
40% of masked images. Although, the results evidence that
a number of developers have adapted their algorithms to
support masked face recognition, particular design details
of the tested algorithms are not provided. Moreover, the
dataset used in the NIST study is not publicly available and it
contains synthetic masked images from controlled scenarios,
thus real masked images in unconstrained scenarios were not
considered.

Recently, the IJCB Masked Face Recognition Competition
2021 (IJCB-MFR-2021) [4] evaluates the solutions submitted
by 10 teams. The database used in the competition represents
a collaborative face verification scenario, but only 47 subjects
wearing real face masks were considered. Moreover, most of
the submitted solutions, especially the top-performing ones,
are based on heavier ResNet architectures with a compact-
ness between 23 and 108 millions of parameters. Another
evaluation was conducted in Face Biometrics under COVID
Workshop and Masked Face Recognition Challenge in ICCV
2021 [8]. A large number of recent solutions were evaluated
on a dataset containing 6,964 masked facial images and
13,928 non-masked facial images. In this case, ResNet is
also used as baseline model and the details of the submitted
solutions are not provided. Unfortunately, the test data will
not be released to the public but we are able to submit our
proposal in order to be evaluated in this large dataset. In gen-
eral, although some restrictions are imposed to the solutions
submitted to these competitions, lightweight architectures are
not considered.
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B. PERIOCULAR FACE RECOGNITION
Under the situation caused by the COVID-19 pandemic, pe-
riocular recognition has reached direct relevance. Periocular
region refers to the facial area in the immediate vicinity of
the eyes [16]. Although there are no specific guidelines for
the size and bounds of the periocular region, some studies
suggest that considering the eyelids, eyelashes, eyebrow, tear
duct, eye shape, and the surrounding skin can result in higher
recognition rates [30].

Early periocular recognition approaches used monocular
information, separating the left region from the right region
and performing the matching individually. Park et al. [30]
were the first to study the feasibility of using the periocular
region as a biometric trait and evaluate its performance using
different matchers based on global and local handcrafted fea-
ture extractors. The authors also examine the effectiveness of
the periocular region for non-ideal scenarios and suggest in-
cluding eyebrows and using neutral facial expression, as well
as combining the results of matching the left and the right
sides of the periocular images for more accurate recognition.
In [3], different methods using the left, the right and both
eyes were evaluated for recognition. It was shown that in all
cases an improvement between 3 and 5 percent was achieved
when using both eyes instead of only one. Thus, most of the
state-of-the art methods use the bi-ocular information, some
of them analyzing left and right eyes separately and then
combining the results [36], while others use both eyes within
a single image [14].

With the emergence of deep learning approach, the focus
of the researchers has been moved to learn robust repre-
sentations by deep Convolutional Neural Networks (CNNs)
for periocular recognition, achieving visible improvement
in the performance of periocular biometric systems [17],
[44], [45]. The semantics-assisted convolutional neural net-
works (SCNN) [44] was one of the first proposals that use
deep learning-based representation for periocular images.
By incorporating explicit semantic information (gender and
side), it shows to offer better discriminating power with the
usage of a relatively smaller number of training samples.
In [45] the authors apply existing pre-trained architectures,
proposed to classify generic objects, to the task of periocular
recognition. The results obtained show that these networks
are able to outperform reference periocular features. Simi-
larly, seven different off-the-shelf deep learning based CNN
using transfer learning approach were implemented in [17] to
analyse the utility of periocular region in non-ideal scenarios.
A new method for masked face recognition was proposed
in [20] by integrating a cropping-based approach with the
Convolutional Block Attention Module (CBAM) to focus on
the regions around eyes.

On the other hand, some works propose feature fusion
approach which combines handcrafted features (e.g. LBP and
HOG) with features extracted using pretrained CNN models
[18], [36]. Another hybrid model is introduced in [1] for
ocular smartphone authentication (Selfie Biometrics). The
proposal is a fusion of a stacked unsupervised convolution-

based model with a stacked supervised convolution-based
model, which is combined with Root SIFT. A recent selfie
periocular verification method is presented in [35], which
consists of a two-stage approach based on a CNN with pixel-
shuffle, and a new loss function based on a sharpness metric,
aiming at enhancing the periocular images with a super-
resolution approach.

Although the significant and encouraging research
progress gained by the aforementioned works to address the
problem of recognizing faces wearing masks, the study of
lightweight deep networks for this problem deserves further
attention. Moreover, there is a lack in the evaluation and
comparison of existing methods for the two different ap-
proaches reviewed in this section, under the same scenarios
and conditions, which could be very helpful for establishing
the most suitable way to deal with the problem of masked
face recognition.

III. DATASETS
In this section, we present the datasets used for studying the
masked face recognition problem. Due to the lack of publicly
available large-scale datasets for training and testing, we
generate face images with simulated masks from existing
unmasked face databases. We test the trained models in some
state-of-the-art masked datasets and we also collect a real
masked dataset from subjects of our laboratory. To analyze
the feasibility of periocular information, we construct peri-
ocular images from the same datasets used for the masked
face recognition scenario.

A. SIMULATED MASKED FACE DATASETS
In order to create simulated masked face datasets, we use the
open-source tool MaskTheFace [2] to convert existing face
datasets into masked face datasets. It uses the face landmarks
detector provided by Dlib library [15] to identify the face
tilt and six key features of the face necessary for applying a
mask. Based on the face tilt, the corresponding mask template
selected from the library of masks, is then transformed based
on the six key features to fit on the face. MaskTheFace
provides five different mask types including cloth, surgical,
N95, KN95 and gas, and supporting 24 existing patterns that
can be applied to mask types above to create more variations.

For the purpose of training, we select CASIA-WebFace
[42] which is a face dataset that contains 494,414 images
of 10,575 identities, with an average of 15 images per iden-
tity varying in pose, age, ethnicity and illumination. From
this dataset, we create a Simulated Masked (SM) CASIA-
WebFace by augmenting it using the described MaskThe-
Face tool. Specifically, for each unmasked face image from
every subject, we generate four masked images using cloth,
gas, KN95 and surgical-green synthetic mask types. Thus,
both the original unmasked image and the created synthetic
masked images, compose the SM CASIA-WebFace dataset
in order to make sure that the trained networks perform well
on both the masked and unmasked images. Figure 1 shows
some examples of the synthetic masked face images obtained
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for different unmasked subjects from the CASIA-WebFace
dataset.

FIGURE 1: Examples of training face images from Simu-
lated Masked CASIA-WebFace dataset.

In the case of testing, we select different face benchmarks
including LFW [12], AgeDB-30 [27] and CALFW [46] to
generate simulated masked datasets. For this, we use the
MaskTheFace tool with one randomly selected mask applied
to each image.

Labeled Faces in the Wild (LFW) [12] is a standard face
recognition benchmark that contains 13,233 web-collected
images from 5,749 different identities, with large variations
in pose, expression and illuminations. The AgeDB [27] is an
in-the-wild dataset with large variations in pose, expression,
illuminations, and age. It contains 16,488 images of 568
distinct subjects. The average age range for each subject is
50.3 years. There are four groups of test data with different
year gaps (5, 10, 20 and 30 years, respectively) for age-
invariant face verification. In this paper, we only use the most
challenging subset, AgeDB-30, to report the performance.
Cross-Age LFW (CALFW) [46] is a recently introduced
dataset that shows higher age variations, with the same
identities from LFW database. These three databases define
an evaluation protocol based on 6,000 face pairs matching,
which are divided into ten subsets, each having 300 positive
pairs and 300 negative pairs. To analyze the performance of
trained networks, we compute the verification accuracy (Acc)
and the Equal Error Rate (EER) metrics on the established
6,000 face pairs of each database.

B. REAL MASKED FACE DATASETS
Aiming at assessing the performance of the trained models
on real masked face images, we create a small face database
from persons of our laboratory wearing real masks. This
database (RMFR-CEN) is an initial version and further data

collection efforts are ongoing. The data tries to simulate a
collaborative, yet varying, scenario where the mask, illu-
mination, pose and background can change on each of the
participants. In total, we collected 395 images from 100
identities. Each identity has on average of 4 images with
both masked and unmasked faces. The dataset is processed
in terms of face alignment and image dimensions. As result,
each image has a dimension of (112 × 112 × 3). Figure
2 shows some examples of the images collected from our
laboratory.

FIGURE 2: Examples of collected face images from RMFR-
CEN dataset.

For performance evaluation, we design both face verifi-
cation and identification protocols. The verification protocol
specifies 469 positive pairs and 10,000 negative pairs com-
posed of one masked face and one unmasked face. For per-
formance measurement, each pair is evaluated by computing
a matching similarity score, and the paired True Acceptance
Rate (TAR) at different False Acceptance Rates (FAR), the
Equal Error Rate (EER) and the Area Under ROC (AUC) are
used as evaluation metrics. In the case of face identification,
we construct the evaluation setup for the closed-set scenario,
where for each subject, we use the most frontal unmasked
image as the gallery, while the masked ones are used as
probes. To report the identification performance, we select
the Cumulative Matching Characteristic (CMC) [32] and the
mean Average Precision (mAP) measures.

In order to enlarge the evaluation and compare the trained
lightweight masked models with some existing masked face
recognition solutions, we use the Masked faces in real-
world for face recognition (MFR2) [2], the test set of the
InsightFace-Track in Masked Face Recognition Challenge of
ICCV 2021 [8] and AR Face [23] datasets.
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MFR2 is a small dataset with 53 identities of celebrities
and politicians with a total of 269 images collected from the
internet. Each identity has on average 5 images, including
both masked and unmasked faces. In Figure 3, we show
some sample images from the MFR2 dataset. For the network
performance evaluation, a total of 848 image pairs (424
positive pairs, and 424 negative pairs) are defined and Max
Accuracy and TPR@FAR=0.2% metrics are used to report
the verification performance.

FIGURE 3: Examples of face images from MFR2 dataset.

The Masked Test Set of the InsightFace Track of ICCV
2021 [8] is a private dataset which contains 6,964 masked
facial images and 13,928 non-masked facial images of
6,964 identities. In total, there are 13,928 positive pairs
and 96,983,824 negative pairs for the verification evaluation.
Unlike existing face recognition test sets, this dataset is
not collected from celebrities, thus the identity-overlapping
problem is naturally avoided. As evaluation metric 1:1 face
verification is used and the results are reported in terms of
True Positive Rate (TPR) @ False Positive Rate (FPR) =
1e-4. In Figure 4 we show some examples images from this
dataset.

The AR Face Database [23] contains around 4,000 images
from 126 subjects captured on two different sessions. Each
person has up to 13 images per session with different expres-
sions, illuminations and occlusions. The occlusions included
in the dataset are the presence of sunglasses and scarves.
Although this dataset is not a masked face dataset, it has been
used for evaluating masked face solutions [19], [34] since the
scarf occlusions cover more or less the same region than a
face mask (See Figure 5). Thus, we have decided to use the
Scarf subset of this database in the evaluation in order to be
able to compare with state-of-the-art methods. Following pre-
vious protocols, we randomly select 100 subjects (50 males
and 50 females) and conduct identification experiments by
using one neutral image per subject (the first image in the
first session) to conform the gallery.

FIGURE 4: Examples images from the Masked Test Set of
the InsightFace Track of ICCV 2021.

FIGURE 5: Examples of scarf face images from AR dataset.

C. PERIOCULAR DATASETS
In the case of periocular face datasets, we use the bi-ocular
information including, in a single image, both eyes and con-
sidering the eyelids, eyelashes, eyebrow, tear duct, eye shape
and the surrounding skin. For obtaining this periocular re-
gion, we crop face images based on the algorithm used in [18]
for extracting the region of interest. This algorithm considers
the canthus points as reference points, which were detected
automatically through Dlib landmarks detector. Finally, the
obtained periocular regions are geometrically normalized.

For a fair comparison between periocular-based lightweight
models against mask-based lightweight models, we em-
ployed the same datasets and evaluation metrics. Thus, we
use Periocular CASIA-WebFace for training, while Perioc-
ular LFW, AgeDB-30, CALFW y RMFR-CEN are used for
testing. Figure 6 shows some examples of the training images
from Periocular CASIA-WebFace. In addition, to enlarge
our study, we compare the obtained periocular lightweight
models with the state-of-the-art methods reported on the
periocular images from the AR Face database.
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FIGURE 6: Examples of training face images from Periocu-
lar CASIA-WebFace dataset.

IV. LIGHTWEIGHT FACE RECOGNITION MODELS
In the last years, developing very efficient and lightweight
face recognition networks has become an active research
topic in order to make deep CNNs feasible on real-time ap-
plications or resource-limited devices. Existing lightweight
models have shown to be able to perform very similar to
larger and heavier deep models in different face recogni-
tion scenarios. In this study, we select three state-of-the-art
lightweight CNN face models that were the top-performing
in [24]: VarGFaceNet [41], MobileFaceNet [5] and Shuffle-
FaceNet [22]

VarGFaceNet [41] consists of an efficient variable group
convolutional network based on VarGNet for lightweight face
recognition. Different from the blocks in VarGNet, it adds
squeeze and excitation (SE) block and employes PReLU ac-
tivation function instead of ReLU to increase the discrimina-
tive ability of their blocks. Moreover, VarGFaceNet removes
the downsample process at the start of network to preserve
more information and applies variable group convolution
after last convolution to shrink the feature tensor to 1×1×512
before FC layer. Moreover, 3 × 3 Convolution with stride 1
is used at the start of network instead of 3 × 3 Convolution
with stride 2 as in VarGNet, which reserves the discriminative
ability in lightweight networks.

MobileFaceNet [5] and ShuffleFaceNet [22] have shown
competitive performance with respect to high-accurate very
deep face models on several benchmarks for unconstrained
face recognition. The major contribution of these networks
lie in the use of a Global Depth-wise Convolution (GDC)
layer instead of a Global Average Pooling (GAP) layer in
order to obtain a more discriminative face representation;
and Parametric Rectified Linear Unit (PReLU) as non-linear
activation function due to its accuracy improvement over the

Rectified Linear Unit (ReLU) function.
Specifically, MobileFaceNet [5] uses the residual bot-

tlenecks proposed in MobileNetV2 as their main building
blocks, while ShuffleFaceNet [22] is based on the extremely
efficient network ShuffeNetV2, where the building blocks in
stages 2-4 consist of DenseNet blocks and the number of
channels in each block is scaled to generate four networks
of different complexities, denoted as 0.5×, 1×, 1.5× and
2×. Taking into account the results obtained in [22] where
ShuffeFaceNet 1.5× presented the best trade-off between
speed and accuracy, we will use this model and we will
refer to it as ShuffeFaceNet in the remaining of our work.
In addition, both lightweight networks adopt a fast down-
sampling strategy at the beginning of the networks, an early
dimension-reduction strategy at the last several convolutional
layers, and a linear 1× 1 convolution layer following a linear
global depthwise convolution layer as the feature output
layer.

A. IMPLEMENTATION DETAILS

The lightweight face CNN networks, pretrained on the
cleaned MS1M dataset [11], are independently fine-tuned
on masked and periocular images created from the CASIA-
WebFace dataset. For all the models, random horizontal
flip is used as augmentation strategy. We adopt Stochastic
Gradient Descent (SGD) optimizer with the batch size of
128/256/512 due to limited GPU memory, and the mod-
els fine-tuning is carried out on two Nvidia GeForce GTX
1080Ti (11GB) GPUs. The learning rate is initialized to 0.1
and decreased by a factor of 10 periodically at 100K, 140K,
160K iterations. The total iteration step is set as 200K. The
momentum parameter is set to 0.9 and weight decay at 5e-
4. The parameter initialization for convolution is Xavier with
random sampling from a Gaussian normal distribution. For
VarGFaceNet, MobileFaceNet and ShuffeFaceNet, we use
ArcFace loss function with an angular margin m = 0.5, that
turned out to be the best as it was specified in [24]. For all
face models, we directly take the embedding feature after the
last convolutional layer as face representation, and use the
cosine similarity to obtain the matching scores.

For data preprocessing, RetinaFace detector [9] is applied
to detect all faces and landmark points, which are used to
align and crop each face into a template with the size of
112 × 112, where each pixel (ranged between [0; 255]) in
RGB images is then normalized into [-1; 1] by subtracting
the mean pixel value, i.e. 127.5, and divided by 128.

V. EXPERIMENTAL EVALUATION
In this section, we assess the effectiveness of trained Shuffle-
FaceNet, MobileFaceNet and VarGFaceNet on both masked
and periocular face recognition datasets and compare them
with state-of-the-art solutions. Moreover, we analyze the
effect of using the lightweight masked face models for face
recognition in unmasked benchmarks. In addition, we ana-
lyze the computational efficiency of these lightweight models

VOLUME 4, 2016 7



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3135255, IEEE Access

Martínez-Díaz et al.: Towards Accurate and Lightweight Masked Face Recognition

compared with some state-of-the-art deep face models used
for the problem of masked face recognition.

A. MASKED FACE RECOGNITION
In this scenario, all lightweight deep models that were trained
on the Simulated Masked CASIA-WebFace dataset are tested
on several datasets for both, simulated masked and real face
recognition. To baseline the performance, we compare these
models with their original version without fine-tuning them
on masked face images.

1) Results on simulated masked datasets
In order to asses the performance of recognizing faces with
and without the masks on, we first conduct experiments on
Simulated Masked datasets: LFW, AgeDB-30 and CALFW.
We evaluate two different configurations in order to draw
effective matching comparisons: a) we carried out the match-
ing of face pairs with the simulated masked (masked vs.
masked) and b) we test pairs composed by one masked face
and one unmasked face (masked vs. unmasked). In all cases
we evaluate the original models and their fine-tuned versions.

In Table 1 and Table 2, we present the face verification
results obtained for the two matching configurations, in terms
of Equal Error Rate (EER) and Accuracy (Acc).

TABLE 1: Face verification performance (%) on the Sim-
ulated Masked LFW, AgeDB-30 and CALFW datasets by
matching masked face pairs.

Method
Masked vs. Masked

LFW AgeDB-30 CALFW
Acc EER Acc EER Acc EER

VarGFaceNet [41] 96.4 3.8 85.9 13.8 85.9 14.1
ShuffleFaceNet [22] 96.9 3.4 86.3 13.6 85.5 15.1
MobileFaceNet [5] 97.1 3.2 87.8 12.3 86.8 13.8
VarGFaceNet-Mask 97.8 2.4 88.9 11.3 87.0 13.5
ShuffleFaceNet-Mask 98.0 2.1 89.8 10.0 88.7 11.8
MobileFaceNet-Mask 98.5 1.6 91.6 8.7 89.9 10.8

TABLE 2: Face verification performance (%) on the LFW,
AgeDB-30 and CALFW datasets by matching masked faces
versus unmasked faces.

Method
Masked vs. Unmasked

LFW AgeDB-30 CALFW
Acc EER Acc EER Acc EER

VarGFaceNet [41] 96.9 3.0 89.2 10.8 88.5 11.6
ShuffleFaceNet [22] 97.2 3.0 88.9 11.0 87.9 12.4
MobileFaceNet [5] 97.4 2.5 90.0 9.9 89.5 11.5
VarGFaceNet-Mask 98.3 1.9 89.4 10.7 87.7 13.2
ShuffleFaceNet-Mask 98.4 1.8 90.9 9.1 89.8 10.7
MobileFaceNet-Mask 98.8 1.3 92.3 7.7 90.3 10.0

It can be observed in the tables that for the three datasets,
all the lightweight models fine-tuned with the masked images
enhance the verification performance of the models that has
not been trained with masked facial images. We can see that
the greater improvements are obtained in front masked faces
with age variations. Among the models, MobileFaceNet-
Mask achieves the best results in the three databases. If

we compare Table 1 against Table 2, it can be seen that
better results are obtained when at least one of the images
is unmasked. This is a desire property for real applications
where usually the enrolled images are in normal condition
(unmasked).

2) Results on RMFR-CEN dataset
In order to study the effectiveness of face models trained
with simulated masks on real-world masked faces, we use the
dataset collected in our laboratory, RMFR-CEN dataset. We
follow the verification and identification protocols defined for
this dataset on Section III-B, that consider comparisons of
masked face images against unmasked images. The obtained
results are presented in Table 3 and Table 4, respectively.

TABLE 3: Face verification (%) results on RMFR-CEN
dataset.

Method TAR%@FAR EER AUC30% 10% 1%
VarGFaceNet [41] 86.7 75.7 49.7 19.2 89.5
ShuffleFaceNet [22] 87.4 74.8 52.7 17.5 89.6
MobileFaceNet [5] 90.0 81.0 63.3 14.7 92.5
VarGFaceNet-Mask 94.9 87.2 64.4 11.3 94.9
ShuffleFaceNet-Mask 91.9 82.3 70.6 15.1 93.0
MobileFaceNet-Mask 93.8 85.7 72.9 12.8 94.5

TABLE 4: Closed-face identification (%) results on RMFR-
CEN dataset.

Method Rank-1 Rank-10 Rank-20 mAP
ShuffleFaceNet [22] 59.4 82.7 87.6 63.4
VarGFaceNet [41] 60.9 80.7 87.1 64.2
MobileFaceNet [5] 68.8 84.7 88.6 71.7
ShuffleFaceNet-Mask 68.8 86.1 92.1 72.0
VarGFaceNet-Mask 68.8 88.1 93.1 72.0
MobileFaceNet-Mask 77.2 91.1 92.1 79.6

It can be seen that also in the real masked images, for
both verification and identification protocols, the models
fine-tuned with synthetic masks are able to enhance con-
siderably the performance of originals face models. Specif-
ically, all mask-based models are able to increase in at
least 9% the TAR@FAR=1% and the Rank-1 results with
respect to unmasked models. Among the masked models,
VarGFaceNet-Mask obtains better verification results, while
MobileFaceNet-Mask achieves the highest identification per-
formance, especially at Rank-1. As we can appreciate, when
we test the lightweight masked models in face images wear-
ing real masks, the improvements over the original models
are more remarkable. However, the overall performance, is
not as good as when we tested these models in synthetic
datasets, which still leaves a large margin of improvement.

3) Comparison with state-of-the-art
In order to compare the lightweight masked face models with
existing solutions for the masked face recognition problem,
we assess their performance on the MFR2, the InsightFace-
Track in Masked Face Recognition Challenge of ICCV 2021
and the AR Face datasets.
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Table 5 presents comparative results achieved on the
MFR2 dataset by the lightweight face models and FaceNet
model with and without fine-tuning. The results are re-
ported based on the evaluation criteria Max Accuracy and
TPR@FAR=0.2%, described in [2]. As can be seen, all the
lightweight-masked face models achieved higher verification
performance than FaceNet-FT, being the MobileFaceNet-
Mask the best one in terms of TPR@FAR=0.2%. In addition,
we can observe that fine-tuning face recognition models
with masked face images (real or simulated) improves the
verification performance.

TABLE 5: Face verification (%) results on MFR2 dataset.

Method TPR@FAR=0.2% Max Accuracy
FaceNet [2] 48.9 90.3
ShuffleFaceNet [22] 75.7 95.0
VarGFaceNet [41] 88.2 95.5
MobileFaceNet [5] 90.3 94.3
FaceNet-FT [2] 82.8 96.0
ShuffleFaceNet-Mask 86.3 96.1
VarGFaceNet-Mask 90.3 96.1
MobileFaceNet-Mask 91.3 96.1

In Table 6, we present the verification performance on the
InsightFace-Track in Masked Face Recognition Challenge of
ICCV 2021, where TPR is measured on mask-to-non-mask
1:1 protocol, with FAR less than 0.01%(1e-4). Also, further
details are presented such as the training dataset, as well as
the size and the inference time of the models. In all cases
ArcFace loss function was used. We compare our lightweight
masked face models with the provided baseline solutions
based on the ResNet architecture. It is important to note that,
we do not participate in the competition, we only asses the
performance of our models on the test set. Thus, the compar-
ison with the reported baseline results is not fair enough since
most of them employ different and bigger training sets such
as Glint360K and MS1MV3, which contributes to the differ-
ences in the performance. It can be seen that, all ResNet base-
line models significantly increase their verification accuracy
by using Glint360K dataset. For example, the R100 backbone
trained on the Glint360K dataset, outperforms in more than
40% the results obtained by using the CASIA dataset, which
is the one we used. Although our lightweight masked face
models were not trained with the datasets provided by the
competition (MS1M, Glint360K), they considerably improve
the verification performance of the R100 trained on the
CASIA. In particular, the MobileFaceNet-Mask, the best
performing one, surpass the R100 trained on CASIA in more
than 28%. Moreover, we can observe that MobileFaceNet-
Mask is capable to obtain better results than both versions of
R18 trained with more powerful training sets. In the future,
we plan to employ some of these datasets for fine-tuning our
masked face models in order to increase their accuracy. On
the other hand, we can appreciate that all lightweight models
present the smallest model sizes with very low inference
times.

In Table 7, recognition accuracy at Rank-1 is reported on
the Scarf subset of the AR Face database. The performance

TABLE 6: Verification performance (%) on the InsightFace-
Track in Masked Face Recognition Challenge of ICCV 2021.
TPR denotes the TPR@FAR=1e-4 measured on mask-to-
non-mask 1:1 protocal. Inference time is evaluated on Tesla
V100 GPU using onnxruntime-gpu==1.6.

Backbone Dataset TPR Size(MB) Time(ms)
R18 MS1MV3 47.85 91.66 1.86
R18 Glint360K 53.32 91.66 2.01
R34 MS1MV3 58.72 130.25 3.05
R34 Glint360K 65.11 130.25 3.04
R50 MS1MV3 63.85 166.31 4.26
R50 Glint360K 70.23 166.31 4.34
R100 CASIA 26.62 248.90 7.07
R100 MS1MV2 65.77 248.90 7.03
R100 MS1MV3 69.09 248.59 7.03
R100 Glint360K 75.57 248.59 7.04
VarGFaceNet-Mask CASIA 39.24 19.18 2.52
ShuffleFaceNet-Mask CASIA 38.15 9.31 2.27
MobileFaceNet-Mask CASIA 55.07 7.87 2.69

of lightweight face models fine-tuned with mask images is
compared with those reported by state-of-the-art methods
proposed for face recognition under occlusions. As we can
see, the three masked face models are able to achieve per-
fect recognition rates under this kind of occlusion, which
is somehow similar to the one caused by the presence of
masks. These results outperform specific methods devoted to
handling occlusions such as ArcFace-FT [34] and PDifferen-
tialSiamese [34] that have been evaluated on this database.

TABLE 7: Rank-1 face identification accuracy (%) on AR
Face dataset with natural scarf occlusions.

Method Rank-1
RPSM [39] 90.2
Stringface [6] 92.0
LMA [25] 93.7
DeOccDistillation [19] 94.1
ArcFace-FT [34] 96.4
PDifferentialSiamese [34] 98.3
ShuffleFaceNet-Mask 100
MobileFaceNet-Mask 100
VarGFaceNet-Mask 100

B. PERIOCULAR FACE RECOGNITION
In this section, we test the lightweight face models that were
trained with periocular CASIA-WebFace dataset on the peri-
ocular datasets obtained by cropping the images of the LFW,
AgeDB-30, CALFW and RMFR-CEN databases. To analyze
and evaluate the effectiveness of using periocular region,
we compare their performance w.r.t. the results obtained by
finetuning with masked face images. Moreover, we compare
the periocular models with some state-of-the-art periocular
algorithms.

1) Results on periocular datasets
Table 8 shows the verification performance obtained by the
lightweight face models trained with periocular region in the
Periocular LFW, AgeDB-30 and CALFW datasets. As we
can observe, among the tested lightweight periocular-based
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TABLE 8: Face verification (%) results on Periocular LFW,
AgeDB-30 and CALFW datasets.

Method LFW AgeDB-30 CALFW
Acc EER Acc EER Acc EER

VarGFaceNet-Periocular 97.7 2.3 87.4 12.4 86.6 14.1
ShuffleFaceNet-Periocular 97.3 2.9 87.9 11.9 88.7 11.7
MobileFaceNet-Periocular 98.1 2.1 90.2 9.9 89.6 11.0

models, the MobileFaceNet-Periocular achieves the highest
verification results for the three benchmarks. However, if we
compare the performance of these models with the results
obtained by the lightweight masked models on Tables 1
and 2, it can be appreciated that by using the periocular
information we are not able to improve the results achieved
by the models fine-tuned on masked images, especially in
front of age variations.

In Table 9 and Table 10, we present the verification and
identification performance obtained in Periocular RMFR-
CEN dataset, respectively. Specifically, if we compare the
performance of the periocular models w.r.t. the masked mod-
els (in Tables 3 and 4, respectively) we can observe that in
the case of verification, for high FAR values (e.g. 30%), the
degradation on the performance is bigger, while in the case of
identification experiments, for a lower FAR=1% the results
are more closer. Also in this case, MobileFaceNet achieves
the best results and exhibits the greater differences between
masked and periocular versions.

TABLE 9: Face verification (%) results on Periocular RMFR-
CEN dataset.

Method TAR@FAR EER AUC30% 10% 1%
VarGFaceNet-Periocular 84.9 74.6 64.0 19.6 88.7
ShuffleFaceNet-Periocular 83.8 77.8 66.5 18.8 89.5
MobileFaceNet-Periocular 88.7 82.1 72.5 15.4 92.2

TABLE 10: Closed-face identification (%) on Periocular
RMFR-CEN.

Method Rank-1 Rank-10 Rank-20 mAP
ShuffleFaceNet-Periocular 68.3 88.1 94.1 71.3
VarGFaceNet-Periocular 68.1 84.2 88.6 71.4
MobileFaceNet-Periocular 73.8 88.6 91.6 76.1

2) Comparison with state-of-the-art

In order to compare the periocular lightweight models with
state-of-the-art periocular algorithms, we follow the protocol
used in [36] for the AR Face database, where a large number
of periocular methods have been evaluated. The obtained
identification accuracy for Rank-1 and Rank-5 are listed
in Table 11. As we can observe, similar to masked-based
model, the three periocular lightweight models reach 100%
of identification, outperforming all the reported state-of-the-
art methods.

TABLE 11: Face identification (%) performance and compar-
ison with state-of-the-art methods on Periocular AR dataset
using protocol defined in [36].

Method Rank-1 Rank-5
AlexNet 93.6 96.8
VGG16 94.2 97.6
FaceNet 94.2 97.8
LCNN29 94.3 97.5
DeepIrisNet-B 94.4 97.2
DeepIrisNet-A 95.2 98.4
Multi-fusion CNN 96.1 98.7
OCLBCP dual-stream CNN 96.3 98.8
ShuffleFaceNet-Periocular 100 100
MobileFaceNet-Periocular 100 100
VarGFaceNet-Periocular 100 100

C. EFFECT OF USING MASKED FACE MODELS ON
UNMASKED FACE DATASETS
In order to ask the question if face models trained on masked
datasets can be used to recognize normal unmasked faces,
we test the MobileFaceNet-Mask, ShuffleFaceNet-Mask and
VarGFaceNet-Mask on well-established face recognition
benchmarks. We compare them with their unmasked face
models, as well as with state-of-the-art methods reported on
these benchmarks. Specifically, we selected face databases
which cover different covariates such as unconstrained sce-
nario (LFW), age (AgeDB-30, CALFW), pose (CPLFW) and
large-scale (IJB-B).

TABLE 12: Verification accuracy (%) and comparison with
state-of-the-art methods reported in [24] in original LFW and
AgeDB-30 databases.

Method LFW AgeDB-30
VGG-Face 98.9 85.1
CenterLoss 99.3 90.7
Marginal Loss 99.5 95.7
Seesaw-shuffleFaceNet 99.6 96.9
VarGFaceNet 99.6 97.1
ShuffleFaceNet 99.7 97.3
MobileFaceNet 99.7 97.6
ResNet100-ArcFace 99.8 98.2
VarGFaceNet-Mask 98.9 90.9
ShuffleFaceNet-Mask 99.0 92.8
MobileFaceNet-Mask 99.2 93.9

Table 12 presents the verification results on LFW and
AgeDB-30 datasets, while Table 13 shows those obtained
on CALFW and CPLFW benchmarks. We can see that,
for general unconstrained images in the LFW dataset, the
lightweight masked models obtain very close results to their
unmasked versions and even to the state-of-the art. How-
ever, for age and pose variations (Table 13) , the impact
on the performance is greater. Among the masked models,
the MobileFaceNet-Mask is the less affected by the different
covariates.

In order to evaluate the masked models on large-scale
datasets, we use the Janus Benchmark-B (IJB-B) dataset [40]
which consists of 1,845 subjects with 21,798 still images and
55,026 frames from 7,011 videos. Specifically, we follow
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TABLE 13: Face verification accuracy (%) and comparison
with state-of-the-art methods reported in [24] in original
CALFW and CPLFW databases.

Method CALFW CPLFW
Human-Individual 82.3 81.2
Human-Fusion 86.5 85.2
CenterLoss 85.5 77.5
SphereFace 90.3 81.4
VGG-Face2 90.6 84.0
ResNet100-ArcFace 95.9 91.2
DDL - 93.4
MobileFaceNet 95.1 87.7
VarGFaceNet 94.8 87.7
ShuffleFaceNet 94.7 86.9
MobileFaceNet-Mask 91.9 83.2
ShuffleFaceNet-Mask 91.3 81.1
VarGFaceNet-Mask 89.0 81.2

the evaluation protocols 1:1 verification and 1:N (mixed
media) identification including both closed and open-set pro-
tocols. As performance metrics, the paired TAR@FAR are
reported for the 1:1 verification protocol, while Cumulative
Match Characteristic (CMC) and Identification Error Trade-
off (IET) curves are reported for the 1:N closed-set and 1:N
open-set identification protocols, respectively.

Table 14 presents the verification and the identification
performance of masked face models and state-of-the-art
methods that are evaluated in [24]. For the verification
task, IJB-B provides 12,115 templates with 10,270 genuine
matches and 8M impostor matches. In the case of verifica-
tion, we compare the TAR at FAR values of 0.01% (1e-4)
and 0.1% (1e-3), while for 1:N identification, we compare
the Rank-1 and Rank-5 accuracy for closed-set protocol and
IET@FPIR=0.1% for open-set protocol [40]. As we can
appreciate, for both verification and identification, masked-
based models also achieve worse results than their un-
masked versions. The greater difference in performance are
shown for VarGFaceNet-Mask and ShuffleFaceNet-Mask,
being MobileFaceNet-Mask which presents the lowest drops.
Derived from the results presented in Table 14, in unmasked
environments it is still a better option to use models learned
with images without masks. Unsurprisingly, current models
are not able to fully generalize over masked and unmasked
faces. Thus, for applications where both, masked and un-
masked faces can be present, an alternative to consider is to
introduce a previous stage where the face masks are detected.

D. NETWORK VISUALIZATION
In order to qualitatively analyze and interpret the experi-
mental results, Gradient-weighted Class Activation Mapping
(Grad-CAM) [33] technique is adopted to localize the dis-
criminative areas. Grad-CAM uses the gradient information
flowing into the last convolutional layer of the CNN to
assign importance values to each neuron for a particular
decision of interest, without any modification in the network
architecture.

The generated Grad-CAM maps of the lightweight masked

TABLE 14: Verification TAR (%) at different FARs and 1:N
(mixed media) Identification on the IJB-B database.

TAR@FAR Identification
Method 1e-4 1e-3 IET@ Rank-1 Rank-5FPIR=0.1%
VGG-Face2 80.0 88.7 83.9 90.1 94.5
RKD 89.6 94.7 87.6 93.4 96.5
SP 89.8 94.9 88.0 93.8 96.6
R50-ArcFace 89.9 94.5 88.2 93.6 96.5
DDL 90.7 95.2 89.5 93.9 96.6
MobileFaceNet 92.8 95.6 92.2 94.0 96.5
VarGFaceNet 92.9 95.6 92.1 94.0 96.5
ShuffleFaceNet 92.3 95.2 91.4 93.6 96.2
MobileFaceNet-Mask 87.3 92.7 85.4 91.6 95.0
VarGFaceNet-Mask 78.6 88.4 74.7 87.3 92.7
ShuffleFaceNet-Mask 79.4 90.2 73.5 88.3 92.8

and periocular models are shown in Figure 7. In addition,
we included the Grad-CAMs of R100-ArcFace model. In
the figure, the first two columns correspond to the visualiza-
tions over masked face images from the Simulated Masked
CASIA-WebFace, and the last two columns over periocular
images from the Periocular CASIA-WebFace. As we can
see, the Grad-CAM maps greatly vary for different models.
However, we can appreciate that all the masked models
assign a very low weight to the mask region. In general,
the regions activated in the features maps for MobileFaceNet
models are bigger than those of the other models. On the
other hand, if we compare the maps for the masked models
against those of the periocular ones, we found that in the case
of the masked models, they are more focused over the the
area around the eyes.

E. EFFICIENCY ASSESSMENT
Table 15 presents the computational requirements for the
lightweight face models used in this study, and the compar-
ison with some state-of-the-art deep face architectures that
have been employed to address the masked face recogni-
tion problem. Specifically, we compare the storage space
(model size) in Megabytes (MB), the compactness (number
of parameters) and the Floating Point Operations Per Second
(FLOPs) of the models. We can observe that, lightweight

TABLE 15: Comparison of storage space (model size), com-
pactness (number of parameters) and Float-Operating-Points
(FLOPs) of the lightweight face architectures with state-of-
the-art face recognition models.

Method Model size(MB) #Param.(M) GFLOPs
AlexNet 244 61 729
FaceNet 95 7.5 500
VGG-Face 526 138 15
VGG-Face2 165 25.6 4.0
R100-ArcFace 249 65.2 24.2
LCNN29 125 12.6 3.9
MobileFaceNet 8.2 2.0 0.9
ShuffleFaceNet 10.5 2.6 0.6
VarGFaceNet 20.0 5.0 1.0
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R100-ArcFace

ShuffleFaceNet

VarGFaceNet

MobileFaceNet
FIGURE 7: Grad-CAM visualizations of the fine-tuned lightweight face networks and the state-of-the-art R100-ArcFace
model for face images from the Simulated Masked and the Periocular CASIA-WebFace training datasets. First two columns
correspond to visualizations over masked face images and the last two ones over periocular images.

models improve remarkably the efficiency of the considered
state-of-the-art models in all the requirements measured. The
size of the biggest lightweight model (VarGFaceNet) is 10
times smaller than that of the well-known R100-ArcFace
model, while the number of parameters is 13 times lower.
The results indicate that the lightweight models have the
best deployment capacity, which make potentially suitable
and practical for using in embedding and low computational
power devices.

VI. SUMMARY AND CONCLUSIONS
In this paper, we have presented a comprehensive study
and evaluation of the performance of three state-of-the-art
lightweight face models in order to address the effect of wear-
ing masks on face recognition scenarios. To this end, two
different approaches are investigated: on the one hand, the
models are fine-tuned with several masked face images and
on the other hand, the periocular information is considered.

Due to the lack of public datasets containing real masked
face images, we created simulated masked datasets by plac-
ing synthetic masks over the face images from the CASIA-
WebFace dataset for training, and from well-established face
benchmarks for testing. Moreover, we test the trained models
on some real masked dataset and also collect a database,
named RMFR-CEN, of 100 subjects of our laboratory with
real masked face images The proposed dataset is part of
an ongoing effort to gather a larger scale database with
realistic variations and will be available upon request. In

order to compare the two considered approaches under the
same conditions, periocular versions of these datasets is also
constructed for training and evaluation.

From the experimental evaluation, our study pointed out
the significant drop in the performance of the exiting face
recognition solutions when considering masked face probes,
especially in realistic scenarios. We found that by fine-
tuning the models on masked faces, we are able to achieve
better results than by using the periocular region. Moreover,
we corroborate that models obtain a higher accuracy when
matching masked vs. unmasked images is performed, which
is an important aspect in the development of real applications.
Compared with existing solutions for addressing the masked
face recognition problem, which are based on more heavier
deep networks, the considered lightweight models shown a
very competitive performance. This indicates that utilizing a
larger and deeper deep learning models does not necessarily
and solely lead to higher recognition performance.

In addition, we observed that the masked-based models
can recognize unmasked faces on general unconstrained sce-
narios. However, there is still a margin of improving the
performance when there are more drastic appearance varia-
tions in the faces such as those caused by aging and larger
variations in poses. The aforementioned conclusions open
opportunities to propose new methods, algorithms, architec-
tures, and/or loss functions that allow obtaining models able
to generalize better in the presence of facial artifacts such
masks, in order to provide existing face recognition systems
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with greater robustness to people wearing of such a necessary
accessory in times of COVID-19. Also, it is a real necessity
to detect masks as an additional functionality.

Regarding to the efficiency of the lightweight face archi-
tectures employed in this study, we assess to their computa-
tional requirements and compare them with some of the state-
of-the-art methods that have been used in the literature for
recognizing faces wearing masks. As results, we show that
the lightweight models are potentially suitable for being em-
ployed in embedding and low computational power devices.

As future work, we plan to continuous collecting more
real masked images from our laboratory in order to en-
rich the proposed RMFR-CEN database. Moreover, although
masked-based models allow us to obtain higher recognition
performance than periocular-based models, we think that
combining both approaches could improve the performance
of current masked face recognition solutions.
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