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ABSTRACT 

Vast quantities of electronic patient medical data are currently 
being collated and processed in large federated data repositories. 
For instance, TriNetX, Inc., a global health research network, has 
access to more than 300 million patients, sourced from healthcare 
organizations, biopharmaceutical companies, and contract research 
organizations. As such, pipelines that are able to algorithmically 
extract huge quantities of patient data from multiple modalities 
present opportunities to leverage machine learning and deep 
learning approaches with the possibility of generating actionable 
insight. In this work, we present a modular, semi-automated end-
to-end machine and deep learning pipeline designed to interface 
with a federated network of structured patient data. This proof-of-
concept pipeline is disease-agnostic, scalable, and requires little 
domain expertise and manual feature engineering in order to 
quickly produce results for the case of a user-defined binary 
outcome event. We demonstrate the pipeline’s efficacy with three 
different disease workflows, with high discriminatory power 
achieved in all cases. 
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1 INTRODUCTION 

In recent years, there has been an explosion in the amount of 
collected structured and unstructured clinical data in the form of 
Electronic Health Records (EHR) and Electronic Medical Records 
(EMR) [22]. Concurrent advancements in machine learning (a set 
of computational heuristics that seek to identify nonlinear 
interactions and transformations) have simultaneously made big 
data analysis more tractable. Deep learning methods operate on 
data using artificial neural networks. These complex models are  
capable of recognizing patterns in large-scale, multidimensional 
data [8], and have seen successful applications across multiple 
health-care domains, such as clinical imaging (particularly in 
pathology and radiology image recognition and segmentation), 
genomics, and more recently, wearable health monitoring devices 
[18].  

     In this study, we consider EHR data which is inherently 
multimodal and is comprised of structured components (e.g. 
diagnoses, procedures, laboratory values, vital signs, and 
demographic information), and unstructured components (e.g. 
medical images and clinical free text). The structured data are 
encoded using a variety of medical classification lists. Diagnoses 
are most commonly encoded with International Classification of 
Disease (ICD) codes, procedures are represented by Current 
Procedural Terminology (CPT)/ Healthcare Common Procedure 
Coding System (HCPCS) or ICD Procedure Coding System (ICD-
PCS), and laboratory and vital values with Logical Observation 
Identifiers Names and Codes (LOINC). Models integrating this 
information across large federated datasets that are aggregated 
across many institutions around the United States may produce 
better discriminatory results versus training within a single 
institution but are difficult to train because they require 
standardization and completeness across these training datasets as 
well as privileged access to highly sensitive data. In addition, 
mapping these data manually to a consistent ontology is labor-
intensive, and periodic revisions necessitate refactoring of existing 
pipelines and retraining personnel (e.g., ICD-9 to ICD-10 transition 
in late 2015) [25]. 
     Another barrier to entry for these emerging technologies is the 
lack of interpretability of deep learning approaches versus standard 
algorithms deployed in the healthcare fields, such as logistic 
regression. The latter involves sensible curation of clinically 
relevant covariates, while the former involves an approach that 
freely uses all available covariates while largely obfuscating which 
factors the model found to be clinically-relevant. This so called 
“Black Box” interpretability problem makes clinician acceptance 
and use of any targetable insights derived therein more difficult to 
implement. However, deep learning approaches have significant 
advantages over simpler models trained on human curated data in 
that they incorporate feature extraction into the learning process of 
the network instead of the manual specification of covariates and 
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thus consider associations a human observer might dismiss or fail 
to recognize. Examples specific to the EMR/EHR deep learning 
field include the stacked autoencoder-based DeepPatient, proposed 
by Miotto et. al. [19], the concept embedding-based Med2Vec, 
proposed by Choi et. al. [2, 3, 5], and Rajkomar et. al.’s method 
based on the Fast Healthcare Interoperability Resources (FHIR) 
format [23]. 
     Another significant issue in training multi-institutional deep 
learning models on patient data is the Protected Health Information 
(PHI) contained in EHR data. Hospitals are understandably hesitant 
to disseminate HIPAA-protected data outside of their own firewalls 
due to the risk and penalties of data leakage. Indeed, most hospitals 
are so cognizant of this risk as to limit the access of practitioners 
within their own institutions to only the patient information that is 
necessary for a clinician to perform their duties. A data protection 
scheme, such as federated learning, where patient data is encrypted 
and processed behind the firewall of the originating institution 
before being used in a federated learning model is necessary for any 
model requiring broad access to protected patient data [24, 29]. 
     In this work, we use a data repository of EHR data (TriNetX’s 
Federated Network) that has been aggregated and homogenized 
from multiple member institutions, which include healthcare 
organizations, biopharmaceutical companies, and contract research 
organizations [28]. These institutions pool and share data to recruit 
patients for clinical trials and conduct research using the TriNetX 
platform. In contrast to the aforementioned federated learning 
platforms, from which noisy/heterogenous data can potentially 
corrupt models trained across institutions, curation of pooled data 
resources in a secure centralized, collaborative platform allows for 
greater standardization of resources, improving research quality. 
We provide further support for the utilization of computational 
pipelines that are built on EMR data that generalize to a range of 
binary outcomes. Our framework tackles complications associated 
with dataset completeness, while demonstrating the capabilities of 
data extraction from large federated data networks and integration 
into deep learning workflows.  

2 MATERIALS AND METHODS 

2.1 Data Query Mechanism 
We developed an auto-querying mechanism to extract patient 

data from TriNetX’s Dataworks network, a subset of their full 
network containing approximately 48 million patients from 39 

healthcare organizations, that has been deidentified and approved 
for research use [7]. The auto-querying mechanism constructs a 
training cohort through user-specification of a binary-outcome 
defined by one or more ICD-9/10 codes or, in the case of a 
histological outcome, ICD-O codes (presence of the code indicates 
a “positive” patient). The pipeline automatically generates a 
matched negative population through automatic, greedy and exact 
identification of age- and sex- matched controls in a general patient 
pool who lack the specified ICD codes. Additional temporal 
constraints may be placed to ensure matched patients had unrelated 
diagnoses recorded on the same day as the positive patient’s index 
date. Using the auto-querying mechanism, the user can then specify 
one or more health metrics that they wish to obtain from those 
populations for processing and analysis, including: diagnoses 
(including those from the tumor registry), laboratory values, vitals, 

Pancreatic cancer Colorectal cancer NASH
+ - + - + -

n = 10150 (53.7%) n = 8746 (46.3 %) n = 21485 (48.1%) n = 23223 (51.94%) n = 11178 (51.5%) n = 10508 (48.5%)

Year of birth
Mean (SD) 1948.5 (13.0) 1948.5 (14.0) 1948.6 (13.3) 1950.6 (15.7) 1958.4 (13.5) 1957.9 (16.0)

Median 1947 1947 1947 1948 1956 1956

Sex (N, %)
Male 5183 (51.1) 4531 (51.8) 10415 (48.5) 11810 (50.9) 4795 (42.9) 4803 (45.7)

Female 4967 (48.9) 4215 (48.2) 11070 (51.5) 11413 (49.2) 6383 (57.1) 5705 (54.3)

Table 1: Demographic characteristics of the training populations. Negative populations were age-, sex-, and temporally-

matched to the positive population in a greedy fashion, and a ten-day temporal filtration was used for all data types. The

cohort selection process is described in detail in the pipeline description section. For pancreatic cancer, a single negative match

per positive patient was specified. For colorectal cancer and non-alcoholic steatohepatitis (NASH), a maximum of two negative

patients were matched to a positive patient, in order to generate approximately balanced population numbers.
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Table 1: Demographic characteristics of the training populations. Negative populations were age-, sex-, and temporally matched to the positive population 
in a greedy fashion, and a ten-day filtration was used for all data types. The cohort selection process is described in detail in the pipeline description section. 
For pancreatic cancer, a single negative match per positive patient was specified. For colorectal cancer and non-alcoholic steatohepatitis (NASH), a maximum 
of two negative patients were matched to a positive patient, in order to generate approximately balanced population numbers. 
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Figure 1. Graphical overview of modeling approach. A) Cohort is 
generated from federated data network; B) Codes and laboratory 
measurements (LOINC) extracted over time (referenced by index date) 
and are converted to their vectorized representations for the timesteps; C) 
Vectors across time are concatenated to form sequences of information 
(tensors), which serve as input for D) the Modular LSTM, which 
processes the temporal sequences across multiple modalities, combines 
this information with demographics and further operates on the data using 
multi-layer perceptrons to output a positive/negative diagnosis 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 2, 2021. ; https://doi.org/10.1101/2021.10.30.466612doi: bioRxiv preprint 

https://doi.org/10.1101/2021.10.30.466612


Federated Network EHR Multimodal Deep Learning Models  Under Review 
 

 3 

procedures, and demographic data. The software automatically 
generates statistical reports to ensure that the age and sex 
distributions are matched between cohorts. 

2.2 Data Preprocessing 
Once the data has been acquired (Figure 1A), the data is split 

into two separate preprocessing pipelines devoted to code-based 
categorical data (e.g., diagnoses and procedures; ICD-9, ICD-10, 
ICD-9-CM, ICD-10-PCS and CPT codes) and value-based data 
(e.g., laboratory values, vital values, and demographic data). 

2.2.1. Code2Vec to encode diagnostic and procedural 
information based on neighboring codes. Prior to encoding 
diagnostic and procedural codes  Contextual vectorized 
representations of diagnosis and procedure codes (i.e., codes are 
assigned to vectors which are compared to one another using vector 
arithmetic), enumerated above, are created using the Word2Vec 
algorithm [1, 15] (Figure 1B; Appendix Table 1). The 
dimensionality of the representation is user-definable, but a 100-
dimensional embedding is recommended for an optimal balance 
between computational cost and a capture of the entirety of the 
feature space. Prior to encoding these codes, ICD-9 codes are 
mapped to ICD-10 using a standardized mapping dictionary [21]. 
The Word2Vec dictionary is built using codes from both the 

negative and positive population cohorts to ensure unknown codes 
are recognized. 

2.2.2.  Value-based data preprocessing. Primary value-based 
data include laboratory (clinical chemistry, hematology, 
microbiology, etc.) and vitals data, encoded with LOINC codes 
[14] (Figure 1B). Uncommon laboratory measurements are 
excluded via frequency thresholding, where codes must be present 
across a user-specified fraction of the population. Sex and year of 
birth are imputed with the most common sex and combined mean 
of year of birth (year of birth as proxy for age).  

2.2.3.  Removal of endogenous information via temporal 
filtering. A temporal filtration system prunes the code and value-
based record information from a user-defined number of days 
before the event (patients in the negative population also have an 
index event date; selection of an index date is common practice for 
selection of negative controls, where index dates are matched 
between the positive/negative cohorts) [12]. The selection of the 
temporal filter window is largely dependent on the disease being 
studied, patient numbers, types of data included, and other clinical 
considerations particular to the condition to ensure meaningful 
prospective prediction and avoid endogeneity (e.g., analysis of a 
seasonal influenza).  

2.2.3.  Final data representations. The final dataset is 
represented using datatypes that reflect either (Figure 1C):  

(a) (b)

(c)

Figure 2. Receiver operating characteristics for (a) pancreatic cancer, (b) Non-alcoholic steatohepatitis (NASH), and (c) colorectal cancer. A reference line 
at y = 0.8 (dotted red) is added for clarity. All models included diagnosis data, laboratory data, and demographic (age/sex) data. Sample sizes are given in 
Table 1. A temporal filtration of 10 days from the index event was specified for both diagnostic and laboratory data. Laboratory values were included with 
default threshold of 0.5, resulting in 27 laboratory values considered for all diseases. Default training settings were used for all models (see pipeline 
description). Balanced accuracy was calculated by macro-averaging the proportion correct for each class individually. Abbreviations: Area under the 
Receiver Operating Characteristic Curve (AUROC), modular long short-term memory network (mLSTM), multi-layer perceptron (MLP), random forest 
classifier (RFC). 
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1) Temporal sequences (sequence of codes or lab 
measurements)– Diagnostic and process/procedure codes 
are converted into their word2vec vectors, which are 
tagged and then ordered by date of assignment. If multiple 
codes occur on the same day, the vectorized 
representations are averaged to summarize the day. The 
resulting vectors are ordered temporally, with each 
diagnosis/procedure vector representing a discrete patient 
encounter. Each patient is assigned a sequence of 
Code2Vec vectors (n Code2Vec dimensions by t 
timepoints per patient). Value-based records are 
represented by a multivariate time-series. For instance, 
each type of clinical lab measurement (e.g., levels of 
hemoglobin, sodium, etc.) serves as an individual time 
series. Measurements are averaged and mean-imputed for 
each day (sequence of multiple lab measurements, m lab 
measurements by t timepoints per patient).  

2) Static representation– instead of representing codes and lab 
measurements as sequences, the code and value-based 
measures can be averaged across the time period. Fixed 
demographic clinical covariates serve as additional 
predictors. 

The user has the option to remove patients that do not utilize all 
of the available datatypes (absence of codes, lab measurements 
and demographic information).  

2.3 Modeling Approaches 
Our framework operates on static data representations with the 

following machine learning models: Logistic Regression (L2-
regularized), Multi-Layer Perceptrons (MLP; trained with the 
Adam optimizer with a learning rate of 1e-3, trained until the 
plateau of the validation loss or for 200 epochs), Random Forest 
Classifier (ensemble method; decision splits decided based on Gini 
impurity). Finally, a 2-layer bi-directional Long Short-Term 
Memory (bi-LSTM) network (which retains information from 
intermediate hidden states of the model) may be employed to learn 
temporal dependency between the code and value-based 
measurements. The final hidden state is concatenated with 
representations of the other data modalities (e.g., combining codes 
with lab measurements and demographics) to yield an ultimate data 
representation. The final data representation is passed through a 

final MLP, where a sigmoidal activation function is applied to 
obtain class probabilities. We denote this approach as the modular 
LSTM (mLSTM) approach, as other EHR modalities represent 
interchangeable “modules” (Figure 1D). The default training 
scheme utilizes the Adam optimizer with minibatches and a cross-
entropy loss function. Dataset bias from imbalanced class 
distributions were ameliorated using reweighting of the model 
objective function, oversampling of the low-frequency class, or a 
sensitivity analysis of the receiver operating curve (ROC). 

2.4 Model Interpretation 
2.4.1. Interrogation of Semantic Similarity between Code2Vec 

Vectors with T-SNE. Given that the Code2Vec vectors are being 
modeled sequentially using a Bi-LSTM to make disease 
predictions, it is expected codes can be contextualized by the type 
of malignancy and potential co-morbidities with other codes since 
co-morbidities co-occur (are both present despite being placed in 
different parts of the ICD code hierarchy) within similar time 
windows. We verified that the Code2Vec model had registered the 
correct semantic information through inspection of T-Stochastic 
Neighborhood Embedding (T-SNE) plots, which generate 2-D 
visualizations of the 100-dimensional Code2Vec vectors by 
projecting high dimensional data onto a manifold which preserves 
semantic distances between codes [11]. Codes were colored by type 
of malignancy and in the results section, we comment on the 
potential similarity between co-morbidities. 
     2.4.2.  Integrated Gradients for Codes and Lab Measurements. 
Integrated Gradients is a post-hoc model explanation technique 
which can assign an importance score to any predictor of the model 
for their relevance for the prediction. We used the Integrated 
Gradients technique to establish which codes were important for 
prediction of the disease at each time step, per patient by 
backpropagating information of prediction back to the original 
input (one score per Code2Vec dimension, per timepoint). The 
overall importance for a given timestep was given by averaging the 
score across all Code2Vec dimensions across the timestep 
(alternatively, the absolute value of the integrated gradient score 
may be taken to remove relationship directionality). The 
importances of the multivariate clinical lab measurement time 
series were calculated similarly, where instead the output remains 

Pancreatic cancer
(Test set n = 1890)

Colorectal cancer
(Test set n = 4471)

NASH
(Test set n = 2169)

mLSTM Logistic MLP RFC mLSTM Logistic MLP RFC mLSTM Logistic MLP RFC
Accuracy 79.58% 73.39% 72.70% 69.63% 74.52% 71.97% 70.32% 66.23% 84.32% 79.85% 79.30% 78.56%

Bal. Acc. 79.54% 73.58% 72.34% 69.90% 74.34% 71.57% 70.30% 65.52% 84.47% 79.88% 79.26% 78.82%

AUROC 0.871 0.810 0.800 0.777 0.817 0.782 0.768 0.710 0.911 0.878 0.881 0.864

Recall 0.801 0.704 0.783 0.654 0.713 0.651 0.700 0.540 0.803 0.790 0.804 0.711

Specificity 0.789 0.768 0.663 0.744 0.773 0.781 0.706 0.770 0.886 0.807 0.781 0.865

Precision 0.811 0.774 0.724 0.743 0.735 0.724 0.678 0.675 0.883 0.814 0.797 0.850

F1 Score 0.806 0.737 0.753 0.695 0.724 0.685 0.689 0.600 0.841 0.802 0.801 0.774

Table 2: Test set performance on the three disease workflows. Processed patient data was split into a training, validation,

and testing set with sizes 80%, 10%, and 10% (random seed = 10). All long short-term memory (LSTM) models took in

temporally-processed versions of diagnosis and laboratory data, with age/sex data represented statically. Models were bilayer

and trained over 30 epochs. No dropout regularization was used. Logistic regression used L2 regularization (C=1), and was

fitted to the static representations of the diagnostic/lab/demographic data (detailed in the preprocessing section). The multi-

layer perceptron (MLP) models were 3 layers deep, with 100 neurons per layer. The Random Forest Classifiers (RFC) were

comprised of 10 estimators each, with no constraints on individual tree depth.

2

Table 2: Test set performance on the three disease workflows. Processed patient data was split into a training, validation, and testing set with sizes 80%, 
10%, and 10% (random seed = 10). All long short-term memory (LSTM) models took in temporally-processed versions of diagnosis and laboratory data, 
with age/sex data represented statistically. Models were bilayer and trained over 30 epochs. No dropout regularization was used. Logistic regression used L2 
regularization (C=1), and was fitted to the static representations of the diagnostic/lab/demographic data (detailed in the preprocessing section). The multi-
layer perceptron (MLP) models were 3 layers deep, with 100 neurons per layer. The Random Forest Classifiers (RFC) were comprised of 10 estimators each, 
with no constraints on individual tree depth. 
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unmanipulated, allowing for the interrogation of the importance of 
a specific lab measurement across time. 

2.5 Experimental Design 
We tested our pipeline on three separate patient cohorts 

corresponding to the following conditions: pancreatic cancer (PC), 
colorectal cancer (CRC), and non-alcoholic steatohepatitis 
(NASH). These patient cohorts were defined on the basis of a 
recorded ICD-9/ICD-10 diagnosis code corresponding to each of 
the three conditions on their medical record.  Our framework split 
the datasets into training, validation, and testing sets, with the 
default splits being 80%, 10%, and 10% respectively before testing 
on each type of classifier. Predictive performance was measured 
using the area under the receiver operating curve (AUROC; 
estimate of the probability that a randomly selected case has a 
greater predictive probability than a randomly selected control), 
balanced accuracy and F1-Score (geometric mean of model 
precision and recall) measures.  

3 RESULTS AND DISCUSSION 

3.1 Results 

3.1.1. Age, sex matching for harmonized data pull. Population 
characteristics such as age and sex exhibited similar distributions 
in positive and negative testing populations (Table 1). 
     3.1.2. Predictions Across Disease Subtypes. We fit four 
modeling approaches to the federated dataset for the tasks of 
predicting the likelihood of pancreatic cancer, colorectal cancer and 
NASH on a multimodal dataset (in this instance, diagnostic codes, 
laboratory data and demographic characteristics). In Table 2, we 
present fit statistics on the held-out test sets. Prediction of 
pancreatic cancer across all classifiers yielded AUROC scores of 
0.78 – 0.87, while colorectal cancer was the least characterizable, 
with models achieving 0.71 – 0.82 AUROC. Finally, presence or 

absence of NASH was the most characterizable, with the various 
model types achieving AUROC scores of 0.84 – 0.91 (Table 2). 
     3.1.3. Performance Comparison Across Models. Overall, the 
mLSTM model outperformed all other modeling approaches for all 
three datasets (Figure 2) across all metrics, with AUROC of 0.871 
(PC), 0.724 (CRC), and 0.841 (NASH). The difference is most 
notable in the case of pancreatic cancer prediction but is still present 
in the colorectal cancer and NASH workflows. Generally, the MLP 
and random forest classifier models underperformed compared to 
the mLSTM and logistic regression. Deep learning models 
exhibited higher recall/sensitivity at a standard threshold than the 
logistic and random forest models, though in the case of the MLP, 
this sensitivity comes with an increase in the false positive rate 
(Table 2). Addition of data types, including laboratory values and 
demographic data, to diagnostic information results in an increased 
AUROC over diagnosis information alone (Table 3). 

     3.1.4. Code2Vec embeddings capture disease comorbidities. 
Inspection of the latent Word2Vec embeddings of diagnostic codes 
demonstrated high clustering of diagnostic and procedural codes by 
malignancy types and common comorbidities (Figure 3). 
     3.1.5. Temporal importance of code assignments via Integrated 

Figure 3: Learned embeddings of malignancy codes with the Word2Vec algorithm on a patient population of 60,000 randomly selected patients from the 
TriNetX Dataworks network. Each point represents a single ICD-10 code. The original embedding dimensionality was 100, which has been dimensionally 
reduced through t-distributed stochastic neighbor embedding (t-SNE)38. For the purposes of this visualization, only malignancy codes (ICD families beginning 
with ‘C’ or ‘D’) were included and benign neoplasms were excluded. Codes are categorized and colored by malignancy type, and general groupings of 
‘comorbidity spaces’ are labeled.  

Diagnosis + labs +
year-of-birth/sex

(Test set n = 1890)

Diagnosis only
(Test set n = 1890)

Balanced Accuracy 79.54% 78.71%

AUROC 0.871 0.843

Recall 0.801 0.738

Specificity 0.789 0.837

Precision 0.811 0.836

F1 0.806 0.784

Table 3: Example of the performance increase a↵orded by the addition of more

data types in the pancreatic cancer workflow. Two temporal model networks

were trained under identical conditions, with one model including laboratory

values and the two demographic characteristics, year-of-birth and sex.

3

Table 3: Example of the performance increase afforded by the addition of 
more data types in the pancreatic cancer workflow. Two temporal model 
networks were trained under identical conditions, with one model including 
laboratory values and the other two featuring demographic characteristics, 
age and sex. 
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Gradients. After applying Integrated Gradients to two randomly 
selected NASH cases from the test set, we extracted important 
codes which are likely co-morbid with the underlying condition 
prior to the final diagnosis. For instance, for the first NASH patient 
(Figure 4A), prior to diagnosis, we noted that abdominal pain (ICD 
789) accompanied a diagnosis of other specific liver diseases (ICD 
K76.89), though NASH was not officially diagnosed until later on. 
In addition, the patient previously diagnosed with type 2 diabetes 
(ICD E11.9), a comorbidity that is strongly associated with NASH 
[6]. The second NASH patient (Figure 4B) also had a previous 
diagnosis of Hepatitis C (ICD 070.54/070.70) and diagnosis of a 
metabolic syndrome (ICD E88.89), amongst many other co-
morbidities, prior to the NASH diagnosis.  

3.2 Discussion 
Many approaches have been taken with regards to machine/deep 

learning modeling of electronic patient data [26], for a variety of 
use cases. Commonly, automated feature representation and 
outcome prediction are combined into a single workflow, as is the 
case with our approach. However, our workflow additionally 
considers processing dilemmas that are characteristic of large 
healthcare datasets. In this study, we demonstrated successful 
integration of a harmonized dataset from a large federated network 
into deep learning modeling workflows which were executed 
across three separate and meaningful datasets.  

TriNetX consists of a large federated network of heterogeneous 
healthcare entities. The data within TriNetX is ingested from these 
disparate institutions and companies, quality controlled and 
standardized, and updated on a regular basis, which provides 
significant advantages over a static, single institution-sourced 
datasets. Using a federated, nationally representative dataset allows 
researchers to train models on diverse patient populations and 
reduce institution-specific idiosyncrasies and biases. Data volume 
is a well-established limitation in the deep learning space, with 

many healthcare datasets being of insufficient size to train the 
complex, high-parameter models found in deep learning, especially 
given the judicious amount of preprocessing and cleaning that 
healthcare data requires. Federated data provides the scope of data 
necessary to make deep learning a viable modeling method. 

Of immense value to this work, we sought to predict whether a 
patient has a malignancy or other serious disease by integrating 
temporal information across multiple sources (e.g., codes, labs). 
While such temporal data is notoriously difficult to work with, 
given data quality limitations which will be elaborated on, results 
indicate the potential to deploy these technologies prospectively to 
shunt a patient into the pipeline earlier than they otherwise would 
be. 

3.2.1. Model Performance. Though direct comparison of 
models is difficult, for the task of pancreatic cancer prediction, our 
method performs comparably to the deep-learning based approach 
proposed by Muhammad et. al. [20] on both EMR and survey data 
with 18 personal health features. Our pipeline does not utilize 
survey data and only offers a limited view into behavioral 
characteristics (i.e., we did not include self-reported measures, 
which may be unreliable). The high prevalence of pancreatic cancer 
comorbidities and risk factors and the lack of pathognomonic 
symptoms makes selection of a patient for further screening 
challenging. Unsurprisingly, NASH, an inflammatory disease that 
is the most common cause of end-stage liver disease in the western 
world, is associated with disease symptomology that is more likely 
to be captured in clinical records and laboratory tests and as such 
prediction of NASH outperformed the other two datasets. 

NASH is characterized by a disease course that progresses 
through well-defined stages, beginning with hepatic steatosis and 
non-alcoholic fatty liver disease before progressing to NASH, with 
those early diseases frequently presenting with physical exam 
findings and hepatobiliary lab abnormalities. Additionally, NASH 
is strongly associated with metabolic disease as well as other 

Figure 4: Codes deemed important using the Integrated Gradients algorithm for two select cases (A-B) for Non-alcoholic steatohepatitis. The x-axis indicates 
the time step since the index event, while the y-axis captures the predictor importance; text containing the ICD codes assigned that day are plotted over their 
x,y coordinates and sized by their importance 
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comorbidities [13]. The NASH patient case study presented with 
multiple abdominal- and hepatic-related diagnoses prior to their 
NASH diagnosis. The course of this patient is consistent with the 
natural history of NASH, with a patient history of steadily 
progressive hepatic disease before end-stage liver disease.  

3.2.2. Study Limitations. There are several limitations in this 
study. As our selection of training populations is done in a case-
control fashion, our method is subject to all of the biases and 
limitations that such a study design entails [27]. Matching can 
ameliorate these biases to some extent. Temporal matching 
between patients in positive and negative populations by an index 
event can combat data leakage by avoiding endogeneity and 
partially account for biases that occur due to changes in diagnostic 
practice over time (e.g. the shift from ICD-9 to ICD-10 in 2015, 
which may have altered the presence of certain codes during that 
time period).  

Given the limited transparency in the current version of the 
pipeline, it is difficult to evaluate whether some unrecognized 
biases exist between the populations that are artificially inflating 
the discriminatory capacity of the classification models. Health 
record data are intended to be a reasonable accounting of the time 
at which a diagnosis was made. However, diagnosis delays and 
administrative/insurance issues may prevent a diagnosis or a lab 
from being recorded on the day it was administered. The temporal 
filtration of a certain number of days prior to the index date of a 
patient’s diagnosis of interest was designed to account for data 
leakage due to recording issues. 
     Federated networks are subject to data loss during the process 
of data ingestion and standardization from the various input sources 
of the network. The internal validation at TriNetX is designed to 
account for this loss, but some degree of incorrect data collation is 
unavoidable. However, the large quantity of data in such federated 
networks serves to reduce the effects of minor errors that arise 
during the ingestion process, barring a systematic error in data 
intake. 

Addition of model-agnostic post-hoc explainability techniques, 
such as the Shapley Additive Explanation (SHAP) algorithm [10] 
and attention, will serve as further validation of the pipeline. 
Applying self-attention across the modalities may lower the 
contribution from a “noisy” or “missing” dataset, improving 
prediction robustness.  The Code2Vec results demonstrated 
promising results for contextual representations of ICD codes and 
may be further improved by adoption of transformer architectures. 

A major strength of our method is the data it is built upon, with 
the TriNetX dataset being of a sufficient scale for judicious 
selection of training cohorts and effective implementation of deep 
learning methods. Much of the framework to interact with this data 
is automated in our pipeline, which allows for rapid model 
prototyping for a wide range of diseases and outcomes. In addition 
to making this a fully data-driven framework, the degree of 
automated preprocessing in our pipeline reduces the barrier of entry 
for potential end users, including physicians, researchers, and 
industry professionals who may not have the technical expertise to 
wrangle large-scale data and implement deep learning and machine 
learning models.  

4 CONCLUSIONS 
In this study, we demonstrated the utility of integrating 

multimodal deep learning approaches with federated healthcare 
datasets. Our pipeline achieves robust discriminatory scores on 
multiple disease prediction tasks, and given refinement and 
expansion, this methodology represents a promising step towards 
democratization of deep learning and artificial intelligence in a 
healthcare setting. 

A  APPENDICES 
A.1 Introduction 
A.2 Materials and Methods 

A.2.1 Supplementary Code2Vec Information. 

Appendix Table 1: Selection of three probe ICD codes and their top 10 
most similar codes, as evaluated with the cosine multiplication objective 

proposed by Levy and Goldberg[9]. 
Probe 
code 

Top similarities CosMul 
objectiv
e value 

C25.4 
Malignant 
neoplasm 
of 
endocrine 
pancreas 

C7A.098 Malignant carcinoid tumors of other sites 0.958 

C7A.8 Other malignant neuroendocrine tumors 0.951 

D3A.00 Benign carcinoid tumor of unspecified site 0.948 

D3A.8 Other benign neuroendocrine tumors 0.947 

D13.7: Benign neoplasm of endocrine pancreas 0.946 

C7A.1 Malignant poorly differentiated 
neuroendocrine tumors 

0.942 

D3A.098 Benign carcinoid tumors of other sites 0.941 

C7A.00 Malignant carcinoid tumor of unspecified 
site 

0.934 

C7A.00 Malignant carcinoid tumor of unspecified 
site 

0.931 

C75.9 Malignant neoplasm of endocrine gland, 
unspecified 

0.931 

K75.81 
Non-
alcoholic 
steatohep
atitis 

K74.60 Unspecified cirrhosis of liver 0.912 

K74.0 Hepatic fibrosis 0.910 

K76.6 Portal hypertension 0.895 

I85.10 Secondary esophageal varices without 
bleeding 

0.888 

K72.90 Hepatic failure, unspecified without coma 0.884 

I85.00 Esophageal varices without bleeding 0.882 

K74.69 Other cirrhosis of liver 0.872 

K76.0 Other diseases of liver 0.866 

E72.20 Disorder of urea cycle metabolism, 
unspecified 

0.864 

I85.01 Esophageal varices with bleeding 0.860 

C18.2 
Malignant 
neoplasm 
of 
ascending 
colon 

C18.0 Malignant neoplasm of cecum 0.945 

C18.8 Malignant neoplasm of overlapping sites of 
colon 

0.928 

C18.9 Malignant neoplasm of colon, unspecified 0.925 

C19 Malignant neoplasm of rectosigmoid junction 0.923 

C18.4 Malignant neoplasm of transverse colon 0.921 

C18.7 Malignant neoplasm of sigmoid colon 0.917 
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Z85.038 Personal history of other malignant 
neoplasm of large intestine 

0.916 

C18.6 Malignant neoplasm of descending colon 0.906 

C20 Malignant neoplasm of rectum 0.903 

C18.3 Malignant neoplasm of hepatic flexure 0.899 

 
The Code2Vec pipeline draws inspiration from several works for 
representation of code-based data. The Word2Vec algorithm, 
proposed by Mikolov et. al. [17], is perhaps the most well-known 
of a family of shallow neural networks that generate high-
dimensional concept representations based on co-occurrence. The 
following alterations were made to the Word2Vec algorithm to 
make it suitable for representation of ICD and procedure codes– 
Training examples (or patient ‘sentences’) were generated by 
considering all unique diagnoses/procedures in a patient’s recorded 
medical history. The window size for the Word2Vec algorithm was 
extended to the maximum number of unique diagnoses encountered 
in a single patient’s history, and the specific model architecture 
used was skip-gram, which displays slightly better capture of 
semantic similarity versus the continuous bag-of-words (CBOW) 
architecture [16][17],. 
     Choi et al. proposed a simple but effective method of generating 
an overall patient representation from individual codes in their 
Med2Vec framework, which is to take a component-wise average 
of the vector representations of the codes [4]. We confirm the 
robustness of this approach (see discussion). In the embedding 
space, the similarity between vectors serves as an indicator of their 
semantic relatedness. Examples are given to show that the learned 
embeddings faithfully capture clinical relatedness in the case of 
diagnostic codes (Appendix Table 1) and the resulting high-
dimensional representations of the codes can be dimensionally 
reduced to facilitate visualization.   

A.3 Results and Discussion 
A.4 Conclusions 
A.5 References 
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